Enhancing an Extensible Query Optimizer
with Support for Multiple Equivalence Types

Giedrius Slivinskas, Christian S. Jensen

August 11, 2002

TR-70

A TIMECENTER Technica Report

Title

Enhancing an Extensible Query Optimizer with Support for Multiple Equivalence
Types

Copyright (© 2002 Giedrius Slivinskas, Christian S. Jensen. All rights reserved.

Author(s) Giedrius Slivinskas, Christian S. Jensen

Publication History Proceedings of the Fifth East-European Conference on Advances in Databases

and Information Systems, Vilnius, Lithuania, September 25-28, 2001, pp. 55-69.
August 2002. A TIMECENTER Technical Report

TIMECENTER Participants

Aalborg University, Denmark
Christian S. Jensen (codirector), Michael H. Bohlen, Heidi Gregersen, Dieter Pfoser,
Simonas Saltenis, Janne Skyt, Giedrius Slivinskas, Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector), Dengfeng Gao, Vijay Khatri, Bongki Moon, Sudha Ram

Individual participants

Curtis E. Dyreson, Washington State University, USA
Fabio Grandi, University of Bologna, Italy

Nick Kline, Microsoft, USA

Gerhard Knolmayer, Universty of Bern, Switzerland
Thomas Myrach, Universty of Bern, Switzerland

Kwang W. Nam, Chungbuk National University, Korea
Mario A. Nascimento, University of Alberta, Canada
John F. Roddick, University of South Australia, Australia
Keun H. Ryu, Chungbuk National University, Korea
Dennis Shasha, New York University, USA

Michael D. Soo, amazon.com, USA

Andreas Steiner, TimeConsult, Switzerland

Paolo Terenziani, University of Torino

Vassilis Tsotras, University of California, Riverside, USA
Jef Wijsen, University of Mons-Hainaut, Belgium

Carlo Zaniolo, University of California, Los Angeles, USA

For additional information, see The TIMECENTER Homepage:

URL: <htt p://wwv. cs. auc. dk/ Ti meCent er >

Any software made available via TIMECENTER is provided ““as is”” and without any express or implied war-
ranties, including, without limitation, the implied warranty of merchantability and fitness for a particular

purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-called
Rune alphabet used one millennium ago by the Vikings, as well as by their precedessors and successors.
The Rune alphabet (second phase) has 16 letters, all of which have angular shapes and lack horizontal lines
because the primary storage medium was wood. Runes may also be found on jewelry, tools, and weapons
and were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.

Abstract

Database management systems are continuously being extended with support for new types of data
and more advanced querying capabilities. In large part because of this, query optimization has remained
avery active area of research throughout the past two decades. At the same time, current commercial
optimizers are hard to modify, to incorporate desired changes in, e.g., query algebras, transformation
rules, search strategies. Thishasled to anumber of research contributionsthat aim at creating extensible
query optimizers. Examplesinclude Starburst, Volcano, and OPT++.

This paper reports on a study that has enhanced Volcano to support a relational algebra with added
temporal operators, such as temporal join and aggregation. This includes the handling of algorithms
and cost formulas for these new operators, six types of query equivalences, and accompanying query
transformation rules. The paper shows how the Vol cano search-space generation and plan-search algo-
rithms were extended to support the six equivalence types, describes other key implementation tasks,
and evaluates the extensibility of Volcano.

Keywords—Query optimization; extensible query optimizers; extended relational algebra; implementa-
tion experiences; sets, multisets, and lists

1 Introduction

Query optimization has remained subject to active research for more than twenty years. Much research
has aimed at enhancing existing optimization technology to enable it to support the requirements, such
as for new types of data and queries, of the many and new types of application areas, to which database
technology has been introduced over the years. However, current commercial optimizers also remain hard
to extend and modify when new operators, algorithms, or transformations have to be added, or when cost
estimation techniques or search strategies have to be changed [Cha98]. As a result, the last decade has
witnessed substantial efforts aiming to develop extensible query optimizers that would make such changes
easier. Representative examples of extensible query optimizers include Starburst [Haa90], Volcano [GM93],
and OPT++ [KW99].

This paper reports on a specific study that has enhances the Volcano extensible query optimizer to
support a relational algebra with temporal operators such as temporal join and aggregation. In addition to
new operators, cost formulas, selectivity-estimation formulas, and transformation rules, the algebra offers
systematic support for order preservation and duplicate removal and retention for all queries, as well as
for coalescing for temporal queries (in coalescing, several tuples with adjacent time periods and otherwise
identical attribute values are merged into one). To support order, relations are defined as lists, and six kinds
of relation equivalences are defined—two relations can be equivalent as lists, multisets, and sets, and two
temporal relations can be snapshot-equivalent as lists, multisets, and sets. We report on the design decisions
and implementation experiences, and we evaluate Volcano’s extensibility.

The temporally extended algebra, presented in [SJS01a], enhances existing relational algebras based on
multisets by integrating the handling of order, and by adding temporal support. To support multisets and
order, relations are defined as lists, and six kinds of relation equivalences are defined. Specifically, relations
can be equivalent as lists, multisets, and sets, and temporal relations can also be snapshot-equivalent as lists,
multisets, and sets. As there are six types of equivalences, there are also six types of transformation rules.
Their applicability during query rewriting depends on the nature of the query (e.g., whether duplicates have
to be removed or whether the result has to be sorted) and on the semantics of the operations in the query.

An important goal of the algebra is to offer a foundation for a layered temporal DBMS that may evaluate
temporal queries faster than do current DBMSs. The latter do not have efficient algorithms for expensive
temporal operations such as temporal aggregation, while such operations can be evaluated efficiently at the
user-application level by algorithms that use cursors to access the underlying data.

