
Supporting Frequent Updates in R-Trees: A Bottom-Up Approach

Mong Li Lee
�

, Wynne Hsu
�

, Christian S. Jensen
�

, Bin Cui
�

, Keng Lik Teo
�

�

School of Computing, National University of Singapore, Singapore
�

Department of Computer Science, Aalborg University, Denmark

Abstract

Advances in hardware-related technologies
promise to enable new data management applica-
tions that monitor continuous processes. In these
applications, enormous amounts of state samples
are obtained via sensors and are streamed to a
database. Further, updates are very frequent and
may exhibit locality. While the R-tree is the
index of choice for multi-dimensional data with
low dimensionality, and is thus relevant to these
applications, R-tree updates are also relatively in-
efficient. We present a bottom-up update strategy
for R-trees that generalizes existing update tech-
niques and aims to improve update performance.
It has different levels of reorganization—ranging
from global to local—during updates, avoiding
expensive top-down updates. A compact main-
memory summary structure that allows direct
access to the R-tree index nodes is used together
with efficient bottom-up algorithms. Empirical
studies indicate that the bottom-up strategy
outperforms the traditional top-down technique,
leads to indices with better query performance,
achieves higher throughput, and is scalable.

1 Introduction

Innovations in primarily wireless technologies and posi-
tioning technologies are combining to enable applications
that rely on the tracking of the locations of mobile objects
such as vehicles, users of wireless devices, and deliveries.
A wide range of other applications beyond moving-object
applications also rely on the sampling of continuous, mul-
tidimensional variables. This class of monitoring applica-
tions is characterized by large volumes of updates, which

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

occur when the applications strive to maintain the latest
state of the continuous variables being monitored.

The provision of high performance and scalable data
management support for monitoring applications presents
new challenges. One key challenge derives from the need
to accommodate very frequent updates while simultane-
ously allowing for the efficient processing of queries. This
combination of desired functionality is particularly trou-
blesome in the context of indexing of multidimensional
data. The dominant indexing technique for multidimen-
sional data with low dimensionality, the R-tree [3] (and
its close relatives such as the R

�

-tree [1]), was conceived
for largely static data sets and exhibits poor update perfor-
mance.

Existing R-tree update procedures work in a top-down
manner. For each update, one index traversal is needed to
locate and delete the data item to be updated. Depending
on the amount of overlap among the bounding rectangles in
the index nodes, this traversal may well follow more than
a single partial path from the root towards the leaf level of
the index. Then a separate index traversal is carried out
to insert the new data item. While this top-down procedure
makes for a quite adaptable index structure with good query
performance, it is also costly.

With the recent interest in moving objects, several tech-
niques for indexing the past as well as the current and an-
ticipated future positions of moving objects have been pro-
posed that are based on the R-tree, most often the R

�

-tree,
that are efficient for querying [4, 6, 7, 9, 12, 14, 16, 17].
These techniques typically process updates as combina-
tions of separate deletion and insertion operations that op-
erate in a top-down manner. They are related to this paper’s
contribution in the sense that the update techniques pro-
posed here may well improve their performance if applied
to them.

Kwon et al. [7] advocates lazy updates for R-trees to
reduce update cost. When locality is present in updates,
the proposal is to enlarge leaf-level bounding rectangles
equally in all directions so that the new location for an
object remains within the same bounding rectangle as the
old location. However, this somewhat preliminary proposal
suffers from expensive maintenance of parent pointers, and
query performance deteriorates with the increased overlaps
caused by the enlargement of leaf-level bounding rectan-

Proceedings of the 29th VLDB Conference, Berlin, Germany, pp. 608-619, September 9-11, 2003.
This copy is permitted by the Very Large Data Base Endowment.
Copyright © 2003 by the VLDB Endowment

x p1

x p2

x p3

x p4

x p5
x p6 x p7

x p8

x p9

x p10

x p11

x p12

x p13

x p14 x p15

R8

R1

R2

R3

R4

R5

R6

R7

(a) Planar representation of R-tree

R1 R2

R3 R4 R5 R6 R7 R8

p1 p2 p3 p4 p5 p6 p7 p8 p9 p15p10 p11 p12 p13 p14

(b) Directory of R-tree

Figure 1: Example R-Tree

gles.
Understanding the tradeoffs between update and query

performance in index structures will become increasingly
important in the future. Motivated by the class of locality-
preserving monitoring applications, by the importance of
indexing, and by the deficiencies of R-trees, we take a first
step in this direction by offering concrete insight into this
tradeoff for the R-tree, which was originally designed with
primarily efficient querying in mind. In this paper, we pro-
pose bottom-up update techniques for R-trees. These tech-
niques exploit a compact, easy-to-maintain main-memory
summary structure that provides direct access to index
nodes. Experimental results indicate that the proposed
bottom-up techniques offer better update performance than
does the standard top-down approach, while simultane-
ously resulting in indices with better query performance.
The techniques presented can be easily integrated into R-
trees as they preserve the index structure.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly describes the R-tree. Section 3 discusses the
shortcomings of the top-down approach and presents the
bottom-up techniques, covering the concepts, algorithms,
optimizations, and the summary structure. Section 4 exam-
ines the cost of top-down and bottom-up updates. Section 5
presents a thorough experimental evaluation of the bottom-
up update approach, and Section 6 concludes.

2 R-Tree Based Indexing

Much research has been conducted on the indexing of spa-
tial data and other multidimensional data. The commer-
cially available R-tree [3] is an extension of the B

�
-tree for

multi-dimensional objects, and remains a focus of attention
in the research community. It is practical and has shown it-
self to support the efficient processing of range and more
advanced queries on spatial and other low-dimensional
data.

