LNCS 2520, pp117-176, October 2003.
(URL: http://www.springerlink.com/link.asp?id=5d3qg18792naa7vq)
Copyright © Springer-Verlag

4 Spatio-temporal Models and Languages:
An Approach Based on Data Types

Ralf Hartmut Giiting', Michael H. Béhlen?, Martin Erwig?!,
Christian S. Jensen?, Nikos Lorentzos®, Enrico Nardelli*,
Markus Schneider!, and Jose R.R. Viqueira®

Fern Universitat, Hagen, Germany
Aalborg University, Denmark
Agricultural University of Athens, Greece
Universita Degli Studi di L’Aquila, Italy

[V R SR

4.1 Introduction

In this chapter we develop DBMS data models and query languages to deal with
geometries changing over time. In contrast to most of the earlier work on this sub-
ject, these models and languages are capable of handling continuously changing
geometries, or moving objects. We focus on two basic abstractions called mov-
ing point and moving region. A moving point can represent an entity for which
only the position in space is relevant. A moving region captures moving as well
as growing or shrinking regions. Examples for moving points are people, polar
bears, cars, trains, or air planes; examples for moving regions are hurricanes,
forest fires, or oil spills in the sea.

The main line of research presented in this chapter takes a data type ori-
ented approach. The idea is to view moving points and moving regions as three-
dimensional (2D-space + time) or higher-dimensional entities whose structure
and behavior is captured by modeling them as abstract data types. These data
types can then be integrated as attribute types into relational, object-oriented,
or other DBMS data models; they can be implemented as extension packages
(“data blades”) for suitable extensible DBMSs. Section EL2 explains this idea in
more detail and discusses some of the basic questions related to it.

Once the basic idea is established, the next task is to design precisely a
collection of types and operations that adequately reflects the objects of the
real world to be modeled and is capable of expressing all (or at least, many)
of the questions one would like to ask about these objects. It turns out that
besides the main types of interest, moving point and moving region, a relatively
large number of auxiliary data types is needed. For example, one needs a line
type to represent the projection of a moving point into the plane, or a “moving
real” to represent the time-dependent distance of two moving points. It then
becomes crucial to achieve (i) orthogonality in the design of the type system,
i.e., type constructors can be applied uniformly, (ii) genericity and consistency
of operations, i.e., operations range over as many types as possible and behave
consistently, and (iii) closure and consistency between structure and operations
of related non-temporal and temporal types. Examples of the last aspect are

T. Sellis et al. (Eds.): Spatio-temporal Databases, LNCS 2520, pp. 117-[[76] 2003.
© Springer-Verlag Berlin Heidelberg 2003

118 Ralf Hartmut Gliting et. al.

that the value of a moving region, evaluated at a certain instant of time, should
be consistent with the definition of a static (non-temporal) region type, or that
the time-dependent distance function between two moving points, evaluated at
instant tg, yields the same distance value as determining for each of the two
moving points their positions p; and ps at instant ¢y, and then taking the distance
between p; and p,. Section presents such a design of types and operations
in some detail; it also illustrates the expressivity of the resulting query language
by example applications and queries.

Of course, when we design data types and operations, we have to specify their
semantics in some way. For each type, one has to define a suitable domain (the set
of values allowed for the type), and for operations one needs to define functions
mapping the argument domains into the result domain. One of the fundamental
questions coming up is at what level of abstraction one should define semantics.
For example, a moving point can be defined either as a function from time into
the 2D plane, or as a polyline in the three-dimensional (2D + time) space. A
(static) region can be defined either as a connected subset of the plane with non-
empty interior, or as a polygon with polygonal holes. The essential difference is
that in the first case we define the domains of the data types just in terms of
infinite sets whereas in the second case we describe certain finite representations
for the types.

We will discuss this issue in a bit more depth in Section and introduce
the terms abstract model for the first and discrete model for the second level
abstraction. Both levels have their respective advantages. An abstract model is
relatively clean and simple; it allows one to focus on the essential concepts and
not get bogged down by implementation details. However, it has no straight-
forward implementation. A discrete model fixes representations and is generally
far more complex. It makes particular choices and thereby restricts the range
of values of the abstract model that can be represented. For example, a moving
point could be represented not only by a 3D polyline but also by higher order
polynomial splines. Both cases (and many more) are included in the abstract
model. On the other hand, once such a finite representation has been selected,
it can be translated directly to data structures.

Our conclusion is that both levels of modeling are needed and that one should
first design an abstract model of spatio-temporal data types and then continue by
defining a corresponding discrete model. Section describes in fact an abstract
model in this sense. The definitions of semantics are given generally in terms of
infinite sets.

Section EE4l then proceeds to develop a corresponding discrete model. Finite
representations for all the data types of the abstract model are introduced. Spa-
tial objects and moving spatial objects are described by linear approximations
such as polygons or polyhedra. For all the “moving” types, a sliced represen-
tation is introduced which represents a temporal development as a set of units
where a unit describes the development as a certain “simple” function of time
during a given time interval. In Chapter 6 of this book it is shown how the rep-
resentations of the discrete model can be mapped into data structures that can

4 Models and Languages: Data Types 119

be realistically used in a DBMS environment and how example algorithms can
work on these data structures efficiently.

Section .4 concludes the main line of research presented in this chapter.
Section .5 entitled “Outlook” presents four other pieces of work carried out
within project CHOROCHRONOS. For lack of space, these developments are
presented in the form of relatively brief summaries. The first two can be viewed
as extensions of the approach described above, dealing with “spatio-temporal
developments” and time varying partitions of the plane. The latter two have a
different focus of interest and do not deal with moving objects; they develop
a spatio-temporal model over a rasterized space, and address the problem of
treating legacy databases and applications when a given database is changed to
include the time dimension.

4.2 The Data Type Approach

In this section we describe the basic idea of representing moving objects by
spatio-temporal data types. After some motivation, the approach to modeling is
explained, and some example queries are shown. In the last subsection, we discuss
two basic issues related to the approach. This section (E2) is based on [7].

4.2.1 Motivation

We are interested in geometries changing over time, and in particular in ge-
ometries that can change continuously, and hence in moving objects. In spatial
databases, three fundamental abstractions of spatial objects have been identified:
A point describes an object whose location, but not extent, is relevant, e.g. a city
on a large scale map. A line (meaning a curve in space, usually represented as
a polyline) describes facilities for moving through space or connections in space
(roads, rivers, power lines, etc.). A region is the abstraction for an object whose
extent is relevant (e.g. a forest or a lake). These terms refer to two-dimensional
space, but the same abstractions are valid in three or higher-dimensional spaces.

Since lines (curves) are themselves abstractions or projections of movements,
it appears that they are not the primary entities whose movements should be
considered. From a practical point of view, although line values can change
over time, not too many examples for moving lines come into mind. Hence it
seems justified to focus firs] on moving points and moving regions. Table [Tl
shows a list of entities that can move, and questions one might ask about their
movements.

Although we focus on the general case of geometries that may change in a
continuous manner (i.e. move), one should note that there is a class of applica-
tions where geometries change only in discrete steps. Examples are boundaries
of states, or cadastral applications, where e.g. changes of ownership of a piece
of land can only happen through specific legal actions. Our proposed way of

! Nevertheless, in the systematic design of Section 2] time-dependent line values will
come into play for reasons of closure.

120 Ralf Hartmut Gliting et. al.
Table 4.1. Moving objects and related queries
Moving Points | Moving Regions
People Countries

e Movements of a terrorist / spy / criminal
Animals
Determine trajectories of birds, whales,

‘Which distance do they traverse, at which
speed? How often do they stop?

Where are the whales now?

Did their habitats move in the last 20
years?

Satellites, spacecraft, planets

e Which satellites will get close to the route
of this spacecraft within the next 4 hours?
Cars
e Taxis: Which one is closest to a passenger
request position?
Trucks: Which routes are used regularly?
Did the trucks with dangerous goods come
close to a high risk facility?

Planes

e Were any two planes close to a collision?
e Are two planes heading towards each other
(going to crash)?
Did planes cross the air territory of state
X?
At what speed does this plane move? What
is its top speed?
e Did Iraqi planes cross the 39th degree?
Ships

e Are any ships heading towards shallow ar-
eas?
Find “strange” movements of ships indi-
cating illegal dumping of waste.

Rockets, missiles, tanks, submarines

e All kinds of military analyses

o What was the largest extent ever of the
Roman empire?

e On which occasions did any two states
merge? (Reunification, etc).

e Which states split into two or more parts?

e How did the Serb-occupied areas in former
Yugoslavia develop over time? When was
the maximal extent reached? Was Gho-
razde ever part of their territory?

Forests, Lakes
Amazone rain forest

e How fast is the

shrinking?

e Is the dead sea shrinking? What is the
minimal and maximal extent of river X
during the year?

Glaciers

e Does the polar ice cap grow? Does it move?

o Where must glacier X have been at time
Y (backward projection)?

Storms

e Where is the tornado heading? When will
it reach Florida?

High/low pressure areas

e Where do they go? Where will they be to-
morrow?

Scalar functions over space, e.g. temperature

e Where has the 0-degree boundary been
last midnight?

People
e Movements of the celts etc.
Troops, armies

e Hannibal going over the alps. Show his tra-
jectory. When did he pass village X7

Cancer
e Can we find in a series of X-ray images
a growing cancer? How fast does it grow?
How big was it on June 1, 19957 Why was
it not discovered then?

Continents

e History of continental shift.

4 Models and Languages: Data Types 121

modeling is general and includes these cases, but for them also more traditional
strategies could be used.

Also, if we consider transaction time (or bitemporal) databases, it is clear
that changes to geometries happen only in discrete steps through updates to the
database. Hence it is clear that the description of moving objects refers first of
all to valid time. So we assume that complete descriptions of moving objects are
put into the database by the applications, which means we are in the framework
of historical databases reflecting the current knowledge about the pastg of the
real world. Transaction time databases about moving objects may be feasible,
but will not be considered initially.

There is also an interesting class of applications that can be characterized as
artifacts involving space and time, such as interactive multimedia documents,
virtual reality scenarios, animations, etc. The techniques developed here might
be useful to keep such documents in databases and ask queries related to the
space and time occurring in these documents.

4.2.2 Modeling

Let us assume that a database consists of a set of object classes (of different types
or schemas). Each object class has an associated set of objects; each object has
a number of attributes with values drawn from certain domains or atomic data
types. Of course, there may be additional features, such as object (or oid-) valued
attributes, methods, object class hierarchies, etc. But the essential features are
the ones mentioned above; these are common to all data models and already
given in the relational model.

We now consider extensions to the basic model to capture time and space.
As far as objects are concerned, an object may be created at some time and
destroyed at some later time. So we can associate a validity interval with it.
As a simplification, and to be able to work with standard data models, we can
even omit this validity interval, and just rely on time-dependent attribute values
described next.

Besides objects, attributes describing geometries changing over time are of
particular interest. Hence we would like to define collections of abstract data
types, or in fact many-sorted algebras containing several related types and their
operations, for spatial values changing over time. Two basic types are mpoint
and mregion, representing a moving point and a moving region, respectively.
Let us assume that purely spatial data types called point and region are given
that describe a point and a region in the 2D—p1ane§ (a region may consist of
several disjoint areas which may have holes) as well as a type time that describes
the valid time dimension. Then we can view the types mpoint and mregion as

2 For certain kinds of moving objects with predetermined schedules or trajectories
(e.g. spacecraft, air planes, trains) the expected future can also be recorded in the
database.

3 We restrict attention to movements in 2D space, but the approach can, of course, be
used as well to describe time-dependent 3D space.

122 Ralf Hartmut Gliting et. al.

mappings from time into space, that is

mpoint = time — point

mregion = time — region

More generally, we can introduce a type constructor 7 which transforms any
given atomic data type « into a type 7(«) with semantics

7(a) = time — «

and we can denote the types mpoint and mregion also as 7(point) and 7(region),
respectively.

A value of type mpoint describing a position as a function of time can be
represented as a curve in the three-dimensional space (z, y, t) shown in Figure[11
We assume that space as well as time dimensions are continuous, i.e., isomorphic
to the real numbers. (It should be possible to insert a point in time between any
two given times and ask for e.g. a position at that time.)

X
Fig.4.1. A moving point

A value of type mregion is a set of volumes in the 3D space (z,y,t). Any
intersection of that set of volumes with a plane ¢t = ¢y yields a region value,
describing the moving region at time ¢y. Of course, it is possible that this inter-
section is empty, and an empty region is also a proper region value.

We now describe a few example operations for these data types. For the mo-
ment, these are purely for illustrative purposes; this is in no way intended to be
a closed or complete design. Such a complete design is developed in Section [£3]

Generic operations for moving objects are, for example:

7(a) X time -« at
(o) — a minvalue, maxvalue
(o) — time start, stop
(o) — real duration
— 7(a) const

© 3 AN

4 Models and Languages: Data Types 123

Operation at gives the value of a moving object at a particular point in time.
Minvalue and maxvalue give the minimum and maximum values of a moving
object. Both functions are only defined for types a on which a total order exists.
Start and stop return the minimum and maximum of a moving value’s (time)
domain, and duration gives the total length of time intervals a moving object
is defined. We shall also use the functions startvalue(z) and stopvalue(z) as an
abbreviation for at(x, start(z)) and at(z, stop(z)), respectively. Whereas all
these operations assume the existence of moving objects, const offers a canonical
way to build spatio-temporal objects: const(x) is the “moving” object that yields
r at any time.
In particular, for moving spatial objects we may have operations such as

mpoint X mpoint — mreal mdistance
mpoint X mregion — mpoint visits

Mdistance computes the distance between the two moving points at all times
and hence returns a time changing real number, a type that we call mreal
(“moving real”; mreal = 7(real)), and visits returns the positions of the moving
point given as a first argument at the times when it was inside the moving region
provided as a second argument. Here it becomes clear that a value of type mpoint
may also be a partial function, in the extreme case a function where the point
is undefined at all times.

Operations may also involve pure spatial or pure temporal types and other
auxiliary types. For the following examples, let line be a data type describing
a curve in 2D space which may consist of several disjoint pieces; it may also be
self-intersecting. Let region be a type for regions in the plane which may consist
of several disjoint faces with holes. Let us also have operations

mpoint — line trajectory
mregion — region traversed
point X region — bool inside
line —real length

Here trajectory is the projection of a moving point onto the plane. The cor-
responding projection for moving regions is the operation traversed that gives
the total area the moving region ever has covered. Inside checks whether a point
lies inside a region, and length returns the total length of a line value.

4.2.3 Some Example Queries

The presented data types can now be embedded into any DBMS data model as
attribute data types, and the operations be used in queries. For example, we can
integrate them into the relational model and have a relation

flights (id:string, from:string, to:string, route:mpoint

We can then ask a query “Give me all flights from Diisseldorf that are longer
than 5000 km”:

124 Ralf Hartmut Gliting et. al.

SELECT id
FROM flights
WHERE from = "DUS" AND length (trajectory (route)) > 5000

This query uses projection into space. Dually, we can also formulate queries
projecting into time. For example, “Which destinations can be reached from
San Francisco within 2 hours?”:

SELECT to
FROM flights
WHERE from = "SFO" AND duration(route) <= 2.0

Beyond projections into space and time, there are also genuine spatio-tempo-
ral questions that cannot be solved on projections. For example, “Find all pairs
of planes that during their flight came closer to each other than 500 meters!”:

SELECT A.id, B.id

FROM flights A, flights B

WHERE A.id <> B.id AND
minvalue(mdistance(A.route, B.route)) < 0.5

This is in fact an instance of a spatio-temporal join.

The information contained in spatio-temporal data types is very rich. In
particular, relations that would be used in traditional or spatial databases can
be readily derived. For instance, we can easily define views for flight schedules
and airports:

CREATE VIEW schedule AS

SELECT id, from, to, start(route) AS departure,
stop(route) AS arrival

FROM flights

CREATE VIEW airport AS
SELECT DISTINCT from AS code, startvalue(route) AS location
FROM flights

The above examples use only one spatio-temporal relation. Even more interesting
examples arise if we consider relationships between two or more different kinds
of moving objects. To demonstrate this we use a further relation consisting of
weather information, such as high pressure areas, storms, or temperature maps.

weather (kind:string, area:mregion

The attribute “kind” gives the type of weather event, such as, “snow-cloud” or
“tornado”, and the “area” attribute provides the evolving extents of the weather
features.

We can now ask, for instance, “Which flights went through a snow storm?”