New algorithms can be added to a DBMS via, e.g., user-defined routines in Informix [BIi99, Inf] or
PL/SQL procedures in Oracle [Ora], but these methods currently do not allow to define functions that take
tables as arguments and return tables [JM99]; nor do they allow to specify transformation rules, cost formu-
las, and selectivity-estimation formulas for the new functions. Because of these limitations, a middleware
component with query processing capabilities was introduced, which divides the query processing between
itself and the underlying DBMS [SJS01b]. Intermediate relations can be moved between the middleware
and the DBMS by the help of transfer operators.

To adequately divide the processing, the middleware has to take optimization decisions—for this pur-
pose, we employ the Volcano extensible optimizer. Use of a separate middleware optimizer allows us to take
advantage of transformation rules and cost and selectivity-estimation formulas specific to the temporal op-
erators. We have to also take into account that the DBMS has its own optimizer; therefore, the middleware
optimizer does not have to focus on optimizing query parts to be passed to the DBMS for evaluation.

This paper summarizes design issues and experiences from the implementation. While the addition of
new temporal operators, their cost and selectivity-estimation formulas, and transformation rules could be
done using the extensibility framework provided by Volcano, adding support for set-, multiset-, and list-
equivalences—as well as the three equivalences between temporal relations—required changes in Volcano
structures, and in its search-space generation and plan-search algorithms.

To our knowledge, no existing extensible query optimizers systematically support sets, multisets, and
lists. Sorting is treated differently than the common operators, such as selection or join, and it usually is
considered in the query optimization only after the search space of possible query plans has been generated.
However, particularly due to recent introduction and increasing use of TOP Nand BOTTOM N predicates
in queries [CK97], sorting could be exploited better in query optimization if considered during the search-
space generation.

The paper is structured as follows. In Section 2, we describe Volcano’s architecture, including its search-
space generation and plan-search algorithms. Section 3 describes the enhancements to Volcano that were
necessary to support the algebra introduced above. The algebraic framework is described first, with a focus
on the parts that posed challenges to Volcano. Then the modifications to the search-space generation and
plan-search algorithms of Volcano necessary to support the algebra are described. Section 4 summarizes
the implementation experiences and evaluates the extensibility of Volcano. Section 5 covers related work,
and Section 6 summarizes the paper.

2 Description of Volcano

The Volcano Optimizer Generator is a software program for generating extensible query optimizers. The
input to the program is a nodel . i nput file, which specifies a query algebra: operators, their imple-
mentation algorithms (physical operators), transformation rules, and implementation rules. Transformation
rules specify equivalent logical expressions, and implementation rules specify which algorithms implement
which operators. The output from the program is an optimizer for queries in the given algebra. The gener-
ated Volcano optimizer takes a query as input and returns a physical expression (an expression of algorithms)
representing the chosen query evaluation plan.

The tasks of an optimizer implementor include the specification of the nodel . i nput file and the
coding of the support functions for operators and rules. For example, for each operator, the optimizer
implementor should specify how to derive properties (for example, the cardinality) of the result relation.

In the next sections, we describe the functioning of the Volcano optimizer.

2.1 Two Stages of Query Optimization

The Volcano optimizer optimizes queries in two stages. First, the optimizer generates the entire search space
consisting of logical expressions generated using the initial query plan (to which the query is mapped to)
and the set of transformation rules. The search space is represented by a number of equivalence classes.
An equivalence class may contain one or more logically equivalent expressions, also called elements; each
of these includes an operator, its parameter (for example, predicates for the selection), and pointers to its
inputs (which are also equivalence classes).

Consider a simple example query, which performs a join on the EmpID attribute of POSITION and
SALARY relations. Its one possible initial plan is shown in Figure 1(a) and its search space is shown in
Figure 1(b).

PGSI TI ON

®

. ol i
T

POSITION get SALARY >]
® NN

get

(@) (b)

Figure 1: Initial Query Plan

The elements of classes 1 and 2 represent logical expressions returning partial results of the query, i.e.,
the operators retrieving, respectively, the POSITION and SALARY relations. The elements of class 3 represent
logical expressions returning the result of the complete query; either the first or the second element may be
used. Essentially, the given search space represents only two plans which differ in the order of the join
arguments.

During the second stage of Volcano’s optimization process, the actual search for the best plan is per-
formed. Here, the implementation rules are used to replace operators by algorithms, and the costs of diverse
subplans are estimated. For the given query, the number of plans to be considered is greater than two,
because the relations may be retrieved by using either full scan or index scan, and the join has several im-
plementations, such as nested-loop, sort-merge, or index join. One possible evaluation plan is to scan both
relations and perform a nested-loop join.

The following two sections describe the search-space generation and the plan-search algorithms in more
detail.

2.2 Stage One: Search-Space Generation

Figure 2 outlines simplified pseudocode for Generate and MatchRule, the two main functions for the
search-space generation. Initially, one element is created for each operator in the original query expression,
and then Generate is invoked on the top element.

Generate (element e): MatchRule(element e):
for each child i of e r = findMatchingRule(e)
Generate(s) ifr 2 NULL
for each element ee € class(e) create elements and classes based on r’sright-hand side
do for each new element ee
applied := MatchRule(€) if class(ee) # class(e)
while (applied = True) Generate(ee)
return return True
else
return False

Figure 2: Pseudocode for the Search Space Generation

The Generate function repeatedly invokes the MatchRule function, which applies a transformation
rule to the given element, choosing from the list of applicable rules that have not so far been applied to the
element (as found by the FindMatchingRule function in MatchRule). The application of a transformation
rule in MatchRule may trigger the creation of new elements and classes; for each newly generated element,
the Generate function is invoked.

