
Object-Relational Management of Multiply Represented Geographic Entities

Anders Friis-Christensen
National Survey and Cadastre

Denmark
afc@kms.dk

Christian S. Jensen
Dept. of Computer Science, Aalborg University

Denmark
csj@cs.auc.dk

Abstract

Multiple representation occurs when information about
the same geographic entity is represented electronically
more than once. This occurs frequently in practice, and it in-
variably results in the occurrence of inconsistencies among
the different representations. We propose to resolve this
situation by introducing a multiple representation manage-
ment system (MRMS), the schema of which includes rules
that specify how to identify representations of the same en-
tity, rules that specify consistency requirements, and rules
used to restore consistency when necessary. In this pa-
per, we demonstrate by means of a prototype and a real-
world case study that it is possible to implement a multi-
ple representation schema language on top of an object-
relational database management system. Specifically, it is
demonstrated how it is possible to map the constructs of
the language used for specifying the multiple representation
schema to functionality available in Oracle. Though some
limitations exist, Oracle has proven to be a suitable platform
for implementing an MRMS.

1. Introduction

Databases that record information about real-world enti-
ties with geographical extents, termed geographic databases,
are being used quite widely, e.g., in public administration.
The same real-world entities are often being recorded in dif-
ferent databases, which support different applications. This
phenomenon, termed multiple representation, invariably
leads to inconsistencies, which has been recognized as a key
problem in geographic database management [3, 11]. Ensur-
ing consistency among databases describing the same enti-
ties (termed representation databases) improves the quality
and applicability of data. In this paper, we focus on the case
where multiple objects representing the same entity have
been registered independently. Such objects are typically
managed by legacy database systems, which makes it a dif-
ficult challenge to ensure consistency among the objects.

A multiple representation management system (MRMS)
maintains consistency among multiply represented geo-
graphic entities, and it is legacy-friendly by design. This is
because no modifications of the underlying legacy database
schemas and associated legacy applications are required
when introducing multiple representation management.

The MRMS maintains consistency based on a specifica-
tion, a multiple representation schema (MRSchema), for-
mulated in a so-called multiple representation schema lan-
guage (MRSL) [6, 7]. The MRSchema specifies matching,
consistency, and restoration rules. The MRSL is based on
the assumption that objects representing the same entity ex-
hibit semantic similarities that enable us to model their cor-
respondences.

This paper presents a prototype that maintains the con-
sistency among multiply represented entities drawn from a
real-world case from the National Survey and Cadastre in
Denmark, who manage a range of independent geographic
databases describing the same entities. Because the task of
maintaining the various representations has become com-
plex and expensive, on-going work seeks to exploit ap-
proaches that ensure consistency and update propagation
among the different representations. The results presented
in this paper are outcomes of this work. The prototype pre-
sented in the paper demonstrates that it is possible to main-
tain consistency among multiply represented entities based
on the functionality offered by object-relational DBMSs. It
is shown how to design an MRSchema and how to map the
constructs of the MRSL to Oracle’s object-relational model.
It thus demonstrates that it is possible to design and imple-
ment an MRMS in a cost-efficient manner.

Multiple geographic representation has been studied for
some years. The MurMur project [15] aims at extending
commercial data management software (DBMS or GIS) to
support multiple representation, which is similar to our goal.
However, they focus on aspects other than matching and
restoration rules. Other research [11] has focused on the
generalization of map features where there is an exact de-
pendency among representation objects, whereas we con-
sider multiple representations from a more general view-

Proceedings of the 15th International Conference on Scientific and Statistical Database Management (SSDBM’03) 
1099-3371/03 $17.00 © 2003 IEEE 

©2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or

redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this

information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.



point. A single multi-scale database that is capable of stor-
ing geographic objects with multiple geometries has also
been proposed [9]. This approach assumes an integrated
database and does not take into account heterogeneous and
independent databases. Another line of study has resulted in
a multi-scale database that maintains scale-transition rela-
tionships between objects at different scales [5]. This work
centers on integration and considers only relationships be-
tween pairs of objects. In summary, we are not aware of any
work that considers modeling multiple representations with
matching, consistency, and restoration rules.

Finally, it should be noted that multiple representa-
tion databases relate in a more general sense to federated
databases [14]. A federated schema usually provides an in-
tegrated view of the underlying autonomous databases. In
contrast, the main purpose of an MRMS is to maintain con-
sistency. At a more general level, related work can be found
in distributed integrity constraint maintenance [8, 10].

The paper is organized as follows. Section 2 describes
the overall approach to integrating multiple representations.
Section 3 presents the real-world case used in the paper.
Section 4 demonstrates how to map the constructs of the
MRSL to the object-relational model of Oracle, and Sec-
tion 5 presents our experiences of the implementation of the
MRMS. Finally, Section 6 concludes the paper.

2. Background—Integration Approach

A first approach to integration might be to describe cor-
respondences among objects representing the same entity.
Traditional methods of defining correspondences among
databases employ data dependency descriptors to describe
how objects of a source class in one database are related to
objects of a target class in another database. A problem with
this method is that it is only possible to specify dependen-
cies between pairs of source and target classes. This may be
sufficient in the field of data warehousing and geographic
generalization [18], where the target representation classes
are controlled by derivation rules. The main problem, how-
ever, is when the r-classes constitute a multiply represented
entity that depends on more than one class. No common
concept exists that binds the classes together and controls
the priority and sequence of updates. Another integration
approach is to remove inconsistencies in both schema and
data. The problem with this approach is that we change the
representation databases.

