
Towards a Data Consistency Modeling and Testing
Framework for MOF Defined Languages

Jan Pettersen Nytun1,2 Christian S. Jensen1,3 Vladimir A. Oleshchuk1

1Faculty of Engineering and Science, Agder University College, Norway
2Faculty of Engineering, University of Oslo, Norway

3Department of Computer Science, Aalborg University, Denmark

Abstract
The number of online data sources is continuously increasing, and related
data are often available from several sources. However accessing data from
multiple sources is hindered by the use of different languages and schemas
at the sources, as well as by inconsistencies among the data. There is thus a
growing need for tools that enable the testing of consistency among data from
different sources.

This paper puts forward the concept of a framework, that supports the
integration of UML models and ontologies written in languages such as the
W3C Web Ontology Language (OWL). The framework will be based on the
Meta Object Facility (MOF); a MOF metamodel (e.g. a metamodel for OWL)
can be input as a specification, the framework will then allow the user to
instantiate the specified metamodel.

Consistencies requirements are specified using a special modeling
technique that is characterized by its use of specialBoolean class attributes,
termed consistency attributes, to which OCL expressions are attached. The
framework makes it possible to exercise the modeling technique on two or
more legacy models and in this way specify consistency between models.
Output of the consistency modeling is called an integration model which
consist of the legacy models and the consistency model. The resulting
integration model enables the testing of consistency between instances of
legacy models; the consistency model is automatically instantiated and the
consistency attribute values that are false indicates inconsistencies.

1 Introduction
The Semantic Web [1] aims at giving well-defined meaning to web content, in this way
allowing automatic reasoning about, and processing of, web content. An important
aspect of supporting this is the provisioning of appropriate knowledge representation [2]
languages, which remains an active area of research. Prominent examples of such
languages include the Resource Description Framework, RDF [3], the DAML+OIL [4]
language, which integrates the US DARPA Agent Markup Language and the European
OIL effort and is an extension of the RDF Schema, and DAML+OIL’s successor, the
World Wide Web Consortium’s Web Ontology Language (OWL) [5].

Somewhat unrelated to this, the Unified Modeling Language (UML) is being used
widely for conceptual modeling in the development of software systems. It may be noted

that UML has substantial semantic overlap with knowledge representation languages such
as those just mentioned, although there are also differences [6, 7].

The Object Management Group (OMG) recently issued a request for proposals [6]
that seeks:

• A standard, Meta Object Facility (MOF) 2.0 [8] compliant metamodel for Ontology
Definition (ODM).

• A UML 2.0 [9] (UML for short) Profile that supports reuse of UML notation for
ontology definition.

• A mapping from the ODM to the profile.

The OMG request also seeks a language mapping for the ODM to OWL. There are
good reasons to reuse the UML notation for ontology definition [10]. For example, the
graphical notation of UML is well tested and tools exist that support UML.

There is a trend towards the use of languages that are tailored for special problem
domains and also towards integration of different languages (as indicated by the latest
request for proposals from OMG); in an OMG context this can be done by using the
extension mechanisms of UML, definitions of UML profiles, and also definition of new
MOF metamodels. Tools that support definition and application of this type of languages
are largely missing.

This paper takes the first steps towards defining a framework for experimenting with
the integration of UML and knowledge representation languages. The framework should
contain components that can be assembled to form different tools.

Our selected application is consistency testing of user data; the objective is to ensure
consistency among semantically related data, but with different models (schemas) that
might have been expressed in different languages like UML and OWL. For data sources
with semantically related models, one simple consistency rule could be:two objects
(entities) with the same identity must have the same values stored for corresponding
attributes; otherwise, they are not consistent with each other(e.g., one data source claims
that Bob has income of 10.000 an another lists earnings of 50.000). Figure 1 offers an
overview of our approach to consistency testing of user data.

Given modelsM1 and M2 for two data sources, a consistency model is defined
manually. The consistency model explicitly states constraints that must be fulfilled in
order for instances of the two models to be consistent with each other. The consistency
is defined at the “model level”; automatic consistency testing is done on the user data
with help of the consistency model (which is instantiated automatically). The user data,
depicted as:M1 and:M2, must be instances of modelM1 and modelM2, respectively. As
can be seen from Figure 1, we need aconsistency modeling tooland aconsistency testing
tool.

