
Efficient Tracking of Moving Objects with Precision Guarantees

Alminas Čivilis� Christian S. Jensen� Jovita Nenortaitė� Stardas Pakalnis�

�Department of Computer Science II, Vilnius University, Lithuania
�Department Computer Science, Aalborg University, Denmark

�Department of Computer Science, Kaunas Faculty of Humanities, Vilnius University, Lithuania

Abstract

Sustained advances in wireless communications, geo-
positioning, and consumer electronics pave the way to a
kind of location-based service that relies on the tracking
of the continuously changing positions of an entire popula-
tion of service users. This type of service is characterized by
large volumes of updates, giving prominence to techniques
for location representation and update.

This paper presents several representations, along with
associated update techniques, that predict the present and
future positions of moving objects. An update occurs when
the deviation between the predicted and the actual position
of an object exceeds a given threshold. For the case where
the road network, in which an object is moving, is known,
we propose a so-called segment-based policy that predicts
an object’s movement according to the road’s shape. Map
matching is used for determining the road on which an ob-
ject is moving. Empirical performance studies based on a
real road network and GPS logs from cars are reported.

1. Introduction

The growing use of online, mobile devices and the in-
creasing availability of positioning technologies combine to
enable Location–Based Services (LBSs). An LBS is capa-
ble of providing location-dependent information to its user.
The basic idea is to identify the location of each user and,
depending also on other input from each user, provide per-
sonalized services to the users. As the service users are ca-
pable of continuous movement, we term them “moving ob-
jects” (MOs).

Many kinds of LBSs may be envisioned. For example,
“yellow maps,” which generalize yellow pages, provide in-
formation about various points of interest. Route guidance
services help their users reach points of interest. Services
that track delivery trucks, service employees, hazardous

materials, tourists, or senior citizens suffering from demen-
tia improve cost effectiveness or safety and security.

Several studies of potential LBSs and their architectures
can be found in the literature (e.g., [9, 10, 11]).

This paper’s focus is on providing basic support for the
class of tracking services, where there is a need for contin-
uously monitoring of the current positions of a population
of moving objects. Ideally, at each time unit when an ob-
ject moves, a new position should be sent from the moving
object to the central database. A large population of mov-
ing objects entails a very large volume of such updates. The
costs associated with updates include the following:

1. Communication costs. A high volume of updates may
overload and degrade the performance of a wireless
network. Additionally, when using a third–party mo-
bile carrier for data transmission, a high volume of up-
dates increases the cost of the tracking.

2. Server side update costs. Database management sys-
tems typically do not support very large volumes of
updates well. This is particularly true if spatial index-
ing of the moving objects is employed [7]. Powerful,
and expensive, hardware is needed if very large vol-
umes of updates are to be supported.

3. Client side costs. Communication carries a signifi-
cant computational overhead on a mobile client. This
leads to a shorter operational time for battery-powered,
handheld devices.

The goal of the work reported here is to design and evalu-
ate tracking techniques that reduces the number of updates.
This involves server as well as client-side algorithms.

We assume that a client is able to perform certain com-
putations, to determine its location, and has a wireless bi-
directional data connection to the server. A typical exam-
ple of such a client is a modern mobile phone, e.g., a Nokia
3650, equipped with a Bluetooth Global Positioning Sys-
tem (GPS) unit, e.g., a Navman GPS 4400, and data con-
nection, e.g., a GPRS subscription to a GSM network. We
take into account that a client may have memory restric-

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

AAU
Text Box
©2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

tions and thus may be unable to store the map of an entire
region in its memory.

The techniques we investigate are based on movement
prediction, and it is an underlying assumption that precise
locations of moving objects are not needed for most track-
ing LBSs. Rather, we assume that the LBSs to be sup-
ported require tracking with a certain minimum accuracy.
Location-based games may need high accuracy, while a lo-
calized weather information service needs only low accu-
racy.

Location prediction is done on the clients and on the
server. On the server, a moving object’s current location
is determined using the location received with the last up-
date from the moving object and a prediction algorithm. A
client also predicts its own position using the same data and
algorithm as the server. It continuously compares the pre-
dicted location with its actual position, and it sends an up-
date to the server if the difference between the two locations
is about to exceed the threshold implied by the predefined
accuracy.

We propose three update policies: a point policy, a vector
policy, and a segment-based policy. The point policy uses
constant position prediction, the vector policy uses the di-
rection and speed of a moving object for position predic-
tion, and the segment-based policy predicts a moving ob-
ject’s position according to its speed and the shape of the
road on which the object is traveling.

Because the segment-based policy “knows” the road on
which the MO is moving, it enables a wider range of ser-
vices, which makes this policy important. Specifically, it en-
ables services that rely on information attached to the road
network, e.g., speed limits and real-time traffic status infor-
mation.

Each update policy is evaluated using real data, gener-
ated by cars equipped with GPS receivers and computing
devices, which were driving in and around the city of Aal-
borg, Denmark.