Assuming that we consider spatial objects embedded
in two-dimensional space, the spatial extent of each data
object is represented by a Minimum Bounding Rectangle
(MBR). Leaf nodes in the R-tree contain entries of the
form

�������	��
���
����
, where oid is a pointer to the object in the

database and rect is the MBR of the object. Non-leaf nodes

contain entries of the form
������
���
���
����

where ptr is a pointer
to a child node in the tree and rect is the MBR that bounds
all the MBRs in the child node.

Figure 1 shows a set of data rectangles and how they
are indexed by an R-tree with a fanout of 3. The bounding
rectangles at each level of the R-tree are allowed to overlap.
Thus, any range query on the R-tree may result in multiple
complete or partial paths being followed from the root to
the leaf level. The more the overlap, the worse the branch-
ing behavior of a query. This is in contrast to the B-tree.

A number of variations of the initial R-tree exist, includ-
ing packed R-trees [11], the R

�
-tree [15], the R

�

-tree [1],
and the Hilbert R-tree [5]. Most recently, several exten-
sions of R-trees have been proposed specifically for moving
objects, including the TPR-tree [14], the STAR-tree [10],
and the R ����� -tree [13]. These R-tree variants all process
updates as combinations of separate top-down deletion and
insertion operations. The techniques proposed in this paper
may be applied to each of these.

3 Bottom-Up Update Strategies

A traditional R-tree update first carries out a top-down
search for the leaf node with the index entry of the object,
deletes the entry, and then executes another and separate
top-down search for the optimal location in which to insert
the entry for the new object. The first search may descend,
either completely or partially, from the root to several leaf
nodes, which may be costly. In addition, node splits and
reinsertion of index entries may occur.

While this strategy makes for a very dynamic index
structure that adapts well to the data being indexed, it is of-
ten sub-optimal, one reason being that the separate descents
probably contain some overlap. While a main-memory
cache may prove useful, a large amount of varying updates
may be expected to render a cache relatively ineffective. In
addition, a cache does not reduce the CPU costs incurred
by the two descents.

Top-down update is inherently inefficient because ob-
jects are stored in the leaf nodes, whereas the starting
point for updates is the root. Motivated by this limitation
and the observation that many applications exhibit locality-
preserving updates, the bottom-up concept is proposed.

3.1 Localized Bottom-Up Update

An initial bottom-up approach is to access the leaf of an
object’s entry directly. This requires a secondary index on
object IDs—see Figure 2.

p4p3p2p1

R8R7R6R5R4R3

R2R1

p5

Hash Table

p7

p11

p13

p15

.....

p14p13p12p11p10 p15p9p8p7p6

Figure 2: Secondary Index Access to R-Tree Leaves

If the new extent of the object does not exceed the MBR
of its leaf node, then the update is carried out immediately.
Otherwise, a top-down update is issued. Initial experiments
on a dataset with one million uniformly distributed points
reveal that this simple strategy fails to yield the improve-
ments to be expected, as a large percentage of the updates
(82%) remains top-down.

Kwon et al. [7] allow the leaf MBRs to expand by some
� so that the object can remain in the leaf without the need
for an expensive top-down update. In order to preserve the
R-tree structure, the expansion of a leaf MBR is bounded
by its parent MBR. This requires access to the parent node,
and a parent pointer must be stored in the leaf node. The

� is varied to find a compromise between update and query
performance. A large � will lead to decreased query perfor-
mance; and update performance may not improve much,
as the enlargement of a leaf MBR is limited by its parent’s
MBR. A small � yields little update improvement.

An alternative and complementary strategy is to place
the object in some sibling node. When we allow the new
value to be shifted to a (non-full) sibling, we are consid-
ering a range of leaf nodes, leading to a less localized up-
date. Intuitively, shifting is desirable since there is no need
for enlargement of a bounding rectangle. However, it costs
more disk accesses, as siblings have to be inspected to be
sure they are not full.

Applying the two optimizations to this bottom-up ap-
proach, we obtain the Localized Bottom-Up Update Algo-
rithm (Algorithm 1). In this algorithm, if the new loca-
tion of an object is outside the leaf bounding rectangle, the
bounding rectangle is enlarged by � . If the new location
remains outside (after the enlargement), then we identify a
suitable sibling to contain the new location. Otherwise, a
top-down update is issued.

The Localized Bottom-up Update Algorithm gains the
most when updates preserve locality, so that the majority
of updates are concentrated on the leaf level and its par-
ent level. However, this approach results in a dip in query
performance due to the enlargement of leaf MBRs. Fur-
ther, the need to maintain parent pointers at the leaf level

Algorithm 1 Localized Bottom-Up Update (oID, newLo-
cation, oldLocation)

Locate via the secondary object-ID index (e.g., hash table) the
leaf node with the object;
if newLocation lies within the leaf MBR then

Update the location of the object in the leaf node;
Write out leaf node; return;

Retrieve the parent of the leaf node;
Let eMBR be the leaf MBR enlarged by � ;
if eMBR is contained in the parent MBR and newLocation is
within eMBR then

Enlarge the leaf MBR;
Update location of object in leaf node;
Write out leaf node; return;

if Deletion of the object from the leaf node leads to underflow
then

Issue a top-down update; return;
Delete old index entry for the object from leaf node;
Write out leaf node;
if newLocation is contained in the MBR of some sibling node
which is not full then

Retrieve sibling node;
Insert an index entry for the object with newLocation into
sibling node;
Write out sibling node; return;

/* Issue a standard R-tree insert at the ancestor node */
Insert (root, oID, newLocation);

reduces fanout and increases the maintenance costs during
node splits.

To support dynamic data more efficiently, a general-
ized bottom-up strategy is required that relies less on the
locality-preserving property and is able to deal with higher
levels without the need to maintain parent pointers. Fur-
thermore, it should not result in a dip in query performance.