This main body of this paper offers a more detailed description of the consistency
modeling and testing in a pure UML context, a more complex example would involve
usage of both UML and OWL in defining the consistency model.

Some metamodeling tools are available in the literature [11, 12]. The consistency
modeling and testing approach espoused in this paper are based on the results presented
in [13].

This paper is structured as follows. Section 2 specifies what the framework should
support together with preliminary design considerations. In Section 3, a consistency
modeling technique is described in the context of UML; and the section also briefly

Manual

Consistency

Modeling

M2

Model of User

Data

M1

Model of User

Data

Consistency

Model

:M1

User Data

Automatic

Consistency

Testing
:M2

User Data

Consistency

Report

Figure 1: Consistency Modeling Overview

describes how consistency testing of user data can be performed. Finally, Section 4 offers
a short summary and conclusions.

2 Data Integration Framework
In this section, we first describe the OMG metamodel architecture and how to represent
user data and model. Then a non-exhaustive list of requirements to the framework is
given, and finally initial design and implementation considerations are presented.

Use of the OMG Meta-Model Architecture
The OMG advocates a four-layer metamodel architecture [14] where MOF constitute the
top level (level M3). The UML metamodel resides on the next highest level (level M2)
and can be seen as an instance of MOF. When system’s developers design a model using
UML (level M1), the developers instantiate the metaclasses of the UML metamodel. In
our context, only the small subset of the UML metaclasses that typically get instantiated
on class diagrams are of interest. The run-time instances (user data) are found at the
lowest level (level M0). The user-defined model has been instantiated to obtain these
instances.

The OMG recommendations [6] state that the Ontology Definition Metamodel (ODM)
should be an instance of MOF; this places the ODM at the same level as the UML
metamodel—see Figure 2(a).

There is a semantic overlap between the UML metamodel and the ODM, but they are
not subsets of one another, and a combination of the two might be worth investigating.
Figure 2(b) illustrates a situation where the UML metamodel and the ODM are combined.

Our aim is to establish a framework where different types of languages and mixtures
of languages can be investigated. The focus will be on languages that are defined by
metamodels or, more specifically, MOF defined languages. If successfully implemented,
the framework might be characterized as a framework for integration of MOF-based
languages.

MOF

UML

Metamodel
ODM

«instanceOf»«instanceOf»

User Defined

UML Model

«instanceOf»

User Defined

Ontology

«instanceOf»

MOF

UML Metamodel

+ ODM

«instanceOf»

User Defined

UML + ”Ontology” Model

«instanceOf»

(a) (b)

Figure 2: ODM Relative to the Metamodel Architecture

Representation of Model and Model Instance
UML 2.0 introduces the metaclassInstanceSpecification, which can be used to
model an instance of another model element. An instance ofInstanceSpecification
can for example be used to illustrate an instance of a class (an object) or an instance of
an association (a link between objects). As a concrete example, given a classPerson (an
instance of metaclassClass), InstanceSpecification can be instantiated to illustrate
an instance of classPerson; this is sometimes referred to as a snapshot (a run-time
instance at a specific time) of the object. AnInstanceSpecification will have a
reference to the classifier that is the classifier of the represented instance. Consequently,
it is possible to have a model (at level M1) that describes both a snapshot of user data and
the corresponding metadata. When the user defines the consistency model, only metadata
(models) matters; when the consistency testing is performed, both data and metadata must
be present.

XML Metadata Interchange (XMI) [15] is an interchange format that can be used on
models/data from all the four levels of the OMG metamodel architecture; XMI is a natural
choice when it comes to storing and exchanging models and data.

The proposed framework should be able to visualize instances of models, e.g., visually
pinpoint inconsistencies exposed by the consistency testing. The mentioned use of
InstanceSpecification will make this possible.

What the Framework Should Support
The list that follows briefly states central functionality expected from the proposed
framework.

• Support definition of MOF metamodels, e.g., guide the combination of two
metamodels and resolve possible conflicts. The definition of MOF metamodels can
also be done using tools such as UML2MOF [16], which transforms UML models
(conforming to UML Profile for MOF) into MOF metamodels. Also, standard tools
from IBM [17] have plug-ins that allow this.

• Offer users the possibility to load an MOF-specified metamodel.