For the query in Figure 1(a), the search space is generated as follows. Initially, three elements repre-
senting the three query-tree operators are created (first elements of equivalence classes 1-3 in Figure 1(b)).
Then, the Generate function is invoked for the first element of class 3, which, in turn, invokes Generate
for the first elements of classes 1 and 2. The latter two Generate calls do not do anything because no rules
apply to the elements of class 1 and 2. For the first element of class 3, however, the join commutativity
rule is applied, and a second element pointing to switched join arguments is added to class 3. Then, the
MatchRule function is invoked on the new element of class 3, but no new elements are generated: the join
commutativity rule is applied again, but its resulting right-hand element already exists in the search space.

2.3 Stage Two: Plan Search

When searching for a plan, the Volcano optimizer employs dynamic programming in a top-down manner,
and it uses two mutually recursive functions, FindBestPlan and Optimize. Figure 3 shows the simplified
pseudocode for the functions.

First, the optimizer invokes the FindBestPlan function for the first element of the top equivalence
class—e.g., class 3 in Figure 1(b)—and the cost limit infinity (the cost limit can be lower in subsequent calls
to the function). If all elements of the class containing the argument element have already been optimized
(line 1), no further optimization for the element is necessary: if the plan has been found and its cost is lower
than the cost limit, it is returned, otherwise NULL is returned (lines 2-5). However, if the optimization for
the class has not been completed, the Optimize function is invoked (line 7).

The Optimize function for each algorithm implementing the top operator (in our case, join) recursively
invokes the FiindBestPlan function for the inputs of the algorithm (lines 5-6). The remaining cost argu-
ment is used to prune the search when it is clear that the search would not come up with a more efficient
plan than the current one. If optimization of the inputs is successful (line 8), and if the found plan is the first
for the equivalence class containing the argument element or it beats the cost of the existing best plan (line
9), it is saved along with its cost (lines 10-11).

Once all algorithms are considered for the operator, the Optimize function invokes the FindBestPlan
function for each equivalent logical expression (in our case, for the second element in equivalence class 3)
and looks if it can find a better plan (lines 12-14). In case a better plan is found, it is saved in memory as
the best one (lines 15-16). Once all elements of the input-element class are considered, the algorithm marks
that the optimization of the class is completed.

FindBestPlan(element e, cost cost_limit):

1 if completed(class(e)) = TRUE
2 if plan P for class(e) existsin memory and cost(P) < cost_limit
3 return P
4 ese
5 return NULL
6 else
7 return Optimize(e, cost_limit)
Optimize(element e, cost cost_limit):
1 best_plan := NULL
2 min_cost = cost_limit
3 for each algorithm a implementing operator(e)
4 current_plan := a applied to plans of itsinputs
5 for each input ¢ of a
6 input_plan[i] ;= FindBestPlan (i, remaining_cost)
7 [* remaining_cost ismin_cost minusthe cost of a and the cost of plans of previous inputs */
8 if for each input ¢, input_plan[i] # NULL
9 if thereisno plan P for class(e) in memory or cost(current_plan) < cost(P)
10 best_plan ;= current_plan
11 min_cost := cost(current_plan)
12 for each element z, z € class(e),z # e
13 tmp_plan := FindBestPlan(z, min_cost)
14 if tmp_plan # NULL and cost(tmp_plan) < min_cost
15 best_plan :=tmp_plan
16 min_cost := cost(tmp_plan)
17 set completed(class(e)) to True
18 return best_plan

Figure 3: Pseudocode for the FindBestPlan and Optimize Functions

3 Enhancement of Volcano

The implementation of the algebra and its accompanying transformation rules introduces several concepts
that did not exist previously in Volcano. We describe these new concepts in Section 3.1. Sections 3.2 and 3.3
concern the actual implementation and describe the modifications of the Volcano search-space generation
and plan-search algorithms.

3.1 Algebra and Multi-Equivalence Transformation Rules

First, we overview the architecture for which the algebra has been designed. Next, we describe the ac-
tual algebra, the accompanying transformation rules, and their applicability, focusing on the new concepts.
Finally, we outline the challenges that these new concepts pose to Volcano.

Architecture The temporally extended relational algebra has been designed for an architecture consisting
of a middleware component and an underlying DBMS. Expensive temporal operations such as temporal

aggregation do not have efficient algorithms in the DBMS, but can be evaluated efficiently by the middle-
ware, which uses a cursor to access DBMS relations. Consequently, query processing is divided between
the middleware and the DBMS; the main processing medium is still the DBMS, but the middleware is used
when this can yield better performance.

Algebra The algebra is different from the conventional relational algebra in several aspects. First, it in-
cludes temporal operators such as temporal join and temporal aggregation. Next, it contains two transfer
operators, 7™ and TP, that allow to partition the query processing between the middleware and the under-
lying DBMS. The T™ operator transfers a relation from the DBMS to the middleware, and the 7P operator
performs the opposite. Finally, the algebra provides a consistent handling of duplicates and order at logical
level, by treating duplicate elimination and sorting as other logical operators and by introducing six types
of equivalences between relations.

Two relations are equivalent (1) as lists if they are identical lists (=,); (2) as multisets if they are
identical multisets taking into account duplicates, but not order (=,,); and (3) as sets if they are identical
sets, ignoring duplicates and order (=5). Two temporal relations (relations having two attributes indicating
a time period) are snapshot-list (=3), snapshot-multiset(=%,), or snapshot-set equivalent (=%), if their
snapshots (projections at a given point in time) are equivalent as lists, multisets, or sets.