3.2 Generalized Bottom-Up Update

In the generalized bottom-up algorithm, the basic R-tree
structure is kept intact, and a compact main memory sum-
mary structure is introduced. This structure consists of

1. a direct access table to the non-leaf nodes of the R-
tree, and

2. a bit vector on the leaf nodes to indicate whether they
are full or not.

Figure 3 shows the summary structure for our example
R-tree. The single MBR captured in an entry of the direct
access table bounds all MBRs stored in the entries of the
corresponding R-tree index node. All the entries are con-
tiguous, and are organized according to the levels of the
internal nodes they correspond to.

The maintenance cost for the main-memory summary
structure is relatively inexpensive. We only need to update
the direct access table when there is an MBR modification
or node split. The MBR of an entry in the direct access
table is updated when we propagate an MBR enlargement
from the bottom of the R-tree. When an internal node is
split, a new entry will be inserted into the direct access ta-
ble. We observe that since most of the node splits occur in

p13 p14

.....

p15

p13

p12p11p10 p15

R8

p9p8p7p6p5p4p3p2p1

p11

Summary Structure

leaf 1
2
3
4

6

0
0
1
1
0
1

5

......

p7

Hash Table

Rroot3

2

2

internal

childptrslevel

R1

R2

MBR

...... R2

R7R6R5R4R3

R1

Figure 3: Summary Structure for an R-Tree

the leaf level due to the high node fanout, inserting a new
entry into the direct access table will be very infrequent.
Note that the direct access table only keeps information
about the internal nodes of the R-tree.

The size of each entry in the direct access table of the
summary structure is a small fraction of the size of the cor-
responding R-tree node. The average size ratio of a table
entry to corresponding R-tree index node is 20.4%. This
savings is achieved because the individual MBRs of the
child nodes in the R-tree are excluded in the direct access
table. Given a 4 KB page with a fanout of 204 and 66%
node utilization, the ratio of the number of entries in the
table, i.e., the number of internal nodes, to the number of
nodes for an R-tree is 0.75%. Overall, the space consump-
tion of the direct access table is 0.16% of that of the asso-
ciated R-tree.

The generalized bottom-up strategy (Algorithm 2) aims
to offer a comprehensive solution to support frequent up-
dates in R-trees. As in the previous section, we use an ex-
isting secondary identity index such as a hash table for ac-
cess to leaf nodes. The direct access table in the summary
structure facilitates quick access to a node’s parent. De-
pending on how much the object has moved, the algorithm
adaptively determines whether to enlarge the leaf MBR, to
place the new object in a sibling leaf node (if the object has
moved outside its leaf MBR), or to ascend the index to look
for a less localized solution.

With hybrids of the various bottom-up alternatives avail-
able, we limit the use of leaf MBR enlargement and extend
it more intelligently to minimize the negative impact on
query performance. The algorithm only enlarges an MBR
in the directions the object is moving and only enough to
bound the object while limiting the enlargement to at most

� .
For shifting to sibling nodes, the bit vector for the R-tree

leaf nodes in the summary structure indicates whether sib-
ling nodes are full. This eliminates the need for additional
disk accesses to find a suitable sibling. After a shift, the

Algorithm 2 Generalized Bottom-Up Update (oID,
newLocation, oldLocation)

Access the root entry in direct access table;
if newLocation lies outside rootMBR then

Issue a top-down update; return;
Locate via the secondary object-ID index (e.g., hash table) the
leaf node that contains the object;
if newLocation lies within leafMBR then

Update location of object in leafNode;
Write out leafNode; return;

node = leafNode; /* Leaf level */
iMBR = iExtendMBR (leafMBR, newLocation, � , par-
entMBR);
if newLocation lies within iMBR then

leafMBR = iMBR;
Update location of object in leafNode;
Write out leafNode; return;

if Deletion of the object from the leaf node leads to underflow
then

Issue a top-down update; return;
Delete index entry for object from leafNode;
Write out leafNode;
if newLocation is contained in the MBR of some sibling node
that is not full then

Retrieve sibling node;
Insert index entry for object with newLocation into sibling
node;
Write out sibling node;
return

ancestor = FindParent(node, newLocation);
/* Issue a standard R-tree insert at the ancestor node */
Insert (ancestor, oID, newLocation);

Algorithm 3 FindParent (node, newLocation)�
= 2; /* start from the second level */

while
���

root level do
Access the first parent entry in level

�
;

for each parent entry whose MBR contains node do
if some child offset matches node offset then

if MBR contains newLocation then
return(parent offset);�

++; break;
return(root offset);

Algorithm 4 iExtendMBR (leafMBR, newLocation, � , par-
entMBR)

Let parentMBR by given by � �����
	�������
���	�
�� ;
Let leafMBR be given by �������
�����
��
��
��
�� ;
Let newLocation be given by �����
��� ;
Compute iMBR by enlarging leafMBR: /* Extend only in di-
rection moved. */
if � � ��� then Enlarge ��� to min(����� �������)
else if �����
 then Enlarge �
 to min(�
 � �����
);
if � � � � then Enlarge � � to min(� � � ���
	 �)
else if �!����
 then Enlarge ��
 to min(��
 � ���
	�
);
return(iMBR);

leaf’s MBR is tightened to reduce overlap, thus possibly
leading to improved query performance.

If the update cannot be carried out in the leaf level,
then we call Algorithm 3 "$#&%('*)$+�,�-�%/. � � , to find the low-
est level ancestor node that bounds the new position, and
re-insert the object with the new location into the subtree
rooted at that ancestor node.