• Offer users the possibility to instantiate the loaded metamodel. For example, if the
loaded metamodel is the UML metamodel then the user is given the possibility to

make UML models (which is done by instantiating the loaded UML metamodel);
or if the loaded metamodel is ODM, the user is given the possibility to define
ontologies.

• Import and export of models based on XMI and the UML Diagram Interchange
Specification [18].

• A UML model is typically represented as an instance of the UML metamodel,
but an SQL schema is not. Transformation of an SQL schema to an UML
model is rather straightforward . A transformation that is even more likely to
be necessary concerns the user data that have to be represented as instances of
metaclassInstanceSpecification.

• Specific features that support the modeling of consistency and automatic
consistency testing. Section 3 offers more detail.

Implementation of the Framework
The implementation will be a set of components that can be assembled to form different
tools. Figure 3 shows a set of interconnected components that together form a modeling
tool. For example, if the component namedMetamodel Defined with MOFis the ODM,
the component namedMOF Based Modeling Toolwill give the user the ability to define
an ontology that is made persistent with the help of theModel Repositorycomponent.
Since modeling is to be done visually, the tool needs to know how to display the specific
ontology elements. TheConcrete Syntax Definitioncomponent will support this, although
how this is to be achieved has yet to be investigated.

«component»

Model

Repository

(XMI)

«component»

MOF Based

Modeling

Tool

«component»

Metamodel

Defined with MOF

«component»

Concrete Syntax

Definition

«concerns»

Figure 3: A UML Component Diagram Showing a General MOF Based Modeling Tool

An important implication of the framework being based on the four-layer metamodel
architecture is that formal Meta Object Facility descriptions of abstract syntaxes must
be a understood; this understanding is incorporated (hard coded) into the the component
namedMOF Based Modeling Tool. Figure 3 only offers an abstract picture, and further
investigation is necessary.

The Eclipse Platform [19, 20] is designed for building integrated development
environments; it has a plug-in architecture that makes it suitable for extensions, and
several useful plug-ins are already present. The UML tool Rational XDE from IBM [17]
is built on the Eclipse Platform. Our framework could be built by making the right plug-
ins for the Eclipse Platform. NetBeans IDE [21] is a similar framework and is also a
candidate for use in implementing such frameworks.

3 Example Application of the Modeling Framework
Our consistency modeling and testing approach is presented in [13]. This section presents
an example and propose a component architecture to achieve the desired functionality.

Figure 1 offers an overview of our approach. The consistency modeling is to be done
with the Object Constraint Language (OCL) [14] and a selected subset of UML modeling
elements:

• Association

• OCL constraint

• Association class

• Class

• Class attribute

The output of theconsistency modelingis an integration modelwhere the two
legacy (in this context, “legacy” means “pre-existing”) models (M1 andM2) have been
integrated and the desired consistency has been expressed explicitly. We term the part
of the integration model that is not part of any legacy model theconsistency model—see
Figure 4.

M1
«consistencymodel»

CM

IntegrationModel

C2

id2

a2

M2

C1

id1

a1

Figure 4: Integration Model Encompassing Legacy Models and a Consistency Model

We assume that the modeling activity is manual. Next,consistency testingis done
automatically with the consistency model and legacy data (:M1 and:M2) as inputs. Some
processing of the user data might be necessary since they are to be represented with
the help of metaclassInstanceSpecification. The output of the consistency testing
activity is a report describing the consistency violations that were encountered.

Consistency Modeling Example
Figure 5 visualize three legacy models. Legacy modelM2 relates pictures to persons,
legacy model M3 concerns observations done at different observation posts and legacy
modelM1 concerns information about police investigations.

From the perspective of the police, the following question is of interest::Has the
suspect lied about his whereabouts?A suspect is exposed as lying if he claims to have
been in one place, but has been observed at the same time from an observation post located
elsewhere..

In Figure 6, a consistency model has been inserted. The dashed-dotted line between
classPerson and classSuspect represents an association—we term it aconsistency
association. This association is used for linking a suspect with a picture of the suspect.

M3M2

M1

Investigation Suspect

*

Stay

area

Location

* 1

Picture

SSN

name

Person

1

oName

Position

ObservationPost
Observation

*

1

oPost
1

1

1

1

11
name

Picture

SSN timeInterval

time

Figure 5: Three Legacy Models

The OCL constraint attached to the association:person.SSN = Suspect.SSN ensures
that an object of classSuspect can only be linked to a correct object of typePerson (the
two objects must represent the same person).