Figure 4 shows two temporal relations (relations having two attributes that encode a time period),
POSITION and SALARY. We assume a closed-open representation for time periods and assume the time
values for T1 and T2 denote months during some year. For example, Tom was occupying position Pos1
from February to August (not including the latter).

POSITION SALARY Resul t

PosID| EmpID| EmpName| T1| T2 EmpID | Amount | T1| T2 EmpID| EmpName| PosID| Amount | T1| T2

Posl | 1 Tom 218 1 100K 2|6 1 Tom Pos1 | 100K 2|6

Pos2 | 2 Jane 3|8 1 120K | 6|9 1 Tom Posl| 120K | 6 | 8
2 110K | 3 | 8 2 Jane Pos2 | 110K | 3 | 8

Figure 4. Relations POSITION and SALARY, and the Result of Temporal Join

A temporal join is a regular join, but with a selection on the time attributes, ensuring that the joined
tuples have overlapping time periods; Figure 4 shows the result of temporal join on the EmpID attribute of
the POSITION and SALARY relations.

Transformation Rules Six types of equivalences lead to six types of transformation rules, since a trans-
formation rule may satisfy several of the six equivalences. Let us consider two rules for temporal join, <™
(regular join, but with a selection on the time attributes, ensuring that the joined tuples have overlapping
time periods). For a given rule, we always specify the strongest equivalence type that holds; the ordering
of equivalence types is given in Figure 5. The join commutativity rule r{><1"ry —,, ro><”r says that
the relations resulting from the left-hand and right-hand sides are equivalent as multisets (and, according to
the type ordering, as sets, as well as their snapshots are equivalent as sets and multisets). Meanwhile, the
sort push-down rule sort 4 (ri><1"ry) —, sort 4(r1)><1" o, where A belongs to the attribute schema of 4
and the left-hand side operations are located in the middleware, says that the relations are equivalent as lists
and that the other five equivalence types also hold.! The latter rule exploits the fact that all temporal join
algorithms in the middleware retain the sorting of their left arguments.

170 be precise, the relations are =, 4 equivalent, i.e., their projectionson A are =, equivalent. Wewill use = equivalence
for simplicity.

[T
/ SM

Sy

SS

Figure 5: Ordering of Equivalence Types

Applicability of Transformation Rules Transformation rules that do not guarantee =, equivalence can-
not always be applied, as illustrated by the following example. Consider a query that performs a temporal
join on the EmpID attribute of the POSITION and SALARY relations and sorts the result by EmpName. One pos-
sible initial plan for this query is shown in Figure 6(a). The bottom operators represent relations POSITION

sort >t

| EmpName / @ID
get

T sort
/l>4 @Ip | EmpName SALARY
et et et
g POSITION g SALARY g POSITION
(a) (b)

Figure 6: Initial Query Plan

and SALARY transferred to the middleware; to achieve this, at least two operations are necessary (a table scan
in the DBMS and the actual transfer), but to simplify the example, we view them as one operation and do
not consider any transformation rules related to these operations. Temporal join and sorting are performed
in the middleware.

Let us consider rule ri><1Try —,, 7o><1Try. This rule can be applied to switch the arguments of the
join. However, if we apply the sort push-down rule first and move the sorting below the temporal join,
before the temporal join’s left argument (leading to the plan shown in Figure 6(b)), the application of join
commutativity rule would lead to an incorrectly ordered query result. Thus, to be able to tell when an
— u rule is applicable, the optimizer needs to know the importance of order at each node in the query tree,
i.e., whether the result of the operation at the node has to preserve some order or not. In the algebra, this
importance is determined by the OrderRequired property. To determine the applicability of rules of other
types, two other properties DuplicatesRelevant and PeriodPreserving, are used additionally. These rules are
explained in Table 1.

Next, for each rule of a given type, Table 2 shows the applicability condition for operator nodes on the
left-hand side of the rule (we revisit this aspect in Section 3.2).

Having an initial query plan, the properties for operators are set in a top-down manner and then adjusted

| Property Name | Description

OrderRequired True if the result of the operation must preserve some order
DuplicatesRelevant | True if the operation cannot arbitrarily add or remove regular duplicates
PeriodPreserving True if the operation cannot replace its result with a snapshot-equivalent one

Table 1: Operation Properties

every time a new transformation rule is applied. For the top operator, the properties are set in accordance
with the specific user-level query language and query statement. For example, some variant of SQL may
require (1) the result to be sorted if the ORDER BY clause is specified at the outer-most level, (2) the result
always either to contain duplicates (DI STI NCT is not specified) or not (DI STI NCT is specified), and (3) the
result always to contain the same time periods independently of which query plan is chosen. Consequently,
for the top element, the OrderRequired property is set to True only if the ORDER BY clause is specified
at the outer-most level, and the DuplicatesRelevant and PeriodPreserving properties are always set to
True. For the other operators, the properties are set according to the property values of their parents, e.g., if
some operator is an input to the sort operator, its OrderRequired property will be set to False, because its
resulting relation may be replaced (via some transformation rule) by a multiset-equivalent relation, and the
correct order of the result will still be ensured by the following sort operator. For more details about setting
the property values, we refer to [SJSO1a].

Support in Volcano Volcano provides a framework of adding new operators and transformation rules,
which allows a rather straightforward addition of temporal operators and transfer operators, their cost for-
mulas, selectivity-estimation formulas, and schema propagation formulas. The difficult part is to incorporate
different types of transformation rules. While different rule types can be added by just introducing an extra
type attribute to each rule, to control their applicability is more difficult. The property mechanism cannot
directly be used because of Volcano’s search-space structure. Having a Volcano search space, values of
the three properties cannot be determined for an element, because it is impossible to know the property
values of the elements above since the same equivalence-class element may be used as input by different
elements of different equivalence classes, as shown later in Figure 7 where the first element of equivalence
class 2 is used both by two elements of equivalence class 3 and by two elements of class 4. Therefore, the
determination of the properties can only occur during the actual search, which is performed top down.

