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Abstract. An increasing number of data sources are available on the
Internet, many of which offer semantically overlapping data, but based
on different schemas, or models. While it is often of interest to integrate
such data sources, the lack of consistency among them makes this inte-
gration difficult. This paper addresses the need for new techniques that
enable the modeling and consistency checking for legacy data sources.
Specifically, the paper contributes to the development of a framework
that enables consistency testing of data coming from different types of
data sources. The vehicle is UML and its accompanying XMI. The paper
presents techniques for modeling consistency requirements using OCL
and other UML modeling elements: it studies how models that describe
the required consistencies among instances of legacy models can be de-
signed in standard UML tools that support XMI. The paper also con-
siders the automatic checking of consistency in the context of one of the
modeling techniques. The legacy model instances that are inputs to the
consistency check must be represented in XMI.

1 Introduction

In addition to the Internet scenario mentioned in the abstract, when an enterprise
adopts a new software system, that system must typically work in a setting with
several existing legacy systems. It is often the case that new systems integrate
and combine data and functionality from existing systems. In this paper, we focus
on data integration. More specifically, our focus is on the consistency problems
that occur when previously uncoordinated, but semantically overlapping data
sources are being integrated.

For example, public administrations, in their strive to create one single, public
IT infrastructure, might build a new system that integrates previously separate
databases that concern different aspects of physical properties (land parcels,
buildings, etc.). It is important to the new system that the different represen-
tations of the same physical properties be consistent. And the introduction of
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the new system provides an opportunity to improve the quality of the existing
databases.

In this paper, we use UML (e.g., class diagrams) and its accompanying Object
Constraint Language (OCL) to model and test for consistency in this setting.
The paper explores different possible modeling techniques and forms a recom-
mendation for how to accomplish consistency modeling and testing. The notion
of something being consistent with something else can be applied in many con-
texts. For example, an implementation can be consistent with a model, meaning
it is a correct implementation of the model. Our specific context is legacy sys-
tems: we consider how to model consistency among data managed by different
legacy systems.

Most of today’s legacy systems use relational technology for persistent data
storage. Having two databases with overlapping models (i.e., parts of their
schemas describe the same reality, or miniworld) one consistency rule could be:
two objects with the same identity, modeling the same real-world entity, must
have the same values stored for corresponding attributes; otherwise, they are not
consistent with each other. We investigate how to exploit UML in this type of
modeling situation and how to perform the actual consistency testing.

Consistency

Modeling
L2

(XMI)

Legacy Model

L1
(XMI)

Legacy Model

Integration

Model
(XMI)

:L1
(XMI)

Legacy Data 

Consistency

Testing
:L2

(XMI)

Legacy Data 

Consistency

Report

Fig. 1. Consistency Modeling Overview

Fig. 1 offers an overview of our approach. The models of the legacy systems
are UML models represented in the XMI [1] format (metamodel level M1 [2]).
The output of the consistency modeling is an integration model where the two
legacy models have been integrated and the desired consistency has been ex-
pressed explicitly. We assume that the modeling activity is manual, but the
paper’s results might also be useful when designing automatic support for gen-
eration of integration models.

The paper explores the use of various subsets of UML for the consistency
modeling, and it recommends the use of a particular subset of UML notation
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together with guidelines for this task. A tool or plug-in may be designed based
on this, to give extra support for this modeling approach. However, an ordi-
nary UML tool will do since the recommended notation is a subset of UML.
Next, consistency testing is done automatically. The paper describes consistency
testing tailored to one selected consistency modeling technique. The consistency
model and legacy data are inputs to the consistency testing activity. The legacy
data are instances of the legacy models that were integrated in the integration
model. The data are represented according to the XMI format (metamodel level
M0) and can, e.g., be snapshots of legacy databases. The output of the consis-
tency testing activity is a report describing the consistency violations that were
revealed.

Our approach is related to constraint programming [3]: the modeler declares
constraints, and the test environment will later find a solution that is consistent
with the constraints. We assign values to so-called consistency attributes by
evaluating declared constraints. Our proposal also involves so-called consistency
associations between legacy classes. For these, the test environment will, in a
sense, try to break multiplicity constraints; and if it succeeds, a wrong cardinality
consistency violation occurs.