The three policies have different properties, and situa-
tions exist where each policy is superior to the other two.
The point policy yields the least performance improvements
on the data used. The point policy can be used for track-
ing of moving objects that move unpredictably, e.g., pedes-
trians. The vector-based policy is suitable in cases when
movement is more “directed” (e.g., car and airplane move-
ment), but where no information about an underlying trans-
portation network is available. Finally, the segment-based
policy is suitable in cases where movement is restricted by
a known transportation infrastructure.

The paper makes the following key contributions:

� Design and implementation of three database update
policies for the tracking of moving objects. The update
policies use different means of predicting the present
and future positions of moving objects.

� Empirical studies of the efficiency of the presented up-
date policies using real data.

As a minor contribution, the paper uses a variant of map
matching that is suitable for tracking policies that position
moving objects in transportation networks based on streams
of position samples. Although map matching is necessary
for the paper’s proposal to work, other map matching tech-
niques could be used in place of the paper’s proposal.

While techniques similar to the point-based policy have
been proposed in related work, we believe that the vector
and segment-based policies are novel. We also believe that
this study is the first to report on experimental studies of the
three tracking techniques with real data. Section 8 offers a
detailed presentation of related work.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the general update scenario and updating
policies. Section 3 defines the notion of moving object, de-
scribes the architecture and database of the system that man-
ages the updates. The map matching strategy is covered in
Section 4. Section 5 presents the main algorithms that run
on the server and client sides. Algorithms of the update poli-
cies and empirical studies of their performances, are given
in Sections 6 and 7. Section 8 covers related work. Finally,
we summarize, conclude, and offer suggestions for future
research.

2. Tracking Scenario and Update Policies

This section presents the general scenario for tracking of
moving objects, and it introduces the tracking policies pro-
posed in the paper.

2.1. Update Scenario

To be specific, we assume that moving objects are
equipped with GPS receivers and that data is transmit-
ted between the clients and the server using a GSM net-
work. We assume that disconnects between client and
server are dealt with by other mechanism in the net-
work than the policies we propose. When a disconnect oc-
curs, these mechanisms notify the server, which may then
take appropriate action.

A moving object always knows its position: its GPS re-
ceiver reports a position every second, with an imprecision
of less than 30 meters. We assume that a client knows its
position with higher precision than the precision required
at the server. For brevity, we say that the client’s GPS po-
sition is precise. In contrast, the required precision on the
server is determined by the needs of the services to be sup-
ported. In the experiments reported in Section 7, this posi-
tion ranges from 40 to 1000 meters.

The server receives updates from each client—a client
reports its current position and possibly some additional

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

movement data. According to this, the server is able to pre-
dict the client’s movement and to calculate where the client
will be at later points in time. The update frequency de-
pends on the required precision. It is the clients that deter-
mine when to issue position updates to the server.

A client uses the data it has sent most recently to the
server and the same prediction algorithm as the server for
calculating where the server “thinks” the client is currently
located. This predicted position is compared to the precise
position as obtained from the GPS unit. If the allowed pre-
cision threshold is exceeded, an update is issued; other-
wise, no update is issued. Using this scenario, the client en-
sures that the server will always know its position with the
agreed-upon precision.

2.2. Update Policies

The point policy uses constant position prediction. It thus
assumes that the object to be tracked is located at the posi-
tion given by the most recent updates (with the given preci-
sion).

The object being tracked actually moves and when its
position deviates by more than the allowed threshold, a new
update is generated. Using this policy, the movement of an
object is represented as a “jumping point.” This policy is the
most primitive among the presented policies, but it may well
be suitable for movement that is erratic with respect to the
threshold used. An example is the tracking with a thresh-
old of 200 meters of a child who is playing soccer.

Next, the vector policy uses the object’s position as well
as the object’s speed and direction of movement (velocity
vector). It assumes that the object moves linearly and with
the constant speed received from the GPS device in the most
recent update.

Using this policy, the movement of an object is repre-
sented as a “jumping vector.” This policy may be useful for
the tracking of “directional” movement, where the tracked
object moves towards a destination.

Finally, the segment-based policy assumes that an ob-
ject’s movement is restricted to a known road network,
meaning that an object moves along a known road seg-
ment and, like in the vector policy, moves at constant speed.
When the object reaches the end of the road segment on
which it is traveling, the policy assumes that the object
stops. After some time, the actual position of the object will
then deviate by more than the threshold from the predicted
position, and an update occurs. (Due to the client mem-
ory restrictions, the entire road network cannot be stored
on each client. Therefore, a client is not able itself to find
the new road segment on which it is located.)

When the server receives an end-of-segment update, it
applies a map-matching procedure to locate the new seg-
ment of the moving object. A geometrical representation of

this segment, a polyline, is then sent to the client. In case
an object cannot be placed on a new road segment, the sys-
tem switches to the vector policy. The next update is then
treated as an update caused by an end of segment event, and
map matching will be attempted.

Using this policy, the movement of an object is repre-
sented as set of road segments with positions on them, and
as jumping vectors in case map matching fails.