By having a more general bottom-up strategy that can
cater to different types of updates, the effectiveness of
bottom-up update is preserved, even if there is a shift from
local towards global. Further, we expect that the general-
ized bottom-up update strategy will outperform top-down
update with a cache, since the page access requirement is
usually lower. Indeed, performance studies demonstrate
that it offers significant improvements in update perfor-
mance over the localized bottom-up and top-down meth-
ods.

At the same time, we can exploit the summary struc-
ture to perform queries more efficiently. We first check for
overlap with the root entry in the direct access table and
then proceed to the next level of internal node entries, look-
ing for overlaps until the level above the leaf is reached.
Equipped with knowledge of which index nodes above the
leaf level to read from disk, we carry on with the query
as usual. The savings are expected to be significant when
the index has received large numbers of updates (overlaps
increase), and when the tree height and fanout are high.

3.2.1 Optimizations

We utilize several tuning parameters and optimizations to
make the generalized bottom-up strategy more adaptive to
further improve its performance.

1. Epsilon � : This parameter limits the amount of MBR
enlargement. It is set to some small value relative to
the average leaf MBR size. The enlargement is specific
in the direction of the object’s movement. Intuitively,
if the object moves Northeast, we enlarge the MBR to-
wards the North and East only. This parameter is already
incorporated in Algorithm 4.

2. Distance threshold 0 : We track the current speeds of the
moving objects. The speed of an object is indicated by
the distance moved in-between consecutive updates. A
fast-moving object (distance moved is greater than 0)
requires a less localized solution, so shifting to a sibling
is considered before attempting to extend the MBR. On
the other hand, if the distance moved is less than 0 , we
will try to extend the leaf MBR first before looking at
the siblings.

3. Level threshold 1 : This restricts the number of levels to
be ascended from the leaf level. If 1 is 2 , the generalized
bottom-up algorithm is reduced to an optimal localized
bottom-up, suitable for updates that exhibit high local-
ity. Parameter 1 is set to the maximum possible (the
height of the R-tree 3 1), as this offers flexibility in the
index organization when less localized updates occur.

4. Choice of sibling: We pick a suitable sibling from the
large set of candidate siblings by first eliminating those
that are full. Then we consider the siblings with MBRs
that contain the object. When a sibling is chosen, we not
only shift one object, but piggyback other equally mo-
bile objects over and thus redistribute objects between
the two leaves to reduce overlap.

The performance studies in Section 5 examine the ef-
fects of different settings of the parameters discussed.

3.2.2 Concurrency Control

Concurrent access in R-trees is provided by Dynamic Gran-
ular Locking (DGL) [2]. DGL provides low overhead
phantom protection in R-trees by utilizing external and leaf
granules that can be locked or released. The finest granular
level is the leaf MBR. Natively, DGL supports top-down
operations.

Bottom-up updates fit naturally into DGL as well. Since
a top-down operation needs to acquire locks for all overlap-
ping granules in a top-down manner, it will meet up with
locks made by the bottom-up updates, thus achieving con-
sistency. The DGL protocol is also applicable to the pro-
posed summary structure. We associate each entry in the
direct access table and the bit vector with 3 locking bits for
DGL to support the different types of locks.

4 Cost Analysis

We now proceed to analyze the cost of updating the R-tree
top-down and bottom-up. Specifically, we compare the up-
date performance of the proposed generalized bottom-up
strategy under its worst case to that of the traditional top-
down approach under its best case. We assume that the

entire data space is normalized to the unit square. The dis-
tance an object can move is thus bounded by � � .
4.1 Cost of Top-Down Update

Lemma 1. Let � be a window of size ����� over the entire
data space. Then the probability of a point belonging to �
is ����� .
Lemma 2. Let �	� be a window of size �
�����
� and ���
be a window of size �
������� over the data space. Then the
probability of �	� overlapping ��� is � # % � � � � ��������� � �� ��������� ��� .

Proof: Suppose we construct a rectangle ��� with the
dimensions

� �������
� � � � �
������� � . Within ��� , the two
windows ��� and ��� will definitely meet (see Figure 4).
Hence, the probability of ��� overlapping with ��� is given
by � # % � � � � ��������� � � � �
������� ��� .

w3
y2

w1

w2

y1x2

x1

1

1

Figure 4: Probability of Two Windows Overlapping

Theorem 1. Let the height of an R-tree be � . Let ��� be the
number of nodes at level , and % �! be the ##"%$ node of the
R-tree at level . Let � �! �&� �! be the size of the MBR of % �! .
For a query window of size �'�&� , the expected number of
disk accesses is given by

(*) $ � �+
� , �

-/.+
! , �

� � #&% ��� � �! ��� � � � � �! ��� ��� � ���

Hence, the total cost for a top-down update of R-tree is
given by 0) �	� � (�1� � . Note that we have added the
additional I/O required to write the leaf page to disk to the
total cost.

4.2 Cost of Bottom-Up Update

Given a point whose location is to be updated, let the dis-
tance from the previous position to its current position be
' , where ' is a random number from 0 to � � . We assume
the worst case scenario, where the object’s movement is
random and the object is located at the corner of the MBR.
Case 1: The new location of the object is still within the
MBR of the leaf node. Then the probability that object is
still within the leaf MBR is

�23� � '4 � � ��� �

�

The cost incurred is 3 I/O, one read and one write of
the leaf node and an additional I/O to read the hash index
giving direct access the leaf node.
Case 2: The new location of the object falls outside the
MBR of the leaf node. The probability that the object is
outside of MBR is

� 3 �23� � '4 � � ��� �

�

Then the cost incurred is equivalent to the cost to extend
the leaf MBR or to insert at some sibling node. This cost is
computed based on the following update procedure.