SELECT id
FROM flights, weather
WHERE kind = "snow storm" AND duration(visits(route, area)) > 0

4 Models and Languages: Data Types 125

Here the expression visits(route, area) computes for each flight /storm combina-
tion a moving point that gives the movement of the plane inside this particular
storm. If a flight passed a storm, this moving point is not empty, that is, it exists
for a certain amount of time, which is checked by comparing the duration with
0. Similarly, we can find out which airports were affected by snow storms:

SELECT DISTINCT from
FROM airport, weather
WHERE kind = "snow storm" AND inside(location, traversed(area))

Finally, we can extend the previous query to find out which airports are most
affected by snow storms. We can intersect the locations of airports with all snow
storms by means of visits and determine the total durations:

SELECT code, SUM(duration (visits(const(location), area)))
AS storm_hours

FROM airport, weather

WHERE kind = "snow storm"

GROUP BY code

HAVING storm_hours > O

ORDER BY storm_hours

4.2.4 Some Basic Issues

Given this approach to spatio-temporal modeling and querying, several basic
questions arise:

e We have seen spatio-temporal data types that are mappings from time into
spatial data types. Is this realistic? How can we store them? Don’t we need
finite, discrete representations?

o If we use discrete representations, what do they mean? Are they observations
of the moving objects?

e If we use discrete representations, how do we get the infinite entities from
them that we really want to model? What kind of interpolation should be
used?

In the following subsections we discuss these questions.

Abstract vs. Discrete Modeling. What does it mean to develop a data model with
spatio-temporal data types? Actually, this is a design of a many-sorted algebra.
There are two steps:

1. Invent a number of types and operations between them that appear to be
suitable for querying. So far these are just names, which means one gives
a signature. Formally, the signature consists of sorts (names for the types)
and operators (names for the operations).

2. Define semantics for this signature, that is, associate an algebra, by defining
carrier sets for the sorts and functions for the operators. So the carrier set for
a type « contains the possible values for «, and the functions are mappings
between the carrier sets.

126 Ralf Hartmut Gliting et. al.

For a formal definition of many-sorted signature and algebra see [24] or [1§].
Now one can make such designs at two different levels of abstraction, namely as
abstract or as discrete models.

Abstract models allow us to make definitions in terms of infinite sets, without
worrying whether finite representations of these sets exist. This allows us to view
a moving point as a continuous curve in the 3D space, as an arbitrary mapping
from an infinite time domain into an also infinite space domain. All the types
that we get by application of the type constructor 7 are functions over an infinite
domain, hence each value is an infinite set.

This abstract view is the conceptual model that we are interested in. The
curve described by a plane flying over space is continuous; for any point in time
there exists a value, regardless of whether we are able to give a finite description
for this mapping (or relation). In Section we have in fact described the
types mentioned under this view. In an abstract model, we have no problem in
using types like “moving real”, mreal, and operations like

mpoint X mpoint — mreal mdistance

since it is quite clear that at any time some distance between the moving points
exists (when both are defined).

The only trouble with abstract models is that we cannot store and manipulate
them in computers. Only finite and in fact reasonably small sets can be stored;
data structures and algorithms have to work with discrete (finite) representations
of the infinite point sets. From this point of view, abstract models are entirely
unrealistic; only discrete models are usable.

This means we somehow need discrete models for moving points and moving
regions as well as for all other involved types (mreal, region, ...). We can
view discrete models as approzimations, finite descriptions of the infinite shapes
we are interested in. In spatial databases there is the same problem of giving
discrete representations for in principle continuous shapes; there almost always
linear approzimations have been used. Hence, a region is described in terms of
polygons and a curve in space (e.g. a river) by a polyline. Linear approximations
are attractive because they are easy to handle mathematically; most algorithms
in computational geometry work on linear shapes such as rectangles, polyhedra,
etc. A linear approximation for a moving point is a polyline in 3D space; a
linear approximation for a moving region is a set of polyhedra (see Figure 2.
Remember that a moving point can be a partial function, hence it may disappear
at times, the same is true for the moving region.

Suppose now we wish to define the type mreal and the operation mdistance.
What is a discrete representation of the type mreal? Since we like linear approx-
imations for the reasons mentioned above, the obvious answer would be to use
a sequence of pairs (value, time) and use linear interpolation between the given
values, similarly as for the moving point. If we now try to define the mdistance
operator

mpoint X mpoint — mreal mdistance

4 Models and Languages: Data Types 127

LA ta
y y
- -
X X

Fig. 4.2. Discrete representations for moving points and moving regions

we have to determine the time-dependent distance between two moving points
represented as polylines. To see what that means, imagine that through each
vertex of each of the two polylines we put a plane ¢t = ¢; parallel to the xy-plane.
Within each plane ¢ = t; we can easily compute the distance; this will result in
one of the vertices for the resulting mreal value. Between two adjacent planes
we have to consider the distance between two line segments in 3D space (see
Figure [£3). However, this is not a linear but a quadratic function.

-
|

X

Fig. 4.3. Distance between segments of two moving points represented by polylines

So it seems that linear functions are not enough to represent moving reals.
Maybe quadratic polynomials need to be introduced to represent the develop-
ment between two vertices. But this immediately raises other questions. Why
just quadratic functions motivated by the mdistance operation, perhaps other
operations need other functions? And all kinds of operations that we need on
moving reals must then be able to deal with these functions.

This example illustrates that choosing finite representations leads into dif-
ficult tradeoffs. Other choices for a moving point could be polynomial splines
which are capable of describing changes in speed or acceleration much better

128 Ralf Hartmut Gliting et. al.

(with polylines, speed is stepwise constant, and acceleration is either 0 or infi-
nite, which seems quite unnatural). For moving regions, an alternative to the
polyhedral representation could be sequences of affine mappings (where each
transition from one state of a region to the next can be described by translation,
rotation, and scaling). This model can describe rotations much better, but does
not support arbitrary changes of shape.

We have concluded from such considerations that both levels of modeling
are indispensable. For the discrete model this is clear anyway, as only discrete
models can be implemented. However, if we restrict attention directly to discrete
models, there is a danger that a conceptually simple, elegant design of query
operations is missed. This is because the representational problems might lead
us to prematurely discard some options for modeling.

For example, from the discussion above one might conclude that moving
reals are a problem and no such type should be introduced. But then, instead
of operations minvalue, maxvalue, etc. on moving reals one has to introduce
corresponding operations for each time-dependent numeric property of a moving
object. Suppose we are interested in distance between two moving points, speed
of a moving point, and size and perimeter of a moving region. Then we need
operators mindistance, maxdistance, minspeed, maxspeed, and so forth.
Clearly, this leads to a proliferation of operators and to a bad design of a query
language. So the better strategy is to start with a design at the abstract level,
and then to aim for that target when designing discrete models.

Observations vs. Description of Shape. Looking at the sequence of 3D points
describing a moving point in a discrete model, one may believe that these are
observations of the moving object at a certain position at a specific time. This
may or may not be the case. Our view is that it is, first of all, an adequate
description of the shape of a continuous curve (i.e., an approximation of that
curve). We assume that the application has complete knowledge about the curve,
and puts into the database a discrete description of that curve.

What is the difference to observations? Observations could mean that there
are far too many points in the representation, for example, because a linear move-
ment over an hour happens to have been observed every second. Observations
could also be too few so that arbitrarily complex movements have happened
between two recorded points; in that case our (linear or other) interpolation
between these points could be arbitrarily wrong. Hence we assume that the
application, even if it does make observations, employs some preprocessing of
observations and also makes sure that enough observations are taken. Note that
it is quite possible that the application adds points other than observations to a
curve description, as it may know some physical laws governing the movements
of this particular class of objects.

The difference in view becomes even more striking if we consider moving
regions. We require the application to have complete knowledge about the 3D
shape of a moving region so that it can enter into the database the polyhedron
(or set of polyhedra) as a good approximation. In contrast, observations could
only be a sequence of region values. But whereas for moving points it is always

4 Models and Languages: Data Types 129

possible to make a straight line interpolation between two adjacent positions,
there is no way that a database system could, in general, deduce the shape of
a region between two arbitrary successive observations. Hence, it is the job of
the application to make enough observations and otherwise have some knowl-
edge how regions of this kind can behave and then apply some preprocessing
in order to produce a reasonable polyhedral description. How to get polyhedra
from a sequence of observations, and what rules must hold to guarantee that the
sequence of observations is “good enough” may be a research issue in its own
right. We assume this is solved when data are put into the database.

The next two sections of this chapter will present first a careful and formal
design of an abstract model, and then a discrete model offering finite represen-
tations for the types of the abstract model.

4.3 An Abstract Model: A Foundation
for Representing and Querying Moving Objects

This section aims to offer a precise and conceptually clean foundation for imple-
menting a spatio-temporal DBMS. It presents a simple and expressive system of
abstract data types, comprising data types and encapsulating operations, that
may be integrated into a query language, to yield a powerful language for query-
ing spatio-temporal data such as moving objects. In addition to presenting the
data types and operations, insight into the considerations that went into the
design is offered, and the use of the abstract data types is exemplified using
SQL. This section is based on [21] where complete formal definitions of all the
concepts presented here can be found.

The next section defines the foundation’s data types. As a precursor to defin-
ing the operations on these, Section briefly presents the SQL-like language,
the abstract data types are embedded into. An overview of the operations is
provided in Section and Sections[4.3.4 and present the specific oper-
ations. Section demonstrates the use of the abstract data types in a forest
management application. Finally, Section [£:3.7] summarizes the section.

4.3.1 Spatio-temporal Data Types

This section presents a type system, constructed by introducing basic types and
type constructors. Following an overview, the specific types are presented.

Overview. The signature (see, e.g., [I8124]) given in Table 2 is used in defining
the type system. In this signature, kinds are capitalized and denote sets of types,
and type constructors are in italics. This signature generates a set of terms,
which are the types in the system. Terms include int, region, moving(point),
range(int), etc. Type constructor range is applicable to all types in kinds BASE
and TIME, and hence the types that can be constructed by it are range(int),
range(real), range(string), range(bool), and range(instant). Type constructors
with no arguments, for example region, are types already and are called constant.

130 Ralf Hartmut Gliting et. al.

Table 4.2. Signature describing the type system

— BASE int, real, string, bool
— SPATIAL point, points, line, region
— TIME instant

BASE U TIME — RANGE range
BASE U SPATIAL — TEMPORAL intime, moving

Although the focus is on spatio-temporal types, especially moving(point)
and moving(region), to obtain a closed system, it is necessary to include the
other types given in the table. We proceed to describe these types in more detail,
covering also their semantics.

Base Types. The base types are int, real, string, and bool. These have the

usual semantics, and they all include an undefined value. The semantics of a
L . . A

type «a is given by its carrier set, A,. For examplel Agtring = V*U{L}, where

V is a finite alphabet. As a shorthand, we define A, to mean A, \ {1}, i.e., the

carrier set without the undefined value.

Spatial Types. The four spatial types in the system, point, points, line, and
region (cf. [19]), are illustrated in Figure L4l Informally, these types have the
following meaning. A value of type point represents a point in the Euclidean
plane or is undefined. A points value is a finite set of points. A line value is a
finite set of continuous curves in the plane. A region is a finite set of disjoint
parts, termed faces, each of which may have holes. A face may lie within a hole
of another face. Each of the three set types may be empty.

. . b o °®

apointvalue apointsvalue alinevalue aregionvaue

Fig.4.4. The Spatial Data Types

The formal definitions, given elsewhere [21I], are based on the point set
paradigm and on point set topology, which provides concepts of continuity and
closeness, as well as allows us to identify special topological structures of a point
set, such as its interior, closure, boundary, and exterior. We assume that the
reader has some familiarity with basic concepts of topology [17].

The point and point set types are quite simple to define formally. Specifically,
Apoint 2 R2y {1} and Apoints = {P C R?| P is finite}.

The definition of line is based on curves (continuous mappings from [0, 1] to
R?) that are simple in the sense that the intersection of two curves yields only a

4 Models and Languages: Data Types 131

finite number of proper intersection points (disregarding common parts that are
curves themselves). The line data type is to represent any finite union of such
simple curves. When the abstract design of data types given here is implemented
by some discrete design, some class of curves will be selected for representation,
for example polygonal lines, curves described by cubic functions, etc. We just
require that the class of curves selected has this simplicity property. This is
needed, for example, to ensure that the intersection operation between two
line values yields a finite set of points, representable by the points data type.

A finite union of curves basically yields a planar graph structure (whose
nodes are intersections of curves and whose edges are intersection-free pieces of
curves). Given a set of points of such a graph, there are many different sets of
curves resulting in this point set. For example, a path over the graph could be
interpreted as a single curve or as being composed of several curves. A design is
chosen where (i) a line value is a point set in the plane that can be described
as a finite union of curves, and (ii) there is a unique collection of curves that
can serve as a “canonical” representation of this line value. For a line @), we let
s¢(Q) (the simple curves of @) denote this representation.

When defining certain operations, we need a notion of components of a line
value. Let meet* denote the transitive closure of the meet relationship on curves.
This relation partitions the components of a line value @) into connected com-
ponents, denoted as components(sc(Q)). The decomposition into corresponding
point sets is defined as blocks(Q) = {points(C) | C € components(sc(Q))},
where points(C') returns the points in a partition.

A region value is defined as a point set in the plane with a certain structure.
region values do not have geometric anomalies such as isolated or dangling
line or point features, and missing lines and points in the form of cuts and
punctures. Specifically, a region can be viewed as a finite set of so-called faces,
where any two faces are disjoint except for finitely many “touching points” at
their boundaries. Moreover, boundaries of faces are simple (as for lines). For
example, the intersection of two regions will also produce only finitely many
isolated intersection points. The boundary of a face may have outer as well as
inner parts, i.e., a face may have holes.

We require that the same class of curves is used in defining the [ine and the
region type. We can denote a given region value @ by faces(Q). We also extend
the shorthand A to the spatial data types and all other types a whose carrier

set contains sets of values. For these, we define A, 2 4, \ {0}.

Time Type. Type instant represents time points. Time is considered to be lin-
ear and continuous, i.e., isomorphic to the real numbers. Specifically, the carrier

. . A
set for instant is Ajpstane = RU{L}.

Temporal Types. From the base and spatial types, we derive corresponding
temporal types. Type constructor moving yields, for any given type «, a mapping
from time to a.

132 Ralf Hartmut Gliting et. al.

Definition 1. Let o, with carrier set A,, be a data type to which the moving
type constructor is applicable. Then the carrier set for moving(«) is defined as
follows:

Ammoving(a) = {fIf : Ainstant — Ao is a partial function A I'(f) is finite}

Hence, each value f is a function describing the development over time of a value
from the carrier set of «. The condition “I'(f) is finite” ensures that f consists
of only a finite number of continuous components (the notion of continuity used
here is defined elsewhere [21]). As a result, projections of moving objects (e.g.,
into the 2D plane) have only a finite number of components. This is needed in
the decompose operation (for lack of space not defined in this section, but in
[21]]), and it serves to making the design implementable.

For all “moving” types we introduce extra names by prefixing the argument
type with an “m”, that is, mpoint, mpoints, mline, mregion, mint, mreal,
mstring, and mbool. This is just to shorten some signatures.

The temporal types obtained through the moving type constructor are func-
tions, or infinite sets of pairs (instant, value). It is practical to have a type for
representing any single element of such a function, i.e., a single (instant, value)-
pair, for example, to represent the result of a time-slice operation. The intime
type constructor converts a given type « into a type that associates instant
values with values of a.

Definition 2. Let a be a data type to which the intime type constructor is ap-
plicable, with carrier set A,. The carrier set for intime(«), is defined as follows:

AN
Aintime(a) = Ainstant X Aa

Range Types (Sets of Intervals). For all temporal types, we desire opera-
tions that project into their domains and ranges. For the moving counterparts of
the base types, e.g., moving(real) (whose values come from a one-dimensional
domain), the projections are, or can be compactly represented as, sets of intervals
over the one-dimensional domain. Hence, we are interested in types to represent
sets of intervals over the real numbers, over the integers, etc. The range type
constructor provides these types.

Definition 3. Let o be a data type to which the range type constructor is
applicable (and hence on which a total order < exists). An a-interval is a set
X C A, such that Vo,y € X V2 € A, (z<z<y=z€ X).

Two a-intervals are adjacent if they are disjoint and their union is an «-
interval. An «-range is a finite set of disjoint, non-adjacent intervals. For an
a-range R, points(R) denotes the union of all its intervals.