The remainder of the paper considers these policies in
detail.

3. Data and Database Structures

We first describe the GPS and map data used, then
present definitions of the data structures that we will be us-
ing. Descriptions of the tracking system’s architecture and
the server-side database are then given.

3.1. GPS and Map Data

Real data is essential for obtaining useful, reliable feed-
back on the performance of the different update policies.

We use real GPS logs from 5 out of some two dozen cars
that took part in an Intelligent Speed Adaptation project [8]
at Aalborg University. In that project, the driver of a car was
notified every time the car exceeded the speed limit.

All cars were owned by individuals living in Aal-
borg municipality. Each car was equipped with a GPS
receiver and computer. When a car was moving, the com-
puter logged GPS readings every second. Each reading, or
record, contains the car’s position, the time when the posi-
tion was measured, the car’s speed, and some additional in-
formation related to the speed adaptation project. No data
were recorded when the cars were parked. Cars were
logged for 6 weeks, and each log consists of about 100,000
records.

Next, a digital road network covering Aalborg Munici-
pality is used. The map is organized as a set of segments,
where each segment corresponds to the part of a road in-
between neighboring crossroads or dead ends. Each seg-
ment’s geometry is given as a polyline.

3.2. Representation of Moving Object Positions

We proceed to define data structures that are fundamen-
tal to the update policies.

Definition 3.1 (Moving Object) The position of a moving
object is defined as a point � � ��� �� in two-dimensional
Euclidean space��. (The set of all points is denoted by � .)
The representation of a moving object mo is a three-tuple
��� �� ��, where � � � is the initial position of the mov-
ing object, � � ��� � ��� � �� is the velocity vector of the

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

moving object, and � � �� is the time when � and � were
measured.

This three-tuple can be obtained directly from a GPS re-
ceiver. We also use a representation of a moving object’s
position in terms of a road network. To define this, we need
data structures for modeling a road network.

Definition 3.2 (Polyline) A polyline �� � ���� ��� � � � �
���, where � � �, is an ��� ��-tuple of coordinates points
�� � � . We term �� the start point and �� the end point
of the polyline. The direction of a polyline is from its start
point to its end point. The set of all the polylines is denoted
by ��.

A polyline, exemplified in Figure 1, can be described as a
sequence of connected line segments.

Start point
End point

m 0 = 0
m 1 = 2

m 2 = 5

m 3 = 9

m 4 = 12

direction

p0

p1

p2

p3

p4

s0
s1 s2 s3

Figure 1. Polyline

Definition 3.3 (Line Segment) A line segment is a poly-
line with precisely two points. Line segment �� � ���� �����
belongs to polyline �� , written �� � �� , iff ��� ���� � �� .
A point � belongs to line segment � � ���� ��� iff �� �
��� ���� � �� � ���� � ����.

Definition 3.4 (Measure) The measure (�) of a point � lo-
cated on a polyline is the distance, measured along the poly-
line, from the start point to point �; see Figure 1.

Function � calculates the measure of any point � lo-
cated on a polyline �	. Let function
 compute Euclidean
distance. Function � � �� � � �	
 is defined as fol-
lows:

���� � �� �����
���

� if � � ��
���	� ��� �
���� �� if ��

�
� � 	
���� � � belongs

to ��
 �� � ����
�

�������� otherwise

The measure of a point is equal to the measure of the start-
ing point �� of segment �� on which the point � is located,
plus the Euclidean distance
���� ��.

Function��� calculates a point for a given measure on
a given polyline. Function ��� � �� �
 �	 � where
� � ������� � ������

������ ��� is defined as follows:

������ ��� ���
�

������� �� � ��� if ��
�
� � 	
���� ����� � ��� �

�
 ����� �� � �	��
�

�������� otherwise

At first, function ��� is looking for two adjacent points
���� and �� on the polyline that have measures in-between
which the given measure � is located. Then the difference
between measure � and the measure of point � ��� is cal-
culated. According to the ratio between this distance and
the distance between points �� and ����, a parameteriza-
tion of searched point is done. If two points between which
the point with measure � is located cannot be found, the re-
sult is undefined.

Definition 3.5 (Road Network) A road network is a set of
polylines �� , �� � ��.

With the preceding definitions available, we can define
the representation of a moving object’s location in terms of
a road network.

Definition 3.6 (Moving Object on a Polyline) The rep-
resentation of a moving object on a polyline (MOP) is a
four-tuple ��� � ��� ��� ��	�� � ��. Here, �� � �� is the
polyline on which the moving object is located; � �

is the measure giving the moving object’s location on �� ;
��	�� �
 is the moving object’s signed speed along the
polyline; and � � �� is the time when the preceding val-
ues are valid.

This representation assumes that the object moves along a
known polyline.

Definition 3.7 (Server Object) The information sent by
the sever to a client is a server object, 	�, which is a three-
tuple ����
�� � �
� ����. Here, ���
�� � �’point’� ’vector’�
’segment’� identifies the update policy used; �
 is the rep-
resentation of the moving object’s position on the server
(���
�� � �	������� implies an ���; otherwise, it is an
��); ��� �
 is a threshold.