1. Read parent MBR to check whether extension of leaf
MBR exceeds parent’s MBR.

2. If it does not, then we extend leaf MBR by � .
Total cost = 1 (hash index) + 2 (R/W leaf node) + 1 (R
parent) = 4 I/Os.

3. Otherwise, check if new point can be inserted in some
sibling node.

i. One level above leaf: Total cost = 1 (hash index) + 2
(R/W leaf node) + 2 (R/W sibling node) + 1 (R parent
node) = 6 I/Os.

ii. Recursively traverse up the tree to level #5 , where
 576 � : Total cost = 1 (hash index) + 2 (R/W leaf
node) + 2 (R/W sibling node) + ��� � � 3� 5 � 38� (R
parent node)

)82 �9��� � � 3: %5 � I/Os.

If we use the direct access table in the summary structure
to traverse up the tree, then in the worst case, the cost is re-
duced to a constant that is equal to 1 (hash index) + 2 (R/W
leaf node) + 2 (R/W sibling node) + 2 (R parent nodes, as-
suming that they are different) = 7 I/Os.

The probability for an object to move out of the MBR
is � #&% � � � '�; 4 � � ��� � �

. Hence, the total cost for a bottom
update of R-tree is given by

<)
Probability(Object moves within MBR) �
Cost of inserting into leaf node �
Probability(Leaf MBR can be extended) �
Cost of extending leaf MBR and inserting into leaf �
Probability(Object has to be inserted into sibling) �
Cost of inserting into sibling

�23� � '=
� �

$ � � ��� �

$ � �

� ���>� (1)

� � 3 � �2?� � '=
� �

$ � � ��� �

$ � �

����� �
� � 3 � �2?� � '4 � �

$ ���
�

$
����� � 2 � (2)

� @+
! , $

� '4 � �! ��� �! � � � 2 �9��� � ��3: %5 ��� (3)

We observe that the cost for bottom-up update can be
bounded by the cost for top-down update. In the worst case,
where the object moves the maximum distance (') � �),
we have

<) � � . For top-down update, the best case sce-
nario occurs when there is only one path from the root to
the leaf, with a cost of 0) � � �8� where � is the height
of the R-tree. When �) �

, we have 0) � � . Since the
theoretical upper bound for bottom-up update is equivalent
to the lower bound for top-down update, the former can be
expected to offer better performance in practice. The exper-
iments in the next section show that on average, bottom-up
outperforms top-down for an R-tree of height 4.

5 Performance Studies

We evaluate the performances of the traditional top-down
approach (TD), and two bottom-up approaches: a local-
ized bottom-up version based on Algorithm 1 (LBU) and a
generalized version based on Algorithm 2 (GBU). We im-
plemented these algorithms and the original R-tree with re-
insertions in C and carried out experiments on a Pentium
4 1.6GHz PC with 512 MB RAM running on Windows
XP Professional. We consider a range of tuning parame-
ters, sensitivity and scalability, and throughput. The per-
formance metrics include both disk I/O and CPU time.

All experiments utilize a buffer [8] that is 1% of the
database size. A data generator similar to GSTD [18] is
used to generate the initial distribution of the objects, fol-
lowed by the movement and queries. Each object is a
2D point in a unit square that can move some distance in
the range of � 2 � 2�� � ��� . Query rectangles are uniformly dis-
tributed with dimensions in the range of � 2 � 2�� 2 � � . The num-
ber of objects ranges from 1 to 10 million, and the density
of objects increases proportionally. The resulting R-tree
has 5 levels. The number of updates ranges from 1 to 10
million. The number of queries is fixed at 1 million, which
are executed on the R-tree obtained after all the updates.

The workload parameters used are summarized in Ta-
ble 1. Unless stated otherwise, the default parameter val-
ues, given in bold, are used. The page size is set to 1024
bytes for all techniques.

Parameter Values Used
� 0, 0.003, 0.007, 0.015, 0.03
0 (distance threshold) 0, 0.03, 0.3, 3
1 (level threshold) 0, 1, 2, 3
Data distribution Gaussian, Skewed, Uniform
Buffers (percentage
of database size)

0%, 1%, 3%, 5%, 10%

Maximum distance
moved

0.003, 0.015, 0.03, 0.06, 0.1,
0.15

Number of updates 1M, 2M, 3M, 5M, 7M, 10M
Database size 1M, 2M, 5M, 10M

Table 1: Parameters and Their Values

5.1 Sensitivity Experiments

5.1.1 Effect of �

We begin by investigating how different values for �

affect the performance of updates and queries. Fig-
ures 5(a) and (c) show that GBU performs best in terms
of I/O and CPU for updates. The performance of TD re-
mains unchanged since � is applicable to only LBU and
GBU. The update costs of LBU initially decreases when �

increases because it can extend the leaf MBR more to avoid
TD. However, it cannot exploit a large � since the extension
is limited by its parent’s MBR. Overall, LBU incurs more
disk I/O than TD, even when � is 0 (i.e., LBU inserts into
siblings only). The reasons include the maintenance of par-
ent pointers during node splits and reinsertions, the check-
ing of sibling nodes to see if they are full, and that not all
MBR extensions are successful because they exceed their
parent MBRs. Further, LBU always first attempts an MBR
extension in all directions, and only then tries to insert into
a sibling. This is not always optimal, as later experiments
show.

For GBU, a larger � benefits its update costs, since being
able to extend an MBR only in select directions reduces the
need to ascend, and thus lowers costs. The CPU cost is
also lower, as less top-down updates are made. Top-down
updates are expensive in terms of I/O, since more nodes
need to be read, and in terms of CPU, since more decisions
are being considered.