Maintaining consistency among different representations of the same entity
stored in different databases has been studied before [4], [5], [6]. We consider a
notion of consistency modeling that seems more general than most related work.
In comparison with the most related work [5], we do not rely on an extension of
UML (we stay within UML), and our testing is quite different.

An extension to OCL has been proposed [7] with the objective of describ-
ing quality-ensuring constraints on geographic data. We do not extend OCL,
but instead propose to introduce special associations and classes to support the
specification of complex consistency constraints. We believe that this aids in
obtaining a very practical approach.

This paper is structured as follows. Sect. 2 defines concepts, e.g., consistency
model and integration model, that are used throughout the paper; a first exam-
ple of consistency modeling is also introduced. In Sect. 3, different consistency
modeling techniques are described. Sect. 4 proceeds to discuss the modeling tech-
niques, and one technique is selected as the most useful. This section also covers
the automatic testing of such a model. Finally, Sect. 5 offers a short discussion,
conclusions, and directions for further work.

2 The Consistency Model

We proceed to define what we mean by consistency model, how it relates to
Model-Driven Architecture (MDA) [8], and the role of the test environment.

2.1 The Test Environment

Consistency checking might be challenging in a highly dynamic context: OCL
operators such as forALL and allInstances are hard to implement when objects
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come and go. The operators will function well if the object structure is static.
In particular, a snapshot of a system is static and can easily be used (see [9]
and [10] regarding the recording of distributed global state).

On the other hand, the restriction to a static context may impose limita-
tions on the use of operation calls (query operations) in OCL expressions. If
the operations are completely described in the model (e.g., by the use of action
semantics) they might be interpreted at test time.

The test environment might offer some support for the consistency model-
ing. For example, in relation to geographic information, spatial functions may
be part of the test environment. Such functions can then be used freely in OCL
expressions. At consistency modeling time, the classes supported by the test en-
vironment can be seen as part of a special, dynamic legacy model (thus query
operations will work properly). Such support can greatly strengthen the consis-
tency testing.

2.2 An Initial Example

Consider a simple case that relates to object replication. The package IM shown
in Fig. 2 contains legacy-model elements and additional modeling elements for
describing consistency: IM is an example of an integration model, and two legacy
models are shown that are stored in package L1 and L2, respectively. The package
stereotyped 〈〈consistencymodel 〉〉 is explained in the next section.

The dashed-dotted line between class L1::C1 and L2::C2 indicate that objects
of type L1::C1 might be tested for consistency against objects of type L2::C2.
The package notation is cumbersome to read, so we omit it in the remainder
of the paper, even if this in a strict sense makes some expressions syntactically
incorrect.

L1
«consistencymodel»

CM

IM

C2

id2

a2

L2

C1

id1

a1

Fig. 2. Integration Model Encompassing Legacy Models and a Consistency Model

We should be able to capture the following consistency requirement in the
integration model: if attribute values :C1.id1 and :C2.id2 are equal, it makes
sense to talk about the consistency of objects :C1 and :C2; they are consistent
if and only if :C1.a1 is equal to :C2.a2. Using OCL-syntax, we may state this as
follows.

Context C1 inv:
C2.allInstances->forAll(self.id1 = id2 implies self.a1 = a2)
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While it seems possible to do consistency modeling with OCL alone(at least
with minor extensions [7], [11]) this will not benefit from the visual strengths of
UML.

2.3 Consistency Model

We term the part of the integration model that is not part of any legacy model the
consistency model. The package containing the consistency model is stereotyped
〈〈consistencymodel 〉〉, as shown in Fig. 2.

With UML (XMI), we may put modeling elements into separate packages. It
is for example possible to put the description of an association into a package
separate from the packages of the connected classes. It is up to the modeler to
store the consistency model in a separate, stereotyped package.