Definition 4. Let o be any data type to which the range type constructor is
applicable. Then the carrier set for range(«) is:

Arange(a) 2 {X C A, | 3 an a-range R (X = points(R))}

A range value X has a unique associated a-range denoted by intvls(X). We use
periods as a shorthand for ranges over the time domain, range(instant).

4 Models and Languages: Data Types 133

Design Rationale. We have attempted to ensure consistency and closure be-
tween non-temporal and temporal types. The former is ensured by introducing
temporal types for all base types and all spatial types through the moving con-
structor. Closure under projection is ensured: For all temporal types, data types
are available to represent the results of projections into (time) domain and range.
The type system offers uniform support for the point vs. point set view.
All data types belong to either a one- or two-dimensional space. This principle
requires that each space includes data types that represent a single value (a
“point”) and a set of values (a “point set”). This is the basis for the definitions
of generic operations in the next sections and is explained in more detail there.
Additional discussions of design considerations may be found in [20].

4.3.2 Language Embedding of Abstract Data Types

In order to illustrate the use in queries of the operations to be defined in the
next section, these must be embedded in a query language. We use an SQL-
like language, with which most readers should be familiar. It is convenient to
employ a few constructs, which are expressible in one form or another in most
object-oriented or object-relational query languages. We briefly explain these
constructs.

Assignment. The construct LET <name> = <query> assigns the result of query
to name.

Multistep Queries. A query may encompass a list of initial assignments and one
or more subsequent query expressions.

Conversions between Sets of Objects and Atomic Values. A single-attribute,
single-tuple relation may be converted into a typed, atomic value and vice-
versa, using the notations ELEMENT (<query>) and SET (<attrname>, <value>).
For example, expression SET(name, "John Smith") returns a relation with an
attribute name and a single tuple with value John Smith.

Defining Derived Attributes. We allow arbitrary abstract data type operations
in the WHERE clause, where they form predicates, and in the SELECT clause, where
they produce new attributes. The notation <new attrname> AS <expression>
is used.

Defining Operations. New operations may be derived from existing ones, us-
ing LET <name> = <functional expression>. A functional expression has the
form FUN (<parameter list>) <expression> and corresponds to the lambda
abstraction in functional languages. For example, a new operation square can be
defined and used as follows: LET square = FUN (m:integer) m * m; square(5)

134 Ralf Hartmut Gliting et. al.

Defining Aggregate Functions. Any binary, associative, and commutative op-
eration defined on a data type can be used as an aggregate function over a
column of that data type, using the notation AGGR(<attrname>, <operator>,
<neutral element>). In case the argument relation is empty, the neutral ele-
ment is returned. In case it has a single tuple, then that single attribute value
is returned; otherwise, the existing values are combined by the given operator.
Moreover, an aggregate function may be named, using the notation LET <name>
= AGGREGATE(<operator>, <neutral element>).

With these constructs and given a relation employee(name:string,
salary:int, permanent:bool), we can sum all salaries and determine whether
all employees have permanent positions.

SELECT AGGR(salary, +, 0) FROM employee

LET all = AGGREGATE(and, TRUE);
SELECT all(permanent) FROM employee

4.3.3 Overview of Data Type Operations

The design of the operations adheres to three principles: (i) Design operations as
generic as possible. (ii) Achieve consistency between operations on non-temporal
and temporal types. (iii) Capture the interesting phenomena.

The first principle is crucial, as the type system is quite large. To avoid
a proliferation of operations, a unifying view of collections of types is manda-
tory. This is enabled by relating each type to either a one-dimensional or a
two-dimensional space and by considering all values as either single elements
or subsets of the respective space. For example, type int describes single ele-
ments of the one-dimensional space of integers, while range(int) describes sets
of integers. Similarly, point describes single elements of two-dimensional space,
whereas points, line, and region describe subsets of this space.

Next, in order to achieve consistency of operations on non-temporal and
temporal types, we first define operations on non-temporal types and then sys-
tematically lift these operations to become temporal variants of the respective
types.

Finally, to obtain a powerful query language, it is necessary to include op-
erations that address the most important concepts from various domains (or
branches of mathematics). Whereas simple set theory and first-order logic are
certainly the most fundamental and best-understood parts of query languages,
operations based on order relationships, topology, metric spaces, etc., are also
needed. While there is no clear recipe for achieving closure of “interesting phe-
nomena,” this motivates the inclusion of concepts and operations such as dis-
tance, size of a region, and relationships of boundaries.

Section .3 A develops operations on non-temporal types, based on the generic
point and point set (value vs. subset of space) view of these types. Section
defines operations on temporal types.

4 Models and Languages: Data Types 135

4.3.4 Operations on Non-temporal Types

The classes of operations on non-temporal types are given in Table [£3] which
also lists the names of the operations on these types. Although the focus is on
moving objects, and hence on temporal types, the definitions of operations on
non-temporal types are essential, as these operations will later be lifted, to obtain
operations on temporal types.

Table 4.3. Classes of operations on non-temporal types

| Class | Operations

Predicates isempty

=, #, intersects, inside

<, <, 2,>, before

touches, attached, overlaps, on_border,
in_interior

Set Operations intersection, union, minus

crossings, touch_points, common_border
Aggregation min, max, avg, center, single
Numeric no_components, size, perimeter, duration,

length, area
Distance and Direction|distance, direction
Base Type Specific and, or, not

We take the view that we are dealing with single values and sets of these val-
ues in one- and two-dimensional space. The types can then be classified accord-
ing to Table[4.4l (Remember that “temporal types” are functions of time. Types
instant and periods are not temporal types in this sense.) The table contains five

Table 4.4. Classification of non-temporal types

1D Spaces 2D Space
discrete continuous
Integer [Boolean [String |Real [Time [2D
point [int bool string |real |instant|point
point|range(int)|range(bool) |range |range|periods|points, line,
set (string)|(real) region

one-dimensional spaces, Integer, Boolean, etc., and one two-dimensional space,
2D. For example, space Integer has two types, int and range(int). We distinguish
between 1D and 2D spaces because only the 1D spaces have a (natural) total
order. The distinction between discrete and continuous one-dimensional spaces
is important for certain numeric operations. To have a uniform terminology, in
any of the respective spaces, we call a single element a point and a subset of the
space a point set; and we classify types as point types or point set types.

136 Ralf Hartmut Gliting et. al.

Ezxample 1. We introduce the following example relations for use within this
section, representing cities, countries, rivers, and highways in Europe.

city(name:string, pop:int, center:point)
country(name: string, area:region)

river (name:string, route:line)

highway (name: string, route:line)

Notations for Signatures. The notations for signatures used when defining
the data type operations next are partly based on Table[£4l We let 7 and o be
type variables that range over all point and point set types of Table B4, respec-
tively. If several type variables occur in a signature (e.g., for binary operations),
then they are assumed to range over types of the same space. For example, in
signature m X ¢ — « we can select one-dimensional space Integer and instantiate
7 to int and o to range(int); or we can select two-dimensional space 2D and
then instantiate 7 to point and o to either points, line, or region.

In signature ¢ x ¢ — «, both arguments have to be the same type. However,
in signature o1 X 09 — «, type variables o; and o2 can be instantiated indepen-
dently, but must range over the same space. The notation o ® — ~ indicates
that any order of the two argument types is valid.

Some operations are restricted to certain classes of spaces, namely 1D =
{Integer, Boolean, String, Real, Time}, 2D = {2D}, 1Dcont = {Real, Time},
1Dnum = {Integer, Real, Time}, and cont = {Real, Time, 2D}. A signature is
restricted to a class of spaces by putting the name of the class behind it in square
brackets. For example, a signature o — g [1D] is valid for all one-dimensional
spaces.

Generic operations with generic names may have more appropriate, specific
names when applied to specific types. For example, a generic size operation
exists for point set types. For type periods the name duration is more appro-
priate. In this case, we introduce the more specific name as an alias with the
notation size[duration].

In defining semantics, u, v, ... denote single values of a 7 type, and U, V...
generic sets of values (point sets) of a o type. For binary operations, u or U
will refer to the first and v or V' to the second argument. Furthermore, b (B)
ranges over values (sets of values) of base types, and predicates are denoted by
p. We use p to range over moving objects and ¢ (") to range over instant values
(periods).

For the definition of the semantics of operations we generally assume strict
evaluation, i.e., for any function f,, defining the semantics of an operation op
we assume fop(...,L,...) = L. Undefined arguments are therefore not handled
explicitly in definitions.

Predicates. We consider unary and binary predicates. At this abstract level,
we can ask whether a single point is undefined, and whether a point set is empty.
The generic predicate isempty[undefined] is used for this purpose.

4 Models and Languages: Data Types 137

The design of binary predicates is based on the following strategy. First,
we consider possible relationships between two points (single values), two point
sets, and a point vs. a point set in the respective space. Second, orthogonal to
this, predicates are based on three different concepts, namely set theory, order
relationships, and topology. This design is shown in Table The signatures

Table 4.5. Analysis of binary predicates

|Sets |Order (1D) |T0pology |

point vs. point|u = v,u # v u<v,u<v
uU>v,U>U
point set U=V,U#V |U before V|0U N OV # () (touches)
vs. point set |[UNV #£0 U NV?° # (attached)
(intersects)

U CV (inside) U°NV° #((overlaps)
point u € U (inside) |u before V |u € OU (on_border)
vs. point set U before v |u € U° (in_interior)

and definitions for these predicates are as expected and have been omitted.
Predicates related to distance or direction (e.g., “north”) can be obtained via
numeric evaluations (see Section E3.4)).

Set Operations. Set operations are fundamental and are available for all point-
set types. Where feasible, we also allow set operations on point types, thus
allowing expressions such as v minus v and U minus u. Resulting singleton or
empty sets are interpreted as point values.

Defining set operations on the combination of one- and two-dimensional point
sets is more involved. This is because we are using arbitrary closed or open
sets in one-dimensional space, whereas only closed point sets (points, line, and
region) exist in two-dimensional space. This renders it necessary to apply a
closure operation after applying the set operations on such entities which adds
all points on the boundary of an open set.

Because there are three point set types in 2D space, an analysis of which
argument type combinations make sense (return interesting results) and of what
the result types are is required.

Generally, set operations may return results that intermix zero-, one-, and
two-dimensional point sets, i.e., points, lines, and proper regions. Usually one
is interested mainly in the result of the highest dimension. This is reflected in
the concept of regularized set operations [32]. For example, the regularized inter-
section removes all lower-dimensional pieces from the corresponding intersection
result. We adopt regularization in the semantics of the three “standard” 2D set
operations, union, minus, and intersection.

The union of arguments of equal types has the usual semantics, and union
on different types is not defined. Difference always results in the type of the
first argument. Closure has to be applied to the result. Intersection produces

138 Ralf Hartmut Gliting et. al.

results of all dimensions smaller than or equal to the dimension of the lowest-
dimensional argument. For example, the intersection of a line value with a region
value may result in points and lines. We define the intersection operator for
all type combinations with regularized semantics. To make the other parts of
results available, we introduce specialized operators, e.g., common_border and
touch_points.

The resulting set operations are given in Table[4.0l The notation min (o1, o2)
refers to taking the minimum in an assumed “dimensional” order: points <
line < region. The table uses predicates, e.g., is2D, with the obvious meaning,
as well as the notations p(Q), Q°, and 9Q for the closure, interior, and boundary
of @, respectively.

Table 4.6. Set operations

| Operation | Signature | Semantics
intersection |7 x 7 — T if w = v then u else L
minus TX T — T if w = v then L else u
intersection (7 ® o — T if w € V then u else L
minus TX O — T if u € V then L else u
oXT — 0 if 4s2D(U) then p(U \ {v})
else U \ {v}
union TR o — 0o if is1D(V') or type(V) = points
then V U {u} else V
intersection, (o X o —o [IDJUNV,U\V,UUV
minus, union
intersection |01 X o2 — min(o1,02) [2D]|[21]
minus o1 X 09 — 01 [2D]|p(Q1 \ Q2)
union oX0o—o0o [2D]|Q1 U Q2
crossings line x line — points |[21]
touch_points |region ® line — points
reqgion X reqgion — points
common region X region — line
_border

The following example shows how, with union and intersection, we obtain
the corresponding aggregate functions over sets of objects (relations).

Example 2. “Determine the region of Europe from the regions of its countries.”

LET sum
LET Europe

AGGREGATE (union, TheEmptyRegion);
SELECT sum(area) FROM country

Aggregation. Aggregation reduces sets of points to points (Table ET)). For
open and half-open intervals, we use the infimum and supremum values, i.e., the
maximum and minimum of their closure, for computing minimum and maximum
values. This is preferable over returning undefined values. In all domains that
have addition, we can compute the average (avg). In 2D, the average is based

4 Models and Languages: Data Types 139

Table 4.7. Aggregate operations

‘Operation ‘Signature ‘Semantics
min, max |o - [1D]|min(p(U)), max(p(U))

sup (T)+inf (T
avg o = 1D ey Yy T
avg[center]||points — w [2D]|1 > v b
avg[center||line — [2D] m D cese(U) Zllell
avg[center||region — 7 [2D]|+7 [, P dA where M = [, dA
single o — if Ju: U = {u} then u else L

on vector addition and is usually called center (of gravity). It is often useful to
have a “casting” operation available to transform a singleton set into its single
value; operation single does this conversion.

Example 3. The query “find the point where highway A1 crosses the river Rhine”
can be expressed as:

SELECT single(crossings(R.route, H.route))

FROM river R, highway H

WHERE R.name = "Rhine" and H.name = "A1"
and R.route intersects H.route

Numeric Properties of Sets. For sets of points, a number of well-known
numeric properties may be computed (Table B.§). For example, the number of

Table 4.8. Numeric operations

Operation Signature | Semantics
no_components|c — int [1D]||intvls(U)|
no_components|points — int |U|

no_components|line — int |blocks (U)|
no_components|region — int |faces(U)]

size[duration] |o — real [1Dcont] |} rc s oy SUP (1) — inf (T')
size[length] line — real |

size[area] region — real [dA

perimeter region — real Srengtn (OU)

components (no_components) is the number of disjoint maximal connected
subsets, i.e., the number of faces for a region, connected components for a line
graph, and intervals for a 1D point set. The size is defined for all continuous set
types (i.e., for range(real), periods, line, and region). For 1D types, the size is
the sum of the lengths of component intervals; for line, it is the length, and for
region, it is the area.

140 Ralf Hartmut Gliting et. al.

Ezxample 4. “List for each country its total size and the number of disjoint land
areas.”

SELECT name, area(area), no_components(area) FROM country

Distance and Direction. A distance measure exists for all continuous types.
The distance function determines the distance between the closest pair of a
point from the first and the second argument.

The direction between points is sometimes of interest. The direction func-
tion returns the angle of the line from the first to the second point, mea-
sured in degrees (0 < angle < 360). Hence, if ¢ is exactly north of p then
direction(p, ¢) = 90. If p = ¢ then the undefined value L is returned.

Example 5. “Find all cities north of and within 200 kms of Munich!”

LET Munich = ELEMENT(SELECT center FROM city
WHERE name = "Munich");

SELECT name FROM city

WHERE distance(center, Munich) < 200
and direction(Munich, center) >= 45
and direction(Munich, center) <= 135

Specific Operations for Base Types. The operations and, or, and not on
base types are also needed, although they are not related to the point vs. point
set view. We mention them because they will be subject to lifting described
below and so become applicable to temporal types.

4.3.5 Operations on Temporal Types

Values of temporal types (i.e., types moving(a)) are partial functions of the
form f: Ajnstant — Aa. There are four classes of operations on such functions.

Projection to Domain and Range. For values of all moving types—which
are functions—operations are provided that yield the domain and range of these
functions. The domain function deftime : moving(«) — periods returns the
times for which a function is defined.

In 1D space, operation rangevalues : moving(a) — range(«) returns values
assumed over time as a set of intervals. For the 2D types, operations are offered to
return the parts of the projections corresponding to our data types. For example,
the projection of a moving point into the plane may consist of points and lines;
these can be obtained by operations locations and trajectory respectively.

For intime types, the two trivial projection operations, inst : intime(a) —
instant and val : intime(«) — «, are offered.

All the infinite point sets that result from domain and range projections are
represented in collapsed form by the corresponding point set types. For example,
a set of instants is represented as a periods value, and an infinite set of regions

4 Models and Languages: Data Types 141

is represented by the union of the points of the regions, which is represented in
turn as a region value. This finite representation is enabled by the continuity
condition required for types moving(a) (see Section F.3.1]).

The resulting design is complete in that all projection values in domain and
range can be obtained.