Figures 5(b) and (d) show the query performance. LBU
performs slightly worse than TD because the successful
MBR extensions increase leaf-node overlaps. GBU per-
forms on par or slightly better than TD if � is small. This
is because GBU uses piggybacking when shifting to sib-
lings, which reduces overlap and distributes objects better
among leaves, and because it uses the summary structure
for better query performance. However, if � is big, query
performance degrades significantly. A large � introduces
excessive overlaps (not just at the leaf level) in GBU since it
can ascend and extend. Hence, a small � (0.003) should be
used because it gives GBU excellent update performance
and query performance at least on par with TD.

Note that queries are relatively more expensive than up-
dates. This is because the query window size is randomly
selected from � 2 � 2�� 2 � � and 1 million objects yields a some-
what high data density.

For the rest of the experiments, we omit the CPU graphs
as the disk access graphs show similar relative results for
both update and queries.

5.1.2 Effect of 0 (Distance Threshold)

Based on the value of the parameter 0 , the GBU algorithm
decides whether to use iExtendMBR first or to try to insert
into some sibling. A value of 2 implies that shifting will al-
ways be attempted first, whereas a large 0 implies that GBU
tries to execute iExtendMBR first. Figure 5(e) shows that
GBU performs best. This is due to the optimizations men-
tioned earlier. The update performance of GBU increases

0

5

10

15

20

0 0.01 0.02 0.03

A
vg

 D
is

k
I/

O

Epsilon

TD
LBU
GBU

(a) Varying � : Average Disk I/O, Update

0

50

100

150

200

250

300

0 0.01 0.02 0.03

A
vg

 D
is

k
I/

O

Epsilon

TD
LBU
GBU

(b) Varying � : Average Disk I/O, Querying

0

100

200

300

0 0.01 0.02 0.03

T
ot

al
 C

PU
 ti

m
e

(s
)

Epsilon

TD
LBU
GBU

(c) Varying � : Total CPU Cost, Update

0

100

200

300

0 0.01 0.02 0.03

T
ot

al
 C

PU
 ti

m
e

(s
)

Epsilon

TD
LBU
GBU

(d) Varying � : Total CPU Cost, Querying

0

10

0 1 2 3

A
vg

 D
is

k
I/

O

Distance threshold

TD
LBU
GBU

(e) Varying
�
, Update

80

85

90

0 1 2 3

A
vg

 D
is

k
I/

O

Distance threshold

TD
LBU
GBU

(f) Varying
�
, Querying

0

50

100

0 0.05 0.1 0.15

A
vg

 D
is

k
I/

O

Maximum distance moved between updates

TD
LBU
GBU

(g) Varying Maximum Distance, Update

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300

0 0.05 0.1 0.15

A
vg

 D
is

k
I/

O

Maximum distance moved between updates

TD
LBU
GBU

(h) Varying Maximum Distance, Querying

Figure 5: Performance Results I

very slightly when 0 is large, i.e., when iExtendMBR is fa-
vored. This is in line with the expectations. The parameter
0 does not affect LBU and TD, and thus their results are
constant.

For query performance (Figure 5(f)), GBU performs
better than the rest if 0 is small and slightly worse than
TD if 0 is large. This is so because the shifting into a
sibling in effect reduces the overlap among leaves and not
just prevents enlargements of MBRs. On the other hand,
iExtendMBR enlarges MBRs, which introduces more over-
laps. From the results, we set 0 to be 0.03 since it offers
good query and update performance.

5.1.3 Effect of Maximum Distance Moved

We vary the range of the maximum distance moved be-
tween updates to investigate how this affects GBU, LBU,
and TD. This parameter intuitively gives a measure of how
fast the objects move. In Figures 5(g)–(h), the update per-
formances of all techniques deteriorate when the maximum
distance increases, since the R-tree index is essentially ex-
panding outwards. This is most pronounced for TD when
the maximum distance is 0.15, as a result of increased rate
of reinsertion (due to TD deletion) and node splits (due to
TD insertion). LBU performs better than TD when objects
do not move too fast, as extensions of MBRs can be used
more frequently. It is also better when objects move very
fast because MBR extension and shifting into sibling can
help reduce the rate of reinsertion and node splits due to
top-down updates. GBU has the best update performance
for similar reasons and because iExtendMBR and shifting
into sibling can be done more frequently, as it can ascend
higher up the tree when both methods fail. Higher up the
tree, a parent MBR is larger, and thus a more global deci-
sion can be made.

As for query performance, all techniques perform sim-
ilarly until the maximum distance increase to 0.15. The
poor query performance of TD is due to the fact that dead
space is increased when objects beyond the root MBR are
inserted, and that all updates are handled in the same man-
ner, i.e., top-down. For LBU, updates have little flexibility
since they must choose between localized updates at leaf
level and global top-down. GBU has the lowest query costs
increase when maximum distance is 0.15 because the use
of the summary structure for querying and piggybacking
when shifting into siblings are able to offset the effects of
increases in sizes of MBRs. Overall, GBU has the flexibil-
ity to handle localized updates at lower levels and to ascend
the tree to apply more global strategies when necessary.

5.1.4 Effect of 1 (Level Threshold)

Next, we vary the maximum number of levels 1 that GBU
can ascend from 0 (GBU-0) to 3 (GBU-3) to examine the
effect on update and query performance. We also vary
the maximum distance moved between updates because the
impact of different values for 1 are not significant for small
values of maximum distance.

We obtain two interesting results. First, the update per-
formance (Figure 6(a)) of GBU-0 is better than that of LBU
as a result of improved optimizations. Second, GBU-3
(GBU-2 is almost equivalent) performs the best. This is
because for the updates that cannot be carried out using
iExtendMBR or shifting into a sibling at a lower level, we
can ascend up the tree. Note that ascending up to the level
below the root is still much cheaper than top-down since
bottom-up strategies are only used when there is no risk of
split or underflow (reinsertion) that may propagate. For the
same reasons as given in the previous experiment, the cost
of TD increases sharply when maximum distance is 0.15.