At consistency test time, an instance of the integration model is instantiated.
Instances of legacy models are prefabricated and will be inserted as parts of the
integration model instance. The test environment then automatically instanti-
ates the consistency model. The consistency model can be seen as a declaration:
instances of consistency model elements are in a sense derived from the legacy
instances and the declaration.

Let us take a closer look at the OCL expression from the previous section,
the core of which can be written as:

e1.id1 = e2.id2 implies e1.a1 = e2.a2

where e1 is of type C1 and e2 is of type C2. Conceptually, if e1 and e2 have the
same id value, they must have the same attribute value to be consistent; and if
their id values are different, consistency is not questioned. This expression is an
instance of a more general pattern:

<match> implies <consistency test>

The first part of the expression defines what to test for consistency, and the last
part defines what is required for consistency to hold. This separation seems sen-
sible even if the specification of what to test may not be trivial: which attributes
are fundamental (Aristotle’s Law of Identity)? And what if the values of the
identifying attributes are inconsistent? The full power of OCL can be used when
defining the matching. Since OCL expressions can include operation-calls (query
operations), advanced functional libraries can be applied if they are available in
the test environment, e.g., spatial operations in a geographical system.

2.4 MDA and the Consistency Model

The notions of Platform-Independent Model (PIM) and Platform-Specific Model
(PSM) are central to OMG’s MDA initiative; a PIM is a model where (some)
technical details have been abstracted away. A PIM might be mapped to a PSM,
which is closer to implementation. In short, MDA advocates a software develop-
ment approach where abstract models are mapped (manually or automatically)
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to less abstract ones until implementation is achieved. If a legacy system has
been developed in accordance with MDA, there will be several models that are
candidates for consistency modeling. In this case, a decision of which abstraction
level to use for the consistency model has to be made.

For the consistency testing to be correct, the user data must be at the same
level as the integration model. Both user data and the integration model might be
subject to mapping to achieve this “compatibility.” This type of mapping might
not be trivial: assume for instance that the integration model consists of two PIM
legacy models and a consistency model that contains at least one OCL constraint
that references elements in both PIMs; further, assume that the two legacy
systems has been implemented on different platforms. If the consistency testing
is to be performed at the “implementation level,” the mentioned constraint will
contain parts that must be mapped to one platform and other parts that must
be mapped to another platform.

As a full discussion of this type of mapping is beyond the scope of this pa-
per, we simply assume that the legacy models in question are implementation
models [12] and that the consistency testing is applied to instances of imple-
mentation models.

3 Modeling Consistency

In a consistency expression, <match> determines whether there is a relation
between objects; and if so, <consistency test> decides the state of this relation:
consistent or not consistent. All the presented techniques separate the determi-
nation of which objects to test and the actual consistency test. The matching
is modeled with binary UML associations, which we term consistency associ-
ations (c-assoc). To separate consistency associations from other associations,
the stereotype 〈〈c-assoc〉〉 is introduced—if allowed by the UML tool at hand,
a dash-dotted line can be used as demonstrated in this paper. A class that is
part of the consistency model is called a consistency class (c-class, stereotype
〈〈c-class〉〉). We have selected the following techniques as a starting point for our
research:

– use of c-assoc between legacy classes (arbitrary multiplicity)
– use of c-assoc between legacy classes (arbitrary multiplicity), and an associ-

ation class connected to the c-assoc
– use of c-classes that can be associated with several legacy classes through

the use of c-assoc (arbitrary multiplicity on the legacy class end, only 0..1
or 1 on the c-class end)

– use of c-assoc between legacy classes (arbitrary multiplicity) and use of c-
classes that can only be connected to one legacy class with an c-assoc (mul-
tiplicity is limited to 1 on the legacy class end, 0..1 or 1 on the c-class end)

For all techniques, the c-assoc and the constraint connected to the c-assoc (a
missing constraint is the same as having a constraint that is always true) play
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C1

id1

a1

C2

id2

a2

{self.a1 = c2.a2}

{c1.id1= c2.id2}

C1

id1

a1

C2

id2

a2

{c1.a1 = c2.a2}

{c1.id1= c2.id2}

(b)(a)

0..110..11

Fig. 3. Connection of Constraint to Class (a) and Association (b)

a key role when the consistency model is being instantiated. Logically, all pos-
sible instances of a c-assoc are considered when the consistency model is being
instantiated. If the constraints on the c-assoc are met, the link is kept (if the
c-assoc goes to a c-class, object of this class is created as needed). Note that this
instantiation policy yields the consistency model with the maximum number of
links. We have one important limitation on the constraints: circular references
between constraints must not occur. Without this restriction several consistency
model instances might be possible.