3.2 Adjustment of the Search-Space Generation

Since it is impossible to determine properties during the search-space generation, we generate a complete
search space by applying transformation rules of all types, and then filter away invalid elements during the
actual search. The identification of invalid elements is enabled by recording, for each element, a type that
represents the combinations of the three property values for which this element may be used. We use six
possible type values—L, M, S, SL, SM, SS—which correspond to the six equivalence types. Consequently,
the relationship between each element type and the combination of properties corresponds to the one shown
in Table 2. For example, if all properties are True, only L type elements are valid. Intuitively, the element
type tells how the relation generated by this element will be equivalent to the first element of the equivalence
class.

Figure 7 shows the search space for the query in Figure 6(a), generated using the join commutativity
rule and the sort push-down rule (the first one guarantees =,, equivalence, while the second one guarantees
=, equivalence). The search space is generated as follows. Initially, four elements representing the four
query-tree operators are created (the first elements of equivalence classes 1-4 in Figure 7). Then, the

Ruletype | Applicability condition, Vop € lhs

- True

—u = OrderRequired (op)

—s = DuplicatesRelevant(op) A —OrderRequired (op)

—9 - PeriodPreserving(op)

=% —OrderRequired (op) A —PeriodPreserving(op)

—3 = DuplicatesRelevant(op) A —OrderRequired (op) A = PeriodPreserving(op)

Table 2: Applicability of a Rule According to its Type

Generate function is invoked for the first element of class 4, which, in turn, invokes Generate for the first
elements of classes 3, 1, and 2. The Generate calls for the latter two do not do anything because no rules
apply to the elements of class 1 and 2. For the first element of class 3, however, the join commutativity
rule is applied, and a second element representing switched join arguments is added to class 3. For the first
element of class 4, the sort push-down rule is applied and two new elements are created, one of which is
added to class 4 and one of which becomes the only element of class 5. Finally, the join commutativity rule
is applied to the second element of class 4, yielding the third element in the class.

Note the types at the bottom right of each element. The first elements of classes 1-3 have equivalence
type M only, because the base relations are retrieved from the DBMS, and we do not know in which order
the DBMS will deliver them. It may actually happen that a subquery whose top element is the first element
of class 3, when run twice, would return relations that are only multiset equivalent.

The third element of class 4 is only =,, equivalent to the other two elements of that class. Since the
query requires a sorted result (the OrderRequired property value for the top operator is True), only the two
first elements of class 4 will be used during plan search. Below, we discuss how the element types are
determined.

During the search-space generation, new elements are added after applying transformation rules. For
a transformation rule, we give below a procedure for how to set the types of elements resulting from the
right-hand side of the rule.

1. The top-element type (the element representing the top operator in the right-hand side of the rule) is
set to the type which is the greatest common descendant of the transformation-rule type and the types
of the elements participating in the left-hand side of the transformation rule.

2. The top-element type is set to a stronger type than specified in 1 only if the right-hand side expression
contains an operation—such as sorting or duplicate elimination—that would enforce a “stronger”
equivalence between the new top element and the old top element.

3. The types of other new elements resulting from the right-hand side of the rule are set to any value,
but they have to be equal to or stronger than the top-element type.

For example, the greatest common descendant of types M and SM is SS. Let us consider the search-
space in Figure 7: the join commutativity rule applied to the second element of class 4 results in the third
element of class 4, and its type is set to M, which is the greatest common descendant of L (the type of the
second element) and M (the type of the rule).

Now let us consider another query, which performs a selection on relation r transferred to the middle-
ware and then sorts it; see its search space in Figure 8(a). After transformation rule sort 4(op(r)) —,
op(sort 4(r)) is applied to the first element of class 3, the new top element—which becomes the second

PCsSI TI ON

O

O

Figure 7: Search Space

element of class 3—is of type L (Figure 8(b)). Even if the sorting is not at the top level, the result is correctly
ordered because the selection retains the order of its argument.

In the given examples, the types of the new non-top elements are set to L. Generally, the types of non-top
elements are not important for the correctness, as long as they are not descendants of the new top element
type (see the equivalence-type ordering in Figure 5). Therefore, they should be set aiming to have as small
search space as possible, i.e., if an element has to be inserted, first we can look in the existing search space if
the same element (with any type) exists there, and if it does, we do not need to insert it anew. If no elements
exist, a new element should have L type, because most rules are of — , type and it is likely that, if this
element is to be attempted to be inserted again as a top-level element, its type will be L.

The presented type setting procedure has been included in the MatchRule function, between lines 4 and
5 (Figure 2).

3.3 Moadification of the Plan Search

For the actual search, the code controlling the validity of elements depending on their type has to be added
to Volcano. Figure 9 outlines the modified pseudocode for the FindBestPlan and Optimize functions; the
added or modified lines are denoted by .

The most significant change is the addition of properties to the parameter list of each function. The
FindBestPlan function uses its input properties to check the validity of its input element, as mentioned in

10

® | ® |
O O O O
M M
(2)))
L0 O —_ L0 O
M M
@ sort sort o
O ~o o | O
L L B\ L

sort
© Ve

@ (b)
Figure 8: Search Space Before (a) and After (b) Applying sort 4(op(r)) =L op(sort4(r))

Section 3.2 (the first two lines of FindBestPlan). The Optimize function uses its input properties when
invoking FindBestPlan on inputs of its input element, to set the property values to be passed as parameters
to FindBestPlan (the new line between lines 5 and 6 of Optimize).