We instead advocate an approach where a new, so-called
integration object (i-object) is introduced that represents an
entity. The idea is to describe the correspondences among
representation objects (r-objects) via their correspondence
with the i-object. The correspondence is termed an mr-
association. We use the terms i-classes and r-classes for
the classes these objects, and their attributes are termed i-

attributes and r-attributes. An i-class then represents the
concept of a multiply represented entity, and it is associ-
ated with more than one r-class. An example is a real-world
building (an entity) that is represented in two databases with
different resolutions. We will create an i-object for the
building entity, and this i-object will have mr-associations
to the two r-objects that represent the entity. Using this new
approach simplifies the description of correspondences be-
cause we only have dependency descriptors between pairs
of i-classes and r-classes.

With this approach, there is no reference from an r-object
to its i-object or to other r-objects. This is essential when we
want to implement an MRMS on top of existing databases
systems without needing to change them. This makes the
approach legacy-friendly.

As previously described, the correspondence between an
i-class and an r-class is given by matching, consistency, and
restoration rules. The matching rules specify how to iden-
tify the r-objects that represent the same entity, e.g., using
a spatial match. The consistency rules describe the exact
correspondences between object instances of the i-class and
r-classes and are described at two levels: the object corre-
spondence (OC) level and the value correspondence (VC)
level. These mirror the general notions of existence and
value dependencies [4, 13]. Finally, the restoration rules
specify which actions to be taken if inconsistency occurs.
They specify not only the actions needed for restoring con-
sistency, but specify also the conditions that should trigger
an update action.

The MRSL has a graphical and a lexical syntax. The for-
mer is based on the Unified Modeling Language (UML) [1],
and we use the Object Constraint Language (OCL) [17]
to specify constraints. A more thorough description of
the MRSL is given elsewhere [6, 7]. An MRSL speci-
fication, termed an MRSchema, is used to configure the
MRMS. The process is depicted in Figure 1, which shows

MRSchema
specified in

MRSL

Object-
Relational

MRSchema

Translation

Relational
DBMS1

DB
Relational
DBMSn

DB....

Object-
relational
DBMS

DB

Figure 1. The Implementation Process

that the MRSchema is translated into an object-relational
MRSchema, which in turn is implemented in an ORDBMS.
Here, the i-objects are stored. We need to extend, but not
change, the schemas of the existing databases, because it
is necessary to implement triggers, which control updates.
Consequently, a requirement to the representation databases
is that they support triggers.

Proceedings of the 15th International Conference on Scientific and Statistical Database Management (SSDBM’03) 
1099-3371/03 $17.00 © 2003 IEEE 



3. Case Study

The case study illustrates requirements that need to be
supported by an MRMS. The study is based on real-world
databases used in the public administration in Denmark that
concern buildings. We design an MRSchema that meets the
requirements posed in the case study.

3.1. Example Data and Representation Schemas

We consider data from three databases: a topographic
map database, a technical map database, and a register
database. All three describe the same buildings, but are cre-
ated and maintained independently by different authorities.
The topographic and the technical map databases are cre-
ated and maintained using relatively costly aerial photo in-
terpretation. One benefit of establishing a correspondence
between objects in the two databases is that aerial photo in-
terpretation needs not be duplicated.

Simplified building schemas in UML are seen on Fig-
ure 2. (We assume that the reader is familiar with the UML
notation [1].) Only representative attributes are given—e.g.,

id : Local_id
location : Point
usage : UseCode_BR
numOfFloors : Integer
timeConstructed : Date

BR_Building
id : Local_id
shape : Polygon
usage : UseCode_T10
buildingType : BuildingType_T10

T10_Building

id : Local_id
shape : Polygon

TM_Building

apartment house
office
industry
shed

«enumeration»
UseCode_BRresidential

non-residential

«enumeration»
UseCode_T10

low houses
high houses

«enumeration»
BuildingType_T10

Technical map
(1:5,000)

Topographic map
(1:10,000) Buldings register

D1:TM D2:T10 D3:BR

Figure 2. The Three Building Schemas

for a building in the BR database, more than 50 attributes are
registered.

The definition of a building varies across the three
databases, which complicates the process of creating an
MRSchema. The definitions are seen in Table 1. The def-
initions given here are simplifications of the official ones
[2, 12, 16].

An example of the building representations is seen in Fig-
ure 3. It is seen that several inconsistencies occur between
the shapes of TM and T10 buildings (see the dashed and
solid polygons). The shapes of TM buildings are more de-
tailed than those of T10 buildings. Other inconsistencies,
not present in the figure, exist in the attributes of the differ-
ent building objects, e.g., in the usages of the BR buildings
and the usage of the corresponding T10 building.

We specify matching, consistency, and restoration re-
quirements for the multiple representation scenario. As the

Table 1. Building Definitions
Class Definition

TM
Buil-
ding

A building is defined as a building structure on a single
property. The shape of a building is stored as a polygon, but
very small buildings are usually not registered. All sudden
transitions in the building borderline are registered, i.e., the
actual and registered borderline coincides.

T10
Buil-
ding

A building is defined as a detached house, which is larger
than 25 square meters. The shape of a building is stored
as a polygon, but is registered with as few points as pos-
sible. However the difference between the actual and the
registered borderline has to be less than 1 meter long.

BR
Buil-
ding

A building in BR is defined as a continuous structure with
approximately the same height and style on a single prop-
erty as the building in TM. A location of a building is stored
as a point, but only buildings of a certain size are registered.
No exact minimum size exists.

10 20

meters

0TM BuildingT10 BuildingBR Building

Figure 3. Different Building Representations

three databases were previously independent, we use spatial
matching for relating them.

i The location of a BR building is inside the location of the
corresponding TM building.

ii To find corresponding TM and T10 buildings, the shapes
of the TM and T10 buildings should overlap.

