Bringing Order to Query Optimization

Giedrius Slivinskas, Christian S. Jensen, Richard T. Snodgrass

September 12, 2002

TR-1

A DB Technical Report

Title Bringing Order to Query Optimization

Copyright (© 2002 Giedrius Slivinskas, Christian S. Jensen, Richard T.
Snodgrass. All rights reserved.

Author(s) Giedrius Slivinskas, Christian S. Jensen, Richard T. Snodgrass

Publication History ACM SIGMOD Record, Vol. 31, No. 2, June 2002, pp. 5-14.
September 2002. A DB Technical Report.

For additional information, see the DB TECH REPORTS homepage: (ww. c¢s. auc. dk/ DBTR).

Any software made available via DB TECH REPORTS is provided “as is” and without any express or
implied warranties, including, without limitation, the implied warranty of merchantability and fitness for a
particular purpose.

The DB TECH REPORTS icon is made from two letters in an early version of the Rune alphabet, which
was used by the Vikings, among others. Runes have angular shapes and lack horizontal lines because the
primary storage medium was wood, although they may also be found on jewelry, tools, and weapons. Runes
were perceived as having magic, hidden powers. The first letter in the logo is “Dagaz,” the rune for day
or daylight and the phonetic equivalent of “d.” Its meanings include happiness, activity, and satisfaction.
The second letter is “Berkano,” which is associated with the birch tree. Its divinatory meanings include
health, new beginnings, growth, plenty, and clearance. It is associated with Idun, goddess of Spring, and
with fertility. It is the phonetic equivalent of “b.”

Abstract

A variety of developments combineto highlight the need for respecting order when manipulating re-
lations. For example, new functionality isbeing added to SQL to support OLAP-style querying in which
order is frequently an important aspect. The set- or multiset-based frameworks for query optimization
that are currently being taught to database students are increasingly inadequate.

This paper presents a foundation for query optimization that extends existing frameworks to also
capture ordering. A list-based relational algebra is provided along with three progressively stronger
types of algebraic equivalences, concrete query transformation rulesthat obey the different equival ences,
and a procedure for determining which types of transformation rules are applicable for optimizing a
guery. The exposition follows the style chosen by many textbooks, making it relatively easy to teach
this material in continuation of the material covered in the textbooks, and to integrate this material into
the textbooks.

1 Introduction

The relational model was originally conceived as a set-based model—relations were sets of tuples. Over the
past three decades, this property has been proclaimed a strength as well as a shortcoming of the relational
model.

As a reflection of this controversy, the user-level relational query language of choice, SQL, has long
offered a peculiar mix of orderedness and unorderedness. To illustrate, an ORDER BY clause permits to
sorting of the tuples resulting from query based on any combination of their attributes, using ascending and
descending orderings. However, this clause is far from a first class citizen in SQL. Rather, this clause is an
add-on that may be used only at the outermost level of a query, for ordering the result. For example, it is
impossible to create a view that includes the ORDER BY clause.

With the more recent advent of on-line analytical processing, the ordering of query results had gained
new interest and prominence. For example, ordered top-n lists are often of interest in OLAP-style querying.
Web search has also led to proposals for exploiting order. Specifically, it is desirable to compute the results
of a search in an ordered, page-by-page fashion. This often affords fast computation of the first results and
often avoids computation of the entire results. In addition, XML documents are inherently ordered, and OR-
DER BY clauses are used prominently when querying for XML documents in relational databases [CS01].

Developments such as these have led to additions to SQL. For example, Microsoft’s SQL Server [Mic]
offers a TOP N clause that, when specified with an integer argument IV in the SELECT clause of a query,
limits the number of tuples returned by the query to at most N. When used in conjunction with the ORDER
BY clause, the first N tuples of the result according to the specified order are returned. The Oracle DBMS
enables TOP N queries by providing a pseudo-column ROANUMthat assigns rank values to rows according
to a given ORDER BY clause [OraDev]. IBM’s DB2 supports the clauses “FETCH FIRST N ROWS
ONLY” and “OPTIMIZE FOR N ROWS?”; the first returns the first N rows, while the second asks the
optimizer to deliver the first N rows faster than the rest [IBM].