Ezxample 6. For illustration of operations on temporal types, we use the following
relations (a slight variation of those of Section E2).

flight(airline:string, no:int, from:string, to:string, route:mpoint)
weather (name:string, kind:string, area:mregion)
site(name:string, pos:point)

In the first, attributes airline and no identify a flight, and the names of the
departure and destination cities and the route taken for each flight are also
recorded. A route is defined only for the times the plane is in flight and not
when it is on the ground. Relation weather records named weather phenomena.
Attribute kind gives the type of phenomenon, such as, “snow-cloud” or “tor-
nado,” and attribute area provides the phenomenon’s evolving extent. Relation
site contains positions of well-known sites.

Ezxample 7. “How far does flight LH 257 travel in French air space?”

LET route257 = ELEMENT(SELECT route FROM flight
WHERE airline = "LH" and no = 257);
length (intersection (France, trajectory(route257)))

“What are the departure and arrival times of flight LH 2577”
min(deftime(route257)); max(deftime(route257))

Ezxample 8. “When and at distance does flight 257 pass the Eiffel tower?”

We assume a closest operator with signature mpoint X point — intime(point),
which returns the time and position when a moving point is closest to a given
fixed point in the plane. In [21] it is shown how such an operator can be derived
from others.

LET EiffelTower =

ELEMENT (SELECT pos FROM site WHERE name = "Eiffel Tower");
LET pass = closest(route257, EiffelTower);
inst (pass); distance(EiffelTower, val(pass))

Interaction with Points and Point Sets in Domain and Range. Some
operations relate the functional values of moving types with values either in their
(time) domain or their range. For example, such functions allow us to determine
whether a moving point passes a given point or region. With these, one may also
restrict a moving entity to given domain or range values. As an example, one
may determine the value(s) of a moving real at time ¢ or in time interval [t1, t2].

142 Ralf Hartmut Gliting et. al.

Table 4.9. Interaction of temporal values with values in domain and range

|Operation |Signature |

atinstant |moving(a) X instant — intime(«)
atperiods|moving(a) X periods — moving(«)

initial moving(«) — intime(a)

final moving(«) — intime(a)

present |moving(a) X instant — bool

present |moving(a) X periods — bool

at moving(a) X a — moving(a) [1D]
at moving(a) X range(a) — moving(«) [1D]
at moving(a) X point — mpoint [2D]
at moving(a) X 3 — moving(min(a, 3))[2D]
atmin moving(«) — moving(a) [1D]
atmax |moving(a) — moving(a) [1D]
passes moving(a) X B — bool

The first and second groups of operations in Table concern interactions with
the (time) domain and range values, respectively.

In the first group, operations atinstant and atperiods restrict a moving
entity to a given instant, resulting in an (instant, value) pair, or to a given set
of time intervals, respectively. The atinstant operation is similar to the times-
lice operator found in many temporal relational algebras. Operations initial
and final return the first and last (instant, value) pair, respectively. Operation
present allows one to check whether the moving value exists at a given instant,
or is ever present during a given set of time intervals.

In the second group, the purpose of at is again restriction (like atinstant,
atperiods), here to values in the range. For 1D space, restriction to a point
or a point-set value returns a value of the given moving type. For example, we
can restrict a moving real to the times when its value was between 3 and 4. In
2D, the resulting moving type is obtained by taking the minimum of the two
argument types a and (8 with respect to the order point < points < line <

region. For example the restriction of a moving(region) by a point will result
in a moving(point). This is analogous to the definitions intersection in 2D in
Section 34

In one-dimensional spaces, operations atmin and atmax restrict the moving
value to the times when it was minimal or maximal with respect to the total
order on this space. Operation passes determine whether the moving value ever
assumed (one of) the value(s) in the second argument.

All of these operations are of interest from a language design point of view.
Some of them may also be expressed in terms of other operations in the frame-
work. For example, we have present(f,t) =not(isempty(val(atinstant(f,t)))).

Ezxample 9. “When and where did flight 257 enter French air space?”

LET entry = initial(at(route257, France));
inst (entry); val(entry)

4 Models and Languages: Data Types 143

Ezxample 10. “When was the Eiffel Tower within snow storm ‘Lizzy’?”

LET Lizzy = ELEMENT(SELECT area FROM weather
WHERE name = "Lizzy" and kind = "snow storm");
deftime(at (Lizzy, EiffelTower))

Lifting Operations to Time-Dependent Operations. Section 3.4 system-
atically defines operations on non-temporal types. This section uniformly lifts
these operations to apply to the corresponding moving (temporal) types. The
idea is to allow any argument of a non-temporal operation to be made temporal
and to return a temporal type. More specifically, the lifted version of an opera-
tion with signature a; X ... x ap — [has signatures o x ... x «), — moving(3)
with o € {a;, moving(a;)}.

So, each argument type may be changed into a time-dependent type, which
will then transform the result type into a time-dependent type. The new opera-
tions are given the same name as the operation they originate from. As an exam-
ple of lifting, the intersection operation with signature region x point — point
is lifted to the signatures mregion x point — mpoint, region X mpoint — mpoint,
and mregion X mpoint — mpoint.

To define the semantics of lifting, we note that an operation op : a3 X ... X
ar — [can be lifted with respect to any combination of argument types. The
set of lifted parameters may be described by a set L C {1,...,k}, and we define:

2

ol — moving(o;) if i € L

2 o otherwise

Thus, the signature of any lifted version of op can be written as op : ol x
. X aF — moving(B). If f,, is the semantics of op, we now have to define the
semantics of foLp for each possible lifting L. For this we define what it means to

apply a possibly lifted value to an instant-value:

@i/ (t) = {xl otherwise

This enables a point-wise definition of the functions fZ .

ff;)(xl, .. ,:)Sk) = {(t, fop(xf(t), .. ,l’é’(t))) | t e Ainstant}

This lifting generalizes existing operations, which perhaps did not appear to
be of great utility, to new and quite useful operations. For example, an operator
that determines the intersection of a region with a point may not be of great
interest, but the operation that determines the intersection between a region
and an mpoint (“get the part of the mpoint within the region”) is quite useful.
This explains why Section B34l defined the set operations for all argument types,
including single points.

Time-dependent operations enable a powerful query language. Examples
follow.

144 Ralf Hartmut Gliting et. al.

Ezxample 11. We can formulate involved queries such as “For how long did the
moving point mp move along the boundary of region r?”

duration (deftime(at (on_border (mp, r), TRUE)))

Predicate on_border yields a result of type mbool, which is defined for all times
when mp is defined and has value TRUE or FALSE. Operation at restricts this
mbool to the times when it has value TRUE.

Ezxample 12. “When did snow storm ‘Lizzy’ consist of exactly three separate
areas.”

deftime(at (no_components(Lizzy) = 3, TRUE))

Here, ‘Lizzy’ is of type mregion, and the lifted versions of no_components and
equality apply.

Rate of Change. An important property of any time-dependent value is its
rate of change, i.e., its derivative. This concept is applicable to types mreal and
mpoint. For the latter, we include three operators, namely speed, based on Eu-
clidean distance, turn, based on the direction between two points, and velocity,
based on the vector difference (viewing points as 2D vectors). The acceleration

Table 4.10. Derivative operations

|Operation |Signature |Semantics |
derivative|mreal — mreal |p" where p'(t) = lims—o(f(t +) — f(t))/d
speed mpoint — mreal |y’ where

' (t) = lims—o faistance (f(t +9), (1)) /0
turn mpoint — mreal |y’ where

p'(t) = lims—o fairection(f(t + 5) f()/s
velocity |mpoint — mpoint|u’ where p'(t) = lims_o(f(t +8) — ())/é

of a moving point mp may be obtained as a number by derivative(speed(mp))
and as a vector, or moving point, by velocity(velocity(mp)).

Example 13. One can observe the growth rate of a moving region: “When did
‘Lizzy’ expand the most?”

inst (initial (atmax (derivative(area(Lizzy)))))

Ezxample 14. “Show on a map the parts of the route of flight 257 when the
plane’s speed exceeds 800 km/h.”

trajectory (atperiods (route257,
deftime(at (speed (route257) > 800, TRUE))))

The background of the map has to be produced by a different tool or query.

4 Models and Languages: Data Types 145

4.3.6 Application Example

To illustrate the use of the data types in querying, we consider an example
application that concerns forest fire analysis and which allows us to explore
advanced aspects of moving point and region objects.

In a number of countries, fire is one of the main agents of forest damage.
Forest fire control management mainly pursues the two goals of learning from
past fires and their evolution and of preventing fires in the future, by studying
weather and other factors such as cover type, elevation, slope, distance to roads,
and distance to human settlements. In a very simplified manner, this example
considers the first goal of learning from past fires and their evolution in space
and time. We assume a database containing relations with schemas

forest(forestname:string, territory:mregion)
forest_fire(firename:string, extent:mregion)
fire fighter(fightername:string, location:mpoint)

Relation forest records the extents of forests, which grow and shrink over time
due to, e.g., clearing, cultivation, and destruction processes. Relation
forest_fire captures the evolution of fires, from ignition to extinction. Re-
lation fire fighter describes the motions of fire fighters on duty, from their
start at the fire station up to their return. The following four queries illustrate
enhanced spatio-temporal database functionality.

Example 15. “When and where did the fire called ‘The Big Fire’ have its largest
extent?”

LET TheBigFire = ELEMENT(SELECT extent FROM forest_fire
WHERE firename = "The Big Fire");

LET max_area = initial(atmax(area(TheBigFire)));

atinstant (TheBigFire, inst(max_area));

val(max_area)

The second argument of atinstant computes the time when the area of the fire
was at its maximum. The area operator is used in its lifted version.

Ezxample 16. “Determine the size of all forest areas destroyed by ‘The Big Fire’.”
We assume that a fire may reach several, perhaps adjacent, forests.

LET ever = FUN (mb:mbool) passes(mb, TRUE);
LET burnt =
SELECT size AS area(traversed (intersection(territory, extent)))
FROM forest_fire, forest
WHERE firename = "The Big Fire"
and ever(intersects(territory, extent));
SELECT SUM(size)
FROM burnt

The intersects predicate of the join condition is lifted. Since the join condition
expects a Boolean value, the ever predicate checks whether there is at least one
intersection between the two mregion values just considered.

146 Ralf Hartmut Gliting et. al.

Ezxample 17. “When and where was the spread of fires larger than 500 km?2?”

LET big_part =
SELECT big_area AS extent when[FUN (r:region) area(r) > 500]
FROM forest_fire;

SELECT *

FROM big_part

WHERE not (isempty (deftime(big_area)))

The first subquery reduces the moving region of each fire to the parts when it
was large. For some fires, this may never be the case; for them, bigarea may be
empty (always undefined). These are eliminated in the second subquery.

Ezxample 18. “ How long was fire fighter Th. Miller enclosed by ‘The Big Fire’
and which distance did the fire fighter cover there?

SELECT time AS
duration (deftime (intersection(location, TheBigFire))),
distance AS
length (trajectory (intersection(location, TheBigFire)))
FROM fire_fighter
WHERE fightername = "Th. Miller"

We assume that the value ‘TheBigF'ire’ has already been determined as in Ex-
ample [[5] and that we know that Th. Miller was in this fire (otherwise, time and
distance will be returned as zero).

4.3.7 Summary

This section offers an integrated, comprehensive design of abstract data types
involving base types, spatial types, time types, as well as consistent temporal and
spatio-temporal versions of these. Embedding this in a DBMS query language,
one obtains a query language for spatio-temporal data, and moving objects in
particular.

The strong points are several. The framework emphasizes genericity, closure,
and consistency. An abstract level of modeling is adopted, with the design in-
cluding the first comprehensive model of spatial data types (going beyond the
study of just topological relationships) formulated entirely at the abstract, infi-
nite point-set level. To our knowledge, the framework is the first to systematically
and coherently use continuous functions as values of attribute data types. Finally,
the idea of defining operations over non-temporal types and then uniformly lift
these to operations over temporal types seems to be a new and important concept
that achieves consistency between non-temporal and temporal operations.

4.4 A Discrete Model:
Data Structures for Moving Objects Databases

4.4.1 Overview

In this section, which is based on [16], we define data types that can represent
values of corresponding types of the abstract model just presented in Section A3}

4 Models and Languages: Data Types 147

Of course, the discrete types can in general only represent a subset of the values
of the corresponding abstract type.

All type constructors of the abstract model will have direct counterparts in
the discrete model except for the moving constructor. This is, because it is im-
possible to introduce at the discrete level a type constructor that automatically
transforms types into corresponding temporal types. The type system for the
discrete model therefore looks quite the same as the abstract type system shown
in Table[£2] up to the intime constructor, but then introduces a number of new
type constructors to implement the moving constructor, as shown in Table 111

Table 4.11. Signature describing the discrete type system

— BASE int, real, string, bool
— SPATIAL point, points, line, region
— TIME instant

BASE U TIME — RANGE range
BASE U SPATIAL — TEMPORAL intime

BASE U SPATIAL — UNIT const
— UNIT ureal, upoint,
upoints, uline, uregion
UNIT — MAPPING mapping

Let us give a brief overview of the meaning of the discrete type constructors.
The base types int,real, string, bool can be implemented directly in terms of
corresponding programming language types. The spatial types point and points
also have direct discrete representations whereas for the types line and region
linear approximations (i.e., polylines and polygons) are introduced. Type instant
is also represented directly in terms of programming language real numbers. The
range and intime types represent sets of intervals, or pairs of time instants and
values, respectively. These representations are also straightforward.

The interesting part of the model is how temporal (“moving”) types are
represented. We here describe the so-called sliced representation. The basic idea is
to decompose the temporal development of a value into fragments called “slices”
such that within the slice this development can be described by some kind of
“simple” function. This is illustrated in Figure

<
\/’/A\~

T

v

-
X

t

Fig. 4.5. Sliced representation of moving real and moving points value

148 Ralf Hartmut Gliting et. al.

The sliced representation is built by a type constructor mapping parameter-
ized by the type describing a single slice which we call a unit type. A value of a
unit type is a pair (i,v) where ¢ is a time interval and v is some representation of
a simple function defined within that time interval. We define unit types ureal,
upoint, upoints, uline, and uregion. For values that can only change discretely,
there is a trivial “simple” function, namely the constant function. It is provided
by a const type constructor which produces units whose second component is
just a constant of the argument type. This is in particular needed to represent
moving int, string, and bool values. The mapping data structure basically just
assembles a set of units and makes sure that their time intervals are disjoint.

In summary, we obtain the correspondence between abstract and discrete
temporal types shown in Table EET2.

Table 4.12. Correspondence between abstract and discrete temporal types

|Abstract Type |Discrete Type |
moving(int) mapping(const(int))
moving(string) |mapping(const(string))
moving(bool) |mapping(const(bool))
moving(real) |mapping(ureal)
moving(point) |mapping(upoint)
moving(points) |mapping(upoints)
moving(line) |mapping(uline)
moving(region) |mapping(uregion)

In Table E12]we have omitted the representations mapping(const(real)), etc.
which can be used to represent discretely changing real values and so forth, but
are not so interesting for us.

In the remainder of this section we formally define the data types of the
discrete model. That means, for each type we define its domain of values in
terms of some finite representation. From an algebraic point of view, we define
for each sort (type) a carrier set. For a type a we denote its carrier set as D,,.

Of course, each value in D,, is supposed to represent some value of the corre-
sponding abstract domain, that is, the carrier set of the corresponding abstract
type. For a type a of the abstract model, let A, denote its carrier set. We can
view the value a € A, that is represented by d € D, as the semantics of d. We
will always make clear which value from A, is meant by a value from D,,. Often
this is obvious, or an informal description is sufficient. Otherwise we provide a
definition of the form o(d) = a where ¢ denotes the “semantics” function.

The following Section contains definitions for all non-temporal types
and for the temporal types in the sliced representation. For the spatial temporal
data types moving(points), moving(line), and moving(region) one can also
define direct three-dimensional representations in terms of polyhedra etc.; these
representations will be treated elsewhere.

In Chapter 6 of this book we will present some examples of how this high
level specification translates into physical data structures and algorithms.

4 Models and Languages: Data Types 149

4.4.2 Definition of Discrete Data Types

Base Types and Time Type. The carrier sets of the discrete base types and
the type for time rest on available programming language types. Let Instant =
real.

Dint = int U { L} Dyeqr =Teal U{L} Dgtring = stringU {1}
Dyoot =001 U{L} Dinstant = Instant U{L}

The only special thing about these types is that they always include the un-
defined value 1 as required by the abstract model. Since we are interested in
continuous evolutions of values, type instant is defined in terms of the program-
ming language type real.