The consistency requirements are the following:

a The shape of T10 building should be a simplification of
that of the corresponding TM buildings. That is, the T10
building should be an aggregation that connects overlap-
ping TM buildings. This applies only if the BR building
usage is not a shed and the sum of the areas of all corre-
sponding TM buildings is greater than 25m2.

b The usecode enumeration in a T10 building should cor-
respond to the enumeration in possibly many BR build-
ings. Since two different value domains exist, transfor-
mation from one to the other is needed.

Proceedings of the 15th International Conference on Scientific and Statistical Database Management (SSDBM’03) 
1099-3371/03 $17.00 © 2003 IEEE 



c As the building type of a T10 building is dependent on
the height, it should correspond to the number of floors
in possibly many BR buildings. Transformation from one
value domain to another is also required.

d The location of a BR building should be inside the shape
of the corresponding TM building.

e For each TM building there should exist exactly one BR
building.

f For each BR building there should exist exactly one TM
building.

g For each T10 building there should exist at least one TM
and at least one BR building.

When inconsistency is detected, the following restoration
actions come into play:

1 If a TM building exists without a correspondingBR build-
ing, a BR building needs to be inserted.

2 If a TM and BR building exists (satisfying consistency re-
quirement a) without a corresponding T10 building, a
T10 building needs to be inserted.

3 If either a BR or T10 building is inserted or exists without
a corresponding TM building, it needs to be deleted.

4 If the usage or the number of floors is modified in a BR
building, we require the usage or the building type of the
T10 building to be modified accordingly.

5 If the location of a BR building is modified it should sat-
isfy the consistency requirement d.

6 If the shape of a TM building is modified, the location of
the correspondingBR building and the shape of the corre-
sponding T10 building need to be modified accordingly.

7 If the shape, usage, or building type of a T10 building
is modified, consistency requirement a, b, and c, respec-
tively, must be satisfied.

The requirements given above are to be specified in the
MRSchema, described next.

3.2. MRSchema

The multiple representation scenario is described in Fig-
ure 4. We have created an i-class Building for the TM
and BR buildings. As the T10 building is an aggregation
of the TM and BR buildings, we create yet another i-class
Detached Building for the T10 building, which is an
aggregation of the i-class Building. The matching and
restoration rules are specified, using the lexical language,
later in this section. The reason for creating two i-classes
is that we cannot have an r-class that is an aggregation of
i-classes. Because an mr-association is a uni-directional as-
sociation where only the aggregate knows of its parts, this
violates the rule that an r-class should not contain refer-
ences to its i-class. Creating two i-classes is a more log-
ical approach and, furthermore, the creation of the i-class

Detached Building enables a later extension to, e.g.,
include a building in the scale of 1:50,000.

The i-class Building is responsible for maintaining the
matching requirement i, for consistency requirements d–f,
and for restoration actions 1 and 3. The tm role represents
the building entity in a technical map database, and the br
role represents the building entity in the building register
database. The mr-association to the tm building is denoted
as master, meaning that it controls the instances of r-objects
associated with a given i-object.

The i-class Detached Building is responsible for
maintaining the matching requirement ii, consistency re-
quirements a–c and g, and restoration actions requirements
1–5. The t10 role represents the detached building entity
in the topographic map database at scale 1:10,000. The
building role represents the building entity based on
tm and br building definitions. The mr-association to the
building is denoted as master.

{ building -> select
 (usage <> 'Shed')

 -> collect(shape.area)
 -> sum >= 25 and

shape.type = polygon }

checkInside(in location : Point) : Boolean
placeInside(in location : Point)

id : Global_id
shape : Polygon = tm.shape //m1
usage : UseCode_BR = br.usage //m2
numOfFloors : Integer = br.numOfFloors //m3

«i-class»
Building

VC specification:
br.location inside shape //v1

aggrShape(in set<shape> : Polygon) : Polygon
aggrUsage(in set<usage> : UseCode_BR) : UseCode_T10
mapType(in set<numOfFloors> : Integer) : BuildingType_T10

id : Global_id
shape : Polygon = aggrShape(building) //m1
usage : UseCode_T10 = aggrUsage(building) //m2
buildingType : BuildingType_T10 = mapType(building) //m3

«i-class»
Detached_Building

VC specification:
t10.shape = shape //v1
t10.usage = usage //v2
t10.buildingType = buildingType //v3

-building1..*

-tm1
-br1

id : Local_id
shape : Polygon
usage : UseCode_T10
buildingType : BuildingType_T10

«r-class»
T10_Building

v1
v2
v3

id : Local_id
shape : Polygon

«r-class»
TM_Building

m1

id : Local_id
location : Point
usage : UseCode_BR
numOfFloors : Integer
timeConstructed : Date

«r-class»
BR_Building

v1
m2
m3

m1
m2
m3

-t101

{master}

{master}

Figure 4. The Building Example in MRSL

Both the i-class Building and the i-class
Detached Building have three attributes that are
used for ensuring the consistencies among the r-attributes.
These attributes are characteristics of a real-world entity
represented by two or more r-classes.

Proceedings of the 15th International Conference on Scientific and Statistical Database Management (SSDBM’03) 
1099-3371/03 $17.00 © 2003 IEEE 



The example shows two common correspondence types
for multiple representations of geographic data, the 1:N (or
1:1..N) and 1:1 (or 1:0..1) correspondences. The first will
often be of an aggregation type, e.g., a so-called “built-up
area” in one database is a composite of several building ob-
jects in another. The second is a plain correspondence be-
tween two objects, e.g., in a map database and a register
database.

The consistency requirements specify that for the i-class
building, the attribute shape has tm.shape as mas-
ter. The master keyword associated with an r-attribute is
used to specify that the value of the r-attribute is used
when assigning a value to the corresponding i-attribute. The
usage has br.usage as master, and the numOfFloors
has br.numOfFloors as master. The master identifiers
(m1–m3) are only included in the design to provide an
overview. The operation checkInside checks whether
br.location is inside tm.shape.