Since equivalence-class elements might be of any of the six different types, each equivalence class may
have up to six physical plans, because plans for different-type elements might differ. For example, it is
likely that a type M plan will be simpler and less costly than a type L plan. In the FindBestPlan function,
we now have to check for a plan of a type that is stronger than or equal to the input-element type (line 2).
In the Optimize function, the best plan is recorded for the type of the input element only (lines 9-11).

4 Experiences

In this section, we consider the extensibility of Volcano in relation to the needs of our framework. First,
we evaluate its support for multiple types of equivalence. Then, we discuss other extensions that either
required additional implementation effort or could be subject to future improvements of Volcano. Finally,
we evaluate the user-friendliness of Volcano, outline the accomplished implementation tasks, and discuss
their difficulty.

4.1 Support for Multiple Types of Equivalences

When considering multiple types of equivalences, sorting, duplicate elimination, and coalescing are impor-
tant operations, because they may change the equivalence type between two relations. For example, if two

11

* FindBestPlan(element e, cost cost_limit, boolean prop):

* if prop invalidate e due to type(e)
return NULL
1 if completed(class(e)) = TRUE
2% if plan P for class(e) with type stronger than or equal to type(e) existsin memory
3 return P
4 else
5 return NULL
6 ese
7 return Optimize(e, cost_limit)

* Optimize(element e, cost cost_limit, boolean prop):

1 best_plan := NULL

2 min_cost = cost_limit

3 for each algorithm a implementing operator(e)

4 current_plan := o applied to plans of itsinputs

5 for each input i of a

* determine new properties new_prop according to prop and operator(e)

6* input_plan[i] := FindBestPlan(i, remaining_cost new_prop)

7 [* remaining_cost ismin_cost minusthe cost of a and the cost of plans of previous inputs */
8 if for each input 4, input_plan[i] # NULL

9* if thereisno plan P for class(e) and type(e) in memory or cost(current_plan) < cost(P)
10 best_plan .= current_plan

11 min_cost := cost(current_plan)

12 for each element x, z € class(e),z # e

13 tmp_plan := FindBestPlan(z, min_cost)

14 if tmp_plan # NULL and cost(tmp_plan) < min_cost

15 best_plan :=tmp_plan

16 min_cost := cost(tmp_plan)

17 set completed(class(e)) to True

18 return best_plan

Figure 9: Modified Pseudocode for the FindBestPlan and Optimize functions

=, equivalent relations are sorted on A, their sorted versions will be =, , equivalent. First, we briefly
overview Volcano’s support for these operations.

Coalescing and duplicate elimination were not implemented in Volcano, and sorting is supported by
the so-called physical properties of an equivalence class. The possible use of sorting algorithms (termed
enforcers) is considered during the second phase (plan search) of query optimization. Physical properties
are passed as arguments to the FindBestPlan and Optimize functions, and they allow the optimizer to
consider different positions of sort enforcers. The use of physical properties increases the code complexity
and size—for each algorithm implementing an operator, the optimizer implementor has to write functions
deriving physical properties of the algorithm’s inputs, checking whether the algorithm satisfies required
physical properties, and finding the physical properties that are required from the algorithm’s inputs.

In our approach, we treat sorting, duplicate elimination, and coalescing as all the other operators and
exploit them in the search-space generation, not using physical properties. While it may be possible to
pursue a direction where sorting, duplicate elimination, and coalescing are all treated as enforcers and em-
ploy physical properties, we feel that this treatment would add unnecessary complexity to the framework
because, fundamentally, sorting, coalescing, and duplicate elimination are just like other operators, hav-
ing their transformation rules and statistics-derivation formulas. Treating them as algorithms reduces the
number of transformation rules, but the complexity in the plan-search algorithm is greatly increased. In
addition, it would be problematic to incorporate the statistics-estimation formulas for duplicate elimination
and coalescing.

12

4.2 Other Useful Extensions

Our implementation has indicated the need for new or better support in a number of other areas.

The two-stage query optimization of Volcano forced us to apply all types of transformation rules during
the first stage. If one stage with a top-down plan search and generation had been used, it would have
been easier to control the applicability of the different types of rules and, possibly, would have improved
performance.

The search strategy of Volcano is fixed, and no mechanisms for extending or changing it are provided.
Proposed improvements of Volcano that were not part of the available code include a mechanism for heuris-
tic guidance, where rules can be ordered according to their “promise” [GM93]. Such ordering implies that
the rules having the best probability to yield better plans would be applied as soon as possible, reducing the
overall plan-search time.

We had to add support for equivalence-class elements that point to their own equivalence classes, be-
cause this facility was not available in the code supplied. The pointing to the same class often occurs using
different equivalence types. For example, sorted relation r is multiset equivalent to r, yielding to a class
with two elements (one for r sorted and one for r) where the first (sorting) points to the same class. In
addition, we had to implement the linking of equivalence classes; the linking is needed when we apply a
rule to an element of a certain class and find that the resulting element already exists in some other class,
meaning that both classes represent the same logical expression.

The cardinality of a relation resulting from some equivalence class is estimated when the class is created,
according to the selectivity estimation method of the operator represented in the first element. When a new
element is added to the class, the cardinality is not reestimated. However, the new element may represent
an operator for which we may have a better method for estimating the cardinality. For example, it is easier
to estimate the size of a join, than the size of a Cartesian product followed by a selection and a projection.
Therefore, we had to ensure that the initial plan would contain operators with good cardinality estimation
methods.

4.3 Ease of Extensibility

The main challenge when implementing an extensible query optimizer is to balance the efficiency and
extensibility, and our study indicates that Volcano’s main emphasis is put on the first aspect.