We sometimes need to speak about only the defined values of some carrier
set and therefore introduce a notation for it: Let D/, = D, \ {L}. We will later
introduce carrier sets whose elements are sets themselves; for them we extend
this notation to mean D), = D, \ {0}.

Spatial Data Types. Next, we define finite representations for single points,
point collections, lines, and regions in two-dimensional (2D) Euclidean space. A
point is, as usual, given by a pair (z,y) of coordinates. Let Point = real X real
and

Dyping = Point U{L}

The semantics of an element of Dpoint is obviously an element of Apgine. We
assume lexicographical order on points, that is, given any two points p, ¢ € Point,
we define: p < ¢ & (p.x < q.2)V (p.x = qx Apy < q.y).

A value of type points is simply a set of points.

Point
Dpoints =2

Again it is clear that a value of Dpoints represents a value of the abstract domain
Aw.

The definition of discrete representations for the types line and region is
based on linear approximations. A value of type line is essentially just a finite
set of line segments in the plane. Figure shows the correspondence between
the abstract type for line and the discrete type. The abstract type is a set of
curves in the plane which was viewed in Section as a planar graph whose
nodes are intersections of curves and whose edges are intersection-free pieces
of curves. The discrete line type represents curves by polylines. However, one
can assume a less structured view and consider the same shape to be just a
collection of line segments. At the same time, any collection of line segments in
the plane defines a valid collection of curves (or planar graph) of the abstract
model (see Figure (c)). Hence, modeling line as a set of line segments is no
less expressive than the polyline view. It has the advantage that computing the
projection of a (discrete representation) moving point into the plane can be done

150 Ralf Hartmut Gliting et. al.

y
Al L
X X X
(@ (b) (©

Fig.4.6. (a) line value of the abstract model (b) line value of the discrete model (c)
any set of line segments is also a line value

very efficiently as it is not necessary to compute the polyline or graph structure.
Hence we prefer to use this unstructured view. Let

Seg = {(u,v) | u,v € Point,u < v}
be the set of all line segments.
Dyine = {S C Seg|Vs,t € Seg : s #t A collinear(s,t) = disjoint(s,t)}

The predicate collinear means that two line segments lie on the same infinite
line in 2D space. Hence for a set of line segments to be a line value we only
require that there are no collinear, overlapping segments. This condition ensures
unique representation, as collinear overlapping segments could be merged into
a single segment. The semantics of a line value is, of course, the union of the
points on all of its segments.

A region value at the discrete level is essentially a collection of polygons
with polygonal holes (Figure 7). Formal definitions are based on the notions

8> 8-+

@ (b)
Fig.4.7. (a) region value of the abstract model (b) region value of the discrete model

of cycles and faces. These definitions are similar to those of the ROSE algebra
[22]. We need to reconsider such definitions here for two reasons: (i) They have
to be modified a bit because here we have no “realm-based” [22] environment
any more, and (ii) we are going to extend them to the “moving” case in the
following sections.

4 Models and Languages: Data Types 151

A cycle is a simple polygon, defined as follows:
Cycle = {S C Seg||S| =n,n > 3, such that
(1) Vs,t € S:s#t= —p-intersect(s,t) N ~touch(s,t)
(79) Vp € points(S) : card(p,S) = 2
(#42) (80, .+, Sn—1) : {80y -y 8n—1} =S
AVi€{0,...,n— 1} : meet(si, S(i+1) mod n))}

Two segments p-intersect (“properly intersect”) if they intersect in their interior
(a point other than an end point); they touch if one end point lies in the interior
of the other segment. Two segments meet if they have a common end point.
The set points(S) contains all end points of segments, hence is points(S) = {p €
Point|3s € S : s = (p,q) Vs = (q,p)}. The function card(p, S) tells how often
point p occurs in S and is defined as card(p, S) = [{s € S| s = (p,q)Vs = (¢,p)}]-
Hence a collection of segments is a cycle, if (i) no segments intersect properly, (ii)
each end point occurs in exactly two segments, and (iii) segments can be arranged
into a single cycle rather than several disjoint ones (the notation (s, ..., $p—1)
refers to an ordered list of segments).

A face is a pair consisting of an outer cycle and a possibly empty set of hole
cycles.

Face = {(¢,H) |c € Cycle, H C Cycle, such that
(1) Yh € H : edge-inside(h, c)
(i) Yhy,ha € H : hy # hy = edge-disjoint (hq, ha)
(#41) any cycle that can be formed from the segments of ¢ or H is either
c or one of the cycles of H

A cycle ¢ is edge-inside another cycle d if its interior is a subset of the interior
of d and no edges of ¢ and d overlap. They are edge-disjoint if their interiors are
disjoint and none of their edges overlap. Note that it is allowed that a segment
of one cycle touches a segment of another cycle. Overlapping segments are not
allowed, since then one could remove the overlapping parts entirely (e.g. two hole
cycles could be merged into one hole). The last condition (iii) ensures unique
representation, that is, there are no two different interpretations of a set of
segments as sets of faces. This implies that a face cannot be decomposed into
two or more edge-disjoint faces.
A region is then basically a set of disjoint faces.

Dyegion = {F C Face| f1, f2 € F A f1 # fa = edge-disjoint(f1, f2)}

More precisely, faces have to be edge-disjoint. Two faces (c1, H1) and (c2, Ha)
are edge-disjoint if either their outer cycles ¢; and ¢y are edge-disjoint, or one of
the outer cycles, e.g. c1, is edge-inside one of the holes of the other face (some
h € Hs). Hence faces may also touch each other in an isolated point, but must
not have overlapping boundary segments.

The semantics of a region value should be clear: A cycle ¢ represents all points
of the plane enclosed by it as well as the points on the boundary. Given o(c),

152 Ralf Hartmut Gliting et. al.

we have for a face o((c, H)) = closure(o(c) \ Upcy @(h)), that is, hole areas are
subtracted from the outer cycle area, but then the resulting point set is closed
again in the abstract domain. The area of a region is then obviously the union
of the area of its faces.

Sets of Intervals. In this subsection, we introduce the non-constant range
type constructor which converts a given type @ € BASE U TIME into a type
whose values are finite sets of intervals over a. Note that on all such types a a
total order exists. Range types are needed, for example, to represent collections
of time intervals, or the values taken by a moving real.

Let (S, <) be a set with a total order. The representation of an interval over
S is given by the following definition.

Interval(S) = {(s,e,lc,rc)|s,e € S,le,re € bool,

s<e,(s=e)= (lc=rc=true)}.

Hence an interval is represented by its end points s and e and two flags lc and

rc¢ indicating whether it is left-closed and/or right-closed. The meaning of an
interval representation (s, e,lc,rc) is

o((s,e,lc,re)) ={u e Sls<u<e}ULCURC

where the two sets LC and RC are defined as

LC’—{{S} if le and RC—{{@} if re

] otherwise 0 otherwise

Given an interval i, we denote with o/(7) the semantics expressed by o (i) re-
stricted to the open part of the interval.
Whether intervals u = (8y, €4, lcy, Ty) and v = (84, €y, Ly, Teyy) € Interval(S)
are disjoint or adjacent is defined as follows:
r-disjoint(u, v) < e, < Sy V (ey = Sy A (rey Alcy))
disjoint(u,v) < r-disjoint(u, v) V r-disjoint(v,)
r-adjacent(u,v) < disjoint(u, v) A (ey = Sy A (Tey Viey)) V
((ew < Sy ATcy Nley) AN—=(Fw € Sle, <w < sy))
adjacent(u,v) < r-adjacent(u,v) V r-adjacent(v, u)
The last condition for r-adjacent is important for discrete domains such as int.
Representations of finite sets of intervals over S can now be defined as
IntervalSet(S) = {V C Interval(S) |
(u,v € S Au #v) = disjoint(u,v) A —adjacent (u,v)}
The conditions ensure that a set of intervals has a unique and minimal repre-
sentation. The range type constructor can then be defined as:

D y = IntervalSet(D,,) VYa € BASEUTIME

range(o

4 Models and Languages: Data Types 153

We also define the intime type constructor in this subsection which yields
types whose values consist of a time instant and a value, as in the abstract model.

Dintime(a) = Dinstant X Da Va € BASE U SPATTAL

Sliced Representation for Moving Objects. In this subsection we introduce
and formalize the sliced representation for moving objects. The sliced represen-
tation is provided by the mapping type constructor which represents a moving
object as a set of so-called temporal units (slices). Informally speaking, a tem-
poral unit for a moving data type « is a maximal interval of time where values
taken by an instance of « can be described by a “simple” function. A temporal
unit therefore records the evolution of a value v of some type « in a given time
interval ¢, while ensuring the maintenance of type-specific constraints during
such an evolution.

For a set of temporal units representing a moving object their time intervals
are mutually disjoint, and if they are adjacent, their values are distinct. These
requirements ensure unique and minimal representations.

Temporal units are described as a generic concept in this subsection. Their
specialization to various data types is given in the next two subsections. Let .S
be a set. The concept of temporal unit is defined by:

Unit(S) = Interval(Instant) x S

A pair (i,v) of Unit(S) is called a temporal unit or simply a unit. Its first com-
ponent is called the unit interval, its second component the unit function.

The mapping type constructor allows one to build sets of units with the
required constraints. Let

Mapping(S) = {U C Unit(S) |V(i1,v1) € U,V(ia,v2) € U :
(Z) 11 =19 = VU] = Vs
(%) i1 # 12 = (disjoint(i1,12) A (adjacent (i1,i2) = v1 # v2))}
The mapping type constructor is defined for any type o € UNIT as:
Dmapping(a) = Mapping(D,) Yo € UNIT.

In the next subsections we will define the types ureal, upoint, upoints, uline, and
uregion. Since all of them will have the structure of a unit, the just introduced
type constructor mapping(c) can be applied to all of them.

Units describe certain simple functions of time. We will define a generic
function ¢ on units which evaluates the unit function at a given time instant.
More precisely, let « be a non-temporal type (e.g. real) and u,, the corresponding
unit type (e.g. ureal) with D, = Interval(Instant) x S,, where S, is a suitably
defined set. Then ¢, is a function

Lot Sa X Instant — D,

154 Ralf Hartmut Gliting et. al.

Usually we will omit the index o and just denote the function by ¢. Hence, ¢
maps a discrete representation of a unit function for a given instant of time
into a discrete representation of the function value at that time. The ¢ function
serves three purposes: (i) It allows us to express constraints on the structure of a
unit in terms of constraints on the structure of the corresponding non-temporal
value. (ii) It allows us to express the semantics of a unit by reusing the semantics
definition of the corresponding non-temporal value. (iii) It can serve as a basis
for the implementation of the atinstant operation on the unit.

The use of ¢ will become clear in the next subsections when we instantiate it
for the different unit types.

Temporal Units for Base Types. For a type a € BASE U SPATIAL, we
introduce the type constructor const that produces a temporal unit for a. Its
carrier set is defined as:

D onst(a) = Interval(Instant) x D,

Recall that the notation D! refers to the carrier set of o without undefined
elements or empty sets. A unit containing an undefined or empty value makes
no sense as for such time intervals we can simply let no unit exist (within a
mapping).

Note that, even if we introduce the type constructor const with the explicit
purpose of defining temporal units for int, string, and bool, it can nevertheless
be applied also to other types. This may be useful for applications where values
of such types change only in discrete steps.

The trivial temporal function described by such a unit can be defined as

t(v,t) =

Note that in defining ¢ for a specific unit type we automatically define the se-
mantics of the unit which should be a temporal function in the abstract model.
For example, for a value u of a unit type const(int) the semantics o(u) should
be a partial function f : A, ... — Al ,. This is covered by a generic definition
of the semantics of unit types: Let u = (i,v) be a value of a unit type u,. Then

o(u) = fu: Al srant No(i) — A, where
fu(t) = o(u(v,t)) Vte o)

Hence we reuse the semantics defined for the discrete value ¢(v,t) € D.,.

This semantics definition will in most cases be sufficient. However, for some
unit types (namely, uline and uregion) the discrete value obtained in the end
points of the time interval by ¢ may be an incorrect one due to degeneracies: in
such a case it has to be “cleaned up.” We will below slightly extend the generic
semantics definition to accommodate this. For all other units, this semantics
definition suffices so that we will only define the ¢ function in each case.

For the representation of moving reals we introduce a unit type ureal. The
“simple” function we use for the sliced representation of moving reals is either

4 Models and Languages: Data Types 155

a polynomial of degree not higher than two or a square root of such a poly-
nomial. The motivation for this choice is a trade-off between richness of the
representation (e.g. square roots of degree two polynomials are needed to ex-
press time-dependent distance functions in the Euclidean metric) and simplicity
of the representation of the discrete type and of its operations. With this partic-
ular choice one can implement (i.e., the discrete model is closed under) the lifted
versions of size, perimeter, and distance operations; one cannot implement
the derivative operation of the abstract model. The carrier set for type ureal
is

Dyyrear = Interval(Instant) x {(a,b,c,7)|a,b,c € real,r € bool}

and evaluation at time ¢ is defined by:

at? + bt + ¢ if —r
(@b e,r).8) = {m it

Temporal Units for Spatial Data Types. In this subsection we specialize
the concept of unit to moving instances of spatial data types.

Similar to moving reals, the temporal evolution of moving spatial objects is
characterized by continuity and smoothness and can be approximated in vari-
ous ways. Again we have to find the balance between richness and simplicity of
representation. As indicated before, in this chapter we make the design decision
to base our approximations of the temporal behavior of moving spatial objects
on linear functions. Linear approximations ensure simple and efficient repre-
sentations for the data types and a manageable complexity of the algorithms.
Nevertheless, more complex functions like polynomials of a degree higher than
one are conceivable as the basis of representation but are not considered in this
paper.

Due to the concept of sliced representation, also for moving spatial objects
we have to specify constraints in order to describe the permitted behavior of
a value of such a type within a temporal unit. Since the end points of a time
interval mark a change in the description of the data type, we require that
constraints are satisfied only for the respective open interval. In the end points
of the time interval a collapse of components of the moving object can happen.
This is completely acceptable, since one of the reasons to introduce the sliced
representation is exactly to have “simple” and “continuous” description of the
moving value within each time interval and to limit “discontinuities” in the
description to a finite set of instants.

Moving Points and Point Sets. The structurally simplest spatial object that
can move is a single point. Hence, we start with the definition of the spatial
unit type upoint. First we introduce a set MPoint which defines 3D lines that
describe unlimited temporal evolution of 2D points.

MPoint = {(z0, 71,0, Y1) | %o, T1,Y0,y1 € real}

156 Ralf Hartmut Gliting et. al.

This describes a linearly moving point for which evaluation at time ¢ is given by:
(o, 21,Y0,y1),t) = (xo + 21 - t,yo +y1 - t) YVt € Instant

The carrier set of upoint can then be very simply defined as:
Dypoint = Interval(Instant) x MPoint

We pass now to describe a set of moving points. The carrier set of upoints
can be defined as:

Duypoints = {(i, M) |i € Interval(Instant), M C MPoint,|M| > 1, and
(§) Yt € o' (i), VI k€ M :1#k= u(l,t) # o(k, 1)
(1) i = (s,e,lec,re) Ns=e= Vi, ke M 1 #k=(l,s) #uk,s))}

Here we encounter for the first time a constraint valid during the open time in-
terval of the unit (condition (i)). Namely, a upoints unit is a collection of linearly
moving points that do not intersect within the open unit interval. Condition (ii)
concerns units defined only in a single time instant; for them all points have to
be distinct at that instant.

For (i, M) € Dupoints, €valuation at time ¢ is given by

UM, t) =] {um)} Vteo(i)

meM

which is clearly a set of points in D! We will generally assume that ¢ dis-

tributes through sets and tuples so that (M, t) is defined for any set M as above,
and for a tuple r = (rq,...,7r,), we have ¢(r,t) = (¢(r1),...,t(rn)).

Moving Lines. We now introduce the unit type for line called uline. Here we
restrict movements of segments so that in the time interval associated to a value
of uline each segment maintains its direction in the 2-dimensional space. That is,
segments which rotate during their movement are not admitted. See in Figure [£.§]
an example of a valid uline value. This constraint derives from the need of

1
B O

Fig. 4.8. An instance of uline

keeping a balance between ease of representation and manipulation of the data

4 Models and Languages: Data Types 157

type and its expressive power. Rotating segments define curved surfaces in the
3D space that, even if they constitute a more accurate description, can always
be approximated by a sequence of plane surfaces.