For the i-class Detached Building the at-
tribute shape is an aggregation of one or more
building.shape attributes (the values of which
are initialized from tm.shape attribute values), attribute
usage is an aggregation of building.usage, and
attribute buildingType is an aggregation of buil-
ding.numOfFloors. Again, the master identifiers
(m1–m3) are only included for clarity—they do not have
any formal meaning. The three operations aggrShape,
aggrUsage, and mapType define how the three
i-attributes are aggregated from the Building i-attributes.

VC v1 in Building specifies that br.location
values should be inside building.shape values.
The VCs v1–v3 in Detached Building specify
that the r-attributes t10.shape, t10.usage, and
t10.buildingType are equal to the corresponding i-
attributes of Detached Building.

The i-class Building is specified in the lexical lan-
guage syntax as follows.

iclass Building
Attributes:

id : Global_id, shape : Polygon,
usage : BR_useCode, numOfFloors : Integer

Operations:
checkInside(Point) : Boolean,
placeInside(Point)

Object Correspondence:
o1: <<master>> tm [1] : TM_Building,
o2: br [1] : BR_Building

Value Correspondence:
m1: shape = <<master-attribute>> tm.shape,
m2: usage = <<master-attribute>> br.usage,
m3: numOfFloors = <<master>> br.numOfFloors,
v1: shape.checkInside(br.location)

Matching Rules:
mr1: br.location inside tm.shape,
mr2: tm.shape cover br.location

Restoration Rules:
rr1: on insert tm then insert br {immediate},

rr2: on insert br if not o2 then abort
{immediate},

rr3: on update tm.shape if not v1 then
placeInside(br.location) {immediate},

rr4: on update br.location if not v1 then
abort {immediate},

rr5: on delete tm then delete br {immediate},
rr6: on delete br if o1 and if not o2 then

abort {immediate}
end iclass

Matching rule mr1 for the i-class Building satisfies
matching requirement i. The restoration rules for the i-class
Building satisfy restoration action requirements 1, 3, 5,
and 6. The lexical syntax for the Detached Building is
omitted for brevity.

4. Implementation of the MRMS

By mapping the constructs of the MRSL into Oracle9i
constructs, this section demonstrates that it is possible to
implement the MRMS on top of Oracle. The MRSL is in-
dependent of any implementation, and although we present
a mapping to Oracle, which is the preferred DBMS at the
Danish National Survey and Cadastre, other systems could
have been used in the place of Oracle. However, the follow-
ing implementation details would be different, as different
systems provide different object-relational features.

4.1. Choice of Model and Approach

While it is possible to implement the MRSL using only
relational constructs, we implement the MRSL using object-
relational constructs. This makes it it easier to map the
object-oriented MRSL, e.g., object references from the i-
objects to their r-objects. When applying the MRMS to al-
ready existing databases, it has to be considered whether
to convert the existing system to one that uses an object-
relational model (assuming it is relational) or to keep it rela-
tional and apply the object-relational schema on top. Which
approach to choose depends on the existing database and
under which circumstance the MRMS is applied. Two situ-
ations are common:

- New geographic databases are designed with the aim of
storing multiple representations. An example could be
the design of a multi-scale system (representations of the
same entities at different scales). In this case, there is no
preexisting implementation.

- The various representations of the same entities are al-
ready implemented in independent relational databases.
To ensure consistency among the different representa-
tions, the MRMS is implemented on top of existing
legacy databases. Our case study is based on this situa-
tion, which is common when managing geographic data.

Proceedings of the 15th International Conference on Scientific and Statistical Database Management (SSDBM’03) 
1099-3371/03 $17.00 © 2003 IEEE 



The first situation requires no conversion of existing data, so
the object-relational model can be applied directly when de-
signing the databases and implementing the r-classes. In the
second situation, two approaches exist: (1) data can be con-
verted from the relational model into the object-relational
model so that all r-classes are stored as object tables, or (2)
object views can be applied to already existing relational ta-
bles.

The advantage of the first approach is that the mapping
from the MRSchema is easy and fast. The disadvantage is
that the data conversion requires changes to the representa-
tion database schemas, which may affect dependent applica-
tions. The advantage of the second approach is that the un-
derlying schema is not changed, but data can be accessed as
if the tables were defined as object tables. The disadvantage
is that subtle differences exist between an object table and
an object view, especially in relation to object references.
With object tables, references get stored physically in the
table. Thus, an attribute in a column defined as a reference
type contains a pointer to an object.

However, Oracle does not allow storage of a reference
pointing to a virtual object, i.e., an object in a view, because
the reference to a virtual object is of a different type than
a reference to an object from an object table. This means
that it is not possible to integrate object views and object
tables when references to virtual objects are required in the
object tables. This is problematic for us because we require
storage of references from an i-object to its r-objects; and
if object views are applied to relational tables, this is not
possible. A work-around is to create an object view of the
relevant object table using a special Oracle built-in function,
MAKE REF, which creates a reference to an object, but this
approach complicates the schema unnecessarily.

We show the differences between object tables and object
views applied to relational tables in Sections 4.2 and 4.3.

4.2. Preparation of Representation Classes

Before mapping the MRSchema to Oracle, the r-classes
must be prepared for the object-relational model. As de-
scribed in the previous section, we can either implement (or
keep) the r-classes as relational tables, or we can implement
them as object tables.