Volcano is coded in C and does not follow the object-oriented paradigm, which leads to many inter-
connected structures, which in turn posed difficulties in figuring out where the structures were defined,
initialized, and used. The transformation-rule application code is being generated automatically and does
not follow any style guidelines, making it difficult to modify (which was needed when incorporating the
necessary modifications in the search-space generation). A lot of arrays and structures have predefined
sizes and were not being allocated dynamically, occupying more memory than necessary and providing
low scalability. On the other hand, the running times of Volcano (for queries not involving many joins)
were quite low and did not impose significant overhead, as demonstrated in the performance experiments
in [SJSO1b].

The actual implementation tasks, their difficulty, and approximate number of lines of resulting code
are summarized in Table 3. We divide the entire implementation effort into three subtasks. The first one,
adding support for multiple equivalence types, is the most difficult and it has been described in the previous
sections. Yet the amount of resulting code was rather small. The other task was to add new operators,
and while it resulted in a substantial amount of code, it was not difficult, after learning Volcano’s provided
framework for adding new operators and transformation rules. The same applies to the last task of adding
new algorithms; there, however, the amount of code was smaller, because we did not use physical properties.

Support functions form the biggest part of the code added by the optimizer implementor and their

13

size is proportional to the number of operators and algorithms implemented. In our case, we implemented
relation retrieval, selection, projection, join, sort-preserving join, temporal join, Cartesian product, duplicate
elimination, aggregation, temporal aggregation, and two transfer operators. Similar behavior of many of
these operators (particularly, in the propagation of catalog information) resulted in a lot of code repetition
in corresponding support functions.

| Task | Complexity | Linesof Code |
Adding equivalence-type support
Modifying structures medium < 200
Modifying search-space generation high < 200
Modifying plan search high < 200
Adding new operators
Coding support functions medium ~ 2500
Coding management of the three properties medium ~ 400
Coding transformation rules medium ~ 2300
Adding new algorithms
Coding support functions low ~ 1300
Coding implementation rules medium < 200

Table 3: Tasks, Their Complexity, and Amount of Code

5 Reated Work

This technical report—which offers some extensions to an earlier, published version [SJ01]—takes its out-
set in the algebraic framework presented in [SJS01a]. The framework has been validated by implementing it
using the Volcano extensible query optimizer and the XXL library of query evaluation algorithms; the archi-
tecture, cost and selectivity-estimation formulas, and performance studies have been reported in [SJSO1b].
The latter paper did not cover the enhancements to Volcano, which are the foci of this paper.

While to our knowledge, nobody has enhanced existing optimizers with support for sets, multisets,
and lists, [BKG93] reports on experiences from building the query optimizer for Texas Instruments’ Open
OODB system using Volcano. That paper concludes that when building an optimizer, it is essential to
have a full optimization framework that includes not only an algebra and its transformations, but also the
algorithms implementing the operators, formulas for selectivity estimation and costing, and that Volcano
provided such a framework. Among the negative sides of Volcano, the paper mentions that much time was
spent on writing support functions that derive catalog information and statistics, as well as cost functions.
It was also found that the interface for adding new transformation rules and support functions was far from
being user-friendly. We agree with these claims, and we draw additional conclusions concerning the support
for multiple equivalence types, as well as selectivity estimation and the staged optimization strategy (see
Section 4).

In the rest of this section, we consider the existing extensible query optimizers that are related to Vol-
cano. Volcano evolved from the Exodus optimizer [GW87], which in [CW96] was found to be very general,
but inefficient, hard to use, and requiring a lot of additional implementation code from the optimizer im-
plementor. Volcano contributed an efficient search strategy, as well as better abstractions for costs and
properties. The Cascades optimization framework [Gra95] was built on top of Volcano, and it provides a
clean interface and implementation that makes full use of C++ classes, as well as more closely integrates
transformation rules and implementation rules, which are distinct sets in Volcano. It also allows some “guid-

14

ance” during plan search, making it easier to heuristically control the application of transformation rules.
Since it was intended to be used for Microsoft’s SQL Server, its code is not available.

One of the main observations behind the EROC toolkit for building query optimizers [McK96] was that
Volcano, while saving the optimizer implementor from the task of writing the search function, still required
a lot code for manipulating operator arguments and various support functions such as property derivation.
Therefore, EROC aimed to provide a set of carefully defined and implemented abstractions (in C++ classes)
that would reduce this task. The toolkit is not publically available, and thus it is difficult to estimate how
much effort is required to build an optimizer using its components.

The Starburst optimizer [Haa90] uses query graph models for representing queries, and it employs a
two-stage optimization. During the query rewrite phase, rules are used to transform one query graph model
to another; and during the plan optimization phase, candidate plans are costed and the cheapest one is
selected. Starburst technology is used in IBM’s DB2 [PLH97].

The OPT++ [KW99] extensible optimizer also uses an object-oriented design with C++ classes to sim-
plify the extension tasks. OPT++ offers a number of search strategies, including “bottom-up” System R-
style [Sel79] and the Volcano search strategy; and it can emulate both Starburst and Volcano.

6 Conclusions

A number of extensible query optimizers are available that aim to facilitate changes in query algebras and
additions of new functionality. Our study reports on the enhancement of one prominent such extensible
query optimizer, Volcano, to support an extended relational algebra, which—in addition to new temporal
operators—contains six types of equivalences between relations that lead to six corresponding types of
transformation rules. We describe how Volcano’s search-space generation and plan-search algorithms were
modified in order to support the algebra, and we evaluate the extensibility of Volcano.