In terms of query performance (Figure 6(b)), GBU-3 in-
curs the lowest cost since we only ascend the tree if iEx-
tendMBR and shifting into a sibling fails for the current
level. This ensures that movement of objects is handled at
a lower level in the tree, i.e., locally. For larger movement
or persistent movement according to a trend, we ascend up
the tree to find a better solution. By having a robust way
of handling updates of different nature, the R-tree index re-
mains well organized for querying.

5.1.5 Effect of Data Distribution

Till now, the experiments are run with a uniform distri-
bution. Here, we consider data distributions that are ini-
tially Gaussian and skewed. As expected, the update per-
formance is generally best for all techniques when the dis-
tribution is uniform (Figure 6(c)). A skewed distribution in-
creases the costs of all techniques, and Gaussian increases
the cost for LBU and GBU. With the skewed and Gaus-
sian distributions, data is initially more clustered. As the
data objects start to move, more node splits and reinser-
tions (due to underflow) are likely to occur, which yields
an increased cost.

Figure 6(d) shows the query performance. The query
rectangles are uniformly distributed across the data space.
The techniques perform better for skewed distribution as
most of the space is empty, and poorer for uniform and
Gaussian because the data are spread out. The query per-
formance of GBU is better for uniform distribution, but
slightly worse than the others for the skewed and Gaussian
initial distributions.

5.1.6 Effect of Updates

In this experiment, we vary the number of updates from
1 million to 10 million and examine how the R-trees per-
form after millions of updates. For example, for 1 million
updates, we perform the updates followed by the queries.
From Figure 6(e), we see that the costs increase as the num-
ber of updates increase. This is because the objects would
have moved quite far from their original positions, caus-
ing the R-tree index to expand with more frequent node
splits and reinsertions, particularly after 10 million updates.
Overall, GBU, with its robust bottom-up strategies, has the
lowest update cost, followed by LBU and then TD. The
small spike for TD and LBU at 2 million updates is possi-
bly due to the random nature of the data and movement.

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140

0 0.05 0.1 0.15

A
vg

 D
is

k
I/

O

Maximum distance moved between updates

TD
LBU

GBU-0
GBU-1
GBU-2
GBU-3

(a) Ascending the R-Tree, Update

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300

0 0.05 0.1 0.15

A
vg

 D
is

k
I/

O

Maximum distance moved between updates

TD
LBU

GBU-0
GBU-1
GBU-2
GBU-3

(b) Ascending the R-Tree, Querying

0

5

10

15

20

Uniform Gaussian Skew

A
vg

 D
is

k
I/

O

Data Distribution

TD
LBU
GBU

(c) Varying Data Distributions, Update

70

80

90

100

110

Uniform Gaussian Skew

A
vg

 D
is

k
I/

O

Data Distribution

TD
LBU
GBU

(d) Varying Data Distributions, Querying

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10

A
vg

 D
is

k
I/

O

Number of Updates (in millions)

TD
LBU
GBU

(e) Varying Amounts of Updates, Update

0

100

200

300

400

500

600

0 2 4 6 8 10

A
vg

 D
is

k
I/

O

Number of Updates (in millions)

TD
LBU
GBU

(f) Varying Amounts of Updates, Querying

0

5

10

15

20

25

0 2 4 6 8 10

A
vg

 D
is

k
I/

O

Size of Buffers (% of size of dataset)

TD
LBU
GBU

(g) Varying Buffer Size, Update

70

80

90

0 2 4 6 8 10

A
vg

 D
is

k
I/

O

Size of Buffers (% of size of dataset)

TD
LBU
GBU

(h) Varying Buffer Size, Querying

Figure 6: Performance Results II

0

5

10

15

20

25

0 2 4 6 8 10

A
vg

 D
is

k
I/

O

Size of Dataset (in millions)

TD
LBU
GBU

(a) Update

0

100

200

300

400

500

600

700

0 2 4 6 8 10

A
vg

 D
is

k
I/

O

Size of Dataset (in millions)

TD
LBU
GBU

(b) Querying

Figure 7: Scalability

Query-wise (Figure 6(f)), costs increase as more updates
are made. As objects move further apart, the amount of
dead space in the index increases, and thus false hits are
more likely during queries. Again, GBU performs better
than does TD. The reasons are similar to those explained
earlier, and the results substantiate previous findings. Not-
ing that objects are moving relatively fast and randomly,
and we have used numerous updates of 10 million ob-
jects, we believe that this is an important finding: TD de-
teriorates significantly over numerous updates or very fast
movement.

5.2 Effect of Buffering

We also investigate both the update and query performance
with different amounts of buffer space. We vary the per-
centage of buffer space to database size from 0% to 10%.
From Figures 6(g)–(h), it follows that in the absence of a
buffer, LBU performs better than does TD. However, when
a buffer is used, its performance drops below that of TD.
GBU is significantly better than the rest. For all techniques,
update performance improves with increased buffer space,
as can be expected. For query performance, all techniques
also improve with increased buffer.

5.3 Scalability

In this study, we increase the number of objects from 1 mil-
lion to 10 million, to determine how scalable the bottom-up
strategies are compared to conventional top-down. As we
do not expand the data space, we are also effectively in-
vestigating the effect of the density of objects. Density in-
creases as the number of objects increases. Looking at Fig-
ure 7, update performance decreases with a larger number
of objects. Still, GBU performs the best. On a larger scale,
the query performance of all techniques is pretty much the
same. But we can see that the query costs increase dramat-
ically with more objects (10 million), due to the very high
density of objects and, certainly, more node overlaps.