3.3. System Architecture

The system has a client/server architecture—see Fig-
ure 2. A mobile client is equipped with a GPS receiver and
a GSM device. The GPS receiver obtains the client’s loca-
tion and outputs this as a stream of sentences described by
the NMEA standard. Using the GSM device, the client con-
nects wirelessly to the server. Communication is done via
the HTTP protocol, where data is transmitted using a GPRS
data connection.

On the server side, applications are divided into tiers. An
application server uses services of a database system to pro-
cess client requests. Data management functions are located
in the database layer as stored procedures. We use the Ora-
cle DBMS with the Oracle Spatial package.

3.4. Database Schema

The data required by the different update policies is
stored in a database. Logically, this is divided into (1) data

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

PL /SQL
 procedures

GPS Receiver

Client
Application

GSM /GPRS

Client side Server sideNetwork layers

NMEA

RDBMS (Oracle Spatial)

Physical
 Data

Application JSP /Java

JDBC

Application Server
(Apache-Tomcat)

HTTP
HTTP, TCP /IP HTTP, TCP /IP

HTTP

Figure 2. System Architecture

about each moving object and (2) a geo-referenced repre-
sentation of the road network.

For each moving object, the database stores the object’s
location in table Object position, shown in Figure 3.

Object position
NUMBER objectid

VARCHAR policy
NUMBER xcoord
NUMBER ycoord
NUMBER dx
NUMBER dy
NUMBER gpstime
NUMBER segid
NUMBER measure
NUMBER speed

Geometry
NUMBER segid

SDO_GEOMETRY polyline

Object description
NUMBER id

VARCHAR perfpolicy
NUMBER threshold
NUMBER rambound

Segment
NUMBER id
NUMBER length

Connection
NUMBER id
NUMBER segid
NUMBER measure

Figure 3. Database Schema

The fields ������ and field �� from the �� structure (Def-
inition 3.7) are stored here. Depending on the policy used,
field �� is an �� or a ���. The pair of attributes xcoord
and ycoord, and dx and dy applies to field � and field 	 of
an mo, respectively. Attribute measure and speed applies to
field � and ����
 of an ���. Attribute segid references a
segment corresponding to field �� of an ���. Both repre-
sentations include a time, which is stored in attribute gp-
stime.

An object’s preferences are stored in table Ob-
ject description, where attribute threshold stores the
required accuracy, prefpolicy stored the preferred up-
date policy, and rambound records the available memory.
Both tables have an attribute that stores the update pol-
icy. The presence of attribute policy enables a temporary
switch to another policy than prefpolicy.

A road network is modeled as a collection of road seg-
ments that intersect at connection points. The concept of a
segment is thus central,and any content attached to a road
network references the segments [6]. A tuple in table Seg-
ment identifies a segment and records its length. The geo-
graphical extent of a road segment is modeled by a poly-
line. A tuple in table Geometry stores a polyline for each
segment. Finally, table Connection stores points along seg-

ments where there are intersections and exchange of traffic
thus may occur. This table allows us to distinguish between
real intersections and situations where road segments geo-
metrically intersect, but where there is no access from one
road to other, e.g., an underpass. A tuple indicates that an in-
tersection is located on segment segid at measure distance
units after the start of the segment. Attribute id is an identi-
fier.

4. Map Matching Strategy

Ideally, when an object traveling along a road reports
its GPS position to the server, that position should inter-
sect with the digital representation of the road. However, in
practice this might not be the case. First, GPS positions are
imprecise and may well deviate by up to about 30 meters
from the true position. Second, the digital representation of
a road network’s geometry may deviate from the road net-
work’s real geometry. For these reasons, a non-trivial proce-
dure must exist that map matches GPS positions onto seg-
ments in the representation of the road network.

Figure 4 shows a real example of the problem to be
solved. Here, both the GPS positions and the digital road
network are imprecise. Lines represent the road network
representation, small “+”’s represent reported GPS posi-
tions, and small squares on the road network represent map
matched positions.

Figure 4. Road-Network Representation and
GPS Positions

Map matching proceeds in two steps. First, all road seg-
ments located no further than some distance away from
the reported GPS position are found. Second, the segment
among these on which the position should most probably be
located on is identified.

In the second step, simply selecting the closest road seg-
ment may result in the selection of a road segment that
is perpendicular to the movement direction of the object.
Therefore, such road segments are eliminated, as are seg-
ments that are not accessible according to the Connection
table.

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

Specifically, the movement direction of an object is taken
into account by using the GPS position that preceded the
GPS position to be map matched and by creating a third po-
sition that is the anticipated next GPS position of the mov-
ing object, assuming linear movement. The predecessor and
successor positions are projected onto the same candidate
road segment among several such candidates. The road seg-
ment for which the sum of the two distances between the
positions and their projected positions is the lowest is se-
lected.