The different modeling techniques we consider will be tested on two examples.
The first was given in Sect. 2.2. The second concerns a situation were one legacy
system contains descriptions of apartments and another contains descriptions of
buildings—see Fig. 4. The size of the floor space of a building should be the same
as the total floor space of its apartments; the number of apartments that is given
as an attribute in class Building should be equal to the number of apartments
with the same building id (attribute bId). One building should have at least one
apartment, and an apartment should belong to exactly one building. This simple
example is sufficiently illustrative for our purposes. The following sections gives
more details on the selected techniques.

3.1 Only Association and Constraints

The UML standard [2] states: “A constraint is a semantic condition or restriction
expressed in text. In the metamodel, a Constraint is a BooleanExpression on
an associated ModelElement(s), which must be true for the model to be well
formed.” It is thus correct to attach a constraint to an association; OCL is not
mentioned, and later on, OCL-invariants are only mentioned for classes, types,
and stereotypes. But we assume that it is legal to connect a constraint to an
association.

Fig. 3(b) shows an example where it is not possible to separate the matching
from the actual consistency test. This observation reveals that this technique
is not suited. In Fig. 3(a), the matching is connected to the c-assoc, and the
consistency test is connected to one of the classes. The multiplicity is also of
significance—in this example, an object of type C2 must be attached to an
object of type C1 (with matching id); otherwise, there is an inconsistency. The
next case is shown in Fig. 4.

As already mentioned the ”matching part” is not just an invariant, it is also
a production rule. When consistency is to be tested, the consistency associations
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bId

floorSpace

apartmentCount

11..*

{aId = building.bId}

{floorSpace = apartment.floorSpace sum()}

Building

aId

bId

floorSpace

Apartment

{apartmentCount = apartment size()}

Fig. 4. Building with Apartments

will be instantiated, the instantiation policy will be to create all links that sat-
isfy the match. If the specified multiplicity is broken (wrong number of links), it
represents a consistency violation, which will be reported. Ideally, the matching
should discriminate all links that are logically wrong, and it should include all
the right ones. This would be the perfect match. A matching that is not dis-
criminating enough might not be a problem: the links might not be used, or
consistency tests that use them might always evaluate to true.

3.2 Consistency Modeled with Association Class

This technique extends the technique demonstrated in Fig. 3(b). An association
class has been introduced to describe the consistency; Fig. 5 gives an example.

The constraint placed on the association corresponds to the matching.
The consistency test is formulated as an OCL expressed invariant on the as-

sociation class; the attribute isConsistent, termed a consistency attribute, must
be true if the considered objects are to be regarded as consistent. In a more com-
plex situation, the consistency check can be structured into several invariants,
distributed over several consistency attributes. A consistency attribute can be
used in the reporting process, and it can also be referenced in other constraints.

Fig. 6 offers a solution for the second example. One weakness of this solution
is that the consistency attributes will be calculated once for each apartment of
a building when once for each building would suffice.

3.3 Ordinary Class as Consistency Class

In Fig. 7, a c-class connects legacy classes. This technique has many similarities
with the one presented by Friis-Christensen and Jensen [5], where the aim is