The carrier set of uline is therefore based on a set of moving segments with
the above restriction and which never overlaps at any instant internal to the
associated open time interval. Overlapping has a meaning equivalent to the one
used for line values: to be collinear and to have a non-empty intersection.

To prepare the definition of uline we introduce the set of all pairs of lines in
a 3D space that are coplanar, which will be used to represent moving segments:

MSeg = {(s,e)|s,e € MPoint,s # e, s is coplanar with e}.
The carrier set for uline can now be defined as:

Dyiine = {(i, M) |i € Interval(Instant), M C MSeg,|M| > 1, such that
(i) YVt € o' (i) : (M, t) € Dfiﬂ
(i1) i = (s,e,lc,re) Ns = e = (M, s) € Dy }

Here again the first condition defines constraints for the open time interval and
the second treats the case of units defined only at a single instant. Note that
t(M,t) is defined due to the fact that ¢ distributes through sets and tuples.
A wuline value therefore inherits the structural conditions on line values and
segments. For example, condition (i) requires that

(s,e) € M = (u(s,t),i(e,t)) € Seg VYt € o' (i)

and therefore «(s,t) < v(e,t) VYt € o’(i).

The semantics defined for uline via ¢ according to the generic definition
given earlier needs to be slightly changed to cope with degeneracies in the end
points of a unit time interval, as we anticipated. In these points, in fact, moving
segments can degenerate into points and different moving segments can overlap.
We accommodate this by defining separate ¢ functions for the start time and the
end time of the time interval, called ¢s and i, respectively. Let ((s, e, le,rc), M) €
Duyiine. Then

ts(M,t) = 1te(M,t) = merge-segs({(p,q) € t(M,t)|p < ¢}

This definition removes pairs of points returned by ¢(M,t) that are not segments
(i.e., segments degenerated into a single point); it also merges overlapping seg-
ments into maximal ones (this is the meaning of the merge-segs function). The
generic semantics definition is then extended as follows:

O'(U) = fu : A;nstant N U(Z) - A:x

where for u = (i,v) and i = (s, e,lc,r¢)
o(t(v,t)) ifted (i)

Ju(®t) = o(is(v,t)) ift=sAlc

o(te(v,t)) ift=eAnrc

158 Ralf Hartmut Gliting et. al.

A final remark on the design decisions for the discrete type for moving lines
is the following. Assume we choose instance uj (resp., us) of uline as the dis-
crete representation at the initial (resp., final) time ¢; (¢2) of a unit for the
(continuously) moving line [. Then the constraint that segments making up the
discrete representation of [cannot rotate during the unit does not restrict too
much the fidelity of the discrete representation. Indeed, since members of MSeg
in a unit can be triangles, this leaves the possibility of choosing among many
possible mappings between endpoints of their segments in ¢; and those in ¢5, as
long as the non-rotation constraint is satisfied. In Figure [£9] an example of a
discrete representation of a continuously moving line by means of an instance of
uline is shown. If this approach causes a too rough approximation internally to

NS

~_—

Fig. 4.9. A discrete representation of a moving line

the time unit, then possibly an additional instant, internal to the unit, has to
be chosen and an additional discrete representation of [at that instant has to
be introduced so that a better approximation is obtained. It can be easily seen
that in the limit this sequence of discrete representations can reach an arbitrary
precision in representing [.

Movwing Regions. We now introduce the moving counterpart for region, namely
the uregion data type. We adopt the same restriction used for moving lines,
i.e., that rotation of segments in the 3-dimensional space is not admitted. We
therefore base the definition of uregion on the same set of all pairs of lines in a
3D space that are coplanar, namely MSeg, with additional constraints ensuring
that throughout the whole unit we always obtain a valid instance of the region
data type. Figure E.I0]shows an example of a valid uregion value. (It also shows
the degeneracies that can occur in the end points of a unit interval.)

As for a region value, we can have moving regions with (moving) holes, hence
the basic building blocks are given by the concepts of cycle and face already
introduced in the definition of region.

The carrier set of uregion is therefore based, informally speaking, on a set
of (possibly nested) faces which never intersect at any instant internal to the
associated time interval. For the formal definition of uregion, we first introduce
a set intended to describe the moving version of a cycle, without restriction on

4 Models and Languages: Data Types 159

Fig. 4.10. An instance of uregion

time:
MCycle = {{s0,...,8n—1}|n>3,Vie{0,...,n—1}: s; € MSeq}

We then introduce a set for the description of the moving version of a face,
without restriction on time:

MFace = {(c,H) | c € MCycle, H C MCycle}.

Note that in the definitions of MCycle and MFace we have not given the con-
straints to impose on the sets the semantics of cycles and faces because this will
be done directly in the moving region definition. The carrier set for uregion is
now defined as

Dyregion = {(i, F)|i € Interval(Instant), F C MFace, such that
(i) Vt € o' (i) : (F,t) € D,

region
(ii) i = (s,e,le,re) ANs =€ = 1(F,8) € Dl.eoiont

For the end points of the time interval again we have to provide separate func-
tions ts and t. Essentially these work as follows. From the pairs of points (p, q)
(segments) obtained by evaluating ¢(F, s) or ¢(F, e), remove all pairs that are no
proper segments (as for uline). Next, for all collections of overlapping segments
on a single line, partition the line into fragments belonging to the same set of
segments (e.g. if segment (p,q) overlaps (r,s) such that points are ordered on
the line as (p,r,q, s) then there are fragments (p,r), (r,¢), and (g, s)). For each
fragment, count the number of segments containing it. If this number is even,
remove the fragment; if it is odd, put the fragment as a new segment into the
result. A complete formalization of this is lengthy and omitted.

We have now concluded the formal definition of data types of the discrete
model. In Chapter 6 we will show some examples of translation into physical
data structures of the above specifications and we will provide some examples
of algorithms implementing operations on discrete data types.

160 Ralf Hartmut Gliting et. al.
4.5 Outlook

This section presents two extensions of the approach presented so far in this
chapter, and two other approaches to spatio-temporal modeling with a different
focus of interest.

Section EE5.T] addresses the problem of defining spatio-temporal predicates
and their composition, in order to describe developments of relationships between
(moving) objects. For example, one might want to ask in a query for moving
region objects that were first disjoint, then overlapped, and finally were disjoint
again. Section considers time-varying partitions of the plane, for example
the countries of Europe over the last centuries, and operations on such dynamic
partitions.

Section 03] presents a data model based on “quanta”’ where space is ras-
terized. Consider a chess board. Atomic spatial entities or “quanta” would be
all corners of fields (point quanta), horizontal or vertical edges of fields (line
quanta), and fields themselves (surface quanta). Spatial data types are defined
as unions of such quanta and relational algebra is extended to allow grouping
(“fold”) or decomposition of spatial values. By adding time intervals, this model
can also describe (discretely changing) spatio-temporal data.

The final subsection Section 5.4 addresses the treatment of legacy databases
and their applications when a “dimension”, which could be a time or a space
dimension, is added. For example, a static table is extended by a valid time at-
tribute. The goal is that applications that did not know about the time attribute
can run unchanged, and will yield the same results as before.

4.5.1 Spatio-temporal Predicates and Developments

Spatio-temporal predicates characterize temporal changes of relationships be-
tween spatio-temporal objects. In the following we briefly discuss some of the
design issues that arise with spatio-temporal predicates.

What Are Spatio-temporal Predicates? A basic spatio-temporal predicate
can be thought of as a lifted spatial predicate yielding a temporal boolean, which
is aggregated by determining whether that temporal boolean was sometimes or
always true. In general, a spatio-temporal predicate can be viewed as a function
that aggregates the values of a (possibly changing) spatial predicate as it evolves
over time. Thus, a spatio-temporal predicate is a function of type 7(a) x 7(8) —
B for a, 5 € {point, region}.

Consider the definition of inside from Section EE3l We can define two spatio-
temporal predicates sometimes-inside and always-inside that yield true if inside
yields true at some time, respectively, at all times.

Whereas the definition for sometimes-inside is certainly reasonable, the def-
inition for always-inside is questionable since it yields false whenever the point
or the region is undefined. This is not what we would expect. For example, when
the moving point has a shorter lifetime than the evolving region but is always

4 Models and Languages: Data Types 161

inside the region, we would expect always-inside to yield true. In fact, we can
distinguish different kinds of universal quantification that result from different
time intervals over which aggregation can be defined to range. In the case of in-
side the expected behavior is obtained if the aggregation ranges over the lifetime
of the first argument, the moving point. This is not true for all spatial predi-
cates; actually, it depends on the nature and use of each individual predicate.
For example, two spatio-temporal objects are considered as being equal only if
they are equal on both objects’ lifetimes, that is, the objects must have the same
lifespans and must be always equal during these.

We denote different kinds of V-aggregation by parameterized quantifiers V.
where v € {U,N, 71, m2} and where 7;(x1,...,2;,...,2Z,) = x;. These quantifiers
are defined as follows.

V.p = A(S1,852).Vt € y(dom(S1), dom(S2)) : p(S1(t), Sa(t))
This means that, for example, V, .inside denotes the spatio-temporal predicate
A(S1,52).¥ t € dom(S1).inside(S1(t), Sa(t))

In general, A\(x1, x2, . ..).e denotes a function that takes arguments z1, 23, . .. and
returns a value determined by the expression e.

With this aggregation notation we can give the definitions for the spatio-
temporal versions of the eight basic spatial predicates (for two regions).

Disjoint = Vn.disjoint
Meet = Vy.meet
Overlap = Vy.overlap
Equal = VYy.equal
Covers = Vp,.covers
CoveredBy = VY, .coveredBy
Contains = Vg,.contains
Inside = Vp,.inside

For a moving point and a moving region we have just the three basic predicates
Disjoint, Meet, and Inside, which are defined as above.

The chosen aggregations (and possible variations) are motivated and dis-
cussed in great detail in [IT].

Developments: Sequences of Spatio-temporal Predicates. Consider a
plane entering a storm. This scenario is abstractly characterized by a moving
point that initially is disjoint from an evolving region for some period of time,
then touches its border, and finally remains inside of it. In other words, the
described development is characterized by a sequence of spatio-temporal (and
spatial) predicates: Disjoint, meet, and Inside. In order to define such predi-
cate sequences we need a way of restricting the temporal scope of basic spatio-
temporal predicates. This becomes possible by predicate constrictions: let P be
a spatio-temporal predicate, and let I be a (half-) open or closed interval. Then

PI =)\(Sl,SQ)-P(S1|17S2|I)

162 Ralf Hartmut Gliting et. al.

Here S|; denotes the partial function that yields S(t) for all ¢ € I and is undefined
otherwise.

When we now consider more closely how spatial situations can change over
time, we observe that certain relationships can be observed only for a period of
time and not for only a single time point (given that the participating objects
do exist for a period of time) while other relationships can hold at instants as
well as on time intervals. Predicates that can hold at time points and intervals
are: equal, meet, covers, coveredBy; these are called instant predicates. Predicates
that, in general, can only hold on intervals are: disjoint, overlap, inside, contains;
these are called period predicates.

It is interesting to note that (in satisfiable developments for continuously
moving objects) instant and period predicates always occur in alternating pat-
terns, for example, there cannot be two spatio-temporal objects that satisfy
Inside immediately followed by Disjoint. In contrast, Inside first followed by
meet (or Meet) and then followed by Disjoint can be satisfied.

Next we define three operations for combining spatio-temporal and spatial
predicates: p - P (from) defines a spatio-temporal predicate that for some time ¢
checks p and then enforces P for all times after ¢; P - p (until) is defined dually,
that is, P must hold until p is true at some time t. Finally, P 4 p+ Q (then)
is true if there is some time point ¢ when p is true so that P holds before and
Q holds after t. Below we abbreviate open intervals]t, oo[and oo, [by simply
writing >t and <t. (Note that variable ¢t ranges over time.) Let p be a spatial
predicate, and let P and () be spatio-temporal predicates. Then

pH P =)\(51,52).315 Zp(Sl(t),Sg(t)) /\P>t(51,52)
P-p =)\(Sl, SQ).Ht : p(Sl (t), Sg(t)) 74\ P<t(51, SQ)
PApEQ = A(S1,52).3t : p(S1(1), S2(t)) A P<(S1,52) A Q>4(51, S2)

These combinators obey several interesting laws; these and others are presented
in [I1]. In particular, the composition of predicate sequencing is associative, that

is,

PApt(Q-H¢qFR)=(PdpkQ)dg+-R

This enables us to use a succinct sequencing syntax for developments, that is, we
can simply write P>prQ for P 4 p F Q. For example, we can define predicates
for capturing the scenario of a point entering or crossing a region by:

Enter := Disjoint > meett> Inside
Cross := Disjoint > meet> Inside > meet > Disjoint

Sequential temporal composition is just one possibility to build new spatio-
temporal predicates. Temporal alternative, negation, and reflection provide fur-
ther powerful means to specify developments. These and many other combinators
are defined and investigated in [I1].

4 Models and Languages: Data Types 163

©

/

Fig.4.11. Visual specification of the Cross predicate

Further Work. Spatio-temporal predicates lay the foundation for further re-
search in spatio-temporal query languages. Two aspects have already been in-
vestigated:

First, it is, in fact, fairly simple to integrate spatio-temporal predicates into
existing query languages. For example, we have shown in [10] how extending
SQL by (i) the set of eight basic spatio-temporal predicates and (ii) by a macro
facility to compose new predicates leads to a powerful spatio-temporal query
language. Let us reconsider the example query of finding out all planes that ran
into a storm. We assume having defined two relations flights and weather
containing, respectively, a moving point attribute Route representing the flights’
movements and an evolving region attribute Extent describing the developments
of weather areas. With a predicate combinator >> that has the semantics of
temporal composition > we can formulate the query simply as:

SELECT id FROM flights, weather
WHERE kind = "storm"
AND Route Disjoint>>meet>>Inside Extent

A second line of future work is motivated by the fact that the number of different
spatio-temporal predicates is actually unlimited due to the sequencing possibility
to generate new developments. Since we cannot invent names for all possible
predicates we need some kind of language for specifying developments. Now an
(additional) textual language for predicate specifications is not very convenient
for the (end) user. Moreover, the specification of predicates can become quite
longish. Hence, visual notations can be very useful to keep the specification
of developments manageable by the user. Consider, for example, the predicate
Cross which is defined for two evolving regions as follows:

Cross := Disjoint > meet> Quverlap > covered By > Inside >
coveredBy > Overlap > meet > Disjoint

In contrast, this can be specified very easily and intuitively by a simple two-
dimensional picture as shown in Figure ELTT]

The rationale behind this visual notation is described in more detail in [T3|/T4].
The key idea is to infer from the intersections of two-dimensional traces of mov-

164 Ralf Hartmut Gliting et. al.

ing/evolving objects the temporal changes of their relationships. The visual no-
tation is mainly intended to be used as a supplement to textual languages and
can be integrated, for example, along the lines described in [g].

4.5.2 Spatio-temporal Partitions

While we have so far in this chapter dealt with the temporal evolution of sin-
gle spatial entities, we now study the temporal evolution of spatial partitions
as an important example of a collection of spatial entities satisfying specific
constraints. This leads to a concept of spatio-temporal partitions.

Spatial Partitions. The metaphor of a map has turned out to be a fundamental
and ubiquitous spatial concept in geography, cartography, and other related
disciplines as well as in computer-assisted systems like GIS and spatial database
systems. The central element of a map is a spatial partition which is a subdivision
of the plane into pairwise disjoint regions where regions are separated from each
other by boundaries and where each region is associated with an attribute or label
having simple or even complex structure. That is, a region (possibly composed
of several disconnected parts) with an attribute incorporates all points of a
spatial partition having this attribute. Examples are the subdivision of the world
map into countries, classification of rural areas according to their agricultural
use, areas of different degrees of air pollution, etc. A spatial partition implicitly
models topological relationships between the participating regions which can be
regarded as integrity constraints. First, it expresses neighborhood relationships
for different regions that have common boundaries. Second, different regions of a
partition are always disjoint (except for common boundaries). Both topological
properties are denoted as partition constraints. As a purely geometric structure,
a map yields only a static description of spatial entities and required constraints
between them.

A rigorous and thorough formal definition of spatial partitions and of appli-
cation-specific operations defined on them has been given in [9]. The basic idea is
that a spatial partition is a mapping from the Euclidean space IR? to some label
type, that is, regions of a partition are assigned single labels. Adjacent regions
have different labels in their interior, and a boundary is assigned the pair of
labels of both adjacent regions.