An example of distance calculations is given in Fig-
ure 5(a). Here, it is assumed that the � and � axes repre-
sent intersecting road segments. The predecessor position
is “a,” the position to be map matched is “MO,” and the an-
ticipated successor position is “b.” The object thus moves in
parallel with the � axis, from the left to the right. We com-
pare the sums ������� and ������� to determine to which
road segment the GPS position should be matched.

d yb

l
d ya

y

x

d xa

MO

d xb

ba

(a) Distance Calculation

����
����
����
����
����

l/2 l

l

l/2

y

x

A

B

(b) Map Matching Regions

Figure 5. Map Matching

The distance � between a and b influences the selection
of a road segment, as shown in Figure 5(b). Again, the ob-
ject moves in parallel with the � axis. If the GPS position
is in region A, it is map matched to the � axis. If it is in re-
gion B, the � axis is selected.

Notice that � increases with the speed of the moving ob-
ject. As � increases, the curve separating the two regions
moves upwards, and we tend to chose the � axis. This is
as desired, as the likelihood that an object makes a turn de-
creases with increasing speed.

However, when � is small the procedure just described is
not effective. Instead, we make explicit use of direction, by
comparing the direction of the object’s movement to the di-
rection of the road segments. The direction of a road seg-
ment is computed by first projecting two consecutive GPS
positions for the object onto the polyline representing the
segment. Then the direction of the line segment described
by the projections of the points is the road segment’s direc-
tion.

As a result, we have two values for each road segment, a
sum of distances and a direction difference. These two are

normalized (they are expressed in different units of mea-
sure), upon which they are combined into a single value.
We then select the road segment with the lowest value [2].
The experimental evaluation covered in Section 7 suggests
that the map matching described in this section is effective.

5. Server and Client Side Cycles

This section presents the client and server side cycles that
implement the update policies.

5.1. Server-Side Auxiliary Algorithms

We initially describe two server-side algorithms.
First, algorithm������� � ����� � (“Get Point Direc-

tion on Polyline”) determines the direction on a polyline
of a moving object. The direction is expressed as a signed
number, where � means that object moves from the start of
the polyline to the end, while �� indicates the opposite di-
rection (Figure 6).

Start point End point

+ 1- 1

Figure 6. A Point’s Direction on a Polyline

The direction of the object with a location given by a
point � on a polyline �� is determined by comparing the ob-
ject’s velocity vector ��� with the direction of the line seg-
ment on which object � is located. The direction of a line
segment is defined by the vector from the start point to the
end point of the segment.

Next, algorithm����� � � � ��� � (“Map Match”) finds
the polyline in the road network on which a given point
(e.g., a GPS location) is located. The input to the algorithm
is a position �, a velocity vector �, a maximum allowed dis-
tance 	 between position � and its projection onto a poly-
line, and a road network
� .

For each polyline reachable within distance 	 of point
�, the algorithm calculates a weight according to the strat-
egy described in Section 4. If no polylines are within dis-
tance 	, the result is undefined. Otherwise, point � is pro-
jected onto the polyline with the least weight, and the result
is the projection together with the selected polyline.

5.2. Server-Side Cycle

The main task is to update the database when a new up-
date arrives. After each update, the server returns a confir-
mation message with information specific to the update pol-
icy in use.

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

Algorithm 5.1 Server Cycle

(1) receive an update �� from an object
(2) if ���������	 � ’segment’ then
(3) ���� ������������������ �����
(4) if ��� �
���
�� �then �� � �’vector’���� ����������
(5) else
(6) ��������� ��������� ���������
(7) ������ � cut ��� according to direction

and the client’s memory limitations
(8) �������������� ����
(9) �� � �’segment’����� ��������� �
(10) end if
(11) else
(12) �� � ����������	 ���� ��������� �
(13) end if
(14) store �� in the database and send it to the client
(15) goto 1

Having received data from a client, the server iden-
tifies the client and retrieves its preferred update policy
���������� and threshold 	
���
��� from the database. If
the segment-based policy is preferred, map matching is per-
formed. If map matching fails, the server switches to the
vector policy (line 4) and updates the client’s ������ at-
tribute in table Object position. The preferred policy re-
mains unchanged; on the next update, the server will again
perform map matching. After a successful map matching,
an
�� object is created. Finally, the server packs all infor-
mation into an �� object, stores it in the database, and sends
it to the client. After that, the server waits for a new client
request.

5.3. Client-Side Cycle

The main task of a client is to control the precision of
the predicted position on the server side. According to the
required precision, the client decides whether or not to issue
an update.

Algorithm 5.2 Client Cycle

(1) receive position data �� from the GPS receiver
(2) send the current position �� to the server
(3) receive server object �� from the server
(4) while not finished do
(5) repeat
(6) read position data �� from the GPS receiver
(7) if ��������	 = ’point’ then ����� � ��� �������
(8) elsif ��������	 = ’vector’ then ����� � ���������������
(9) elsif ��������	 = ’segment’ then
(10) ����� � ��� �������������
(11) end if
(12) until 	������ ������
 ������������
(13) send the current position �� to the server
(14) receive server object �� from the server
(15) end while

Lines 1–3 perform initialization. The client obtains posi-
tion data from the GPS receiver and sends this to the server,
which in response returns a server object that specifies a
threshold and an update policy. The server object also in-
cludes an
� or
��, depending on the policy. With this

information, the client is able to calculate the position pre-
dicted by the server. For the segment-based policy, the sever
object contains an
��, which includes a map matched
polyline and a position on the polyline.