Assume that classesTimeSupport, AreaSupport, andPictureSupport are part of
the framework; the operations of these classes are class scoped and can be used inside
OCL expressions.

The classStay is used to record where a suspect claims to have been during a specific
time interval. The consistency association betweenStay andObservation is used to
link a "stay" with observations done at the same time at different locations.

ClassObservedAtOtherLocation is aconsistency class(stereotypec-class). The
model prescribes that eachStay object must be linked to anObservedAtOtherLocation
object (multiplicity one-to-one). The constraint on the attributecNotExposed prescribe
the valuetrue if no inconsistency has been exposed regarding where the suspect claims
to have been and observations done; if there is an inconsistency thencNotExposed must
befalse. AttributecNotExposed is an example of what we call aconsistency attribute.

M3M2

M1

{person.SSN=

Suspect.SSN}

{cNotExposed = not stay.obs->exist(oneObservation |

PictureSupport.recognized(stay.suspect.person.picture,

oneObservation.picture)) }

cNotExposed:boolean

<<c-class>>

ObservedAtOtherLocation

Investigation Suspect

*

Stay

area

Location

* 1

Picture

SSN

name

Person

1

oName

Position

ObservationPost
Observation

*

1

{ TimeSupport.inside(obs.time,

stay.timeInterval)

and

AreaSupport.outside(obs.oPost.Position,

stay.location.area) }

1

*

obs

oPost
1

*

1

1

1

1

1

11

*

name

Picture

SSN timeInterval

time

Figure 6: Consistency Model: Has the Suspect Been Somewhere Else?

The integration model can be made with an ordinary UML tool (except for the use of
the dashed-dotted line, a stereotypec-association might be used instead).

At consistency test timean instance of the integration model will be instantiated.
Instances of legacy models (the user data) are prefabricated and will be inserted as
parts of the integration model instance. The test tool then automatically instantiates
the consistency model. The consistency model can be seen as a declaration: instances
of consistency model elements are in a sense derived from the legacy instances and
the declaration. The constraintperson.SSN = Suspect.SSN can function as a sort of
production rule: for each pair of aPerson object and aSuspect object, the constraint
can be evaluated; and if it is fulfilled, a link can automatically be created. The rest of the
consistency model can be instantiated in the same way.

A closer look at the constraint oncNotExposed reveals navigations through all
the consistency associations. As a consequence, instantiation of this attribute must be
performed last. The constraints, the consistency associations, and the attributes of the
consistency classes must not be dependent on each other in a cyclic way—if they are, it
might not be possible to do the automatic instantiation. The order of instantiation can be
decided by building a dependency graph, see reference [13] for details.

The attributes of the consistency classes are used when the consistency report is
generated, e.g. ifcNotExposed equalsfalse then there is a consistency violation.

Consistency Test Tool
A preliminary design of the consistency test tool is presented in Figure 7. The component
namedUML Model and Data Repositoryprovides the integration model and the legacy
data.

«component»

UML Model

and Data

Repository

«component»

Report

Generator

«component»

OCL

Expression

Evaluator

«component»

Consistency Tester

«component»

Manager
«component»

Instance

Builder

«component»

Integration

Model

Instance

«component»

Consistency

Report

Figure 7: UML Component Diagram Showing the Consistency Tester

Looking inside theConsistency Testercomponent, we find the subcomponentInstance
Builder that builds the consistency model instance which is represented by subcomponent
Integration Model Instance. To build the instance, evaluation of OCL-expressions are
necessary; this is done with the help of theOCL Expression Evaluatorsubcomponent.

The subcomponentReport Generatoruses the subcomponentIntegration Model In-
stanceand produces a consistency report.

As mentioned above the integration model can be made with an ordinary UML tool,
but an ordinary UML tool will allow cyclic references; a more sophisticated tool could
prevent this. Obviously the framework presented above (section 2) is a candidate for
making such a tool. In [13] a metamodel for consistency models is proposed. This
metamodel could be input to the general MOF-based modeling tool presented above.