The preferred solution is to implement the r-classes as
object tables or convert existing relational tables to object
tables. In both cases, the first step is to create an object type
based on the r-class, the attributes of which should corre-
spond to the attributes of the r-class. An example is seen
next, where an object type BR is created using the same at-
tribute types as the BR Building r-class:
CREATE TYPE br AS OBJECT(id NUMBER(13), location
MDSYS.SDO_GEOMETRY, usage VARCHAR2(20),
numOfFloors NUMBER(3), timeConstructed DATE);

The object type can be used either when creating a new
object table for storing the objects or for creating an

object view. The creation of an object table uses the
following statement: CREATE TABLE TABLE NAME OF

TYPE NAME. In our example, the original data is stored
in relational tables, but we can convert the relational ta-
bles simply by selecting their records into new object ta-
bles. When having a more complex relational schema, this
step will be correspondingly complex.

If for some reason we want to keep the records in a re-
lational structure, we apply the object-relational model to
the relational using object views. An object type is created
as described above and is then used to create an object view.
The object view for the BR Building table is created sim-
ilarly to how a standard view is created:

CREATE VIEW br_view OF br WITH OBJECT
IDENTIFIER(id) AS SELECT * FROM br_building;

These steps complete the preparation of the r-classes.

4.3. Mapping the I-Class and Mr-Associations

The mapping of an i-class depends on whether the cor-
responding r-classes are implemented as object tables or as
relational tables with object views. If the latter case, the i-
class needs also to be implemented as a relational table with
an object view based on an object type. (Recall that Or-
acle does not allow storage of object references to virtual
objects.) We show this work-around later in this section. If
the r-classes are implemented as object tables, we can also
implement the i-class as an object table.

The i-class object type (which is required in both sit-
uations) is created using two statements. First, an object
type is created specifying attributes and operations using
the CREATE TYPE statement. Second, the body of the ob-
ject type is created using CREATE TYPE BODY, where the
code for the operations is specified. Each mr-association
is implemented as an attribute of the i-class, where the at-
tribute is a reference type to the corresponding r-object. This
means that references to r-objects are physically stored in
the i-class. The translation of the i-class is divided into a
total of six steps:

Step 1 An Oracle object is created for each i-class in the
MRSchema.

Step 2 All attributes from the i-class are parameters to the
CREATE TYPE statement. Valid data types are Oracle
data types such as NUMBER and the built-in geometry type
MDSYS.SDO GEOMETRY.

Step 3 In addition to the i-attributes, the mr-associations
(the OCs) are mapped as supplementary attributes of the
i-classes. Each OC is mapped to a corresponding at-
tribute, which then can be stored as nested tables, so that
1:N associations (or aggregations) can be implemented.
The data types of the attributes (OC1–OCn) are refer-
ences to r-objects. These data types can be specified
as CREATE TYPE type name IS TABLE OF REF

Proceedings of the 15th International Conference on Scientific and Statistical Database Management (SSDBM’03) 
1099-3371/03 $17.00 © 2003 IEEE 



r-class. This statement creates a type that is a refer-
ence to an r-class object table.

Step 4 Further parameters to the CREATE TYPE state-
ment are the operations. These include general op-
erations, e.g., checkConsistency and checkAnd-
RestoreConsistency, and optional, user-defined op-
erations. They are mapped to either member methods, in-
voked on object instances, or static methods, invoked on
the object types. For each OC, an operation that checks
if the OC is satisfied is implemented as a member func-
tion. For each VC, two methods are implemented: one
to check whether inconsistency occurs and one to restore
consistency. Again, member functions are used.

An example of mapping the i-class Building and the two
mr-associations to BR Building and TM Building is
shown next. The data types for references to the r-classes
are created and then the i-class is specified.
CREATE TYPE tm_ref AS TABLE OF REF tm_building;
CREATE TYPE br_ref AS TABLE OF REF br_building;
CREATE TYPE building AS OBJECT(id number(15),

shape MDSYS.SDO_GEOMETRY, usage VARCHAR2(30),
numberOfFloors NUMBER(3),
oc1 TM_REF, oc2 BR_REF,
MEMBER FUNCTION checkOc1 RETURN BOOLEAN,
MEMBER FUNCTION checkOc2 RETURN BOOLEAN,
MEMBER FUNCTION checkVc1 RETURN BOOLEAN,
MEMBER PROCEDURE checkRestoreVc1,
MEMBER FUNCTION checkM1 RETURN BOOLEAN,
MEMBER PROCEDURE checkRestoreM1,
MEMBER FUNCTION checkM2 RETURN BOOLEAN,
MEMBER PROCEDURE checkRestoreM2,
MEMBER FUNCTION checkM3 RETURN BOOLEAN,
MEMBER PROCEDURE checkRestoreM3,
MEMBER FUNCTION getTm RETURN tm,
MEMBER FUNCTION getBr RETURN br);

This completes the object type creation. We omit the user-
defined operations, checkInside and placeInside,
from the MRSchema because Oracle has built-in func-
tions that do the necessary operations. The oper-
ations checkM1–checkM3 and checkRestoreM1–
checkRestoreM3 are used when the master r-attributes
are changed. They simply apply new values to the i-class
Building. The member functions getTm and getBr re-
turn references to the r-objects stored in the i-object. These
functions are explained in Section 4.4.

The restore operations can be implemented in either the
i-class or in the triggers controlling the restoration actions.
We have decided to place the check and restore operations
for the VCs in the i-class, but not the operations for restoring
the OCs. Though it seem more logical to implement the OCs
in the i-class, there are several disadvantages. In particular,
when a new r-object, and thus a new i-object, is inserted, we
cannot call a method to check the OC in the same transac-
tion because the i-object is first inserted after the trigger has
committed. We can create another trigger that finds the i-
object again and then calls the method to restore the OC, but

this complicates the restoration actions unnecessarily. Thus,
we implement the operations in the triggers controlling the
restoration, to be described in Section 4.5.

After creating the object type, the next step is to create
the body of the object.

Step 5 All methods in the i-class are specified using the
CREATE TYPE BODY i-class statement.