Many application-specific operations on spatial partitions like overlay, reclas-
sify, fusion, cover, clipping, difference, superimposition, window, and variations
of them have been described in the literature (see for example, [1)2329]33]). In
[9] all these operations have been reduced to the three fundamental and power-
ful operations intersection, relabel, and refine. Intersecting two spatial partitions
means to compute the geometric intersection of all regions and to produce a new
spatial partition; each resulting region is labeled with the pair of labels of the
original two intersecting regions, and the values on the boundaries are derived
from these. Relabeling a spatial partition has the effect of changing the labels of
its regions. This can happen by simply renaming the label of each region. Or, in

4 Models and Languages: Data Types 165

particular, distinct labels of two or more regions are mapped to the same new
label. If some of these regions are adjacent in the partition, the border between
them disappears, and the regions are fused in the result partition. Relabeling has
then a coarsening effect. Refining a partition means to look with a finer granu-
larity on regions and to reveal and to enumerate the connected components of
regions.

Spatio-temporal Partitions. Spatio-temporal partitions [12] or “temporal
maps” describe the temporal development of spatial partitions and have a wide
range of interesting applications. They represent collections of evolving regions
satisfying the partition constraints for each time of their lifespan and maintaining
these constraints over time. That is, for each time of their lifespan we obtain a
stationary, two-dimensional spatial partition which changes over time due to
altering shapes, sizes, or attribute values of regions. This corresponds to our
temporal object view which is based on the observation that everything that
changes over time can be considered as a function over time. Spatio-temporal
partitions can then be viewed as functions from time to a two-dimensional spatial
partition.

Temporal changes of spatial partitions can occur either in discrete and step-
wise constant steps or continuously and smoothly. Examples of the first category
are the reunification of West and East Germany, the splitting of Yugoslavia, the
temporal development of any hierarchical decomposition of space into admin-
istrative or cadastral units like the world map into countries or districts into
land parcels, or the classification of rural areas according to their agricultural
use over time. A characteristic feature of these applications is that the number
of discrete temporal changes is finite and that there is no change between any
two subsequent temporal change points which is a special form of continuity.

The open issue now is what happens at temporal change points with their
abrupt transition from one spatial partition to another. If we consider the time
point when West and East Germany were reunified, did the spatial partition
before or after the reunification belong to this time point? Since we cannot
come to an objective decision, we have to decide arbitrarily and to assign one
of both spatial partitions to it. This, in particular, maintains the functional
character of our temporal object view. We have chosen to ascribe the temporally
later spatial partition to a temporal change point. Mathematically this means
that we permit a finite set of time points where the temporal function is not
continuous. The application examples reveal that after a temporal change point
the continuity of the temporal function proceeds for some time interval up to
the next temporal change point; there are no “thin, isolated slices” containing
single spatial partitions at temporal change points. Hence, we have to tighten
our requirement in the sense that mathematically the temporal function has to
be upper semicontinuous at each time.

Examples of the second category are the temporal evolution of climatic phe-
nomena like temperature zones or high/low pressure areas, areas of air pollution
with distinct degrees of intensity, or developments of forest fires in space and

166 Ralf Hartmut Gliting et. al.

time. They all show a very dynamic and attribute-varying behavior over time.
Application examples which have by far slower temporal changes are the in-
creasing spread of ethnic or religious groups, the decreasing extent of mineral
resources like oil fields during the course of time due to exploitation, or the
subdivision of space into areas with different sets of spoken languages over time.

Application-specific spatio-temporal operations rest on the transfer of the two
basic spatial partition operations intersection and relabel to the spatio-temporal
case. They are temporally lifted and generalized versions of the application-
specific operations on spatial partitions. The overlay operation is based on a
spatio-temporal intersection operation and can be used to analyze the temporal
evolution of two (or more) different attribute categories. Consider a temporal
map indicating the extent of mineral resources like oil fields or coal deposits and
another temporal map showing the country map over time. Then an overlay of
both temporal maps can, for instance, reveal the countries that had or still have
the richest mineral resources, it can show the grade of decline of mineral deposits
in the different countries, and it can expose the countries which most exploited
their mineral resources.

The clipping operation is a special case of the spatio-temporal intersection
operation and works as a spatio-temporal filter. An application is a temporal map
about the development of diseases. As a clipping window we use a temporal map
of urban areas developing in space over time. The task is to analyze whether
there is a connection between the increase or decrease of urban space and the
development of certain diseases. Hence, all areas of disease outside of urban
regions are excluded from consideration.

The reclassification operation is a special case of a spatio-temporal relabel
operation. Consider a temporal map marking all countries of the world with their
population numbers. A query can now ask for the proportion of each country’s
population on the world population over time, a task that can be performed by
temporal relabeling. This corresponds to a reclassification of attribute categories
over time without changing geometry.

The fusion operation is a kind of grouping operation with subsequent ge-
ometric union over time. Assume that a temporal map of districts with their
land use is given. The task is to identify regions with the same land use over
time. At each time neighboring districts with the same land use are replaced
by a single region, that is, their common boundary line is erased. We obtain
a temporal fusion operator which is based on relabeling. Reclassification and
fusion are examples of static relabeling since the relabeling function does not
change over time. We generalize this to dynamic relabeling. Consider the classi-
fication of income to show poor and rich areas over time. Due to the changing
value of money, due to inflation, and due to social changes, the understanding of
wealth and poorness varies over time. Hence, we need different and appropriate
relabeling functions that are applied to distinct time intervals.

Additionally, some new operations are introduced that are more directed to

the time dimension. The operation dom determines the domain of a temporal
map, that is, all times where the map does not yield the completely undefined

4 Models and Languages: Data Types 167

partition. An example is a temporal map of earthquakes and volcanic eruptions
in the world as they are interesting for seismological investigations. Applying the
operation dom on this map returns the time periods of earthquake and volcanic
activity in the world.

The operation restrict realizes a function restriction on spatio-temporal par-
titions and computes a new partition. As parameters it obtains a temporal map
and a set of (right half-open) time intervals describing the time periods of in-
terest. Imagine that we have a temporal map of birth rates, and we are only
interested in the birth rates between 1989 and 1991 and between 1999 and 2001
(“millennium baby”). Then we can exclude all the other time periods and com-
pare the change of birth rates in these two time intervals.

The operation select allows one to scan spatio-temporal partitions over time
and to check for each time whether a specified predicate is fulfilled or not. Con-
sider a map showing the spread of fires. We could be interested in when and
where the spread of fires occupied an area larger than 300 km?.

The operation aggregate collects all labels of a point over time and combines
them with the aid of a binary function into one label. The result is a two-
dimensional spatial partition. For example, if the population numbers, the birth
rates, the death rates, the population density, the average income, etc. of the
countries in the world are available, we can aggregate over them and compute the
maximum or minimum value each country ever had for one of these attributes.

A special kind of aggregation is realized by the project operation which com-
putes the projection of a spatio-temporal partition onto the Euclidean space and
which yields a spatial partition. For each point in space, all labels, except for the
undefined label denoting the outside, are collected over time. That is, if a point
has always had the same single label over its lifetime, this single label will appear
in the resulting partition and indicate a place that has never changed. On the
other hand, points of the resulting partition with a collection of labels describe
places where changes occurred. An example is the projection of a temporal map
illustrating the water levels of lakes onto the Euclidean plane. The result shows
those parts of lakes that have always, sometimes, and never been covered with
water.

For a much more detailed description and, in particular, formal definition
of spatio-temporal partitions, the reader is referred to [12]. There as well as in
[15] especially a concept of “spatial continuity” and a “difference measure” for
regions are defined.

4.5.3 On a Spatio-temporal
Relational Model Based on Quanta

In this section an outline is given of a formalism for the definition of a spatio-
temporal extension to the relational model. The formalism considers temporal
and spatial quanta and, based on them, defines relevant data types. This way, a
series of relational algebra operations can be defined, that are closed and enable
the uniform management of either conventional or spatial or spatio-temporal
data.

168 Ralf Hartmut Gliting et. al.

Quanta and Data Types of Time. A generic data type for time is defined as
theset I,, = {1,2,...,n},n > 0 [25]. The elements of I,, are called quanta of time
or (time) instants. Based on this data type, another generic data type is defined,
PERIOD(I,,), with elements of the form [p,q] = {i | i € I,,p < i < ¢} that are
called periods (of time). If the elements of I,, are replaced by n consecutive
dates, then the respective data types for time are DATE and PERIOD(DATE).
In a similar manner, a variety of data types can be defined like TIME and
TIMESTAMP, which are supported in SQL.

Spatial Quanta and Spatial Data Types. If I,, = {1,2,...,m},m > 0, is
a subset of the integers, then I2, is finite. Each element of I2, is a 2D point that
can be identified uniquely by an integer (see Figure EET2 for m = 15). If p = (4, j)
is such a point, then py = (4,5 + 1) and pg = (i + 1, j) are the neighbors of p.
Points p,pg, pve = {(i+1,5+1)} and px are corner points. In Figure dLT2] 193
and 207 are neighbors of 192, whereas 192, 193, 208 and 207 are corner points.
Based on this terminology, the following spatial quanta are defined [26].

arroror ot tam Y 207 208 E Points

9. . - e, : A

e @ w2 {184}, {185}

6. - 184 185 188, 182 1:3 o L

L R B e T

136+ - 4 150 Pure: (a), (b), (d), (e)

Degenerate: {184}, {185}

121+ ¢ T =
i ® ® 12
e s .. -5 Surfaces

s . * % Pure: (c), (f), (g)

b+ - * "

- - w

- - 45

- 30

15

Hybrid: (h)
Degenerated to pure line:
(a), (b), (d), (e)
Degenerated to point: {184}, {185}

Fig. 4.12. Spatial quanta and spatial objects

Quantum Point : It is any set {p}, where p is a 2D point (see {192}, {193}, {208}
in Figure BET2). The set of all the quantum points is denoted by @ pornT.

Quantum Line : It is either a line segment ql, , with edges two neighbor 2D
points, p and ¢, or a quantum point {p} (see qliga 185, ql18s,203 and {184} in
Figure L12). Clearly, ql, , consists of an infinite number of R? elements. The
set of all the quantum lines is denoted by QrnE.

Quantum Surface : It is either the surface of a square ¢sp 4,5, Where p, ¢, r and
s are corner 2D points or a quantum line (see ¢s192,193,208,207, ¢l184,185 and {184}
in Figure E12). Clearly, ¢sp.q,rs consists of infinitely many elements of R?. The
set of all these surfaces is denoted by Qsyrracke-

4 Models and Languages: Data Types 169

Assuming now that the concept of a connected set is known, it is defined that
a non-empty connected subset S = |J; ¢; of R? is of a (2D)

e POINT data type if ¢; € QpoinT
e LINE data type if ¢; € QrinE
e SURFACE data type if ¢; € QsurracE

Given that QpoinT C Qrine C Qsvurrace, it follows that POINT C LINE
C SURFACE. Examples of elements of the above data types are given in Fig-
ure 121 A point or line or surface element is called a geo or spatial object.

Modeling of Spatio-temporal Data. Based on the above data types, Fig-
ure LT3 illustrates the evolution of a spatial object, Morpheas, with respect to
time. As can be seen on the relevant plots, during the periods [11, 20], [21, 40]
[41, 90], Morpheas was just a spring, a river and an actual lake, respectively.
Relation LAKES, in the same figure, is used to record this evolution. The do-
main of attribute Shape is SURFACE and each of g1, g2 and g3 is a shorthand
of the description of the geometry of Morpheas. In this model therefore, a map
matches the geometric interpretation of the content of a relation that contains
spatial data.

In [25] it has been shown that period is a special case of a more generic
data type, interval. Functions and predicates for such data have been defined. A
set of relational algebra operations has also been defined. It includes the well-
known primitive operations, Union, Ezxcept, Project, Cartesian Product, Select.
It also includes Fold, Unfold and some derived operations, whose formalism and
functionality can also be found in [25]. Hence, only the application of Fold and
Unfold on spatial data is illustrated below.

[11,20] [21, 40]

91 105 a1 105
76 1 50 7% 20
61 .g 75 61 - g2 7
46 60 45 60
3l 45 31 45
16 30 16 I k]
1 15 1 15

[41, 90] LAKES

9 105 Name |Time|Shape

76 50 Morpheas|[11,20]| gl

61 g3 75

Morpheas|[21,40]| g2

‘: z Morpheas|[41,90]| g3
16 30

1 15

Fig. 4.13. Representation of spatio-temporal data

170 Ralf Hartmut Gliting et. al.

Fold : Consider a table R(A,G), where A is a (possibly empty) list of at-
tributes and G is an attribute of some geo data type. Assume also that (a, g;),7 =
1,2,...,n are all those tuples of R which satisfy the property that the spatial
union of all g; yields a new spatial object g. Then all these tuples result in
one tuple, (a, g), in relation F = Fold|G](R). Consider for example the plane in
Figure m and assume that R = {(I, {2}), (I, 12,313’4), (I, 53,4,19,18)7 (y, 56,7,22,21
578.23,22), (4, l6,7)}- Then F' = {(,12353,4,19,18), (¥, 56,7,22,2157,8,23,22) }-

Unfold : Consider R(A,G) as before and let g be a geo object. Consider also any
geo object g;,i = 1,2, ..., n, of one quantum, which is a subset of g. Then a tuple
(a,g) of R yields in U = Unfold|G](R) the tuples (a,g;),i =1,2,...,n. Assum-
ing for example that R is the previous relation, U = {(x, {2}), (z, {3}), (z, {4}),
(z,{18}),(x,{19}), (z,12,3), (z,13,4), (%, la,19), (z, l19,18), (¥, l18,3), (T, 83,4,19,18)
(v {61): (. {7}), (., {8}), (v, {21}), (,{22}), (4, {23}), (. l6.7), (y.l7.22),

(Y, 122,21), (¥, 121,6), (Y, l7,8), (Y, ls,23), (Y, 123,22), (Y, 86,7,22,21) (¥, 57,8,23,22) } . Based
on the above two operations, a series of useful derived operations have also been
defined [27], that enable the management of spatial data and, in conjunction
with [25], spatio-temporal data. Regarding the management of spatial data, the
functionality of these operations is relevant to that of Spatial Union, Spatial Ex-
ception, Spatial Intersection, Overlay etc that either have been defined by other
researchers [522lB435/29] or are supported by commercial Geographic Informa-
tion Systems.

Conclusions. The advantages of the proposed model can be summarized as
follows: All the algebraic operations are closed and, in conjunction with [25],
they can be applied uniformly for the management of either spatio-temporal or
spatial or temporal or conventional data. It has been identified, in particular,
that certain operations, originally defined solely for the management of spatial
data, are also of practical interest for the handling of temporal or conventional
data. Hence, the algebra is not many-sorted and enables the uniform treatment
of any of the above types of data. Regarding the case of spatial data, it has been
identified that a map matches the geometric representation of a relation that
contains such data. The model is also close to human intuition. By definition,
for example, a line or a surface consists of an infinite number of 2D points, a line
is treated as a degenerate surface and a point is treated as either a degenerate
line or as a degenerate surface. Due to this, it is estimated that the model is also
user-friendly. Finally, it is very general. This is not only because it can be applied
to the previously mentioned types of data. It can also handle relations with many
attributes of some time data type [25] and investigation results have shown that
such relations may also contain n-dimensional spatial objects. Relevant research
concerns implementation issues and the definition of an SQL extension.

4.5.4 Spatio-temporal Statement Modifiers

Data types and operators are generally embedded in some host language, which
makes them available for use during data management. The characteristics of this

4 Models and Languages: Data Types 171

language in large part determines the difficulty in migrating existing applications
to a new, spatio-temporal DBMS (STDBMS). The concept of a statement mod-
ifier extended host language [2I31130], largely orthogonal to the specific abstract
data types offered, enables he migration of legacy applications.

This section defines technical requirements to an STDBMS that provide a
foundation for making it economically feasible to migrate legacy applications to
an STDBMS. It proceeds to present the design of the core of a spatio-temporal,
multi-dimensional extension to SQL-92, called STSQL, that satisfies the re-
quirements. This is achieved by offering upward compatible, dimensional upward
compatible, reducible, and non-reducible query language statements.

A planning and scheduling system (termed Ecoplan), which is used for forest
management [28], serves to exemplify the new concepts. A stands table captures
regions that are homogeneous with respect to soil fertility, wood specie, and
average age. An estates table records the IDs of estates and their owners. An
estate is a legal entity covering a geographical region, possibly including one
or more forests. A plans table captures harvest plans, with each stand being
associated with one or more plans (and vise versa), an estimated harvest volume
for each stand, and an optimal harvest time (a so-called ripe year) of the stand.