4 Summary and Conclusions
There is momentum in industry and academia towards the integration of UML and
knowledge representation languages. A recent request for proposals issued by the Object
Management Group is a clear indication of this (e.g. [6] and [22]). We have started the
development of a tool (or framework) that will support such an integration: if successfully
developed, the tool can be used to define diagrams that simultaneously incorporate both
UML and “ontology features.” The tool is meant as a MOF metamodeling tool, meaning
that a MOF metamodel can be input as a specification. The tool then allows the user to
instantiate the specified metamodel.

This paper has demonstrated how the full power of OCL as a declarative language can
come to play in a setting where the consistency of partially overlapping data sources is to
be specified and checked. The modeling technique proposed in the paper for consistency
specification is based on standard OCL and a small subset of UML’s graphical modeling
notation. In future work, the reasoning possibility typically offered by knowledge
representation languages will be included.

The proposed tool may be seen as representing a step in the direction towards the
creation of a language that possesses the full power of UML and knowledge representation
languages. The described consistency modeling and testing, which is an application of the
framework will function as a practical demonstration.

References
[1] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic Web.Scientific American,

284(5):34–43, May 2001.

[2] J. F. Sowa. newblockKnowledge Representation: Logical, Philosophical, and Computa-
tional Foundations. Brooks Cole Publishing Co., 2000.

[3] D. Brickley and R. V. Guha. Resource Description Framework Schema Specification
1.0. Technical Report, W3C Consortium, http://www.w3.org/TR/2000/CR-rdf-schema-
20000327, March 2000.

[4] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. Reviewing the Design of
DAML+OIL: An Ontology Language for the Semantic Web. In18th Nat. Conf. on Artificial
Intelligence, 2002.

[5] D. Brickley and R. V. Guha. OWL Web Ontology Language: Overview. Technical Report,
W3C Consortium, W3C Working Draft: http://www.w3.org/TR/owl-features/, March 2003.

[6] OMG Editor. Ontology Definition Metamod.RFP, OMG Document:ad/2003-03-40.
http://www.omg.org/techprocess/meetings/schedule/Ontology_Definition_Metamod.RFP.html,
2003.

[7] P. Kogut, S. Cranefield, L. Hart M. Dutra, K. Baclawski, M. Kokar, and J. Smith. Extending
UML to Support Ontology Engineering for the Semantic Web. volume 2185, pp 342–360,
2001.

[8] OMG Editor. Meta Object Facility (MOF) 2.0 Core Proposal, OMG Document:ad/2003-
04-07, 2003.

[9] OMG Editor. OMG Unified Modeling Language Specification, Version 2.0. OMG
Document. OMG, http://www.omg.org, 2003.

[10] K. Baclawski, M. K. Kokar, P. A. Kogut, L. Hart, J. Smith, W. S. Holmes III, J. Letkowski,
and M. L. Aronson. UML for Ontology Development.Knowledge Engineering Review,
2001.

[11] Honeywell Inc. DOME (the DOmain Modeling Environment).
http://www.htc.honeywell.com/dome/description.htm Accessed June 2003.

[12] MetaCase Consulting.MetaEdit+. http://www.metacase.com, Accessed June 2003.

[13] J. P. Nytun and C. S. Jensen. Modeling and Testing Legacy Data Consistency Requirements.
In UML 2003, October 2003.

[14] OMG Editor. OMG Unified Modeling Language Specification, Version 1.5. OMG
Document. OMG, http://www.omg.org, March 2003.

[15] OMG Editor.XML Metadata Interchange (XMI) Specification v1.2. OMG Document. OMG,
http://www.omg.org, January 2002.

[16] netBeans.org.UML2MOF Tool. http://mdr.netbeans.org/uml2mof, Accessed June 2003.

[17] Rational Software Corporation. http://www.rational.com, Accessed June 2003.

[18] M. Boger, M. Jeckle, S. Müller, and J. Fransson. Diagram Interchange for UML. InUML
2002, pp. 398–367, October 2002.

[19] eclipse.org.Eclipse IDE. http://www.eclipse.org, Accessed June 2003.

[20] S. Shavor, J. D’Anjou, S. Fairbrother, D. Kehn, J. Kellerman, and P. McCarthy.The Java
Developer’s Guide to Eclipse. Addison-Wesley, 2003.

[21] netBeans.org.NetBeans IDE. http://mdr.netbeans.org, Accessed June 2003.

[22] OMG Editor. Production Rule Representation.RFP, OMG Document:br/2003-09-03, 2003.