The study indicates that support for sets, multisets, and lists is difficult to add to a pre-existing exten-
sible query optimizer—such support should be considered already during the design of an extensible query
optimizer. Volcano’s two-staged optimization strategy forces the application of all transformation rules,
disregarding their type, during the first stage; if the optimization had occurred in a single stage, we specu-
late that it would have been easier to control the applicability of the different types of rules and that better
performance would have resulted. We also found that, for the modifications we considered, Volcano’s inter-
face was not always user-friendly and that the amount of code needed to implement support functions was
quite substantial. On the other hand, we found Volcano to be a very useful tool that allowed us to validate
our algebra in the middleware architecture more quickly than if we would have had to develop our own
optimizer.

This study indicates that extensible query optimizers are useful when testing research ideas and build-
ing prototypes. We also believe that extensible optimizers, if developed in industrial strength versions, will
prove very useful when building middleware systems that focus on specific functionality suitable for ap-
plying conventional relational query optimization techniques. The application of extensible technology to
middleware systems is a promising research direction. Due to the increasing use of user-defined routines
in conventional DBMSs, optimizer extensibility is also important when creating new DBMSs or modify-
ing existing ones. Finally, the study reported upon here indicates that more research is needed in query
optimization and processing that offer integrated support for sets, multisets, and lists.

Acknowledgments

We are grateful to Richard Snodgrass, who took part in the research that lead to the query optimization
framework, the Volcano-based implementation of which is reported in this paper.

15

The research reported here was supported in part by the Wireless Information Management network,
funded by the Nordic Academy for Advanced Study through grant 000389, by the Danish Technical Re-
search Council through grant 9700780, and by a grant from the Nykredit Corporation.

References

[BKG93] J. A. Blakeley, W. J. McKenna, and G. Graefe. Experiences Building the Open OODB Query
Optimizer. In Proceedings of ACM SIGMOD, Washington, DC, pp. 287-296 (1993).

[Bli99] R. Bliujute, S. Saltenis, G. Slivinskas, and C. S. Jensen. Developing a DataBlade for a New Index
In Proceedings of IEEE ICDE, Sydney, Australia, pp. 314-323 (1999).

[CW96] M. J. Carey and D. J. DeWitt. Of Objects and Databases: A Decade of Turmoil. In Proceedings
of VLDB, Bombay, India, pp. 3-14 (1996).

[CK97] M. J. Carey and D. Kossmann. Processing Top N and Bottom N Queries. Data Engineering
Bulletin, 20(3):12-19 (1997).

[Cha98] S. Chaudhuri. An Overview of Query Optimization in Relational Systems. In Proceedings of ACM
PODS, Seattle, WA, pp. 34-43 (1998).

[Gra95] G. Graefe. The Cascades Framework for Query Optimization. Data Engineering Bulletin,
18(3):19-29 (1995).

[GW8T7] G. Graefe and D. J. DeWitt. The Exodus Optimizer Generator. In Proceedings of ACM SIGMOD,
San Francisco, CA, pp. 160-172 (1987).

[GMO3] G. Graefe and W. J. McKenna. The Volcano Optimizer Generator: Extensibility and Efficient
Search. In Proceedings of IEEE ICDE, Vienna, Austria, pp. 209-218 (1993).

[Haa90] L. M. Haas, W. Chang, G. M. Lohman, J. McPherson, P. F. Wilms, G. Lapis, B. G. Lindsay,
H. Pirahesh, M. J. Carey, and E. J. Shekita. Starburst Mid-Flight: As the Dust Clears. IEEE TKDE,
2(1):143-160 (1990).

[Inf] Informix Software. DataBlade Overview. URL: <www. i nf orm x. coni product s/
opti ons/ udo/ dat abl ade/ >, current as of March 9, 2001.

[JM99] M. Jaedicke and B. Mitschang. User-Defined Table Operators: Enhancing Extensibility for OR-
DBMS. In Proceedings of VLDB, Edinburgh, Scotland, pp. 494-505 (1999).

[KW99] N. Kabra and D. J. DeWitt. OPT++: An Object-Oriented Implementation for Extensible Database
Query Optimization. VLDB Journal, 8(1):55-78 (1999).

[McK96] W. J. McKenna, L. Burger, C. Hoang, and M. Truong. EROC: A Toolkit for Building NEATO
Query Optimizers. In Proceedings of VLDB, Bombay, India, pp. 111-121 (1996).

[Ora] Oracle Technology Network. Overview of PL/SQL. URL: <otn. oracl e.conitech/
pl _sql / >, current as of March 9, 2001.

[PLH97] H. Pirahesh, T.Y. C. Leung, and W. Hasan. A Rule Engine for Query Transformation in Starburst
and IBM DB2 c/s DBMS. In Proceedings of IEEE ICDE, Birmingham, UK, pp. 391-400 (1997).

16

[Sel79] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access Path
Selection in a Relational Database Management System. In Proceedings of ACM SIGMOD, Boston,
MA, pp. 23-34 (1979).

[SJO01] G. Slivinskas and C. S. Jensen. Enhancing an Extensible Query Optimizer with Support for Multiple
Equivalence Types. In Proceedings of ADBIS, Vilnius, Lithuania, pp. 55-69 (2001).

[SJS01a] G. Slivinskas, C. S. Jensen, and R. T. Snodgrass. A Foundation for Conventional and Temporal
Query Optimization Addressing Duplicates and Ordering. IEEE TKDE, 13(1):21-49 (2001).

[SJS01b] G. Slivinskas, C. S. Jensen, and R. T. Snodgrass. Adaptable Query Optimization and Evaluation
in Temporal Middleware. In Proceedings of ACM SIGMOD, pp. 127-138 (2001).

17