The main cycle in lines 4–15 continues until the client is
switched off. These lines repeatedly read the object’s GPS
position, compute the predicted position, and the distance
between these two positions. An update is issued if this dis-
tance exceeds the threshold. Notice that the client supports
all update policies (covered in the next section). The server
can change the policy and the threshold.

6. Prediction Policies

The prediction algorithms are used on the client side to
determine if an update should be sent to the server. On the
server side, these algorithms are used when location-based
services query the positions of the moving objects.

The algorithm for the point policy, ��� (Predict Point
with Point policy), is simple.

Algorithm 6.1 ����
��

(1) return ����

As the prediction is constant, the predicted position is the
same as the input position.

Next, the vector policy assumes that an object moves lin-
early and with constant speed. Algorithm ��� (Predict
Point with Vector policy) predicts the location of the given
object
� at a given time ���� . The result of the algorithm
is the location of
� at time ���� .
Algorithm 6.2 ����
�� 	��� �

(1) ����� � �������������� ������
(2) return �����

The predicted location is calculated by adding the time-
dependent traveled distance to the start point in the direc-
tion of vector �.

The segment-based policy takes into account the shape
of the road on which an object is moving—an object thus
moves according the shape of the road. Algorithm ���

(Predict Position with Segment policy) is defined as fol-
lows.
Algorithm 6.3 ����
��� 	��� �

(1) ����� � ��������� ������ ����� �������
(2) if �����
�� ������� � ��� then return ������ ���
(3) elsif ����� �� � then return ������ ���
(4) else
(5) return���������� ������ �
(6) end if

Here, an object’s position is given by a polyline and a mea-
sure. The predicted location is given as a new measure,
which is equal to the old measure plus the distance traveled
since the last update (line 1). The traveled distance is neg-
ative if the object moves against the direction of the poly-
line. If the new measure is outside the polyline, the result is

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

one of end points of the polyline (lines 2 and 3). This way,
the position prediction stops at a boundary point of the poly-
line.

7. Experimental Evaluation

We evaluate the three update policies using the data de-
scribed in Section 3.1. The performance of each update pol-
icy is expressed as the frequency of updates required by
a policy to ensure a specified precision. Precisions in the
range 40–1000 meters are considered.

Experimental results are presented in Figure 7. Here,
precision threshold values in meters are on the � axis. The
client receives a GPS position from the GPS device every
second and performs a comparison between the GPS posi-
tion and the predicted position. The � axis presents the av-
erage number of seconds in-between consecutive updates
sent from the client to the server in order to maintain the re-
quired precision.

Figure 7. Comparison of Update Policies

The time between updates increase as the preci-
sion threshold increases, i.e., as the required precision
decreases. The point policy shows the worst perfor-
mance in comparison to the two other policies. No-
tice that the largest performance improvement of the
segment-based and vector policies over the point pol-
icy is for smaller thresholds, while for larger thresholds
the improvement is smaller. For thresholds below ��� me-
ters, the segment-based and vector policies are more than
two times better than the point policy.

The segment-based and vector policies exhibit similar
performance, with the vector policy being slightly better.
Figure 8 offers results from a more detailed study of the
update performance of the segment-based policy. Here, the
� axis presents the percentage of positions received by the
client from its GPS device that triggered an update. For ex-
ample, the meaning of ���� is that every position received

from the GPS receiver leads to an update to be sent to the
server in order to maintain the required precision.

Figure 8. Analysis of Segment-Based Policy

The solid line presents the same results as in Figure 7.
The number of updates required for some threshold in
the segment-based policy is the sum of updates caused by
segment changes, speed variations, and updates made due
to switches to the vector policy. Updates caused by seg-
ment change are updates that occur when a new polyline is
identified for position prediction. Updates caused by speed
changes occur when a moving object sends an update of
its position that does not result in the use of a new poly-
line. For example, this occurs when an object stops. Finally,
some updates occur because map matching does not iden-
tify a segment, causing a switch to the vector policy. These
update components are presented in Figure 8 by separate,
dashed lines.

Updates caused by segment changes exert the biggest in-
fluence on the total number of updates. Notice that the ex-
periment was run on the same data set, only with different
threshold values. So while the cars went though the same
road segments, the number of segments used for prediction
decreases as the precision threshold increases. This is be-
cause larger threshold values allow the policy to “avoid”
some segments that are shorter than the threshold. Updates
caused by speed have less influence on the total number of
updates. And only few updates where done due to switches
to the vector policy. This study illustrates the segment-based
policy’s dependence on the representation of the road net-
work. In particular, it indicates that the policy is quite sen-
sitive to the lengths of segments.