An example is shown next for the i-class Building,
where we show how the operation checkRestoreVc1 is
implemented.
CREATE TYPE BODY building AS

...
MEMBER PROCEDURE checkRestoreVc1 IS
br_id VARCHAR2(13); rval VARCHAR2(20);
n_point MDSYS.SDO_GEOMETRY;
BEGIN

SELECT br.column_value.id INTO br_id FROM
TABLE(SELECT oc2 FROM building_tab
WHERE id = self.id) br;

IF NOT checkVc1() THEN
SELECT SDO_GEOM.SDO_POINTONSURFACE

(b.shape, 0.1) INTO n_point FROM
building_tab b WHERE b.id=self.id;

UPDATE br_building br SET br.location=
n_point WHERE br.id=br_id;

END IF;
END;
...

END;

Here, the built-in function SDO GEOM.RELATE calculates
whether a point is inside a polygon, and the function
SDO GEOM.SDO POINTONSURFACE creates a new point
within a polygon.

The next step is to create the actual tables where the
i-objects are stored. The approach varies depending on
whether the r-classes are implemented as relational tables
or as object tables.

Step 6a If the r-classes are implemented as object tables,
a table for storing the i-objects is created. The two ref-
erence columns (oc1 and oc2) are stored as nested ta-
bles, using NESTED TABLE attribute STORE AS

attribute table, which specifies the tables in which
the references to the r-objects are stored.

Step 6b If the r-classes are implemented in relational ta-
bles, object views based on each r-class object type are
created. Then a relational table is created for each i-class,
and in addition a table for each r-class containing i-class
id and r-class id is created for storing the references from
the i-class to its r-classes. Finally, an object view for the
i-class table is created based on the i-class object type and
the records in the i-class relational table.

An example of creating an object view based on the i-class
type Building with records from the i-class relational ta-
ble Building tab and with references to r-objects is seen
next:

Proceedings of the 15th International Conference on Scientific and Statistical Database Management (SSDBM’03) 
1099-3371/03 $17.00 © 2003 IEEE 



CREATE VIEW building_view OF building WITH
OBJECT OID(id) AS SELECT b.id, b.shape, b.usage,
b.numOfFloors, CAST(MULTISET(SELECT MAKE_REF
(tm_view, tm.tm_id) FROM building_oc1 tm WHERE
b.id=tm.id) AS tm_ref), CAST(MULTISET(SELECT
MAKE_REF(br_view, br.br_id) FROM building_oc2 br
WHERE b.id=br.id)AS br_ref) FROM building_tab b;

The statement creates an object view from which we can
select object references as in an object table. However, when
new i-objects are created, we need to insert them into the
relational table.

This completes the creation of the i-class and mr-
associations, including the tables to store the i-objects.

4.4. Mapping Matching Rules

The matching of objects that represent the same entity
are needed in two situations: when previously independent
databases are integrated and when correspondences are al-
ready established, but consistency needs to be maintained.
The functions needed in the first situation are based on the
matching rules specified in the MRSL. For the second situ-
ation, there is only a need to query the i-object for its refer-
ences to its corresponding r-objects in the other databases.
This is required in situations where, e.g., an update of an
object in a representation database occurs. Only one step is
needed to create the matching functions is the body of the
i-class (see also Section 4.3):

Step 1 A function is needed for each r-class, and each
should return the associated r-object for a given i-object.
Each function should check if a reference to an r-object is
already stored with the i-object. If not, the matching rules
need to be applied to find a corresponding r-object. This
occurs when, e.g., an i-object is created.

An example matching rule states that objects of tm and
br represent the same entity if the br object is inside the tm
object. The matching function is seen next, where a func-
tion getBrmatches and returns a br building object, either
based on being inside a tm building object or by querying
the i-object for its reference. The matching criterion uses
a built-in Oracle function SDO GEOM.RELATE, which de-
termines whether one object is inside another. If true, the
object found is returned.

MEMBER FUNCTION getBr RETURN br IS
tm_o tm; br_o br;
BEGIN

IF checkOc2 THEN
SELECT DEREF(value(b)) INTO br_o FROM TABLE

SELECT oc2 FROM building_tab WHERE
id=self.id) b;

RETURN br_o;
ELSE

SELECT DEREF(value(t)) INTO tm_o FROM TABLE
(SELECT oc1 FROM building_tab WHERE
id=self.id) t;

SELECT VALUE(b) INTO br_o FROM br_building b

WHERE SDO_GEOM.RELATE(b.location,
’INSIDE’,tm_o.shape,0.1)=’INSIDE’;

RETURN br_o;
END IF;

END;

The above function is simplified from the real function,
which handles the cases when either no object or more than
one object are found.

4.5. Mapping Restoration Rules

Triggers are executed implicitly when an insert, update,
or delete occurs on an associated table or view; thus, they
are well suited for implementing restoration rules.

Oracle triggers have some limitations that complicate the
mapping from the restoration rules to Oracle. In particu-
lar, querying or changing mutating tables (i.e., tables being
changed by a triggering statement) are not allowed. In addi-
tion, only immediate actions are supported, i.e., triggers are
executed immediately after an SQL statement is processed.
The first limitation is a problem when the i-classes and r-
classes are implemented as object tables, and a reference to
an r-object is inserted into an i-object. In Oracle, to be able
to create a reference to the r-object, a query on the r-class ob-
ject table is needed. As the r-class table is mutating, this is
not allowed in an ordinary trigger. The reason for not allow-
ing querying or changing mutating tables is that the trigger
does not have access to a consistent view of the data. The
problem with the second limitation is that it is not possible
to postpone actions and execute them at a predefined, later
stage as detached actions.