5.4 Throughput

Finally, we study the throughput of bottom-up versus top-
down approaches. We employ the Dynamic Granular
Locking in R-trees [2] and run the experiments with 50
threads, varying the percentage of updates versus queries.
We use window queries within the range of � 2 � 2�� 2 2 � � with
updates. As expected, Figure 8 shows that the throughput
for TD and LBU is best when we have 100% queries and
worst when we have 0% queries (i.e., 100% updates). The
reverse is true for GBU as its optimizations reduce the up-
date costs significantly. The throughput of GBU is consis-
tently better than that of TD, with LBU under-performing
TD. From this last set of experiments, we conclude that
bottom-up strategies, if properly optimized (GBU), can
perform significantly better than top-down updates. As for
queries, GBU is still overall better than TD, as it does not
degrade as badly under drastic circumstances.

1000

2000

3000

4000

0 25 50 75 100

T
hr

ou
gh

pu
t (

tp
s)

% Updates

TD
LBU
GBU

Figure 8: Throughput for Varying Mix of Updates and Win-
dow Queries

6 Summary and Research Directions

Motivated by the class of monitoring applications, which
are characterized by large volumes of updates, and the in-
creasingly important role of indexing, this paper proposes
a generalized bottom-up update strategy for R-trees. This
update strategy can easily be applied to the members of the

family of R-tree-based indexing techniques, as it preserves
the index structure and takes into account concurrency
control. The strategy improves the robustness of R-trees
by supporting different levels of index reorganization—
ranging from local to global—during updates, thus using
expensive top-down updates only when necessary.

The paper presents a compact main-memory summary
structure along with efficient bottom-up algorithms that
reduce the numbers of disk accesses and CPU resources
used for update and querying. Empirical studies indi-
cate that the new strategy outperforms the traditional top-
down approach for updates in terms of I/O, achieves higher
throughput, and is scalable. In addition, indexes that result
from the bottom-up updates are more efficient for query-
ing than their top-down counterparts. The query perfor-
mance for bottom-up indexes does not degrade after even
large amounts of updates.

Future research directions include the application of the
bottom-update techniques proposed here to other R-tree
variants. It may also be of interest to develop a better the-
oretical and empirical understanding of the apparent, gen-
eral tradeoff between the global-ness and cost of index up-
date. Briefly, global updates translate into a dynamic index
structure that adapts to the data it indexes, which is good
for query performance, but also costly in terms of updates.
The reverse properties tend to hold for localized updates.

References
[1] N. Beckmann, H-P Kriegel, R. Schneider, and

B. Seeger. The R
�

-tree: An Efficient and Robust Ac-
cess Method for Points and Rectangles. In ACM SIG-
MOD, 1990.

[2] K. Chakrabarti and S. Mehrotra. Dynamic Granular
Locking Approach to Phantom Protection in R-trees.
In Proc. of ICDE, 1998.

[3] A. Guttman. R-trees: A Dynamic Index Structure for
Spatial Searching. In Proc. of ACM SIGMOD, 1984.

[4] M. Hadjieleftheriou, G. Kollios, V.J. Tsotras, and
D. Gunopulos. Efficient Indexing of Spatio-Temporal
Objects. In Proc. of EDBT, 2002.

[5] I. Kamel and C. Faloutos. Hilbert R-Tree: An Im-
proved R-Tree Using Fractals. In Proc. of VLDB,
1994.

[6] G. Kollios, D. Gunopulos, and V.J. Tsotras. On In-
dexing Mobile Objects. In Proc. of PODS, 1999.

[7] D. Kwon, S. Lee, and S. Lee. Indexing the Current
Positions of Moving Objects Using the Lazy Update
R-Tree. In Proc. of the Int’l. Conf. on Mobile Data
Management, 2002.

[8] S.T. Leutenegger and M.A. Lopez. The Effect of
Buffering on the Performance of R-Trees. In Proc.
of ICDE, 1998.

[9] D. Pfoser, C.S. Jensen, and Y. Theodoridis. Novel
Approaches in Query Processing for Moving Object
Trajectories. In Proc. of VLDB, 2000.

[10] C. Procopiuc, P. Agarwal, and S. Har-Peled. Star-
Tree: An Efficient Self-Adjusting Index for Moving
Objects. In Proc. of ICDE (poster), 2002.

[11] N. Roussopoulos and D. Leifker. Direct Spatial
Search in Pictorial Databases Using Packed R-Trees.
In Proc. of ACM SIGMOD, 1985.

[12] S. Saltenis and C.S. Jensen. Indexing of Now-
Relative Spatio-Bitemporal Data. VLDB Journal,
11(1): 1-16 (2002).

[13] S. Saltenis and C.S. Jensen. Indexing of Moving Ob-
jects for Location-Based Services. In Proc. of ICDE,
2002.

[14] S. Saltenis, C.S. Jensen, S.T. Leutenegger, and M.A.
Lopez. Indexing the Positions of Continuously Mov-
ing Objects. In Proc. of ACM SIGMOD, 2000.

[15] T.K. Sellis, N. Roussopoulos, and C. Faloutos. The
R+-Tree: A Dynamic Index for Multi-Dimensional
Objects. In Proc. of VLDB, 1987.

[16] Y. Tao and D. Papadias. Efficient Historical R-Trees.
In Proc. of SSDBM, 2001.

[17] Y. Tao and D. Papadias. MV3R-Tree: A Spatio-
Temporal Access Method for Timestamp and Interval
Queries. In Proc. of VLDB, 2001.

[18] Y. Theodoridis, J.R.O. Silva, and M.A. Nascimento.
On the Generation of Spatiotemporal Datasets. In
Proc. of SSD, 1999.