Next, the study indicates that the map matching tech-
nique used rarely fails to map a GPS position to a segment,
for the map data and GPS logs considered. It should also
be noted that our particular use scenario is map-matching
friendly. The segment-based policy effectively switches to

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

the point policy at ends of segments, which is typically at
intersections. This switch has the effect that map matching
is not attempted within the tracking threshold of intersec-
tions. And this is where correct map matching is difficult.

8. Related Work

Several existing contribution relate to the paper’s contri-
butions. Wolfson et al. [15] propose dead-reckoning update
policies for spatial databases. Like the policies presented in
this paper, these policies use a deviation threshold. Specif-
ically, three dead-reckoning policies are proposed, one of
which allows recalculation of the threshold after each up-
date. However, while we assume that thresholds are im-
posed by applications, the focus of Wolfson et al. is on de-
termining threshold values according to so-called update,
deviation, and uncertainty costs. The specifics of our poli-
cies differ from those of Wolfson et al. For example, they
do not utilize the geometry of the underlying road network
and thus do not consider issues such as map matching.

In other work, Wolfson et al. [14] propose immediate lin-
ear and delayed linear update policies. These are not dead
reckoning policies, as a moving object does not update its
location when the deviation reaches some threshold. Exper-
iments on simulated data [15] show that the policies men-
tioned in the previous paragraph are superior to these two
policies.

Both works mentioned above assume that objects move
on predefined routes. They also assume that clients have in-
formation about the routes. If an object changes its route,
it sends a position update that includes a new route ��. Our
work differs by not making assumptions about predefined
routes or, for that matter, the existence of a road network,
and we do not require that routes are stored on the mobile
clients.

Gowrisankar and Nittel [5] give an abstract overview of
a dead-reckoning policy that uses angular and linear devia-
tions together, and that sends an update when one of these
deviations exceeds a threshold. They assume that objects
travel on predefined routes, and they do not cover aspects,
such as representations of road segments and map match-
ing, that underlie the segment-based tracking policy.

Lan et al. [16] propose an adaptive monitoring method.
The moving objects are divided into two groups. Objects
that fall into a query region need close monitoring, so a
small update threshold is used for them. Objects outside the
query region can have larger threshold values. Our policies
allow a different threshold for each object and allow these
to be changed dynamically.

When position accuracies on the order of several kilo-
meters suffice, tracking can use cellular-network based po-
sitioning [1, 12, 13]. With this kind of positioning, updates
are handled by the mobile network. Unlike for GPS, speeds

and headings are not available. We concentrate on handset-
based positioning and significantly higher precision in the
position tracking.

Assuming a network of geo-stationary “presence” sen-
sors, Goel and Imielinski [4] propose to use an MPEG-
based prediction model in order to determine the current lo-
cation of an object while using as little sensor battery power
as possible.

Next, Fox et al. [3] explore the use of statistical meth-
ods, e.g., multiple hypothesis tracking, in a more abstract
location estimation context than the one we consider. Inte-
gration of such methods into our setting may enable more
detailed analysis of the proposed tracking techniques.

We have found no experimental studies of update poli-
cies for moving objects that use real data.

9. Summary, Conclusions and Future Work

The overall setting is one where a central server tracks
the positions of a population of mobile clients equipped
with GPS receivers. We propose to have the server share
a representation, or prediction, of a client’s near-future po-
sition with the client. The client then monitors the deviation
between its GPS position and its predicted position, and it
send an update to the server when needed to meet the preci-
sion guarantee.

The paper proposes tracking techniques that offer preci-
sion guarantees while attempting to reduce the volume of
updates sent from the clients to the server. This is impor-
tant, as a high volume of updates imposes significant com-
munication costs as well as client and server side costs.

Three position prediction policies are proposed. The
point policy uses constant position predictions, the vector
policy approximates a moving object’s trajectory by a linear
movement at constant speed, and the segment-based policy
approximates a moving object’s trajectory by the shape of
the road on which it travels while assuming constant speed.
The segment-based policy uses map matching to find the
road on which an object is moving, and, to be robust, it
switches to the vector policy when map matching does not
succeed.

Five notable conclusions can be drawn from the empir-
ical evaluation of the update policies reported in this pa-
per. First, the prediction of a moving object’s future po-
sition allows a substantial reduction of the volume of up-
dates. Second, for GPS logs from cars moving in a semi-
urban environment, the point policy results in a relatively
high number of updates. Third, the segment-based policy is
more advanced than the other two update policies, as the
road network is used for position prediction. The position-
ing of moving objects w.r.t. a road network enables services
that utilize content that is also positioned w.r.t. the road net-
work (which is common). Fourth, the segment-based pol-

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

icy is sensitive to the number of visited segments. Fifth, the
map matching technique used by the segment-based policy
is effective.