The mutating table problem may be circumvented by us-
ing row triggers and statement triggers in combination with,
e.g., a PL/SQL table. The row trigger is fired once for each
row of the table that is affected by the triggering statement.
The statement trigger fires once for each statement and not
separately for each row affected by the statement. Here,
instead of a single AFTER INSERT row trigger on an r-
class, which fails to query the table and create the object
references to be inserted in the i-class, a row trigger and a
statement trigger can be used. The row trigger stores the
inserted r-objects in, e.g., a PL/SQL table, and a statement
trigger updates the i-class table with object references using
the r-objects from the PL/SQL table. It is important to no-
tice that the problem of mutating tables occurs only if object
references need to be inserted into the i-class object table. If
the i-class table is a relational table, a single row trigger is
enough to implement a restoration rule.

Another solution is to use the object views on the r-class
relational or object tables. This makes it possible to attach
a special kind of trigger, called an INSTEAD OF trigger,
which makes Oracle fire the trigger instead of executing the
triggering event. Then it is possible to query the mutating
table. The INSTEAD OF trigger should only be used in
the case where the dependent applications are implemented

Proceedings of the 15th International Conference on Scientific and Statistical Database Management (SSDBM’03) 
1099-3371/03 $17.00 © 2003 IEEE 



to use object views. If not, there is no reason to change
existing applications; hence, the row and statement trigger
can be used instead.

As a solution to the problem of implementing a detached
action, we can create an object table queue to store the ob-
jects that need to be inserted into a table at a specified time.
Here, we need appropriate methods to ensure that objects in
the queue actually do propagate; and actions to be taken if
the propagation fails must be devised.

The steps for mapping the restoration rules to Oracle us-
ing INSTEAD OF triggers are:

Step 1a Create object views on all associated r-classes, if
they do not already exist. Any application depending on
the representation databases needs to modify these views
instead of the underlying r-class tables. (This is possible
only when the views are based on one table with the same
or fewer attributes. If it is not feasible to change the de-
pending applications, the row and statement triggers have
to be used.)

Step 2a For each restoration rule, an INSTEAD OF trig-
ger is created with the appropriate event-condition-action
statements. The operation to check consistency of the i-
class and its associated r-classes is called from the restora-
tion rules.

An example of a restoration rule for an insert on the
TM view is seen below.

CREATE TRIGGER insert_tm_obj INSTEAD OF INSERT ON
tm_view FOR EACH ROW

DECLARE
b_id NUMBER; br_id VARCHAR2(13);
n_point MDSYS.SDO_GEOMETRY;

BEGIN
INSERT INTO tm_obj VALUES

(:new.id,:new.shape);
b_id := generate_b_oid();
br_id := generate_br_id();
INSERT INTO building_tab VALUES(b_id,

:new.shape,null,null,tm_ref(),br_ref());
INSERT INTO TABLE(SELECT b.oc1 FROM

building_tab b WHERE b.id=b_id) SELECT
REF(t) FROM tm_obj tm WHERE tm.id=:new.id;

SELECT SDO_GEOM.SDO_POINTONSURFACE
(:new.shape, 0.1) INTO n_point FROM tm_obj
tm WHERE tm.id=:new.id;

INSERT INTO br_obj VALUES(br(br_id,null,
null,null,n_point));

END;

The restoration rule first executes the triggering event (the
insert statement). In order to have the triggering event pro-
cessed in an INSTEAD OF trigger, it has to be stated ex-
plicitly in the trigger. Then a new i-object is created and a
reference to the new r-object is inserted. Finally, an object
of BR Building is inserted.

If ordinary statement and row triggers are used, the steps
for mapping the restoration rules to Oracle are:

Step 1b A PL/SQL table is created for storing the r-objects
inserted and the i-object ids. It is used when inserting
references to the r-objects into the i-object. Instead of a
PL/SQL table, a temporary table or a package variable can
be used.

Step 2b For each restoration rule, a row and statement trig-
ger is created with the appropriate event-condition-action
statements. The row trigger inserts an i-object into the i-
class table without references to its r-objects (as this is not
possible) and inserts the r-object and the i-object id in the
PL/SQL table. The statement trigger selects the r-object
from the PL/SQL table and inserts its reference into the
i-object.

This implementation requires that an object type for the r-
class exists. It is also assumed that the i-class Building is
implemented as an object table. If this is not the case, only a
row trigger needs to be implemented. We omit an example
for brevity.

An example illustrating a restoration action is seen in
Figure 5, where an object in the TM database is updated.
MapInfo (version 7) has been used as an application on top
of Oracle to manipulate objects. In the example, the shape

Building objects User updates tm System updates br

Figure 5. An Update of a Building

of a tm building object is made smaller. The update trigger
is fired and calls the function checkRestoreVc1, which
restores the consistency according to the value correspon-
dence. In this case, it means that the location of the br
building is placed inside the updated tm building.

5. Experiences

We proceed to briefly describe our experiences relating
to the mapping of the constructs in the MRSL to Oracle.

The overall decisions required during an implementation
of an MRMS depend on whether the MRMS is implemented
on top of existing legacy database and applications or on top
of new databases. In the legacy case, it is typically required
that the r-classes are retained as relational tables, to avoid
having to change any existing applications. When there are
no legacy constraints, we recommend that the r-classes are
implemented as object tables. This simplifies the remaining
implementation because it can be purely object-relational.

Another decision concerns whether to use ordinary trig-
gers or INSTEAD OF triggers to implement restoration
rules. The INSTEAD OF triggers operate on object views,
which means that dependent applications need to update the
views instead of the ordinary object/relational tables. This

Proceedings of the 15th International Conference on Scientific and Statistical Database Management (SSDBM’03) 
1099-3371/03 $17.00 © 2003 IEEE 



may be inconvenient when working with legacy systems, in
which case ordinary triggers should be used. If the restora-
tion rules are implemented as ordinary triggers, the number
of required triggers doubles.