<<c-class>>

AC

isConsistent:boolean

0..11

{isConsistent = (c1.a1=c2.a2)}

{c1.id1= c2.id2}

C1

id1

a1

C2

id2

a2

Fig. 5. Constraints Connected to An Association Class



Modeling and Testing Legacy Data Consistency Requirements 349

bId

floorSpace

apartmentCount

11..*

{apartment.bId = building.bId}

{cFloorSpace= (building.floorSpace = 

building.apartment.floorSpace sum())}

Building

aId

bId

floorSpace

Apartment

cFloorSpace:boolean

cApartmentCount:boolean

<<c-class>>

ConsistencyApartmentBluilding

{cApartmentCount = (building.apartmentCount = 

building.apartment size())}

Fig. 6. The Apartment / Building Problem Solved with An Association Class

<<c-class>>

C

isConsistent:boolean
0..1

1

{isConsistent = (c1.a1=c2.a2)}

{c1.id1= c.c2.id2}
C1

id1

a1

C2

id2

a2

1

1

Fig. 7. Use of An Ordinary Class Instead of An Association Class

1..*1

1

bId

floorSpace

apartmentCount

Building

aId

bId

floorSpace

Apartment{cFloorSpace = 

(apartment.floorSpace sum() =

building.floorSpace)       } cFloorSpace:boolean

cApartmentCount:boolean

<<c-class>>

ConsistencyApartmentBuilding

1{cApartmentCount = 

(apartment size() =              

building.apartmentCount) }
{building.bId = 

consistencyApartmentBuilding.apartment.bId}

Fig. 8. Use of Ordinary Class: The Building / Apartment Example

to integrate multiple representations of the same entity. But there are also dif-
ferences. Whereas they place matching rules in a separate compartment of the
c-class, we express the matching as constraints on the c-assoc.

Fig. 8 concerns the second example. The multiplicity on the apartment side
in Fig. 8 demonstrates that several apartments are involved; the weakness found
when association classes were used has been eliminated.

Yet another technique is demonstrated in Fig. 9. For each c-class, there is
now exactly one c-assoc to a legacy class, and there can also be c-assoc’s between
legacy classes. It is also possible to put a constraint on the c-assoc from c-class
to legacy class. This modeling technique seems to be simple and compact.

4 Selected Solution

Next, we consider which modeling technique to choose and how to consistency
check user data.
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C1

id1

a1

C2

id2

a2
{c1.id1= c2.id2}

0..11

{isConsistent=(c2.a1=c2.c1.a2)}

<<c-class>>

C

isConsistent:boolean

1..*

{cFloorSpace = 

(building.apartment.floorSpace sum() =       

building.floorSpace)      }

{cApartmentCount = 

(building.apartment size() =            

building.apartmentCount)  }

1

{apartment.bId=building.bId}

1

1

(b)(a)

1

1

cFloorSpace:boolean

cApartmentCount:boolean

<<c-class>>

ConsistencyApartmentBuilding

bId

floorSpace

apartmentCount

Building

aId

bId

floorSpace

Apartment

Fig. 9. Consistency Classes with Only One Association to Legacy Class

4.1 Which Technique to Choose

Having introduced several modeling techniques, we proceed to compare these in
order to understand their relative merits. A more exhaustive study, including a
study of combinations of the techniques, is left for future research. The following
evaluation criteria are important.

1. How easy is it to apply the technique and comprehend the resulting models?
2. Is it possible to make an interpreter (or compiler) for the models produced?
3. Is it possible to interpret the models efficiently?
4. Can good reports be made?

Criterion 1. We feel that all techniques are simple and rather intuitive; much of
the required skill comes down to understanding OCL. But it seems that inserting
c-assoc’s directly between legacy classes is quite natural. It is not possible to
avoid complex dependencies. Rather, the best one can do is to express them so
that they are easily understood. The use of consistency attributes and c-assoc’s
makes it possible to partition complex OCL constraints into manageable pieces.

Criterion 2. Fulfillment of this point rests upon the possibility of instantiating
the consistency model. This instantiation is later demonstrates for one technique;
the other modeling techniques do not introduce any new complexity that cannot
be solved by some extra mechanism for keeping track of intermediate results.

Criterion 3. A complex consistency model together with large amounts of user
data can result in a combinatorial explosion, making the testing impossible in
practice. Even if the presented techniques introduce only a limited number of
new modeling elements, there will be practical limitations when it comes to
the amount of user data to process. The technique that uses association classes
seems to produce models that lead to much redundant testing. The last modeling
technique allows the c-assoc links to be reused.
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Criterion 4. Reporting is not elaborated upon in this paper. However, we note
that the consistency attributes might play an important role in the reporting
process.

The last modeling technique presented seems to be the best, and it is our
choice. But we see the need for gaining more experience with the techniques,
and a longer-term goal is to establish a framework that allows us to investigate
the merits of the techniques.

L3L2

L1

{person.SSN= 

Suspect.SSN}

{cNotExposed = not stay.obs->exist(oneObservation | 

PictureSupport.recognized(stay.suspect.person.picture,

oneObservation.picture))      }

cNotExposed:boolean
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Fig. 10. Has the Suspect Been Elsewhere?

A more complex example is given in Fig. 10. Here, legacy system L2 contains
pictures of persons. Legacy system L3 records observations done at different
observation posts. Legacy system L1 contains information about police investi-
gations. Instantiation and checking of the consistency model will expose a person
who claims to have been one place, but has been observed in another place at
the same time.

Classes TimeSupport, AreaSupport, and PictureSupport are part of the test
environment; the operations of these classes that are used are all class scoped.

4.2 Consistency Testing Using the Chosen Technique

Fig. 11 presents a metamodel that illustrates which modeling elements to use and
the constraints on them. In practice, the modeler must conform to the metamodel
if the test is to be executed correctly. The metamodel also gives meaning to the
stereotypes c-assoc and c-class.
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We note that the c-assoc constraint is not shown in the metamodel, but it
is important and will be described shortly. We proceed to explore the two main
uses of the c-assoc:

1. It associates two legacy classes.
2. It associates a c-class and a legacy class.

Class

(from Core)

C-Class

Association

(from Core)

0..1

C-Assoc

2

1

1

+connection

1

2..*

C-AssocEnd *

Attribute

(from Core)

1..* 1

Constraint

(from Core)

AttributeConstraint 11

0..1

{(self.connection.size = 2)

and

(self.C-AssocEnd.C-Class size < 2)

and

((self.C-AssocEnd.C-Class size = 1) implies

(self.C-AssocEnd.multiplicity.upperbound=1)           

and

((not self.C-AssocEnd.Class.oclIsKindOf(C-Class))

implies (self.C-AssocEnd.multiplicity.is(1,1))))  }

{type = Boolean}

{The constraint must be written in OCL

and have the form:

<c-Attribute.name> = <OCL Constraint> }

C-Attribute

AssociationEnd

(from Core)

Fig. 11. Metamodel

Use of c-assoc’s with Legacy Classes. Legacy classes may belong to the same or
different legacy systems. The c-assoc is similar to an ordinary association. Sim-
ilarities include that role names can be inserted and that multiplicities can be
selected freely. The only difference compared with an ordinary association is the
c-assoc constraint: this constraint is a bit “more” than an ordinary association
constraint. Like an ordinary constraint, it must be true for all links instantiated
from the corresponding c-assoc; but, in addition, the c-assoc constraint is es-
sential when instantiation of the c-assoc takes place. All possible links between
objects of the two legacy classes are considered: the links that do not meet the
c-assoc constraint are rejected; the rest are kept. If the number of links for an
object do not meet the specified multiplicity, the cardinality is erroneous, and a
consistency violation is reported. If a c-assoc constraint is absent, it will be the
same as a c-assoc that is always true.

Use of c-assoc’s with Legacy and c-classes. When a c-assoc associates a c-class
and a legacy class, the multiplicity is “1” on the legacy class side and “1” or
“0..1” on the c-class side.
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The consistency checks are connected to a c-class through the consistency
attributes. There can be many consistency attributes for each c-class. The value
of a consistency attribute is given by the corresponding attribute constraint,
which is of the form:

<c-Attribute.name> = <OCL constraint>

The <c-Attribute.name> is the name of the corresponding consistency attribute.
The attribute constraint will always be true (as an invariant should). In addi-
tion, it is used when the attribute obtains its value. The value of the <OCL
constraint> will be calculated, true or false, and the consistency attribute is
given this value.