We find that all three tracking policies introduced here
are quite fundamental. While the point policy was not com-
petitive for the data used, there is data and thresholds for
which it is competitive. And while the segment-based pol-
icy has the greatest potential because it positions objects in
the underlying transportation network, this policy applies
only to network-constrained movement, assumes that a rep-
resentation of the road network is available, and works only
when map matching is successful. For other movement and
to ensure robustness of the segment-based policy, the vec-
tor policy is attractive.

Several extensions to the work presented here are pos-
sible. The paper currently uses the number of updates as
a basis for comparison. While this is correlated with the
costs of data transmission, it would be of interest to eval-
uate these costs more accurately. This evaluation may lead
to more precise estimates of the actual cost savings for ser-
vices that use the different update policies. A detailed study
of the update load on the database for the general tracking
scenario is also warranted.

It would be of interest to modify the road network, to
offer a segmentation that is better suited for the segment-
based policy. This may be done by simply trying to create
longer segment, or it may be possible to modify the road
network according to the movement data collected from all
users. Using such data, smaller segments could be merged
into longer ones according to their usage. This may well
provide longer segments for the majority of users and thus
increase performance of the segment-based policy.

Finally, it is of interest to attempt to integrate insights re-
ported by Goel and Imielinski [4] and Fox et al. [3] into our
setting.

Acknowledgments

The authors wish to thank the anonymous reviewers for
their constructive comments.

This work was supported in part by a grant from ETRI,
South Korea, and through contract number IST-2001-32645
from the European Commission. In addition to his primary
affiliation with Aalborg University, C. S. Jensen is an ad-
junct professor in Department of Technology, Agder Uni-
versity College, Norway.

References

[1] I. F. Akyildiz and J. S. M. Ho. A Mobile User Location Up-
date and Paging Mechanism Under Delay Constraints. ACM-
Baltzer Journal of Wireless Networks, 1:244–255, 1995.

[2] A. Čivilis, C. S. Jensen, J. Nenortaitė, and S. Pakalnis. Ef-
ficient Tracking of Moving Objects with Precision Guar-
antees. Aalborg University, Department of Computer Sci-
ence. DB Technical Report 5, 23 pages. 2004. Available via:
�http://www.cs.auc.dk/DBTR�.

[3] D. Fox, J. Hightower, L. Liao, D. Schultz, and G. Borriello.
Bayesian Filters for Location Estimation. IEEE pervasive
Computing, 2(3): 24–33, 2003.

[4] S. Goel and T. Imielinski. Prediction-Based Monitoring in
Sensor Networks: Taking Lessons from MPEG. ACM Com-
puter Communication Review, 31(5), 17 pages, 2001.

[5] H. Gowrisankar and S. Nittel. Reducing Uncertainty In Lo-
cation Prediction Of Moving Objects In Road Networks.
Conference on Geographic Information Science, 2002.

[6] C. Hage, C. S. Jensen, T. B. Pedersen, L. Speičys, and
I. Timko. Integrated Data Management for Mobile Services
in the Real World. VLDB Conference, pp. 1019–1030, 2003.

[7] C. S. Jensen. Research Challenges in Location-Enabled M-
Services. Third International Conference on Mobile Data
Management, pp. 3–7, 2002.

[8] C. S. Jensen, H. Lahrmann, S. Pakalnis, and J. Runge. The
INFATI Data. Aalborg University, Department of Computer
Science. DB Technical Report, 10 pages, 2003.

[9] P. Jonathan, P. Munson, and V. K. Gupta. Location-based no-
tification as a general-purpose service. The 2nd International
Workshop on Mobile Commerce, pp. 40–44, 2002.

[10] R. Jose, A. Moreira, H. Rodrigues, and N. Davies. The
AROUND Architecture for Dynamic Location-Based Ser-
vices. Mobile Networks and Applications, 8(4):377–387,
2003.

[11] E. Kaasinen. User Needs for Location-Aware Mobile Ser-
vices. Personal and Ubiquitous Computing, 7(1):70–79,
2003.

[12] G. Li, K. Lam, and T. Kuo. Location Update Generation in
Cellular Mobile Computing Systems. International Parallel
& Distributed Processing Symposium, p. 96, 2001.

[13] Z. Naor and H. Levy. Minimizing the Wireless Cost of
Tracking Mobile Users: An Adaptive Threshold Scheme.
IEEE INFOCOM, pp. 720–727, 1998.

[14] O. Wolfson, S. Chamberlain, S. Dao, L. Jiang, and
G. Mendez. Cost and Imprecision in Modeling the Position
of Moving Objects. ICDE Conference, pp. 588–596, 1998.

[15] O. Wolfson, A. Prasad Sistla, S. Camberlain, and Y. Yesha.
Updating and Querying Databases that Track Mobile Units.
Distributed and Parallel Databases, 7(3):257–387, 1999.

[16] K. Yiu Lam, O. Ulusoy, T. S. H. Lee, E. Chan, and
G. Li. An Efficient Method for Generating Location Updates
for Processing of Location-Dependent Continuous Queries.
Database Systems for Advanced Applications, pp. 218–225,
2001.

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

	footer1:

