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7.1 Introduction

This chapter is devoted to architectural and implementation aspects of spatio-
temporal database management systems. It starts with a general introduction
into architectures and commercial approaches to extending databases by spatio-
temporal features. Thereafter, the prototype systems Concert, Secondo,
Dedale, Tiger, and GeoToolKit are presented. As we will see, the focus
of these systems is on different concepts and implementation aspects of spatial,
temporal, and spatio-temporal databases, e.g. generic indexing, design of spatial,
temporal, and spatio-temporal data types and operations, constraint modeling,
temporal database management, and 3D/4D database support. A comparison of
the prototype systems and a brief résumé conclude the chapter.

7.2 Architectural Aspects

To support spatio-temporal applications, the adequate design of a system archi-
tecture for a spatio-temporal database management system (STDBMS) is cru-
cial. Spatio-temporal applications have many special requirements. They deal
with complex objects, for example objects with complex boundaries such as
clouds and moving points through the 3D space, large objects such as remote
sensing data, or large time series data. These complex objects are manipulated
in even more complex ways. Analysis and evaluation programs draw conclusions
combining many different data sources.

To build an STDBMS, the traditional DBMS architecture and functionality
have to be extended. Managing spatio-temporal data requires providing spatio-
temporal data types and operations, extensions to the query and data manipu-
lation language, and index support for spatio-temporal data. Such issues arise
not only in a spatio-temporal context but also when building spatial only or
temporal only systems. Over the recent years we witnessed three base variants
of extending system architectures (see Figure 7.1):
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Fig. 7.1. Comparison of system architectures

1. The layered approach uses an off-the-shelf database system and extends it
by implementing the missing functionality on top of the database system as
application programs.

2. In the monolithic approach, the database manufacturer integrates all the
necessary application-specific extensions into the database system.

3. The extensible approach provides a database system which allows to plug
user-defined extensions into the database system.

The following subsections present these variants in more detail.

7.2.1 The Layered Architecture

A traditional way of designing an information system for advanced data types
and operations is to use an off-the-shelf DBMS and to implement a layer on top
providing data types and services for the specific application domain require-
ments. The DBMS with such a generic component is then used by different ap-
plications having similar data type and operation requirements. Such enhanced
DBMSs exploit the standard data types and data model — often the relational
model — as a basis. They define new data types and possibly a new layer in-
cluding data definition and query language, query processing and optimization,
indexing, and transaction management specialized for the application domain.
The new data types are often mapped to low-level data storage containers usu-
ally referred as binary large objects of the underlying DBMS. Applications are
written against the extended interface. Data definition, queries, and update op-
erations are transformed from the application language to the underlying DBMS
interface.

Many of the layered architecture systems have originally been designed as
stand-alone applications directly using the operating system as their underlying
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storage system. In order to exploit generic database services such as transaction
management, their low-level storage system has been replaced by an off-the-shelf
database system. Since most of these systems supported only a few standard data
types, the layered architecture systems have to use the operating system’s file
system to store the application-specific data types while using the DBMS to store
the standard data types. This architecture is also called the dual architecture
(see Figure 7.2). Todays advanced DBMSs support binary large objects, and
thus get rid of the need to store a part of the data directly in the operating
system bypassing the DBMS.

Database

AP APAP ...

Operating System

AP-specific Extensions

Management
Data

AP-specific
DBMS

Fig. 7.2. The dual system architecture

The layered approach has the advantage of using standard off-the-shelf compo-
nents reusing generic data management code. There is a clear separation of re-
sponsibilities: application-specific development can be performed and supported
independently of the DBMS development. Improvements in one component are
directly available in the whole system with almost no additional effort. On the
other hand, the flexibility is limited. Development not foreseen in the standard
component has to be implemented bypassing the DBMS. The more effort is put
into such an application-specific data management extension, the more difficult
it gets to change the system and to take advantage of DBMS improvements.

Transaction management is only provided for the standard data types han-
dled by the DBMS. Transactional guarantees for advanced data types as well as
application-specific transaction management have to be provided by the applica-
tion-specific extension. Query processing and optimization has to be performed
on two independent levels. Standard query processing and optimization can be
handled by the DBMS while spatio-temporal query processing has to take place
in the extension. Because system-internal statistics and optimization information
are only available inside the DBMS, global query processing and optimization of
combined queries is hard to implement. Indexing of standard data types takes
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place inside the DBMS while indexing spatio-temporal data has to be dealt with
in the extension. Therefore, combined index processing cannot be used.

7.2.2 The Monolithic Architecture

As in the layered architecture, many systems using a monolithic architecture
have originally been designed as stand-alone applications. In contrast to the
layered architecture, the monolithic architecture extends an application system
with DBMS functionality instead of porting it to a standard DBMS. In this
way, specialized DBMSs with query functionality, transaction management, and
multi-user capabilities are created. The data management aspects traditionally
associated with DBMS and the application-specific functionality are integrated
into one component.

Because of the tight integration of the general data management aspects
and the application-specific functionality, monolithic systems can be optimized
for the specific application domain. This generally results in good performance.
Standard and specialized index structures can be combined for best results.
Transaction management can be provided in a uniform way for standard as
well as for advanced data types. However, implementing an integrated system
becomes increasingly difficult, the more aspects of an ever-growing application
domain have to be taken into account. It might be possible — even though
it has proven difficult — to build a monolithic system for a spatial only or
a temporal only database. Combining spatial and temporal data management
adds another dimension of complexity such that is very difficult to provide a
satisfactory solution using the monolithic approach.

7.2.3 The Extensible Architecture

The layered as well as the monolithic architecture do not support an easy adap-
tation of the DBMS to new requirements of advanced applications. The user,
however, should be able to “taylor” the DBMS flexibly according to his spe-
cific requirements. Extensible database systems provide a generic system capa-
ble of being extended internally by application-specific modules. New data types
and functionality required for specialized applications is integrated as close as
possible into the DBMS. Traditional DBMS functionality like indexing, query
optimization, and transaction management is supported for user-defined data
types and functions in a seamless fashion. In this way, an extensible architecture
takes the advantage of the monolithic architecture while avoiding its deficiencies.
It thus provides the basis for an easy integration of advanced spatio-temporal
data types, operations, and access methods which can be used by the DBMS
analogously to its standard data types and access methods.

The first extensible system prototypes have been developed to support es-
pecially non-standard DBMS applications like geographical or engineering in-
formation systems. Research on extensible systems has been carried out in
several projects, e.g. Ingres [57], DASDBS [69,68], STARBURST [40], POST-
GRES [74,75], OMS [10], Gral [35], Volcano [29,30], and PREDATOR [70]. These
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projects addressed, among other, data model extensions, storage and indexing
of complex objects as well as transaction management and query optimization
in the presence of complex objects.

Another way to provide extensible database systems are database toolkits.
Toolkits do not prescribe any data model, but rather identify and implement a
common subset of functionality which all database systems for whatever data
model must provide, e.g., transaction management, concurrency control, recov-
ery, and query optimization. Key projects of that category are GENESIS [5],
EXODUS [18], and SHORE [19].

While toolkits are very generic and can be used for the implementation of
many different data models, they leave too much expenditure at the implementor
to be accepted as a suitable means for fast system implementation. Extensible
systems, on the other hand, pre-implement as much functionality as possible at
the expense of flexibility, since they usually prescribe a specific data model, e.g.,
an object-relational model.

The SQL99 standard [48] specifies new data types and type constructors
in order to better support advanced applications. As we will see in the next
section, commercially leading database vendors already support the development
of generic extensions — even though not in its full beauty. These extensible
relational systems are referred as object-relational systems.

7.2.4 Commercial Approaches to Spatial-temporal Extensions

In the following, we briefly sketch the commercial approaches of Informix, Ora-
cle, and IBM DB2, which exploit extensible, object-relational database technol-
ogy to provide spatio-temporal extensions. Also, we briefly sketch commercial
approaches in the field of geographic information systems.

Informix Datablades. The Informix Dynamic Server can by extended by dat-
ablades [47]. Datablades are modules containing data type extensions and rou-
tines specifying the behavior of the data and extending the query language. New
data types can be implemented using built-in data types, collection types like
SET, LIST, or MULTISET, or large unstructured data types like BLOB. User-defined
functions encapsulated in the datablades determine the behavior and function-
ality of new data types.

A new access method must create an operator class containing both a set of
strategy functions and a set of support functions. The strategy functions are used
for decisions of the optimizer to build execution plans. The support functions
are needed to build, maintain, and access the index. Access methods are used by
the database server every time an operator in the filter of a query matches one
of the strategy functions and results in lower execution costs than other access
methods.

The datablade development requires expendable implementation work and
a deep understanding of the internals of the system. Therefore, the creation
of new access methods and their integration into the optimizer is mostly done
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by companies offering commercial products like the text indexing and retrieval
datablade of Excalibur [43].

The Informix Geodetic datablade [44] extends the server with spatio-temporal
data types like GeoPoint, GeoLineseg, GeoPolygon, GeoEllipse, GeoCircle,
and GeoBox, and associated operators like Intersect, Beyond, Inside, Outside,
and Within. An R-tree [39] is provided to index spatio-temporal data. A special-
ized operation class, called GeoObject ops, is available, which associates several
operators to the R-tree access method. An R-tree index for a spatio-temporal
attribute is defined as follows:

CREATE INDEX index name

ON table name(column name GeoObject ops)

USING RTREE;

Informix also provides the Spatial datablade [45] as well as the TimeSeries dat-
ablade [46] to extend the server with data types and functions referring to spatial
data only and to temporal data only, respectively.

Oracle Cartridges. The Oracle8 server can be extended by cartridges [60].
These modules add new data types and functionality to the database server. As
in Informix with datablades, data types and functions can easily be implemented
within a cartridge but the integration of indexes into the query optimizer needs
deep knowledge of the database server. In addition, access method extensions
and their integration into the query optimizer are limited to a small amount of
simple query constructions.

Based on the built-in data types, array type, reference type, and large object
types, new data types can be implemented within a cartridge. The complexity
of data types is limited and not all data types can be combined orthogonally. An
index structure is defined within the cartridge. In contrast to Informix, index
maintenance – insertion, deletion, and update – must be implemented within the
cartridge; no genericity is provided here. The usage of new index structures can
be plugged into the optimizer by user-defined functions returning information
about execution costs, statistics information, and selectivity of the index for a
given predicate. This allows the cost-based optimizer to use new indexes and to
build alternative execution plans.

To deal with spatial data, the Oracle Spatial cartridge [58] is available.
This cartridge extends the database server with data types representing two-
dimensional points, lines, or polygons. Based on these primitive data types,
composite geometric data types like point cluster and polygons with holes are
provided. A linear quad-tree [26] is provided for spatial indexing. A spatial index
on a column of type MDSYS.SDO GEOMETRY is defined as follows:

CREATE INDEX index name

ON table name(column name)

INDEXTYPE IS MDSYS.SPATIAL INDEX;
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This index is then exploited when executing geometry-specific operations like
RELATE, SDO INTERSECTION, SDO Difference, and SDO UNION.

The Oracle Time Series cartridge [59] is provided for temporal data. This
cartridge extends the server with calendar and time series data types.

IBM DB2 Extenders. IBM’s modules which extend the DB2 server with
abstract data types are called extenders. Extenders can be implemented using
built-in data types, reference types, and large object types.

Spatial data is supported by IBM’s DB2 Spatial extender. This module
extends the DB2 server with spatial data types like Point, Linestring, and
Polygon and a rich repertoire of operations like Contains, Intersects, Overlap,
Within, Disjoint, Touch, and Cross. A grid file [55] is used as spatial index.
Such a spatial index is defined as follows:

CREATE INDEX index name

ON table name(column name)

USING spatial index;

The database server is then aware of the existence of this index and the query
optimizer takes the advantage of the index when accessing and manipulating
spatial data. In addition to specifying the costs of a user-defined function, the
user can indicate whether or not the function can be taken as predicate in the
where clause.

A DB2 Time Series extender, which provides similar functionality as its
Informix and Oracle counterparts, is offered by a Swedish company [25].

Geographical Information Systems. Geographical Information Systems
(GIS) have also been designed according to the different architecture variants
discussed in the previous subsections. ARC/INFO [2], for example, is a repre-
sentative of the dual architecture, whereas ARC/INFO’s spatial database engine
and SMALLWORLD GIS [72] have a monolithic system architecture. However,
hitherto there are no commercial GIS that allow an extension of their database
kernel.

As GIS have originally been developed to support the construction of digital
maps, they have made much more progress in handling spatial data than tem-
poral data. The key issue with GIS during the last years has been the combined
handling of spatial and non-spatial data [54]. Database support for dynamic
maps, however, is still a research topic. To the best of our knowledge, there
is no efficient support for the handling and processing of temporal data in to-
day’s commercial GIS. These systems have not been designed for temporal data
support and currently are not easily extensible for temporal data management.
A prototype module for the management of temporal data on the basis of a
commercial GIS has been proposed by [50].
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7.3 The Concert Prototype System

7.3.1 Introduction

Concert [9,65,64] is a database kernel system based on an extensible architec-
ture. However, Concert propagates a new paradigm called “exporting database
functionality” as a departure from traditional thinking in the field of databases.
Traditionally, all data is loaded into and owned by the database in a format
determined by the database, whereas according to the new paradigm data is
viewed as abstract objects with only a few central object methods known to
the database system. The data may even reside outside the database in exter-
nal repositories or archives. Nevertheless, database functionality, such as query
processing and indexing, is provided. The new approach is extremely useful for
spatio-temporal environments, as there is no single most useful data format
to represent spatio-temporal data. Rather, many different spatio-temporal data
formats coexist. The new paradigm presented in Concert allows them to be
viewed in a uniform manner.

While traditional indexing is based on data types — an integer data type
can be indexed by a B-tree, a polygon data type can be indexed by an R-tree
— Concert’s indexing is based on the conceptual behavior of the data to be
indexed: data that is associated with an ordering can be indexed by a B-tree.
Data implementing spatial properties (such as overlaps and covers predicates)
can be indexed by an R-tree. Concert uses four classes of behavior, SCALAR,
RECORD, LIST, and SPATIAL, covering all relevant concepts that are the basis of
today’s indexing techniques.

With these classes conceptual behavior of data is described in contrast to
type dependent properties like in GiST [41]. On top of the Concert classes,
arbitrary indexing structures can be build which are valid for a variety of data
types. New indexing structures are implemented for concepts and use concept
typical operations. In this way, indexing techniques of the Concert approach
are independent of the concrete implementation of the data types — in particular
it is not limited to tree structures alone. This is the major difference between
GiST and the indexing framework provided by Concert.

7.3.2 Architecture

Following the extensible system architecture, Concert consists of a kernel sys-
tem for low-level data management and query processing as well as an object
manager providing advanced query functionality. The kernel is responsible for the
management of individual objects within collections, resource and storage man-
agement, and low-level transaction management. The object manager combines
different collections adding join capability to the kernel collections. Figure 7.3
shows an overview of the Concert architecture.

The Concert kernel system consists of two components, the Storage Ob-
ject Manager (SOM) and the Abstract Object Manager (AOM). The SOM pro-
vides DBMS base services such as segment management, buffer management,
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Fig. 7.3. Concert system architecture

and management of objects on database pages. It is tightly integrated into the
underlying operating system exploiting multi-threading and multi-processing.
It uses a hardware-supported buffer management exploiting the operating sys-
tem’s virtual memory management by implementing a memory-mapped buffer
[8]. Details of the Concert SOM can be found in [63].

The AOM provides the core functionality for extending the kernel with appli-
cation-specific code. It implements a fundamental framework for the manage-
ment of collections. It uses the individual objects handled internally by the SOM
or, through its interoperability capability, by an external storage system, com-
bining them into collections. The AOM collection interface defines operations to
insert, delete, and update individual objects. Retrieval of objects is performed
through direct object access or through collection scans. Scans are initiated us-
ing an optional predicate filtering the qualifying objects. Figure 7.4 shows the
(simplified) collection interface definition.

Indexes are treated similar to base collections. From the AOM’s perspective,
they are collections of objects containing the index entry (the attribute to be
indexed on) and the object key of the base collection. Accessing data using an
index is performed by an index scan identifying all qualifying object keys that
are subsequently used to retrieve the objects themselves. Depending on the kind
of the index and the query, the objects retrieved might have to be filtered further
performing a false drops elimination.

On object insertion, the object is inserted into the base collection first. The
insertion operation of the base collection returns an object key that can be
used for the index entry. Because the index uses the same interface as the base
collection, hierarchies of indexes can be built easily. This allows, for example, an
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createInstance (coll description) :- coll handle

deleteInstance (coll handle)

insertObject (coll handle, object) :- object key

deleteObject (coll handle, object key)

updateObject (coll handle, old key, object) :- new key

getObject (coll handle, object key) :- object

scanStart (coll handle, predicate) :- scan handle

scanGet (scan handle) :- object

scanNext (scan handle)

scanClose (scan handle)

Fig. 7.4. (Simplified) AOM collection interface

inverted file index to be indexed itself by a B-tree index. The conceptual equality
of base collections of objects and the index collections of their keys enables the
components to be combined in many different ways providing a powerful tool
that goes far beyond simple indexing and includes things such as constraint
validation and trigger mechanisms.

A special aspect of the Concert approach is the fact that indexing is per-
formed for abstract data types. Obviously it is not possible to index completely
unknown objects. Some knowledge of the user-defined objects has to be available
to the storage system. A small set of concepts is identified to be sufficient to allow
most physical design decisions for spatio-temporal DBMS. The next subsection
introduces an R-tree like generic index framework with minimal restrictions to
the flexibility of external objects.

7.3.3 Spatio-temporal Extensions

To explain Concert’s database extensibility idea, let us look at a standard B-
tree index [21], as it is implemented in most database systems. A B-tree stores
keys of objects ordered by their values. The ordering operation is chosen depend-
ing on the data type of the key value: for data type NUMBER, standard ordering
over numbers is used whereas STRING data types are lexicographically ordered.
Another ordering operation is used for DATE data types. Much more data types
are possible but the central aspect when data is indexed by a B-tree is that there
is an attribute which can be ordered [73]. On the other hand, data types which
cannot be ordered cannot be indexed by a B-tree.

The generalization of this observation is the basis of the abstract object stor-
age type concept in Concert: The knowledge about the type of the data is not
needed to manage it but its conceptual behavior and the concept typical opera-
tions associated with these concepts must be known. These operations have to
be provided by the user to allow Concert to interpret a given abstract object
storage type. Four concepts can be identified:
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• SCALAR: A data type belongs to the SCALAR concept if there is an ordering
operation. All data types behaving like a SCALAR can be indexed, for instance,
by a B-tree.

• LIST: A data type belongs to the LIST concept if it consists of a set of
components over which an iterator is defined. A data type behaving like
a LIST might be a list of keywords, forming the inverted index of a text
document. The concept typical operations are FIRST and NEXT.

• RECORD: A data type belongs to the RECORD concept if it is an ordered con-
catenation of components which themselves are arbitrary concepts. The con-
cept typical operation is the SUB OBJECT operation returning a component
of the RECORD. A RECORD implements object partitioning.

• SPATIAL: A data type belongs to the SPATIAL concept if it is extended in an
arbitrary data space and can be indexed with respect to its spatial proper-
ties. This is the most important concept in the context of spatio-temporal
data and will be explained in detail in the next subsection. Note that this
concept is not limited to geometric or time space alone. The concept typi-
cal operations OVERLAPS, SPLIT, COMPOSE, and APPROX are explained in the
following.

The user has to implement extensions by plugging new data types into the
existing framework. Spatio-temporal indexing structures can be implemented
and plugged into Concert independent of the data type indexed by just using
the SPATIAL concept typical operations.

In traditional systems, the class of space covering objects is predefined by
the index method provided and thus “hard-wired” in the system, e.g., a space
covering rectangle in the R-tree. Therefore, the classes of application objects
and query objects also have to be predefined by the DBMS requiring the user
to convert his data into the DBMS format. This clearly is not desirable in the
context of extensible systems. Concert addresses this problem. Rather than
predefining spatial index objects and thereby forcing the data structure of user
objects and user queries, it allows the user to implement not only the applica-
tion and query objects but also corresponding index objects. The spatial index
algorithm is written in a generic way only exploiting the spatial space-subspace
relationships through method invocation.

These spatial1 relationships define the concept typical operations of the
SPATIAL concept as follows:

• The operation OVERLAPS checks for spatial overlap of two objects or data
spaces. It is used by index tree navigation to prune the search space. It also
helps finding the appropriate leaf node on index insertion. Therefore it is not
defined as a simple predicate operation, but rather as an operation returning

1 Note that the spatial concept is not restricted to objects of the geometric space.
The spatial conceptcan also be used to model object of the temporal space as well
as other data spaces whose objects exhibit similar behavior as geometric objects,
e.g., supports inclusion and overlapping predicates as well as split and compose
operations.
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an integer value indicating the degree of overlap. Negative values are used
as a measure for indicating the distance between two objects2. Finally, the
OVERLAPS operation is used to approximate spatial and temporal overlaps,
intersects, and covers predicates.

• The SPLIT operation divides a spatial object into several spatial objects. This
operation can be used to a priori divide large user objects into smaller ones
before inserting them or while reorganizing the search tree. It is also used to
split index nodes when they become too large. The question “when nodes are
split” and “which concrete spatial object is returned” is determined by the
implementation of the SPLIT operation of the associated data type following
the SPATIAL concept. In this way, a split operation can return a simple set
of rectangles resulting from splitting a “large” rectangle (like in R+-trees)
but also a set of complex polygons or spheres.

Here the terms small and large are used in two contexts. Large objects can
be objects occupying a lot of storage space, as well as objects covering a
large data space. In both cases, it might be beneficial to divide a large
object into several smaller ones. In the first case, memory allocation and
buffering is easier. In the second case, the data space in index nodes is smaller
allowing a better pruning in the index structure. The behavior depends on
the implementation of the SPLIT operation.

• The COMPOSE operation recombines spatial objects that have previously been
split to an “overall” spatial object. This operation is used for the reconstruc-
tion of large data objects which have been split on insertion, as well as for
index node description objects when index nodes are merged. Note that
we make no assumption about the implementation of the operations for a
given data type. We only consider the conceptual behavior of the data. The
COMPOSE operation is the inverse of the SPLIT operation, which means that
if O is an object of concept SPATIAL then O=COMPOSE(SPLIT(O)) holds.

• Finally, the APPROX operation approximates a spatial object or a set of spatial
objects with a new spatial object. This new spatial object is a representative
of the data space covered by the objects to be approximated. The typical
and most common approximation is the n-dimensional bounding rectangle.
However, the APPROX operation is not restricted to the bounding rectangle.
Arbitrary operations can be used as long as they satisfy the condition of
dominating predicates [77]. In our context, this means that, for example, if
the approximations of two objects do not overlap, the two original object
must not overlap. Figure 7.5 summarizes these four concept typical opera-
tions of the SPATIAL concept.

The user implements these four operations for an application, query and index
objects and registers them to the Concert kernel system.

2 Note that there is no restriction about the implementation of these operations.
Programmers might decide to only distinguish two values — overlapping and non-
overlapping — for the OVERLAPS operation. The concepts described here will work in
the same way. However, the optimizations described are not possible.
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CONCEPT SPATIAL

Operation Parameter Result

OVERLAPS spatial object1, spatial object2 SCALAR

SPLIT spatial object { spatial object }
COMPOSE { spatial object } spatial object
APPROX { spatial object } spatial object

Fig. 7.5. Typical operations of the SPATIAL concept

7.3.4 Implementation Details

Concert can deal with each data type belonging to one of the concepts for which
the necessary management and concept typical operations are implemented, in-
dependently of the concrete implementation of the data types. Indexing and
query processing in the DBMS kernel is performed based on these operations
only. For more information about the concepts, the operations, and the Con-

cert system in general see [63,66,65,9]. In the following, we describe how spatio-
temporal indexes can be plugged into Concert by using a framework for generic
spatio-temporal data indexing.

Although the well-known R-tree [39] may not be optimal for indexing spatio-
temporal objects (particularly for temporal indexes; see [67] for more informa-
tion), its simple and well-understood structure is useful to explain the extensi-
bility aspects. The R-tree is implemented and generalized within the Concert

framework. Abstracting from the R-tree approach results in an index structure
which is generic in the sense of data because it is based only on the “behavior”
of the concept it belongs to. It is also generic in the sense of algorithms because
of the use of generic heuristic functions which determine the tree-internal pro-
cesses (varying the heuristics can change the R-tree like behavior into an R+-tree
or another derivation). Finally, it is also generic in the sense of nodes covering
search spaces because of the use of spatial objects to approximate the space of
subtrees and no fixed spatial shapes.

Whereas the R-tree is restricted to store rectangular data objects, the Con-

cert approach allows any objects conforming to the SPATIAL concept to be
stored in the generic spatio-temporal tree. The Concert low-level storage ca-
pabilities provides an efficient multi-page storage system. Therefore, the generic
spatio-temporal tree does not need to have a fixed node size. Nodes can be
enlarged dynamically to virtually unlimited3 size using a multi-page secondary
storage allocation scheme [8]. The R-tree nodes have minimal bounding rectan-
gles associated with them, whereas the generic spatio-temporal tree uses abstract
spatial objects instead (e.g. spheres, convex polygons, or just rectangles). These
spatial objects are usually computed using the APPROX operation. The only as-
sumption made here, which is implicit given by the SPATIAL concept, is the
existence of an APPROX operation which can be evaluated on node objects.

3 There is a hard limit of 4 GByte per node. However, in order to be efficient, inner
nodes should not become larger than about 1 MByte.
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7.3.5 Case Studies

In the following we describe how a generic spatio-temporal tree can be used in
Concert with its typical operations of object-lookup, insertion with splitting
of a node and deletion including the reorganization of the tree.

Object Lookup. The generic spatio-temporal tree uses a SPATIAL object to de-
scribe the data space of the query window, or more generally, the arbitrary
query space. With this knowledge the R-Tree algorithms as given in [39] can
be extended to a generic algorithm using the SPATIAL concept and its concept
typical operation OVERLAPS, as shown in Figure 7.6. Such algorithms can be
incorporated easily into the Concert system.

find (query, node)

begin

for all e ∈ {node.entries}
if leafnode(node)

if OVERLAPS (query, e.object)

report e.object

endif

else

if OVERLAPS (query, e.region)

find (query, e)

endif

endif

endfor

end

Fig. 7.6. Lookup in a generic spatial index

The concept typical operation for spatial index lookup is the OVERLAPS operation.
Note that the Concert spatial index is much more flexible than any given
tree variant. If the abstract objects stored in the nodes are minimum bounding
rectangles, and query objects are rectangles as well, the algorithm depicted in
Figure 7.6 behaves exactly as the R-tree lookup. Since Concert makes almost
no assumption about the objects in the tree, the algorithm works the same way
also for arbitrary n-dimensional spatial objects, as long as the subtrees form
hierarchies of data spaces. Certain applications might prefer to use overlapping
convex polygons to partition the data space or a sphere, if the Euclidean distance
is important like in nearest neighbor queries for point data.

If the objects contain, beside the spatial, a temporal dimension, the algorithm
can directly be used for spatio-temporal objects. Note that it is the responsibility
of the user implementing the OVERLAPS operation to distinguish between the
spatial and the temporal dimension.
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Splitting a Node. One of the important issues often discussed for R-trees in
the context of spatio-temporal applications is the problem of dead space in the
rectangles. The larger the rectangles are with respect to the data space covered
by the objects contained in the node, the less efficient the R-tree becomes. Our
generic tree provides an easy and flexible solution to this problem.

Index nodes as well as data objects stored in the index are spatially extended
objects implementing the operations of the SPATIAL concept. Therefore, large
objects can be split into several (smaller) ones by using the concept typical
operation SPLIT. This operation can be called many times until the resulting
objects have a good size from an application point of view. It is not the database
system and its index structure that determines the split granularity or the split
boundaries. If, from an application point of view, there is no point in splitting
an object further, the SPLIT operation just returns the unchanged object.

Note that the SPLIT operation is much more powerful than just splitting a
rectangle into many others. The SPLIT operation needs an object of an arbitrary
data type following the SPATIAL concept and returns a set of objects. The only
requirement is that the resulting objects follow the SPATIAL concept. Such ob-
jects might be, for instance, rectangles as in R-trees or spheres as in M-trees.
The exact behavior of a SPLIT operation is determined by its implementation.

As discussed earlier, Concert has virtually no size restriction for its index
nodes. Using the OVERLAPS operation, the spatial index code can therefore han-
dle arbitrary large objects — it just might not be very efficient, if the SPLIT

operation is not actually splitting the objects. In any case, splitting is done by
exploiting application semantics rather than following a node-space constraint.

Splitting is possible in different situations. One important situation is the
a priori splitting of objects at insertion or update time. Such approaches are
included in R-tree derived trees. By using the concept typical SPLIT operation
these well-studied split procedures are generalized. The concrete implementa-
tion of the operation can determine different application dependent heuristics
adapted to the requirements.

Insertion of Objects. In contrast to [41], we develop our algorithm based on the
concept typical operations and the tree typical operations adapt to the concept
driven approach whereas GiST follows a tree structure driven approach, general-
izing operations in the context of tree management. Figure 7.7 shows the generic
insertion procedure for our index.

Although similar to its outline, the generic spatial index has some important
differences to the R-tree. Whereas in the R-tree nodes are of fixed size and,
hence, a node has to be split according to application requirements, the generic
index is more flexible. The operation Consider Split can implement a flexible
splitting heuristics considering not only the size of the node but also the spatial
extension of the objects and the amount of dead space in the node. In this way,
the concrete choice of a heuristic determines the behavior of the tree such that it
behaves like an R-tree, an R+-tree, or any other indexing tree for spatial data.

The splitting itself is also more flexible. It can be performed not only by
distributing the entries among the nodes (using an arbitrary splitting strategy
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insert (object, node)

begin

if leafnode(node)

Consider Split {Heuristics for splitting or enlarging leaf node}
Insert Object to leaf node

else

Choose Subtree {Heuristics for choice of best subtree}
insert (object, subtree)

Consider Subtree Split {Heuristics for splitting or enlarging inner node}
endif

Adjust Node

end

Fig. 7.7. Insertion into a generic spatial index

such as one of the strategies discussed in [39]) but also by splitting large objects
using the concept typical operation SPLIT reducing the dead space further. In
this way, the implementation of SPLIT controls a part of the behavior of our
indexing framework.

Even the insertion of an object in a subtree is more flexible than in a con-
crete tree implementation. The insertion is handled by recursively passing the
object down the tree. At each non-leaf node, an appropriate subtree has to be
chosen for the recursion. This is done by the operation Choose Subtree . In the
standard R-tree algorithm, the subtree is chosen based on the least enlargement
of the bounding rectangle necessary. In the generic spatial index, the concept
typical operation OVERLAPS is used. In order to optimize the choice for a sub-
tree, OVERLAPS is not defined as a simple predicate but rather returns an integer
value indicating the amount of overlap. In addition to the amount of overlap,
the current size of the subtree and the amount of free space in the subtree can
also be considered.

The additional flexibility over fixed multi-dimensional indexing trees gained
with the operations Choose Subtree , Consider Split and Consider Subtree

Split together with the mechanism avoiding dead space using the concept typ-
ical operation SPLIT makes the Concert approach a useful framework of an
R-tree like index for spatio-temporal applications.

Reorganizing the Tree. After insertion, nodes have to be adjusted using the
AdjustNode operation as shown in Figure 7.8. Insertion into the generic spatial
tree can bring the tree out of balance. This can be avoided by reorganizing the
nodes by moving some of its entries to sibling nodes. However, such a reorgani-
zation can be very expensive. Therefore, a complete reorganization is performed
at given points in time when the tree gets too much out of balance.
Remembering that each node has a covering subspace object associated with it
which follows the SPATIAL concept (e.g. a bounding rectangle in R-trees), this
object has to be adjusted on insertion using operation APPROX if reorganization
is necessary. Whether a node has to be adjusted is determined by the Consider
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adjust node (node)

begin

Consider Reorganization {Heuristics for reorganization with sibling nodes}
Adjust Covering Subspace {using the APPROX operation}
if node has been split

Create Covering Subspace of new node
Propagate Split to parent node

endif

end

Fig. 7.8. Adjust an index node

Reorganization operation which implements the desired heuristic. If the node
has been split, the APPROX operation has to be calculated for both nodes and
the split has to be propagated to the parent node. If the root node is split, the
tree grows by one level.

Deletion of Objects. For object deletion, two strategies can be followed. It is
always possible to recompute the spatial extent of each node using the APPROX

operation. This keeps the space covered by each node minimal, but it requires
substantial overhead each time an object is deleted.

Alternatively, the spatial extent of the nodes is left unchanged. Deletion is
more efficient since no deletion or adjustment of inner nodes is necessary. If
a node becomes too small, it is merged with one of its siblings. This keeps
the overhead of reorganizing the tree low, but at the same time decreases the
efficiency of the index due to possible dead space in the covering objects of a
node.

The Concert prototype has been tested, among others, with an application
from photogrammetry targeting raster image management [65]. The focus has
been on physical database design and query processing for raster image man-
agement.

7.4 The Secondo Prototype System

7.4.1 Introduction

Secondo is a data-model independent environment for the implementation of
non-standard database systems. Its goal is to offer the advantages of both the
extensible system and the toolkits approach (see Section 7.2.3) while avoiding
their disadvantages.

The core component of Secondo is a generic “database system frame” that
can be filled with implementations of a wide range of data models, including,
for example, relational, object-oriented, graph-oriented, sequence-oriented, or
spatio-temporal database models.4 The key strategy to achieve this is the separa-

4 Some of the goals of Secondo and Concert are similar. A comparison of the two
systems is given at the end of Section 7.4.3.
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tion of the data model independent components and mechanisms in a DBMS (the
system frame) from the data-model dependent parts. Nevertheless, the frame and
the “contents” have to work together closely. With respect to the different levels
of query languages in a DBMS, we have to describe the system frame:

• the descriptive algebra, defining a data model and query language,

• the executable algebra, specifying a collection of data structures and oper-
ations capable of representing the data model and implementing the query
language, and

• the rules to enable a query optimizer to map descriptive algebra terms to
executable algebra terms, also called query plans or evaluation plans.

A general formalism serving all these purposes has been developed earlier, called
second-order signature (SOS) [36]. It is reviewed in Section 7.4.2.

On top of the descriptive algebra level there may be some syntactically sug-
ared language, e.g., in an SQL-like style. We assume that the top-level language
and the descriptive algebra are entirely equivalent in expressive power; only the
former may be more user-friendly whereas the latter is structured according to
the SOS formalism. A compiler transforming the top-level language to descrip-
tive algebra can be written relatively easily using compiler generation tools, since
it just has to perform a one-to-one mapping to the corresponding data definitions
and operations.

At the system level, definitions and implementations of type constructors
and operators of the executable algebra are arranged into algebra modules, in-
teracting with the system frame through a small number of well-defined support
functions for manipulation of types and objects as well as operator invocation.
Those algebra support functions dealing with type expressions will be created
automatically from the corresponding SOS specification.

7.4.2 Second-Order Signature

Since the Secondo system implements the framework of second-order signature
(SOS) [36], it is necessary to recall the essential concepts here. The basic idea
of SOS is to use two coupled signatures to describe a data model as well as an
algebra over that data model. To distinguish the two levels of signature, we call
the first type signature and the second value signature. A signature in general
has sorts and operators and defines a set of terms.

Specifying a Descriptive Algebra. The type signature has so-called kinds as sorts
and type constructors as operators. The terms of the type signature are called
types. In the sequel, we show example specifications for the relational model
and a relational execution system. Although the purpose of Secondo is not
to reimplement relational systems, it makes no sense to explain an unknown
formalism using examples from an unknown data model. The structural part of
the relational model can be described by the following signature:
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kinds IDENT, DATA, TUPLE, REL
type constructors

→ DATA int, real, string, bool

(IDENT×DATA)+ → TUPLE tuple

TUPLE → REL rel

Here int, real, string, and bool are type constructors without arguments, or
constant type constructors, of a result kind called DATA. A kind stands for the
set of types (terms) for which it is the result kind. For DATA this set is finite,
namely DATA = {int, real, string, bool}. In contrast, there are infinitely many
types of kind TUPLE or REL. For example,

tuple([(name, string), (age, int)])

rel(tuple([(name, string), (age, int)]))

are types of kind TUPLE and REL, respectively. The definition of the tuple

type constructor uses a few simple extensions of the basic concept of signature
that are present in the SOS framework. For example, if s1, . . . , sn are sorts, then
(s1×· · ·×sn) is also a sort (product sort), and if s is a sort, then s+ is a sort (list
sort). The term (t1, . . . , tn) belongs to a product sort (s1×· · ·×sn) if and only if
each ti is a term of sort si; the term [t1, . . . , tm], for m ≥ 1, is a term of sort s+ if
and only if each ti is a term of sort s. The kind IDENT is predefined (and treated
in a special way in the implementation in Secondo). Its type constructors are
drawn from some infinite domain of “identifiers”. Hence they can be used as
attribute names here.

The notion of a relation schema has been replaced by a relation type, and
“relation” is not considered to be a single type, but a type constructor. Hence
operations like selection or join are viewed as polymorphic operations. Note
that the choice of kinds and type constructors is completely left to the designer
of a data model. In contrast to the Concertapproach, we are not offering a
toolbox with a fixed set of constructors such as tuple, list, set, etc., but instead a
framework where new constructors can be defined. Hence the Secondo system
frame as such knows nothing about rel or tuple constructors, in contrast to
Concertwhere, for instance, the record concept requires to provide component
access.5 In summary, the terms of the type signature of an SOS specification
define a type system, which within the descriptive algebra is equivalent to a
DBMS data model.

Now the value signature is used to define operations on the types generated by
the type signature. Whereas a signature normally has only a small, finite number
of sorts, the second level of signature in SOS generally has to deal with infinitely
many sorts. Because of this, we write signature specifications. The basic tool is
quantification over kinds. We define a few example operations for the relational
model above:

5 The only predefined kinds and type constructors in Secondo are IDENT with its
“type constructors” and the type constructor stream which plays a special role in
query evaluation.
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operators

∀ data in DATA.
data × data → bool =, 6=, <,≤, >,≥

Here, data is a type variable ranging over the types in kind DATA. Hence, it can
be bound to any of these types which is then substituted in the second line of
the specification. So, we obtain comparison operators on two integers, two reals,
etc. Relational selection is specified as follows: pipes

∀ rel : rel(tuple) in REL.
rel × (tuple → bool) → rel select

Here, rel(tuple) is a pattern in the quantification which is used to bind the two
type variables rel and tuple simultaneously. Hence, the first argument to select

is a relation of some type rel , and the second argument is a function from its
tuple type to bool, that is, a predicate on this tuple type. The result has the
same type as the first argument. The second argument of select is based on the
following extension of the concept of signature defined in SOS: If, for n ≥ 0,
s1, . . . , sn and s are sorts, then (s1 × · · · × sn → s) is a sort (function sort).
Furthermore,

fun(x1 : s1, . . . , xn : sn) t

is a term of sort (s1 × · · · × sn → s) if and only if t is a term of sort s with free
variables x1, . . . , xn of sorts s1, . . . , sn, respectively.

An operator attr allows us to access attribute values in tuples:

∀ tuple: tuple(list) in TUPLE, attrname in IDENT, member(attrname,
attrtype, list).

tuple × attrname → attrtype attr

Here, member is a type predicate that checks whether a pair (x, y) with x =
attrname occurs in the list making up the tuple type definition. If so, it binds
attrtype to y. Hence, attr is an operation that for a given tuple and attribute
name returns a value of the data type associated with that attribute name. Type
predicates are implemented “outside” the formalism in a programming language.
Precisely the same formalism (although we have not yet seen all of it) can be
used to define an executable algebra, thereby specifying an execution system for
some data model. In this case, type constructors represent data structures and
operators represent query processing algorithms implemented in the system.

Commands. In the SOS framework, a database is a pair (T, O), where T is a
finite set of named types and O is a finite set of named objects. A named type
is a pair, consisting of an identifier and a type of the current (descriptive or
executable) algebra. A named object is a pair, consisting of an identifier and a
value of some type of the current algebra. SOS defines six basic commands to
manipulate a database, regardless of the data model:

type <identifier> = <type expression>

delete type <identifier>
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create <identifier> : <type expression>

update <identifier> := <value expression>

delete <identifier>
query <value expression>

A command can be given at the level of descriptive or executable algebra. In
the first case, it is subject to optimization before execution; in the second, it is
executed directly. In these commands, a type expression is a type of the current
type signature, possibly containing names of (previously defined) types in the
database. A value expression is a term of the current value signature, which may
also contain constants and names of objects in the database. The type command
adds a new named type, delete type removes an existing type. The create

command creates a new object of the given type; its value is yet undefined. The
update command assigns a value resulting from the value expression which
must be of the type of the object. The delete command removes an object
from the database. The query command returns a value resulting from the
value expression to the user interface or application. Here are some example
commands at the executable algebra level:

type city = tuple([(name, string), (pop, int), (country, string)])
type city rel = srel(city)
create cities: city rel
update cities := {enter values into the cities relation, omitted here}
query cities feed filter [fun (c: city) attr(c, pop) > 1000000] consume

More details about the SOS framework can be found in [36]. In [6], a descriptive
algebra has been defined for GraphDB [37], an object-oriented data model that
integrates a treatment of graphs, which shows that the framework is powerful
enough to describe complex, advanced data models.

7.4.3 Architecture

Second-order signature is the formal basis for specifying data models and query
languages. In this section, we present the Secondo system frame, providing
a clean extensible architecture, implementing all data-model independent func-
tionality for managing SOS type constructors and operators, and supporting
persistent object representations. Extending the frame with algebra modules
results in a full-fledged DBMS. In addition to the basic commands, Secondo

provides several other commands, e.g., for transaction management, system con-
figuration, administration of multiple databases, and file input and output.

Overview. Figure 7.9 shows a coarse architecture overview of the Secondo

system. We discuss it level-wise from bottom to top. White boxes are part of
the fixed system frame, which is independent of the currently implemented data
model. Gray-shaded boxes represent the extensible part of the Secondo system.
Their contents differ with specific database implementations.
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Fig. 7.9. The Secondo architecture

The system is built on top of the Solaris operating system. Since we want to
offer a full-fledged DBMS using a storage manager for dealing with persistent
data is essential. In fact, we use the storage manager component of SHORE [19].

At level 1 of the Secondo architecture, we find a variety of tools, for instance:

• Nested lists, a library of functions for easy handling of nested lists, the generic
format to pass values as well as type descriptions.

• SecondoSMI, a simplified storage manager interface to the SHORE functions
used most often. It can be used together with original SHORE function calls
whenever the simplified functionality is not sufficient.

• Catalog tools for easy creation of system catalogs and algebra-specific cata-
logs.

• The Tuple Manager is an efficient implementation for handling tuples with
embedded large objects.

• The SOS Parser transforms an SOS term to the generic nested list format
used in the system.

• The SOS specification compiler creates the source code for the TypeCheck

and TransformType algebra support functions from a valid SOS specifica-
tion.

Level 2 is the algebra module level. To some extent, an algebra module of Sec-

ondo is similar to ADTs of PREDATOR [71] or Informix datablades [47]. Using
the tools of level 1, a Secondo algebra module defines and implements type
constructors and operators of an executable query algebra. Secondo allows for
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implementations in C++, Modula-2, and C. To be able to use a module’s types
and operators in queries, the module must be registered with the system frame,
thereby enabling modules in upper levels to call specific support functions pro-
vided by the module. In Figure 7.9, modules 1, 2, and n are active since they
are connected to the frame, while module 3 is inactive. C++ modules are acti-
vated by linking them to the system frame. In addition, the activation of C and
Modula-2 modules requires insertion of some standardized lines into the body
of a predefined startup function.

Level 3 contains the query processor, the system catalog of types and objects
(remember that a database is just a set of named types and named objects),
and the mechanism for module registration. During query execution, the query
processor controls which support functions of active algebra modules are exe-
cuted at which point of time. Input to the query processor is a query plan, i.e.
a term of the executable algebra defined by active algebra modules. A detailed
description of query processing techniques in Secondo, including the powerful
stream concept, can be found in [22] and, on a more technical level, in [38].

The query optimizer depicted at level 4 transforms a descriptive query into an
efficient evaluation plan for the query processor by means of transformation rules.
For each algebra module, the database implementor provides a corresponding set
of rules as well as algebra support functions supplying information on estimated
query execution costs.

The command manager at level 5 provides a procedural interface to the
functionality of the lower levels. Depending on the command level, the query (or
other command) is passed either to the query compiler, provided by the database
implementor, to the optimizer or to the query processor.

At level 6 we find the front end of a Secondo installation, providing the
user interface. In general, there are two mutually exclusive alternatives: either
the user interface is linked with the frame and active algebra modules to a self-
contained program, or the Secondo process is made a server process serving
requests of an arbitrary number of client processes which implement the user
interfaces. In the first case, Secondo is a single-user, single-process system,
while in the latter case Secondo is a multi-user capable client-server system,
exploiting the multi-threaded environment offered by SHORE. To support the
implementation of user clients, Secondo provides comfortable client libraries
for C++ and Java.

Algebra Modules. An algebra module has to implement a set of support func-
tions for all of its type constructors and operators. Figure 7.10 lists all support
functions for type constructors implemented in algebra modules. In addition to
these functions, also the type constructor name is passed to the system frame.
During query processing, the In function is used to convert an external value
(in nested list form), given as part of an input file or in an interactive query
command, to its corresponding internal value. The internal value typically is a
catalog index essentially referencing either a main memory pointer or a persistent
identifier. The Out function is the reverse of the In function, producing external
values for user interfaces or output files.
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In/Out Conversion from external to internal value
representation and vice versa.

Create/Delete Allocate/deallocate memory for internal value
representation.

TypeCheck Validation of type constructor applications in type
expressions.

InModel/OutModel Conversion from nested list to internal model
representation and vice versa.

ValueToModel Computes a model for a given value.

Fig. 7.10. Support functions for type constructors

The Create/Delete pair of support functions is used to allocate memory for
a default value of the given type or to delete an object of that type, respectively.
Default value creation is performed by the query processor to reserve space for
single stream elements, thereby avoiding multiple allocation and deallocation
of memory for stream elements of a common stream, which are never accessed
simultaneously. The Delete function is called later on to deallocate this default
memory space as well as all intermediate results generated while processing a
query.

The TypeCheck function is called whenever a new database object is created
to check whether its type conforms to the signature of the underlying data model.

Furthermore, for each type constructor a model may be registered which is a
data structure containing summary information about a value of the type. The
model is a place to keep statistical information such as expected number of tu-
ples, histograms about attribute value distribution, etc. For maintaining models
there are three support functions InModel, OutModel, and ValueToModel, as
listed in Figure 7.10.

Figure 7.11 presents all support functions for operators. For each operator,
its name and the number of Evaluate functions are also passed to the system
frame. During query execution, the query processor calls the TransformType

function for type checking. Select is needed for the resolution of overloaded
operators. The Evaluate function(s) do(es) the “real work” by computing an
operator’s result value from its argument values.

TransformType Computes the operator’s result type from given
argument types.

Select Selects the correct evaluation function in case of over-
loading by means of the actual argument types.

Evaluate Computes the result value from input values. In case of
overloading, several evaluation functions exist.

MapModel Computes the result model from argument models.

MapCost Computes the estimated cost of an operator application
from argument models and costs.

Fig. 7.11. Support functions for operators
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Concerning cost estimation, there are two support functions called MapModel

and MapCost. For an operator application, MapModel takes the models of the
operator’s arguments and returns a model for the result. MapCost also takes
the models of the operator’s arguments as well as the estimated costs for com-
puting the arguments and, based on these, estimates and returns the cost for
the operator application. By calling these support functions, the optimizer can
estimate properties of intermediate results and the cost of query plans or sub-
plans. Furthermore, there is a startup routine for each algebra module which is
used to associate type constructors with the kinds containing them, to perform
initializations of global arrays, etc.

The registration mechanism for support functions differs from the imple-
mentation language. Registration is most comfortable in C++: For each type
constructor, an instance of the predefined class TypeConstructor must be de-
fined, passing operator support functions as constructor arguments. The same
happens with operators and a predefined class Operator. For a complete alge-
bra, an instance of a class derived from the predefined class Algebra is defined.
The constructor of this class is the startup routine of the modules.

Algebra modules need not only to cooperate with the system frame, but also
with other algebra modules. Modules implement certain signatures. At the type
level, kinds are the functions between different signatures. For instance, each
type in kind DATA will be a valid attribute type for the tuple type constructor.
Thus, a type constructor polygon is made a type constructor for attribute types
by simply adding polygon to the type constructors for DATA.

At the implementation level, the interface between system frame and algebra
modules does not impose any specific inter-module interaction conventions on
the algebra implementation, but rather the algebra implementor is free to define
the protocol for interaction with type constructors and operators of his algebra.
For C++ implementations there is a general strategy, based upon the inheritance
and virtual method mechanisms provided by C++, which allows one to define
generic interfaces between modules in a uniform manner as follows.

The basic observation is that the relationship between kinds and type con-
structors corresponds to the relationship between base classes and derived classes.
For each kind K, the algebra module alg requiring an interface to values of types
in K defines an abstract base class k base. For the implementation of opera-
tors in alg, typically some support functions for dealing with values of kind
K will be necessary. Just these support functions are defined as abstract vir-
tual methods of k base. Whenever a class tc in any algebra module is defined
to implement a type constructor in kind K, tc must be derived from k base:
class tc : public k base. For instance, the base class Data corresponding to
kind DATA contains a virtual method Compare which has to be defined within
all attribute data type implementations, thereby enabling the generic implemen-
tation of the sort operator of the relational algebra module.

Secondo versus Concert. A common goal of Secondo and Concert is to sup-
port an easy and efficient implementation of new application-specific data types.
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In particular, both systems provide facilities for managing collections of related
types, namely kinds in Secondo and concepts in Concert.

However, the facilities offered differ as follows. Secondo enables a database
implementor to define arbitrary new type constructors, operators, and, through
the notion of kinds, sets of type constructors for data types with common prop-
erties. The system frame does not implement any particular data model, but
rather provides a generic query processor and powerful tools to implement type
constructors and operators.

Concert concepts are similar to Secondo kinds in two major aspects. First,
concepts group sets of data types with common properties, and second, a concept
sets up a programming interface, which has to be implemented by those new
data types that shall fit the concept. That way, general processing techniques
are implementable for groups of data types rather than specific types only. In
Concert, this is basically exploited for indexing.

As opposed to Secondo kinds, Concert concepts are hardwired with the sys-
tem. A database implementor is neither able to add new concepts nor to provide
further implementations of concept-specific index structures and operators. On
the other hand, Concert concepts already cover a broad range of requirements
of new data models, and hardwired implementations are often slightly more ef-
ficient than those registered through a general interface, because the adaptation
to details of other modules in the system is easier.

Regarding Secondo, introducing a new kind naturally requires some effort
to implement the type constructors and operators applicable to these kinds.
However, with a growing number of algebra module implementations the prob-
ability grows that a database implementor finds kinds with their operators and
type constructors already implemented that fit pretty well the requirements of
new data types.

In summary, Concert offers a higher degree of implemented functionality
than Secondo. On the other hand, Secondo is more flexible with respect to
new data models since it does not hardwire a fixed number of concepts, but is
open for arbitrary “concepts”. In fact, Secondo could be used to implement
the Concert approach by defining all concepts as kinds and index structures as
type constructors applicable to these kinds.

7.4.4 Implementing Spatio-temporal Algebra Modules

Because of its generality, particularly with respect to type constructor defini-
tions, Secondo is very well suited to the implementation of spatio-temporal
data models. In fact, the signatures given in Sections 4.3 and 4.4 (see Chapter
4) defining the abstract and the discrete data model, are genuine second-order
signatures. Thus, the TypeCheck, TransformType, and Select support functions
can be implemented in a straightforward manner. Later on, they will even be
generated automatically by the SOS specification compiler.

Apart from the type level, a database implementor has to provide opera-
tor implementations as well as efficient memory representations of data type
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instances. In doing so, he is supported by Secondo’s implementation tools. Im-
plementors of spatial data types often encounter the problem that instances of a
given type might vary in size heavily. For example, a polygon value may consist
of only three vertices as well as many thousands of them. Secondo’s tuple man-
ager (see Section 7.4.3) can be used to handle tuples with embedded attribute
values of varying size in an efficient and comfortable way. For that purpose it
offers a new large object abstraction called FLOB (Faked Large OBject). FLOBs
are implemented on top of the large object abstraction of the underlying storage
manager. Depending on a FLOB value’s size and access probability, it is either
stored as a large object or embedded within the tuple [23].

Allowing for type constructors arbitrarily nesting other types, however, re-
quires implementation techniques beyond those of basic FLOBs. Consider a data
type that arises from the application of a type constructor to some other type,
e.g., list(polygon). The representation of such a data type needs to organize a
set of representations of values of the argument types. If the argument types
employ FLOBs themselves, we immediately arrive at a tree of storage blocks
which may be small or large, i.e., a FLOB tree. The generalized problem is then
to determine an efficient storage layout or clustering of the tree, i.e., a par-
titioning into components stored as large objects. Thus, we extended the basic
FLOB functionality, offering nestable FLOBs, so supporting a direct and elegant
implementation of type constructors [24].

Due to the aspired generality of our clustering tool, we cannot exploit spe-
cific schema information to decide on a good clustering. Instead, we consider a
FLOB’s size and access probability, as well as the general FLOB access speed
parameters of the underlying storage manager and operating system. In [24],
we deduced a rank function R(C, f) that for a given cluster C and a FLOB f

not yet assigned to any cluster returns a measure indicating whether it is more
efficient to insert f into C or to store it in another large object.

Our tool uses the function R in an algorithm that finds a clustering of a
FLOB tree in time linear in the number of FLOBs as follows. The root FLOB
starts a new cluster. Then, each son of the root either is included into the root’s
cluster or starts a new cluster, according to the return value of R. This is done
recursively for the entire tree. Even though this algorithm cannot guarantee to
return an optimal solution, in all tests performed in an experimental comparison
with other algorithms it returned high-quality results.

mapping

const(int) const(int) const(int)

mapping

const(region) const(region)

Fig. 7.12. Storage layouts for mapping values
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As an application example, consider the type constructor mapping presented
in Section 4.4. The implementation of this type constructor basically provides
a persistent dynamic array of unit values. As the size of the array differs with
varying instances of mapping, it is implemented as a FLOB. Now the level of
nesting depends on the argument types of the mapping, as shown in Figure 7.12.
In the case of const(int) values, there is only one level of nesting. However, in the
case of const(region) values, which are in turn implemented using FLOBs for the
different polygons defining a region, another nesting level arises. For database
implementors, all shaded boxes in Figure 7.12 are distinct large objects. The
much more efficient physical clustering set up by the Secondo tuple manager is
completely hidden to them, so that their focus of attention is left on data type
functionality issues.

In summary, Secondo with its concept of extensibility by algebra modules,
fits very well the designs of spatio-temporal algebras presented in Chapter 4
and is an excellent environment for implementing them. Beyond extensibility, it
offers powerful tools for managing large objects occurring in such designs, and
even supports type constructors organizing collections of such large objects.

7.5 The Dedale Prototype System

7.5.1 Introduction

The Dedale prototype [32,31] follows the extensible approach. It is one of the
first implementations of a database system based on the linear constraint model
(see Chapter 5). It is intended to demonstrate the relevance of this model to
handle geometric applications in areas such as spatial or spatio-temporal appli-
cations. One of the interesting features of Dedale is its ability to represent and
manipulate multi-dimensional point-sets as linear constraint relations. [32,31]
gave examples of spatio-temporal applications of Dedale. However, the major
contribution of Dedale to spatio-temporal databases lies on its recent extension
to handle interpolated spatial data [33]. This model captures the class of geomet-
ric objects embedded in a d-dimensional space such that one of the attributes
can be defined as a function of a subset of the other attributes. Moreover, this
function can be obtained as a linear interpolation based upon some finite set of
sample values.

Dedalecovers, among other applications, moving objects. Indeed, a trajec-
tory can be represented by a sample of points with time and position. If we make
the reasonable assumption that the speed is constant on each segment, the full
trajectory can then be recovered from these points using linear interpolation. As
another example of interpolated data, we can mention elevation data which can
be represented by a Triangulated Irregular Network, i.e., a finite set of points P

along with their elevation. An interpolation based on a triangulation of P gives
the value of the interpolated height at any location.

The data model proposes, in the spirit of the constraint data model, to see in-
terpolated pointsets as infinite relations and to express queries on these pointsets
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with the standard SQL language. It also includes an accurate finite representa-
tion for interpolated data and an algorithm to evaluate queries at a low cost. We
currently proceed with the implementation of the model in Dedale, as explained
in the sequel.

We begin with a brief description of the model (a detailed presentation of the
constraint model can be found in Chapter 5). All the remainder of the presen-
tation is devoted to the physical aspects of spatio-temporal data management
in Dedale. We first describe the architecture of the prototype and then give
detailed explanations on data storage, indexing and query processing. A simple
example summarizes the presentation.

7.5.2 Interpolation in the Constraint Model:

Representation of Moving Objects

The constraint model can be used efficiently to model both interpolated and
non-interpolated data, and allows to query interpolated and non-interpolated
data uniformly without the need of specific constructs.

Let us illustrate this with two examples. In case of elevation data, assume
that a partition of the plane into triangles Ti is given together with the height
of each of the triangles’ summits. The interpolated height h of a point p in the
plane is defined by first finding i such that Ti contains p. The h value is linearly
interpolated from the three heights of the summits of Ti. This latter function
depends only upon i and can be defined as a linear function fi(x, y), valid only
for points in Ti. There is a very natural and simple symbolic representation for
the three dimensional relation TIN in the linear constraint model:

TIN(x, y, h) =
∨

i

∨
ti(x, y) ∧ h = fi(x, y)

where ti(x, y) is the semi-linear symbolic representation of the triangle Ti (as a
conjunction of three inequalities).

In case of moving objects assume that the position of an object is known
at finitely many time points. This defines finitely many time intervals Ti. If
the speed of an object is assumed to be constant during each time interval, its
position at any time t has coordinates x = vit + xi and y = wit + yi where i

is the index of the interval Ti which contains t, vi, wi the speed on the axis of
the object during that interval, and (xi, yi) are chosen appropriately so that the
position of the object is correct at the beginning and end of the interval. Thus,
the object trajectory TRAJ(x, y, t) can be represented in the linear constraint
model as follows:

TRAJ(x, y, h) =
∨

i

∨
ti(t) ∧ x = fi(t) ∧ y = gi(t)

where ti(t) are the constraints defining the time interval Ti and fi, gi are the
linear equations mentioned above. It is easy to see that interpolated relations
have similar properties in both cases:
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• A subset of attributes which is used as a basis to compute the interpolated
values: (x, y) for terrain modeling, t for the trajectories. We denote it as the
key in the sequel.

• A disjunction of conjuncts, each consisting of equality or inequality con-
straints restricted to the attributes of the key, ti, and constraints on the
interpolated value defined as linear functions on the key, fi and gi.

This defines a normal form to represent interpolated relations. An important
aspect of the model is that interpolated relations can be seen, from the user’s
point of view, as classical relations, and queried by means of standard query
languages. Moreover, it can be shown that evaluating queries upon interpolated
databases can be done by manipulating only the key of interpolated relations,
while interpolated functions remain identical. A practical consequence is that
the cost of query evaluation does not depend on the dimension of the embedding
space but on the dimension of the key.

In summary, the model allows to express SQL queries on infinite relations,
finitely represented with linear constraints. The formulae which represent ob-
jects, such as moving objects, have the specific form outlined above, and this
permits to use efficient geometric algorithms for query evaluation.

7.5.3 Architecture

Figure 7.13 depicts the architecture of the Dedale system. A data server is
in charge of data storage and query processing while Java clients propose a
graphical interface to express queries and visualize geometric data.

Java client

Java client

Java client

Data

storage

Query

engine

Execution

plans

Parsing and

optimization

Access paths

SQL query

Algebraic tree

SQL language

SQL query

SQL query

Fig. 7.13. The Dedaleprototype architecture

Our implementation is built on the standard technology for data storage, data-
base indexing, and for the parsing and optimization of the SQL query language.
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Since, however, the storage provides a finite representation of conceptually in-
finitely many points, the query evaluation process features specific algorithms
which simulate, upon the finite representation, the semantics of the regular SQL
language over infinite sets.

For this part of query processing, we rely on a constraint manipulation engine
as already implemented in the first prototype of Dedale[31]. Note that a vector-
based representation could be used as well, but the constraint representation
offers a nice framework for the symbolic manipulation of data.

The data storage and query engine levels are built on the BASIS System
[34], an extensible C++ implementation of the classical storage management
functionalities, as well as an open query processor based on an iteration query
execution model, to be described below.

7.5.4 Implementation Details

The implementation mainly aims at showing that the proposed data model for
interpolated data can be integrated in a relational DBMS with minimal effort.

Buffer Management and Data Storage. The storage manager provides standard
I/O and caching services to access a database. A database is a set of binary
files which store either datasets (i.e., sequential collection of records) or Spatial
Access Methods (SAM). A SAM or index refers to records in an indexed data file
through record identifiers. Any binary file is divided into pages with size chosen
at database creation.

The buffer manager handles one or several buffer pools. Data files and indexes
are assigned to one, global buffer pool. Some operators (e.g. sort and hash) may
require a specific buffer pool to the buffer manager. The buffer pool is a constant-
size cache with LRU or FIFO replacement policy (LRU by default).

Datasets are stored in sequential files with constant-size records. Since
Dedale proposes a nested data model with only one level of nesting (geometric
data are sorted as nested relations), indirection is used to store geometric data.
The main file stores records with alphanumeric attributes. Spatial attributes are
referred to via a GeomRef pointer which consists of (i) the bounding box of the
spatial object and (ii) the physical address in the geometric file where this object
can be found.

Although the processing of queries uses a constraint representation for geo-
metric data, at the data storage level, we use a vector-based representation. For
instance, TINs and trajectories are respectively stored as sequences of triangles
and segments in the 3D space. The vector representation is compact and suit-
able for many basic tasks such as indexing and graphical display. A constant
time conversion allows to get a constraint representation from the vector-based
representation.

Indexing is based on R*-trees [7]. Since our pointsets are embedded in the
3D space, we could have used a 3D R-tree. However recall that the distinction
between the key attributes and the interpolated attributes is semantically mean-
ingful: a query may separately address the multidimensional domains represented
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by the key or interpolated variables, respectively. We believe that most queries
need only the support of an index on a subset of the variables. We therefore chose
to use separate indexing for key attributes and interpolated attributes. For in-
stance, a TIN is indexed on (x, y) by a 2D R*-tree (i.e, we index the bounding
rectangle of triangles), and on the h value with a 1D R*-tree (by indexing the
intervals). This approach is not the best one in the presence of mobile objects,
since rectangles are bad approximations of segments.

The Query Engine. The query engine is based on the pipelined query execution
model described in [28]. In this model, query execution is a demand-driven pro-
cess with iterator functions. Each operator in the query engine is an iterator,
and iterators are grouped to form execution plans represented by trees as usual.
This allows for a pipelined execution of multiple operations: a tuple goes from
one tree node to another, from the disk up toward the root of the query tree,
and is never stored in intermediate structures.

Another advantage of the iterator approach is the easy QEP creation by
assembling iterators existing in BASIS and the easy extension of BASIS by a
trivial integration of a new iterator in its library. All execution plans are left-
deep trees [28]. In such trees the right operand of a join is always an index, as
well as the left operand for the left-most node. The leaves represent data files
or indexes, internal nodes represent algebraic operations and edges represent
dataflows between operations. Examples of algebraic operations include data ac-
cess (FileScan or RowAccess), spatial selections, spatial joins, etc. This simple
scheme permits to use the simple indexed nested-loop join algorithm. This strat-
egy is not always optimal, in particular with spatial joins [52,61], but our first
goal was model validation rather than query processing optimization.

Query Processing on Interpolated Data. First disk operators retrieve the vector
representation from files or indexes: “records” are vector-based lists of points.
Typical disk operators perform a file or an index scan. They output data into
linear constraints, thanks to a trivial conversion. The second category consists
of symbolic operators which implement the constraint-solving algorithms upon
the constraint-based representation. At this level a “record” is a conjunction
of linear constraints, representing either a block, or the intermediate structure
constructed from several blocks during a join operation.

This design introduces a new level between the physical and abstract represen-
tations called symbolic level (see Figure 7.14) and based on the linear constraint
representation. Note that we could build the system with algorithms working
on vector data. However the constraint approach has two advantages. First it
provides a uniform representation of interpolated geometric data: both keys and
interpolation functions are uniformly represented as linear constraints over a set
of variables. Second, such a representation provides a nice support for the specific
algorithms, required in our data model, and based on variable substitution.
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The database

Symbolic level (constraint)

Physical level (vector)

Abstract level (relations) SQL queries

Conversion vector->constraint

Disk

operators

Algebraic

operators

Fig. 7.14. The representation levels

7.5.5 Example of Query Evaluation

In the following, we illustrate the process of query evaluation with the query
“Select in the trajectory of a moving object the points on a TIN with elevation
above 10000 meters”. The schema of the database consists of a relation TIN
which stores elevation data describing the height above sea, and a relation TRAJ
which describes the trajectory of the moving point.

The two point-sets TIN and TRAJ are seen at the query level as classical,
although infinite, relations. Hence the query can be expressed with SQL as:

SELECT t1.x, t1.y, h

FROM TIN t1, TRAJ t2

WHERE t1.x = t2.x AND t1.y = t2.y AND t1.h >= 10000;

The data storage consists respectively of a list of points describing (in the 3D
space) a trajectory, and a list of triangles describing (also in the 3D space) the
TIN. A spatial join between TIN and TRAJ is at the core of the query evaluation.
The join is evaluated by an indexed-nested loop join as shown in Figure 7.15.
The trajectory relation is scanned sequentially, and the bounding box of each
segment is used as an argument to carry out a window query on the R-tree
indexing the TIN relation. These operations are implemented by disk operators.
Data is read in a vector format and converted by the join node into a constraint
representation. One obtains, at each step, a pair of symbolic tuples of the form
shown in left side of Figure 7.16.

The conjunction of constraints from each pair gives a new symbolic tuple
with variables x, y, t (see right side of Figure 7.16) as follows. Since x and y are
linear functions of t, and h is a linear function of (x, y), a simple substitution
of variables is possible. x and y are replaced by the proper function of t in
all the inequality constraints. As a result, one obtains x, y, and h as functions
of t (which is the key of the result), and a somewhat complex conjunction of
constraints over the single variable t.
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FileScan

WindowQueries

(T1 T2 T3) (T’1 T’2 T’3) ...P1 P2 P3 P4 ...

The trajectory The TIN

R-tree
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Fig. 7.15. A sample query evaluation

From TRAJ From TIN

0 ≤ t ≤ 2 −4x + y + 1 ≤ 0
x = 2t + 1 y − 3 ≤ 0
y = t + 2 3x + y − 18 ≤ 0

h = x + y + 3

The New Symbolic Tuple

0 ≤ t ≤ 2
−4(2t + 1) + (t + 2) + 1 ≤ 0

(t + 2) − 3 ≤ 0
3(2t + 1) + (t + 2) − 18 ≤ 0

x = 2t + 1
y = t + 2

h = (2t + 1) + (t + 2) + 3

Fig. 7.16. Joining two symbolic tuples

The process ends up by normalizing the result, i.e., applying a constraint
solving algorithm which checks whether the representation is consistent, and
delivers a normalized representation (see [31] for a detailed presentation of the
algorithms). This allows to solve the system of equations on t while keeping the
other constraints unchanged. The result is depicted in Figure 7.17. For this query,
the result is obtained in linear time in the size of this system. The constraint
solving algorithm delivers a time interval and linear functions for x, y, and h.

The final result

0 ≤ t ≤ 1
x = 2t + 1
y = t + 2
h = 3t + 6

Fig. 7.17. Final result

In conclusion, the data storage and query engine are currently available, as
well as a simplified version of the algorithms presented in [33], restricted to
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the manipulation of TINs and mobile objects. The parser and the optimizer
are under implementation. Our experimental setting consists of several TINs,
ranging from 2000 to 20000 triangles. We plan to use the GSTD generator [76]
when it is available to create a consistent sample of mobile objects.

7.6 The Tiger Prototype System

7.6.1 Introduction

Tiger is a temporal database system prototype, which can be extended for
spatio-temporal data access [15]. This layered system adopts the dual system
architecture (cf. Section 7.2.1). Its salient features include enhanced temporal
support through statement modifiers, the intelligent reuse of existing database
technology, and the seamless extension of database systems with external mod-
ules. Specifically, extensibility is supported by enabling users to plug external
modules into the layer. Such modules take spatio-temporal relations as argu-
ments and perform advanced operations on these, the objective being to obtain
better overall query performance.

The system is available online via http://www.cs.auc.dk/~tiger. Because
the web interface uses socket communication, users protected by a firewall might
not be able to use it. The source code is therefore also available for downloading
and local installation.

7.6.2 Architecture

Tiger follows the dual system architecture. It is implemented as a layer to the
Oracle DBMS and systematically enhances that system with temporal function-
ality. Whenever feasible, the data processing is delegated to the DBMS. However,
if functionality and efficiency concerns make the processing by the database sys-
tem inappropriate, external modules are used instead. External modules seam-
lessly extend the functionality of the database system. Existing modules perform
advanced functions such as coalescing, temporal aggregation, and temporal dif-
ference.

The general architecture, depicted in Figure 7.18, identifies three main parts.
At the bottom, the DBMS is used as an enhanced storage manager. It is responsi-
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Fig. 7.18. The general layered system architecture of Tiger
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ble for all standard database activities. The middle part consists of the temporal
layer and the external modules. Together, they provide the core of the tem-
poral functionality. At the top, several interfaces are provided. This includes a
command line interface (CLI), a Java applet interface (JAI), and an application
program interface (API).

7.6.3 Spatio-temporal Extensions

The Tiger system focuses on temporal database extensions. However it can
also be extended for spatio-temporal data access, as can be seen with the query
language STSQL [15].

This section briefly sketches the basics of ATSQL—the temporal query lan-
guage hitherto supported by Tiger. The crucial concept of ATSQL is statement
modifiers. These control the basic semantics of statements. Four classes of state-
ments are distinguished: upward compatibility, temporal upward compatibility,
sequentiality, and non-sequentiality. Each class is described below. For clarity,
new syntactic constructs are underlined.

The meaning of a statement modifier naturally divides into four orthogonal
parts, namely the specification of the statement class, the time-domain specifica-
tion, the time-range specification, and the specification of coalescing. We focus
on the classes and on coalescing; the reader is referred to [14] for a detailed
coverage of domain and range specifications.

Upward Compatibility. It is fundamental that all code without modification will
work unchanged with the new spatio-temporal system. A data model is upward
compatible with another data model iff all the data structures and legal query
expressions of the old model are contained in the new model and iff all queries
expressible in the old model evaluate to the same results in the new model. The
following statements illustrate upward compatibility:

CREATE TABLE p (A INTEGER);

INSERT INTO p VALUES (7);

INSERT INTO p VALUES (8);

COMMIT;

These statements are simple legacy SQL–92 statements that must be supported
by any reasonable temporal extension of SQL–92. The semantics is the one
dictated by SQL–92 [53].

Temporal Upward Compatibility. Temporal upward compatibility, which is easily
extended to space [15], aims to ensure a harmonious coexistence of legacy ap-
plication code and new, temporally-enhanced application code. To illustrate the
problem, assume that the new temporal model is in place and that an application
needs temporal support, for which reason a snapshot relation must be changed
to become a temporal relation. Clearly, it is undesirable (or even impossible) to
change the legacy application code that accesses the snapshot relation that has
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become temporal. Temporal upward compatibility ensures that this is unneces-
sary. Essentially, tables can be rendered temporal without changing application
code. To illustrate, the statements from the previous section are assumed:

ALTER TABLE p ADD VT;

INSERT INTO p VALUES (6);

DELETE FROM p WHERE A = 8;

COMMIT;

SELECT * FROM p;

The first statement extends p to capture valid time by making it a valid-time
table, which contains a timestamping attribute. The insert statement adds 6.
Temporal upward compatibility ensures that the past is not changed and that 6
will also be there as time passes by. Similarly, 8 is deleted without changing the
past. The select statement returns current, but not past (and future), knowledge.
Note that it may not return the valid time.

Sequentiality. Sequentiality protects the investments in programmer training
while also providing advanced temporal functionality. Two properties are crucial:
snapshot reducibility and interval preservation.

Briefly, snapshot reducibility implies that for all non-temporal queries q, a
temporal query q′ exists, such that at each snapshot, the result of the temporal
query reduces to the result of the original query. For snapshot reducibility to
be useful, the relationship between the non-temporal and the temporal query
has to be restricted. We require q′ = S1 q S2 where S1 and S2 are constant
(statement independent) strings. The strings S1 and S2 are termed statement
modifiers because they change the semantics of the entire enclosed statement.
ATSQL prepends statements with, e.g., the statement modifier SEQ VT:

SEQ VT SELECT * FROM p;

CREATE TABLE q (B INTEGER SEQ VT PRIMARY KEY) AS VT;

SET VT PERIOD "1974-1975" INSERT INTO q VALUES (6);

SET VT PERIOD "1976-1978" INSERT INTO q VALUES (6);

SET VT PERIOD "1977-1979" INSERT INTO q VALUES (6);

SEQ VT SELECT * FROM q;

The first and last query return all tuples together with their valid time. This
corresponds to returning the content of a table at each state. The second state-
ment defines a table q and requires column B to be a sequenced primary key, i.e.,
B must be a primary key at each state (but not necessarily across states). This
constraint implies a conflict between the second and third insert statements:
allowing both would violate the primary key constraint for the years 1977 and
1978.

Beyond snapshot reducibility, sequentiality is also preserves the intervals of
the argument relations as much as possible in the results. Consider Figure 7.19.
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Electricity Bill

Val VT

150 1993/01–1993/03
150 1993/04–1993/06
70 1993/07–1993/09

Electricity Bill

Val VT

150 1993/01–1993/06
70 1993/07–1993/09

Fig. 7.19. Snapshot-equivalent relations

Assuming that V al denotes the amount to be paid for electricity during the
specified period, the two relations are quite different. Simply merging or split-
ting the intervals would be incompatible with the intended semantics. Sequen-
tiality preserves intervals as much as possible, i.e., within the bounds of snapshot
reducibility [13].

Finally, sequentiality also includes queries of the following type:

SEQ VT SELECT * FROM p, q

WHERE p.X = q.X AND DURATION(VTIME(p),YEAR) > 5;

The query is quite natural and easy to understand. It constrains the temporal
join to p-tuples with a valid time longer than 5 years. The temporal condition
cannot be evaluated on individual snapshots because the timestamp is lost when
taking a snapshot of a temporal database, and it thus illustrates how sequen-
tiality extends snapshot reducibility to allow statement modifiers to be applied
to all statements [14].

Non-sequentiality. As discussed above, sequenced statements are attractive be-
cause they provide built-in temporal semantics based on the view of a database
as a sequence of states. However, some queries cannot be expressed as sequenced
queries. Therefore, a temporal query language should also allow non-sequenced
queries with no built-in temporal semantics being enforced. ATSQL uses the
modifier NSEQ VT to signal non-sequenced semantics, i.e., standard semantics
with full explicit control over timestamps:

NSEQ VT SELECT * FROM p, q

WHERE VTIME(p) PRECEDES VTIME(q) AND A = B;

The query joins p and q. The join is not performed at each snapshot. Instead, it
is required that the valid time of p precedes the valid time of q. A non-temporal
relation results.

Coalescing. Coalescing merges tuples into a single tuple if they have overlap-
ping or adjacent timestamps and identical corresponding attribute values [16].
Coalescing is allowed at the levels where the modifiers are also allowed. In addi-
tion, as a syntactic shorthand, a coalescing operation is permitted directly after
a relation name in the from clause. In this case, the coalesced instance of the
relation is considered.

SEQ VT SELECT * FROM q;

(SEQ VT SELECT * FROM q)(VT);

SEQ VT SELECT * FROM q(VT);
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7.6.4 Tiger’s Implementation

Tiger is an heterogeneous system that employs different programming para-
digms. Specifically, the code is a mixture of C++ (81 KB), C (14 KB), Java
(88 KB), and Prolog (160 KB). The implementation of Tiger is based on the
architecture of ChronoLog [11], a temporal deductive database system, which
uses a layer to translate temporal FOPL to SQL. Another related system is
TimeDB [12]. Tiger is the first system that employs external modules, is acces-
sible online and can be used for distance learning.

The temporal layer consists of thirteen modules as illustrated in Figure 7.20.
An arrow indicates the direction of an import (e.g., module meta imports services
from module unparser). The layer translates temporal statements to sequences
of legacy SQL statements. It adheres to standard compiler implementation tech-
niques [20]. We briefly discuss the prime functionalities associated with the main
modules.

Module interpret acts as a dispatcher. It calls the scanner and parser to
construct a parse tree. A conservative approach is pursued to not break legacy
code. Thus, if a statement cannot be identified as being temporal and if the state-
ment does not access temporal data structures, it is passed on to the DBMS.
Modules rewrite and deps normalize and check statements. This includes the
rewriting of subqueries, the verification of relation schemas, the lookup of miss-
ing table qualifiers, and the detection of dependencies implied by views and
integrity constraints. Module trans translates temporal queries to sequences of
non-temporal ones. For involved temporal statements, this includes the gener-
ation of calls to external modules. Data manipulation statements, views, and
integrity constraints are handled in the modules dml, views, and constraint,
respectively. Module meta provides a general-purpose interface to the DBMS and
a special-purpose interface to the layer’s additional temporal metadata, which
is stored in the DBMS.

The purpose of the external modules exists to aid in the computation of
queries that the underlying DBMS computes only very inefficiently. For example,
although it is possible to perform coalescing, temporal difference, and temporal
aggregation in the DBMS, this is exceedingly inefficient [16] and should be left
to external modules. External modules fetch the required data from the DBMS,
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process it, and store the result back for further processing. To enable the use of
external modules, the temporal layer isolates the subtasks that should be dele-
gated to the modules, and an interface between the temporal layer and external
modules is provided that consists of a set of procedures of the following form:

EM_coal_vt(char* sql, char* table)

EM_coal_tt(char* sql, char* table)

EM_coal_bi_tt(char* sql, char* table)

EM_coal_bi_vt(char* sql, char* table)

EM_diff_vt(char* sql, char* table)

All procedures take as input an SQL statement that defines the argument data
and return the name of a temporary table that stores the computed result.
Additional input parameters can be passed as needed.

The different components of the external module block are shown in Fig-
ure 7.21. The DB class handles connections to the DBMS. This service is used by

Interface to layer

DB

ELib

connection

DBMS

- aggregation
- temporal difference

- primitives to handle associations and intervals
- abstract data structure for rectangles operations

EMod

- coalescing

to backend

Fig. 7.21. The external modules

all other modules. The EMod class implements an abstract matrix structure that
is used to implement advanced bitemporal algorithms. Essentially, the matrix
keeps track of a set of rectangles. Together with an association structure, the
matrix is used to merge rectangles (coalescing) or to split them (difference, ag-
gregation). A coloring scheme is used to ensure interval preservation. The ELib

class uses the services of the EMod and DB classes to provide external algorithms
for coalescing, difference, and aggregation.

7.6.5 Processing Queries Using External Modules—Case Study

We use the following ATSQL statement to illustrate processing that includes
external modules.

SEQ VT SELECT r.a

FROM (SEQ VT SELECT p.a

FROM p, q

WHERE p.a = q.a )(VT) AS r

WHERE VTIME(r) OVERLAPS PERIOD "10-20";



7 Architectures and Implementations 303

An external module is to perform the valid-time coalescing that occurs in the
middle of the statement. Thus, the statement has to be split up. We also want
to maximally use the underlying DBMS (e.g., for processing joins), thus using
only the layer when the DBMS cannot be used with reasonable efficiency.

The innermost part is a sequenced valid-time join, which computes the in-
tersection of overlapping valid times. The innermost part is translated into an
SQL statement Q1 (next), which performs the necessary intersection of the valid
times (Oracle’s SQL with functions GREATEST and LEAST is used).

Q1 = SELECT GREATEST(P.s,Q.s) s, LEAST(P.e,Q.e) e, P.A A

FROM P, Q

WHERE GREATEST(P.s,Q.s)<=LEAST(P.e,Q.e) AND P.A=Q.A;

Next, the external module takes over, and Q1 is passed as the first argument
to EM coal vt(char* sql, char* table) (cf. above), which implements the
coalescing operation. An auxiliary table is first created:

CREATE TABLE T (s DATETIME, e DATETIME, a INTEGER);

Then the tuples identified by Q1 are retrieved. They are ordered so that coalescing
can be performed on the fly [16].

SELECT A, s, e

FROM (Q1)

ORDER BY 1, 2, 3;

The coalesced tuples are computed and stored in the temporary table, the name
of which is finally returned by the external module. The DBMS then takes over
and finishes the computation, using the data stored in the temporary table:

SELECT R.s s, R.e e, R.A A

FROM (SELECT T.s, T.e, T.A FROM T) R

WHERE r.e > 10 AND 20 > r.s;

7.7 The GeoToolKit Prototype System

7.7.1 Introduction

A subsequent analysis of geoscientific and particularly geological domains showed
that they use common data sources (3D data, cross sections, digital elevation
models etc.) to a large extent, utilizing them for special objectives [3]. They
also share a lot of functionality primarily concerning spatial data management
and geometric operations. The idea to reuse already implemented components
(sources) in the development of new applications was obvious. This was the
starting point for designing a “geo” tool kit rather than implementing a series
of specialized systems from scratch.

Extensibility in GeoToolKit refers to the extension of the 3D geometric data
model classes and the plugging in of new spatial access methods. Contrary to
the CONCERT prototype, the temporal access has not yet been integrated into
the multi-dimensional access methods. However, GeoToolKit has been extended
by temporal classes to support the animation of geological processes.
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7.7.2 Architecture

GeoToolKit [3,4] follows the layered system architecture. It has been devel-
oped on top of the OODBMS ObjectStore [56]. The system architecture of Geo-

ToolKit is shown in Figure 7.22. It is divided into two main parts: a C++-
library and interactive tools. The class library consists of ObjectStore-based
classes for spatial data maintenance. The graphical classes provide the visualiza-
tion of 2D maps and 2D/3D areas which are based on motif. To communicate
with external geoscientific tools, first a protocol on top of UNIX-sockets has
been realized. The case study on geological basin evolution which is shown be-
low uses this low-level communication. However, an advanced CORBA-based
communication architecture has been developed, too.

Access-methods
Repository 

Class Generator

Graphical
Data Browser

Interactive Tools

Development/Maintenance

GeoToolKit Class Library

Visualization CommunicationData Maintenance

ObjectStoreCGI/CGI3D Motif Unix-Sockets

Space
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Fig. 7.22. GeoToolKit system architecture

GeoToolKit’s architecture has been extended via wrapper technology and a
CORBA-based infrastructure to enable remote data and operation access from
other 3D geo-information components. The approach has been tested with GO-
CAD [51,27] a geological 3D modeling and visualization tool. The prototype
implementation uses Orbix [49] for transparent network access between the het-
erogeneous computing platforms. Covered by a wrapper, GeoToolKit can be
used as part of a distributed geo-database. The wrapper enables the easy access
to the DBMS from other remote CORBA clients. Using CORBA, clients may
concurrently access the database on condition that they keep CORBA compati-
bility. The approach was evaluated and proved by the development of an object
database adapter (ODA) prototype and a specialized spatial ODA (SODA). For
more detail see [17].

GeoToolKit’s interactive tools consists of modules for comfortable loading
of databases and navigation through data sources. The class generator provides
the generation of user-defined classes without C++-knowledge.



7 Architectures and Implementations 305

7.7.3 Spatio-temporal Extensions

Spatial Extensions. GeoToolKit
6 primarily deals with two basic notions: a

SpatialObject and a collection of spatial objects referred to as a Space.
On the abstract level a spatial object is defined as a point set in the three-

dimensional Euclidean space. Diverse geometric operations can be applied to
a spatial object. However, they cannot be implemented unless a spatial object
has a concrete representation. There is a direct analogy with the object-oriented
modeling capabilities. An abstract spatial object class exclusively specifies the
interface inherited by all concrete spatial objects. A concrete object is modeled
as a specialization of the abstract spatial object class. It provides an appropriate
representation for the object as well as the implementation for the functions.

The geometric functionality involves geometric predicates returning true or
false (e.g. contains), geometric functions (e.g., distance) and geometric opera-
tions (e.g. intersection). The geometric operations are algebraically closed. The
result of a geometric operation is a spatial object which can be stored in the
database or used as an argument in other geometric operations. Naturally every
spatial object class includes a set of service facilities required for the correct
maintenance of objects (clone, dynamic down cast). The GeoToolKit class
hierarchy includes the following classes:

• 0D-3D spatial simplexes: Point, Segment, Triangle, Tetrahedron;
• 1D-3D spatial complexes: Curve, Surface, Solid;
• Compound objects: Group;
• Analytical objects: Line, Plane.

Usually complexes are approximated (digitized) and represented as homogeneous
collections of simplexes. A Curve (1D complex) is approximated through a poly-
line, a Surface and a Solid - as a triangle and tetrahedron network, respectively.
However, it is not intended to restrict users only with the representations sup-
plied with GeoToolKit. Complex spatial objects are designed in such a way
that they do not predefine a physical layout of objects. They contain a reference
to a dependent data structure referred to as a representation. The two layer
architecture allows for the object to have multiple representations (e.g., one rep-
resentation for the compact storage, another more redundant one for efficient
computations). An object can change its representation without changing the
object identity. This feature is of extreme importance in the database context
since an object can be referred to from multiple sources. Following certain design
patterns a user is able to integrate his own special-purpose representation within
GeoToolKit’s standard classes.

Spatial objects of different types can be gathered into an heterogeneous col-
lection, called Group, which is further treated as a single object. A group is a
construction for the representation of the results of geometric operations.

6
GeoToolKit has been developed in the groups of A. Cremers and A. Siehl in close
cooperation with the Geological Institute and SFB 350 at Bonn University, funded
by the German Research Foundation.
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A space is a special container class capable of efficient retrieval of its elements
according to their location in space specified either exactly by a point or by a
spatial interval. A spatial interval, often referred to as a bounding box, is defined
in 3D-space as a cuboid with the sides parallel to the axes. Since all operations
in the Cartesian coordinate system are considerably faster for cuboids than for
other objects, the approximation of spatial objects by their bounding boxes is
intensively used as effective pre-check by geometric operations and spatial access
methods in GeoToolKit.

A space serves both as a container for spatial objects and as a program inter-
face to the spatial query manager which is realized as an internal GeoToolKit

library function linked to a geo-application. The spatial query manager is in-
voked by member functions of the class Space. Practically, a call of any space
method means a call of the spatial query manager. A user can add/remove a
spatial object to/from a space syntactically in the same way as in the case of
usual object collections. However, all changes will go through the spatial query
manager. A spatial retrieval is performed through the family of retrieve meth-
ods. The task of various retrieve methods is to provide a convenient interface for
the spatial query manager. In the simplest case a retrieve member function takes
a bounding box as a parameter and returns a set of spatial objects contained
in or intersected by this bounding box. A user can also formulate his query in
the ObjectStore style as a character string. Such interface may be useful for the
implementation of interactive retrieval. However, it needs multiple conversions
of data and therefore it is not convenient for the internal use within a program.
A spatial retrieval involving “indirect” spatial predicates (e.g. intersects) is usu-
ally decomposed into two sequential steps. In the first step the query manager
retrieves all objects which intersect the bounding box of the given object. On
the second step it checks whether the pre-selected objects really intersect the
given object.

To provide efficient retrieval, a space must have a spatial index. In order
to make an arbitrary user-defined index known to GeoToolKit, it must fit
the interface defined within the abstract AccessMethod class. GeoToolKit

supports two indexing methods: the R-Tree [39] for a pure spatial retrieval and
the LSD-Tree [42] for a mixed spatial/thematic retrieval.

Temporal Extensions. The ability to follow a topological evolution of geological
entities is of special interest for geo-scientists. Geological entities are character-
ized by relative large and irregular time intervals between time states available.
On the contrary, for the smooth animation small regular time intervals are re-
quired. Therefore missing time states need to be interpolated. An interpolation
between primitive simplex objects (simplexes) is straightforward. An interpola-
tion of complexes can be reduced to the simplex-to-simplex interpolation only
if complexes have the same cardinality. However, an object may change its size
and/or shape with respect to time in such a way that it will need more simplexes
for the adequate representation. For example, in the result of deformations a flat
platform (for the representation of which two triangles are quite enough) may
transform into a spherical surface which will need a much larger number of
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triangles for the qualitative representation. GeoDeform [1] is a geo-scientific
application for calculating geological deformations which have been developed at
the Geological Institute of the Bonn University. For the visualization of spatial
objects changing in time GeoDeform uses a model proposed in the graph-
ical library GRAPE [62]. According to this model, each time state contains
two representations of the same object with different number of simplexes (a
discretization factor). The first representation (post-discretization) corresponds
to the approximation of the current state of the object with the discretization
required by its current size and shape. The second one (pre-discretization) cor-
responds to the approximation of the current state of the object but with the
discretization used in the previous state. Due to this extension an interpolation
can always be performed between representations with the same discretization
factor: the post-discretization of the previous state and the pre-discretization of
the current state of the object.

To provide an appropriate maintenance of a large number of spatio-temporal
objects, GeoDeform was extended with a database component developed on
the GeoToolKit basis. The task was to integrate into GeoToolKit’s pure
spatial classes a concept of time so that a spatial functionality already available
could be re-utilized and a maximal level of compatibility with GRAPE was pro-
vided. To represent different time states of the same spatial object, we introduced
a class TimeStep (see Figure 7.23), which contains a time tag and two references
(pre and post) to spatial objects. If the pre- and post-discretization factors are
equal, pre and post links simply refer to the same spatial object. The model
proposed is general enough since an arbitrary spatial object can be chosen as a
representation of a time state. In the case of GeoDeform there are geological
strata and faults modeled through GeoStore’s Stratum and Fault classes which
in turn are defined as a specialization of GeoToolKit’s Surface class. A se-
quence of TimeStep instances characterizing different states of the same spatial
object are gathered into a spatio-temporal object (class TimeSequence). Being
a specialization of the abstract class SpatialObject, an instance of TimeScene
can be treated in the same way as any other spatial object, i.e. it can be in-
serted into a space as well as participate in all geometric operations. The spatial
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308 Martin Breunig et al.

functionality is delegated by default to the spatial object referred to in the lat-
est TimeStep instance. A selection for the interpolation differs from a common
selection with a specified key. If there is no object in the time sequence that hits
exactly the time stamp t specified in the retrieve function, instead of NULL it
should return a pair of neighbor time steps with time tags t1 and t2, so that
t1 < t < t2. The same is valid for the time interval. If the interval’s margins do
not exactly hit the time step instances in the sequence, the resulting set includes
all time steps fitting the interval completely extended with the nearest ancestor
of the time step with the lowest time tag and the nearest successor of the time
step with the highest time tag. Any TimeSequence instance can be inserted in
and spatially retrieved from the GeoToolKit’s space as any other spatial ob-
ject. However, to perform a temporal retrieval, a special container class Scene

is introduced. This class is capable of both spatial and temporal retrieval.

7.7.4 Implementation Details

GeoToolKit is open for new spatial and temporal indexing methods. A general
technique is developed which allows the integration of arbitrary spatial indexing
methods within the object-oriented DBMS ObjectStore. A new container type
for the maintenance of spatial objects (space) has to be defined and for this
class a spatial query manager has to be implemented. The spatial query man-
ager overloads the OODBMS native query manager. It parses a query, extracts
spatial predicates and checks whether a spatial index is available. If no spatial
index is associated with the space, it simply forwards the query to the native
query manager. If a spatial index is found, the spatial query performs index-
based retrieval. The results (if not empty) together with the rest of the query
are forwarded to the native query manager. Since the spatial query manager
performs the role of a preprocessor, the syntax of the native query language can
be preserved or even extended.

To enable the cooperation between the spatial query manager and spatial
indexing methods, they must have a common interface. This requirement is
not as restrictive as it seems to be at the first glance because the majority
of the spatial indexes exclusively deals with the bounding box approximation of
spatial objects. Index developers do not even need to modify the sources to fit the
required interface. A usual technique is to develop an adapter class which carries
out all necessary conversions and then it simply calls corresponding functions
according to the pre-defined interface.

The situation is more complicated in the case of so-called combined indexing.
Combined indexes may be beneficial when separately neither a spatial nor a
thematic component of the search criterion is selective enough. Distinct to the
bounding box, the number and types of non-spatial attributes cannot be pre-
defined. To combine spatial and heterogeneous non-spatial subkeys, GeoTool-

Kit offers a special construction. The multikey class provides a uniform access
to an arbitrary subkey according to its number (dimension). The retrieval with
the multikey is similar to the spatial retrieval with the only difference that a
generic multikey substitutes the bounding box.
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A query can be formulated and called either in the same way as a usual
ObjectStore query or by means of the additional retrieve function. The retrieve
function demands from the user to separate explicitly the spatial and non-spatial
parts of the query. The spatial part is represented as a bounding box or as a
multidimensional key. If a space has more than one spatial index and a user
wants a particular index to be used for the retrieval, he can explicitly specify it
in the retrieve function.

To maintain the indexes consistently within GeoToolKit, every mem-
ber function (dealing with spatial or temporal updates) incorporates additional
checks before and after performing updates. The pre-check function tests whether
an object is contained in at least one indexed space. If yes, the bounding box is
stored. The post-check function activates re-indexing only when the bounding
box has been changed. To eliminate re-indexing by serial updates, GeoToolKit

provides an update block.

7.7.5 Case Studies

GeoToolKit has been tested with different geological applications like well
management, 3D geological modeling and geological restoration based on time-
dependent geometries [1]. Figure 7.24 shows three time steps of a basin evolu-
tion modeled with GeoDeform coupled with GeoToolKit. The figure shows
a perspective view of the southern part of the Lower Rhine Basin, Germany,
towards the Northeast with the base of the Oligocene and synthetic as well as
antithetic faults. Black arrows indicate direction and cumulative amount of ex-
tension, whereas negative numbers in italics show subsidence at selected points.

In GeoDeform’s concept of geological time-space modeling [62], a 4D model
consists of a set of states of modeled 3D objects at different times. The time steps
between the object states can be different for each object chain and need not
to be equidistant. Interpolation (e.g., linear) can be done between known object
states. A “time frame” representation of the 4D model is the set of object states
at a distinct system time. Time-dependent 3D objects can be modified, added to,
or deleted from the 4D model. The possibility to handle varying discretization
and topology for each object at each time step makes the concept very flexible
for interactive geological modeling and visualization. From the 4D model, a time
schedule of subsidence and deformation can be deduced and calibrated against
the geological observations, providing new insights into the origin of the basin
(Figure 7.24).

Examples for temporal and spatio-temporal queries are:

• os Set<TimeStep>tmp=scene.retrieve(time>-20.0 && time<0);

• os Set<TimeStep>tmp=scene.retrieve(bb,time>-20.0 && time<0);

The first query yields all states of geological objects in a scene which existed 20

million years ago until the recent state. The second one additionally selects the
geological objects which are located within a specified bounding box.

The development of GeoDeform, a database component coupled with Geo-

ToolKit, proved the advantages of the tool kit approach. GeoDeform classes
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Fig. 7.24. Three time steps of basin evolution in the Lower Rhine Basin, Germany,
modeled by GeoDeform coupled with GeoToolKit [1]

contain now only geology-specific members. Geometric relationships between
geometric objects are hidden within GeoToolKit. However, the GeoTool-

Kit functionality (spatial retrieval, indexing, etc.) is still fully available for the
extended objects.

The developers can focus on application semantics instead of optimally as-
sembling spatial objects from multiple relational tables or the re-implementation
of routine geometric algorithms. Classes designed for particular applications can
either be used directly or can be refined for other applications.

7.8 Conclusions

We conclude this chapter with a brief summary of the architectures of the pro-
totype systems and their contributions to spatio-temporal data management.



7 Architectures and Implementations 311

System Architecture Main Contribution

Concert extensible generic index support
Secondo extensible framework for spatio-temporal data types
Dedale extensible constraint model with handling of

interpolated spatial data
Tiger layered RDBMS (spatio-)/temporal query language
GeoToolKit layered OODBMS geometric 3D/4D data types and indexes

Fig. 7.25. Comparison of the prototype systems

System Architectures. As depicted in Figure 7.25, Concert, Secondo, and
Dedale are representatives of the extensible system architecture. These systems
allow a more or less seamless extension towards spatio-temporal database sys-
tems. Concert’s extensibility aims at a flexible index support for arbitrary data
stores, whereas Secondo supports the design of spatio-temporal data types on
top of a data store. Dedale’s data storage and query engine consist of an exten-
sible C++-implementation. Tiger is a representative of the layered system ar-
chitecture. Its temporal database query language is based on relational database
technology. GeoToolKit is closely coupled with the OODBMS ObjectStore,
which basically serves as an ordinary data store. GeoToolKit allows to ex-
tend ObjectStore with spatio-temporal data types and access methods. In this
sense, GeoToolKit is a representative of the extensible system architecture.
However, one can also argue that GeoToolKit is build on top of ObjectStore
and thus is a representative of the layered system architecture.

Specific Contributions to Spatio-temporal Data Management. Con-

cert provides a framework of a generic index, which can be directly used for
the refinement of specific spatio-temporal data types and access methods. This
index has several properties:

• It is generic in the sense of data types. It is valid and usable for all data types
following the SPATIAL concept of Concert independent of their location or
size.

• It is generic in the sense of tree behavior. Changing the tree heuristics leads
to different tree derivations.

• It is derived from the main issue of each data management system — the
data. In contrast, other approaches usually derive their genericity by gener-
alizing algorithms or methods.

Throughout the whole code of Concert’s generic spatio-temporal index, no
explicit assumption is made about the data types and storage formats of the
spatio-temporal data. Only the concept typical operations are used as an in-
terface. The objects themselves are simply treated as abstract objects, i.e., as
uninterpreted byte sequences with a few operations defined on them. Therefore,
it is irrelevant to the kernel system where the real data objects reside — as long
as they can be accessed via the concept typical operations. Instead of objects
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themselves, it is possible to store only place holders (e.g. a URL or any sort of
a pointer to the actual object) and access the real objects only when process-
ing the concept typical operations, for example, via remote procedure call. This
fact allows the kernel system to cope with the interoperability issue. The actual
data can reside in heterogeneous repositories. The kernel only needs to know
the operations and handles to access it and provide physical design and query
capabilities over the external data.

Secondo has been introduced as a generic development environment for
non-standard multi-user database systems. At the bottom architecture level,
Secondo offers tools for efficient and comfortable handling of nested lists and
catalogs, a simplified interface to the underlying SHORE storage manager, a
tool for efficient management of tuples with embedded large objects, and an SOS
compiler. Algebra modules for standard and relational data types and operators
as well as simple user interface clients have been implemented. The core part
of Secondo, its extensible query processor, is characterized by the following
highlights:

• Its formal basis to describe a generic query plan algebra giving a clear algo-
rithm for translating a query plan into an operator tree.

• Functional abstraction is a well-defined concept in SOS. This leads to a very
clean, simple, and general treatment of parameter expressions of operators.

• stream is a built-in type constructor in Secondo. Simply writing the key-
word stream in the type mapping of an operator lets the query processor
automatically set up calls of the evaluation function for this operator in
stream mode. For this reason, Secondo can uniformly handle streams of
anything, not just tuples. Also, a query plan can freely mix stream and
non-stream operators.

• Secondo includes complete type checking, type mapping, and resolution of
operator overloading.

Dedale contributes to spatio-temporal databases by its extension to handle
interpolated spatial data. Its model covers moving objects like trajectories and
interpolated spatial data like Triangulated Irregular Networks. The constraint
data model sees interpolated pointsets as infinite relations and expresses queries
on these pointsets with the standard SQL language. It also provides an accurate
finite representation for interpolated data. Furthermore, an algorithm to evaluate
queries at a low cost is supplied.

Tiger is a temporal database system that demonstrates the use of ATSQL’s
statement modifiers to manage temporal information. It can also be extended to
spatio-temporal database access. It features an enhanced support for the time di-
mension through ATSQL. The highlights concerning the Tiger implementation
are:

• the intelligent reuse of existing database technology,

• a seamless extension of database systems with external modules, and

• an applet interface that supports distance learning as application of Tiger.
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Emphasizing the temporal management of data, Tiger counterbalances the
other prototype systems discussed in this chapter, which primarily focus on the
spatial aspects of data management.

GeoToolKit is a spatio-temporal extension of the OODBMS ObjectStore.
It has been designed to support especially geological database applications which
are intrinsically space (3D) and time-dependent (4D). The highlights of the Geo-

ToolKit implementation are:

• 3D geometric data types based on simplicial complexes,
• advanced 3D geometric algorithms,
• extensions for temporal data handling,
• coupling with a 3D visualization tool, and
• an open CORBA-based system architecture.

GeoToolKit’s geometric 3D data types, especially the triangle and tetrahedron
networks, allow advanced spatial database queries like the intersection of a 3D-
object with a set of other 3D-objects. The temporal extensions of GeoToolKit

provides the selection of snapshots of 3D objects and an adequate visualization.
GeoToolKit has been tested during the last years by different geological

groups at Bonn University. The most advanced application on top of GeoTool-

Kit is GeoStore, an information system for geologically defined 3D geometries
in the Lower Rhine Basin, Germany. Furthermore, a data management tool and
a spatio-temporal data browser have been developed.

In summary, although none of the prototype systems presented in this chap-
ter are complete spatio-temporal database management system, they implement
important issues of spatial and temporal database management systems and
thereby provide the platform for future systems with full spatio-temporal sup-
port. There is also the legitimate hope that these prototype systems could be
predecessors of components and services to be integrated in an overall spatio-
temporal system architecture.
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35. R.H. Güting. Gral: An Extensible Relational Database System for Geometric
Applications. In P.M.G. Apers and G. Wiederhold, eds., Proc. 15th Int. Conf. on
Very Large Data Bases, VLDB’89, pp. 33–44, Morgan Kaufmann, 1989.
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Join Processing Strategies. In R.H. Güting, D. Papadias, and F.H. Lochovsky,
eds., Advances in Spatial Databases, Proc. 6th Int. Symposium, SSD’99, LNCS,
Vol. 1651, pp. 286–307, Springer-Verlag, 1999.

62. K. Polthier and M. Rumpf. A Concept for Time-Dependent Processes. In M. Göbel,
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