Migration Requirements. Let M = (DS, QL) be a data model with a data
structure and a query language component. For query s € QL and database
db € DS, we define ((s(db))) s as the result of applying s to db in data model M.
We use the superscripts “*” and “9” to indicate snapshot and dimensional en-
tities, respectively. The dimensional slice operator, Tlﬂ” M *, takes a dimensional
database db® and returns a snapshot database db® containing all tuples that are

defined at point p.
Definition 5. (UC) Model M; is upward compatible with model My iff

e Ydby € DSy (db2 € DS1),
o Vso € QLo (s2 € QL4), and
e Vdby € DSy (Vs2 € QLo ({(s2(db2))ar, = ((s2(db2))ary))-

The conditions imply that all existing databases and query expressions in the old
DBMS, captured by Ms, are also legal in the new DBMS, captured by M; and
that all existing queries compute the same results in the new and old DBMSs.

Definition 6. (DUC) Model M is dimensional upward compatible with model
M* iff

e M®is upward compatible with M* and
o Vdb® € DS* (VU (Vg* € QL* ((¢*(U(db*))) are = {g*U(D(db*)))) n14)))-

DUC ensures that legacy applications remain operational even if the database
is rendered dimensional. Intuitively, a query ¢° must return the same result on
an associated snapshot database db® as on the dimensional counterpart of the
database, D(db®) (operator D adds dimensions to its argument). A sequence of

172 Ralf Hartmut Gliting et. al.

modification statements, U, may not affect this. To satisfy DUC, legacy queries
ignore spatial dimensions and are evaluated only on tuples with time periods
that overlap now.

To illustrate the compatibility requirements, consider the following state-
ments issued in an STDBMS satisfying UC and DUC with respect to SQL-92.

> SELECT * FROM plans;
> ALTER TABLE plans ADD harvestl PERIOD AS VALID;
> SELECT * FROM plans;

The first statement is syntactically an SQL-92 query and is issued on the legacy
table, plans. Due to UC, it returns the same result as in the old DBMS. The
next statement alters plans, adding a valid-time dimension to indicate harvest
periods of stands. The last statement, now on a dimensional table, yields the
same result as the first due to DUC.

To generalize the relational model to a dimensional relational model, we
adopt the view that a dimensional table is a collection of snapshot tables, each
of which has an associated multi-dimensional point and contains all snapshot
tuples with an associated multi-dimensional region that contains the point.

Definition 7. (SR) Data model M? is snapshot reducible with respect to data
model M* iff

Vg® € QL* (3" € QLA(Vdb? € DS (p(rM M (¢4 (dbh) = ¢* (7} M (db))))))

In addition, it is desirable that ¢ be syntactically similar snapshot reducible
to ¢° [].

Definition 8. (SSSR) Data model M? is a syntactically similar snapshot-
reducible extension of model M* iff

o data model M? is snapshot reducible with respect to data model M?*, and

e there exist two (possibly empty) strings, S7 and Sa, such that each query
g% in QL that is snapshot reducible with respect to a query ¢° in QL? is
syntactically identical to S1¢°S,.

The SSSR requirement enables the SQL-92 programmer to easily formulate
spatio-temporal queries.

> ALTER TABLE estates ADD es_area 2D_REGION AS SPACE;
> ALTER TABLE stands ADD st_area 2D_REGION AS SPACE;
> REDUCIBLE (es_area) AS area SELECT * FROM estates;
> REDUCIBLE (es_area, st_area) AS area

SELECT es_ID, st_ID FROM estates, stands;

The first two statements render estates and stands dimensional. The two
queries have an SQL-92 core. The prepended string, REDUCIBLE, is a statement
modifier that determines the handling of the dimension attributes in the queries.
The presence of REDUCIBLE implies that, conceptually, the queries are computed

4 Models and Languages: Data Types 173

point-by-point. More specifically, for each point in space, the legacy SQL state-
ment following the statement modifier is evaluated on the snapshot database
corresponding to that point. The results for each point in space are integrated
into a single dimensional table.

Many useful dimensional queries cannot be specified as reducible general-
izations of snapshot queries, and there is a need for queries where no built-in
processing of the dimension attributes. The modifier NONREDUCIBLE specifies that
dimension attributes are to be considered as regular attributes. Together with
the predicates and functions offered by the dimensional data types, this yields
full control over the dimension attributes.

> NONREDUCIBLE (es_area, st_area)
SELECT s.st_ID, s.st_area FROM stands s WHERE NOT EXISTS (
SELECT * FROM estates e WHERE e.es_area CONTAINS s.st_area);

This query retrieves each stand for which no single estate exists that covers the
stand’s area. We consider the regions of the stands as being non-decomposable
and constrain them with a spatial predicate. This contrasts the REDUCIBLE
queries from before, where regions are decomposed into their constituent points.

STSQL Design. The first step in the design of STSQL is to introduce new,
dimensional abstract data types. Time values are anchored time periods while
spatial values are unions of regions. The corresponding data types are PERIOD,
1D_REGION, 2D_REGION and 3D_REGION, respectively [3]. The second step is to
make tables dimensional, by enabling the designation of certain time or space
valued attributes as dimensional. In STSQL, a dimension attribute is specified
as either a VALID, a TRANSACTION, or a SPACE attribute.

STSQL permits a table to have any number of dimension attributes. This
generality is useful for many purposes. Several VALID-type attributes may record
different temporal aspects of a tuple. For example, the plans table has a VALID
attribute harvestl recording when a stand is supposed to be harvested. We
add another VALID attribute harvest2 that records an alternative harvest pe-
riod. The two resulting harvest attributes reflect different (possible) worlds. It is
equally easy to envision uses of multiple space dimension attributes: the multiple-
worlds argument applies equally well to space, and tuples may have several dif-
ferent kinds of spatial aspects [6].

When formulating queries on dimensional tables, it is advantageous to pro-
ceed in several steps. All dimensions are initially ignored, and the core STSQL
query, typically an SQL-92 query, is formulated. Next, the query’s statement
modifier is specified. For each dimension of each table in the query, it must be
stated how the dimension is used in the query. Specifically, each dimensions that
should be evaluated with reducible semantics is identified. Each occurrence of
REDUCIBLE requires the participation of exactly one dimension from each table.
Following this, each dimensions to be given NONREDUCIBLE semantics is identi-
fied. This semantics is chosen if we want to formulate user-defined predicates

174 Ralf Hartmut Gliting et. al.

(e.g., CONTAINS) on the dimension attribute or if we want to override the DUC-
consistent semantics, which are given to dimension attributes not mentioned in
the statement modifier.

We conclude by formulating the following query: for each stand that is ripe in
2000, determine its harvest periods. The stands and the plans tables are joined
using a reducible join over the valid times, to associate stands with relevant
plans only. Next, we are only interested in the current data on stands. Assuming
that a transaction-time dimension st_tt has been added to stands, we want to
consider only tuples that overlap now. This is the semantics provided by DUC,
so no modifier is specified for st_tt. The location of a stand is not relevant
and, thus, must be disregarded. This is again DUC semantics, so no modifier for
st_area is specified. Finally, we want to retrieve (and handle) the harvest periods
as regular attributes. This is achieved by specifying a non-reducible modifier for
these dimensions.

> REDUCIBLE (st_vt,pl_vt) AS vt AND NONREDUCIBLE (harvestl, harvest2)
SELECT st.st_ID, harvestl, harvest2
FROM stands st, plans pl
WHERE pl.st_ID = st.st_ID AND pl.ripe = 2000;

Conclusion and Future Research. We formulated requirements to a new
dimensional DBMS aiming at addressing legacy-related concerns. The objectives
are to make it possible for legacy database applications using a conventional
SQL-92-based DBMS to be migrated to a dimensional DBMS without without
affecting the legacy applications, while also reusing programmer expertise. A
spatio-temporal extension to SQL-92, termed STSQL, that provides built-in
data management support for spatio-temporal data has been designed to meet
the above requirements.

Several directions for further explorations may be identified. First, we have
only described the initial design of the core of STSQL, and further formalizations
of the language are in order. Next, we have chosen one possible semantics for
DUC statements. Other semantics are possible; further studies are needed to
identify these and explore their utility.

References

1. J.K. Berry. Fundamental Operations in Computer-Assisted Map Analysis. Int.
Journal of Geographic Information Systems, 1(2):119-136, 1987.

2. M.H. Bohlen and C. S. Jensen. Seamless Integration of Time into SQL. Technical
Report R-96-49, Department of Computer Science, Aalborg University.

3. M.H. Béhlen, C.S. Jensen, and B. Skjellaug. Spatio-Temporal Database Support
for Legacy Applications. In Proceedings of the 1998 ACM Symposium on Applied
Computing, pp. 226—234. Atlanta, Georgia, February 1998.

4. M.H. Bohlen, C.S. Jensen, and R.T. Snodgrass. Evaluating the Completeness of
TSQL2. In Recent Advances in Temporal Databases, International Workshop on
Temporal Databases, pp. 153-172. Springer, Berlin, Ziirich, Switzerland, September
1995.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

4 Models and Languages: Data Types 175

E.P.F. Chan and R. Zhu. QL/G - A Query Language for Geometric Data Bases.
In Proc. 1st International Conference on GIS, Urban Regional and Environmental
Planning, pp. 271-286. Samos, Greece, 1996.

H. Couclelis. People Manipulate Objects (but Cultivate Fields): Beyond the Raster-
Vector Debate in GIS. In Lecture Notes in Computer Science, Vol. 639, pp. 65—77,
Springer-Verlag, 1992.

M. Erwig, R.H. Giiting, M. Schneider, and M. Vazirgiannis. Spatio-Temporal Data
Types: An Approach to Modeling and Querying Moving Objects in Databases.
Geolnformatica, 3(3):265-291, 1999.

M. Erwig and B. Meyer. Heterogeneous Visual Languages — Integrating Visual and
Textual Programming. In 11th IEEE Symp. on Visual Languages, pp. 318-325,
1995.

M. Erwig and M. Schneider. Partition and Conquer. In 3rd Int. Conf. on Spatial
Information Theory, LNCS 1329, pp. 389408, 1997.

M. Erwig and M. Schneider. Developments in Spatio-Temporal Query Languages.
In IEEE Int. Workshop on Spatio-Temporal Data Models and Languages, pp. 441—
449, 1999.

M. Erwig and M. Schneider. Spatio-Temporal Predicates. Technical Report 262,
FernUniversitdt Hagen, 1999.

M. Erwig and M. Schneider. The Honeycomb Model of Spatio-Temporal Partitions.
In Int. Workshop on Spatio-Temporal Database Management, LNCS 1678, pp. 39—
59, 1999.

M. Erwig and M. Schneider. Visual Specifications of Spatio-Temporal Develop-
ments. In 15th IEEE Symp. on Visual Languages, pp. 187-188, 1999.

M. Erwig and M. Schneider. Query-By-Trace: Visual Predicate Specification in
Spatio-Temporal Databases. In 5th IFIP Conf. on Visual Databases, 2000. To
appear.

M. Erwig, M. Schneider, and R.H. Giiting. Temporal Objects for Spatio-Temporal
Data Models and a Comparison of Their Representations. In Int. Workshop on
Advances in Database Technologies, LNCS 1552, pp. 454-465, 1998.

L. Forlizzi, R.H. Giiting, E. Nardelli, and M. Schneider. A Data Model and Data
Structures for Moving Objects Databases. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. Dallas, Texas, 2000.

S. Gaal. Point Set Topology. Academic Press, 1964.

R.H. Giiting. Second-Order Signature: A Tool for Specifying Data Models, Query
Processing, and Optimization. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 277-286. Washington, 1993.

R.H. Giiting. An Introduction to Spatial Database Systems. VLDB Journal,
3:357-399, 1994.

R.H. Giiting, M.H. Bohlen, M. Erwig, C.S. Jensen, N.A. Lorentzos, M. Schneider,
and M.Vazirgiannis. A Foundation for Representing and Querying Moving Ob-
jects. Technical Report Informatik 238, FernUniversitat Hagen, 1998. Available at
http://www.fernuni-hagen.de/inf/pi4/papers/Foundation.ps.gz,

R.H. Giiting, M.H. Béhlen, M. Erwig, C.S. Jensen, N.A. Lorentzos, M. Schneider,
and M.Vazirgiannis. A Foundation for Representing and Querying Moving Objects.
ACM Transactions on Database Systems, 25(1), 2000.

R.H. Giiting and M. Schneider. Realm-Based Spatial Data Types: The ROSE
Algebra. VLDB Journal, 4(2):100-143, 1995.

Z. Huang, P. Svensson, and H. Hauska. Solving Spatial Analysis Problems with
GeoSAL, a Spatial Query Language. In 6th Int. Working Conf. on Scientific and
Statistical Database Management, 1992.

http://www.fernuni-hagen.de/inf/pi4/papers/Foundation.ps.gz

176

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Ralf Hartmut Gliting et. al.

J. Loeckx, H. D. Ehrich, and M. Wolf. Specification of Abstract Data Types. John
Wiley & Sons, Inc. and B.G. Teubner Publishers, 1996.

N.A. Lorentzos and Y.G. Mitsopoulos. SQL Extension for Interval Data. IEEE
Transactions on Knowledge and Data Engineering, 9(3):480-499, 1997.

N.A. Lorentzos, N. Tryfona, and J.R. Rios Viqueira. Relational Algebra for Spatial
Data Management. In Proc. International Workshop Integrated Spatial Databases:
Digital Images and GIS. Portland, Maine, June 1999.

N.A. Lorentzos, J.R. Rios Viqueira, and N. Tryfona. Quantum-Based Spatial
Data Model. Technical Report, Informatics Laboratory, Agricultural University
of Athens, 2000.

G. Misund, B. Johansen, G. Hasle, and J. Haukland. Integration of geographical
information technology and constraint reasoning — A promising approach to forest
management. Technical Report STF33A 95009, SINTEF Applied Mathematics,
Oslo, Norway, June 1995.

M. Scholl and A. Voisard. Thematic Map Modeling. In Ist Int. Symp. on Large
Spatial Databases, LNCS 409, pp. 167-190, 1989.

R.T. Snodgrass, M.H. Bohlen, C.S. Jensen, and A. Steiner. Adding Transaction
Time to SQL/Temporal. ANST X3H2-96-152r, ISO-ANSI SQL/Temporal Change
Proposal, ISO/IEC JTC1/SC21/WG3 DBL MCI-143, May 1996.

R.T. Snodgrass, M.H. Béhlen, C.S. Jensen, and A. Steiner. Adding Valid Time
to SQL/Temporal. ANSI X3H2-96-151r1, ISO-ANSI SQL/Temporal Change Pro-
posal, ISO/IEC JTC1/SC21/WG3 DBL MCI-142, May 1996.

R.B. Tilove. Set Membership Classification: A Unified Approach to Geometric
Intersection Problems. IEEFE Transactions on Computers C-29, pp. 874-883, 1980.
C.D. Tomlin. Geographic Information Systems and Cartographic Modeling. Pren-
tice Hall, 1990.

J.W. van Roessel. Conceptual Folding and Unfolding of Spatial Data for Spatial
Queries. In V.B. Robinson and H. Tom, eds., Towards SQL Database Extensions
for Geographic Information Systems, pp. 133—-148, National Institute of Standards
and Technology, Gaithersburg, Maryland, 1993. Report NISTIR 5258.

J.W. van Roessel. An Integrated Point-Attribute Model for Four Types of Areal
Gis Features. In R.G. Healey T.C. Waugh, ed., Proc. 6th International Symposium
on Spatial Data Handling (SDHY4), pp. 127-144. Edinburgh, Scotland, UK, 1994.

	4 Spatio-temporal Models and Languages: An Approach Based on Data Types
	Introduction
	The Data Type Approach
	Motivation
	Modeling
	Some Example Queries
	Some Basic Issues

	An Abstract Model: A Foundation for Representing and Querying Moving Objects
	Spatio-temporal Data Types
	Language Embedding of Abstract Data Types
	Overview of Data Type Operations
	Operations on Non-temporal Types
	Operations on Temporal Types
	Application Example
	Summary

	A Discrete Model: Data Structures for Moving Objects Databases
	Overview
	Definition of Discrete Data Types

	Outlook
	Spatio-temporal Predicates and Developments
	Spatio-temporal Partitions
	On a Spatio-temporal Relational Model Based on Quanta
	Spatio-temporal Statement Modifiers

	References