The various problems when implementing the MRMS in
Oracle are different in nature. The mutating table problem
is inherent and is caused by the implementation of Oracle;
still, it is relatively easy to circumvent. The problem of ref-
erencing virtual objects can also be circumvented with little
effort. A more significant limitation of Oracle is the lack
of support for triggers with other than immediate actions.
Support for detached actions have to be implemented in the
MRMS if needed.

6. Conclusion and Research Directions

Motivated by the problems that occur due to inconsis-
tencies among multiply represented geographical entities,
this paper explores the management of multiple represen-
tations using object-relational technology. Specifically, the
paper argues that it is possible to implement a multiple
representation management system (MRMS) based on the
object-relational model of Oracle. We have presented an ex-
ample of the modeling of multiple representations using a
real-world case from the Danish public administration. The
resulting model, termed a multiple-representation schema,
has been mapped to the object-relational model of Oracle,
and we have illustrated how it is possible to map the con-
structs of multiple-representation schemas to database mod-
els with the functionality necessary to manage the consis-
tencies among multiple representations.

Oracle has proven itself a suitable platform for imple-
menting a prototype of the MRMS, because of its object-
relational model and its support for spatial data types. There
are some limitations in Oracle, e.g., in relation to mutating
tables and references to virtual objects that unnecessarily
complicate the mapping. However, it is possible to circum-
vent all limitations. Object-relational DBMSs other than Or-
acle may also be used to avoid some of these problems. We
expect no significant difficulties in applying the constructs
of the MRSL to other object-relational DBMSs, although
the specific will be different.

It is possible to automate some of the steps in the map-
ping of a multiple-representation schema. Future work in-
cludes implementing a parser that semi-automatically trans-
lates the MRSchema into, e.g., the object-relational model
of Oracle.

Acknowledgments This research was supported in part
by the Wireless Information Management network, funded
by the Nordic Academy for Advanced Study through grant
000389 and by the LBS project, funded in part by the Danish
National Centre for IT Research.

References

[1] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Model-
ing Language User Guide. Addison-Wesley, 1999.

[2] BR. Circular About the Establishment of the Buildings and
Dwellings Register. Ministry of Housing, January 6, 1977 (in
Danish).

[3] B. P. Buttenfield and J. S. DeLotto. Multiple Representations –
Scientific Report for the Specialist Meeting. Report 89-3, NC-
GIA, Department of Geography, SUNY Buffalo, USA, 1989.

[4] S. Ceri and J. Widom. Managing Semantic Heterogeneity with
Production Rules and Persistent Queries. In VLDB, pp. 108–
119, 1993.

[5] T. Devogele, J. Trevisan, and L. Raynal. Building a Multi-
scale Database with Scale-transition Relationships. In Inter-
national Symposium on Spatial Data Handling, pp. 337–351,
1996.

[6] A. Friis-Christensen, C. S. Jensen, and J. P. Nytun. A Con-
ceptual Schema Language to Manage Multiple Representation
of Geographic Entities. Technical report, Aalborg University,
Awaiting submission, 2003.

[7] A. Friis-Christensen, D. Skogan, C. S. Jensen, G. Skagestein,
and N. Tryfona. Management of Multiply Represented Geo-
graphic Entities. In IDEAS, pp. 150–159, 2002.

[8] P. W. P. J. Grefen and J. Widom. Protocols for Integrity Con-
straint Checking in Federated Databases. Distributed and Par-
allel Databases, 5(4):327–355, 1997.

[9] C. Jones, D. Kidner, L. Luo, G. Bundy, and J. Ware.
Database Design for a Multi-scale Spatial Information Sys-
tem. International Journal of Geographic Information Sys-
tems, 10(8):901–920, 1996.

[10] G. Karabatis, M. Rusinkiewicz, and A. Sheth. Interdepen-
dent Database Systems, Chapter 8, pp. 217–252. in A. El-
magarmid et al., editors, Management of Heterogeneous and
Autonomous Database Systems. Morgan Kaufman, 1999.

[11] T. Kilpeläinen. Multiple Representation and Generalization
of Geo-databases for Topographic Maps. PhD thesis, Finnish
Geodetic Institute, 1997.

[12] KMS. Top10DK Specification. National Survey and Cadas-
tre, Copenhagen, 1999. Version 3.1.0 (in Danish).

[13] Q. Li and D. McLeod. Managing Interdependencies among
Objects in Federated Databases. In IFIP Database Semantics
Conference on Interoperable Database Systems, pp. 331–347,
1992.

[14] A. P. Sheth and J. A. Larson. Federated Database Systems
for Managing Distributed, Heterogeneous, and Autonomous
Databases. ACM Computing Surveys, 22(3):183–236, 1990.

[15] S. Spaccapietra, C. Vangenot, C. Parent, and E. Zimanyi.
MurMur: A Research Agenda on Multiple Representations.
In International Symposium on Database Applications in Non-
Traditional Environments, pp. 373–384, 1999.

[16] TK99. Specifications for Techinal Maps TK99. Committee
under the Organization of Municipalities in Denmark, 1999
(in Danish).

[17] J. B. Warmer and A. G. Kleppe. The Object Constraint Lan-
guage: Precise Modeling with UML. Addison-Wesley, 1999.

[18] R. Weibel and G. H. Dutton. Generalising Spatial Data
and Dealing with Multiple Representations, in P. Longley,
M. Goodchild, D. Maguire, and D. Rhind (eds), Geographic
Information Systems - Principles and Technical Issues, 1999.

Proceedings of the 15th International Conference on Scientific and Statistical Database Management (SSDBM’03) 
1099-3371/03 $17.00 © 2003 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