The association constraint connected to this c-assoc plays a role when in-
stantiating the c-assoc and the c-class. Given an object of the legacy class, an
object of the c-class will be created if the association constraint is met. If the
multiplicity is “1” on the c-class side and no c-class object can be created be-
cause the constraint on the c-assoc cannot be meet, the cardinality is wrong,
and a consistency violation is reported.

Cyclic References. A c-assoc may be referenced in attribute constraints and
other c-assoc constraints. A constraint attribute may be referenced in attribute
constraints that are attached to other c-classes (this is actually slightly too
strict) and in c-assoc constraints. However, there is one limitation: the mentioned
references must not be circular.

Consistency Model Instantiation. While most of the logic has already been de-
scribed, one question remains, namely that of instantiation order. Since there can
be references between the elements of the consistency model, this order cannot
be arbitrary. The order can be decided by building a dependency graph (which
will typically permit several orders). The nodes of the graph are obtained as
follows.

1. A c-assoc that associates two legacy classes together with its constraint de-
fines one node (node type 1).

2. An attribute constraint together with the c-assoc that associates its c-class
and a legacy class defines a node (node type 2). If there are several attribute
constraint for a class, there will be several nodes concerning the same class.

The edges arise from the navigations through c-assoc’s and the references to
the consistency attributes. If a node has a navigation that uses the c-assoc of
another node, then there will be an edge from the first node to the second. Also,
if one node has references to a constraint attribute (node of type 2) then there
will be an edge from the first node to the second.

Since there are no cyclic references, the graph will be an acyclic directed
graph. The instantiation can be done by selecting a node that fulfills the follow-
ing: it has no edges pointing to nodes that have not already been instantiated. All
instances of the selected node are created (e.g., if the node represents a c-assoc,
all links with fulfilled constraints will be created).
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The whole consistency model has been instantiated when there are no more
nodes to instantiate. Use of the dependency graph ensures that all elements
referenced in a constraint are present at instantiation time.

Instantiation of the first kind of nodes has already been explained. When
instantiation of a node of type 2 is carried out, all legacy objects of the “right”
kind are considered. The instantiation will occur in two ways:

– The c-class and corresponding c-assoc have not yet been instantiated. If the
c-assoc constraint is met, an object of the c-class is created and linked to
the legacy object by an instance of the c-assoc. The value of the consistency
attribute is calculated, and the attribute is given this value. At this point,
an object of the c-class has been created and linked to the legacy object; one
consistency attribute has obtained its value.

– The c-class and corresponding c-assoc have been instantiated. The value of
the consistency attribute is calculated, and the attribute is given this value.

4.3 Interpretation of OCL Expressions

The checking and evaluation of OCL expressions is done by an OCL interpreter.
Building an interpreter or adapting an existing one for our purposes is achievable,
as the object structure is stable and ordinary. An example of a rather similar
application is found in the UML Specification Environment (USE) [13], where
expressions written in OCL are used to specify integrity constraints on class
diagrams. A model can be animated to validate the specifications; snapshots can
be taken, and for each snapshot, the OCL constraints are checked automatically.
Other tools for OCL includes the Dresden OCL Toolkit [14] and OCLE [15].

5 Summary and Research Directions

This paper has demonstrated how the full power of OCL as a declarative lan-
guage can come to play in a setting where the consistency of semantically over-
lapping data sources is to be specified and checked. The proposed modeling
technique is based on standard OCL and a small subset of UML’s visual model-
ing elements. It is possible to use an ordinary UML tool to model the consistency.
A consistency test environment is described. The use of XMI enables the integra-
tion of models and data of quite different origins; for this to happen, conversion
to XMI must take place. The framework described needs a set of XMI-conversion
tools to be in place; relation database schemas can easily be mapped to UML
models, and it does not seem to be difficult to convert data stored in relational
databases to XMI.

Because the amount of XML-data is growing rapidly, an investigation of how
XML schemas and data fit into this framework is of great interest. The roles of
ontologies [16] and the semantic web [17] have yet to be investigated; automatic
generation of consistency models might be an option.
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