Whether to allow duplicates in query results, or to insist on relations indeed being sets, has generated
much discussion. Informed scientists and practitioners have conducted heated debates on this topic in trade
magazines (not unlike in nature to the debates on null values!). This debate has been resolved in the sense
that SQL does allow duplicates, and query optimization frameworks have emerged that consider relations
as multisets and thus afford a systematic treatment of duplicates.

However, SQL remains mainly a set-oriented (or multiset-oriented!) language, with order being an add-
on. This is perhaps the reason why the handling of order in query optimization is also in some sense an
add-on. Query optimization frameworks formalize relations as either sets or multisets, making it difficult to
capture, and formally reason about, order.

We believe that, like duplicates, order should be afforded fully integrated treatment in query optimiza-
tion. The reasons are several. First, order is inherent to the physical representation of data—order thus
occurs at the bottom of query plans, which may be exploited to produce better query plans. Second, sys-
tematic, unconstrained reasoning about order throughout query plans, e.g., when the queries involve TOP-N
like clauses, may lead to better plans.

This paper offers a foundation for relational query optimization that offers comprehensive, sound, and
integrated coverage of duplicates and ordering. The foundation is enabled by a relational algebra on relations
that are defined as lists and thus can be equivalent as sets, multisets, or lists. These types of equivalences
come into play because queries specify different types of results. For example, an SQL query not including
ORDER BY and DISTINCT at the outermost level specifies a result of type multiset, thus rendering the
application of transformations that need not preserve list equivalence.

The paper provides transformation rules that satisfy the different equivalences and go beyond the exist-
ing sets of rules known to the authors. In addition, a practical procedure is offered for determining when a
type of transformation rule is applicable to a query.

Some work has been reported on relational algebras for multisets [Alb91, DGK82, GUWO0Q], with the
most recent of these, by Garcia-Molina et al., being also the most extensive. This book offers compre-
hensive coverage of query transformations that preserve set as well as multiset equivalences. Formalizing
relations as multisets, sorting is permitted only at the outermost level. However, pushing down sorting in
a query plan can improve performance. Moreover, in some cases, the sorting must be performed early in
the query evaluation. For example, DBMSs such as Microsoft SQL Server allow the ORDER BY clause in
combination with the TOP predicate in subqueries, thus requiring intermediate results to be sorted.

Recent work by Pirahesh et al. [PLH97] emphasizes the importance of considering duplicates in DB2’s
query rewrite rules. However, duplicates are addressed as special cases when defining rewrite rules, and
no formal foundation for reasoning about these is offered. Query optimizers such as Volcano [GMc93]
initially generate search spaces of query plans without considering ordering, then take order into account
when considering the specific operator algorithms to use when transforming a (logical) query plan into a
concrete plan that may be executed by the query processor.

Some research has been conducted on algebraic frameworks for queries on lists. Richardson [Ric92]
uses an approach based on temporal logic to incorporate lists into an object-oriented data model. Seshadri
et al. [SLR94, SLR95] propose a sequence data model and optimization techniques for sequence queries;
while the model is relationally complete, the focus is on the processing of operators specific to sequence data
such as time series. Our work aims to simplify and minimize the extensions to the conventional relational
algebra, as well as permit the treatment of relations as multisets or sets, when order is not important.

Carey and Kossmann [CK97] discuss how to efficiently process TOP N and BOTTOM N queries by
extending existing relational query processing architectures, and they propose a humber of possible opti-
mizations for such queries. These optimizations fit into this paper’s foundation as specific transformation
rules.

Our earlier work [SJS01] presented a foundation for temporal query optimization including conven-
tional query optimization that covered duplicates and order, as well as different types of transformation
rules. All definitions omitted from this paper are included in that paper, which also covers some additional
related work. The present paper considers only conventional query optimization, adds the TOP IV opera-
tion and consequent transformation rules, and makes the argument that ordered relations should be treated
systematically in query optimizers and textbooks.

Section 2 proceeds to define the extended relational algebra. The different types of algebraic equiv-
alences are described in Section 3, and the concrete transformation rules that obey these are provided in
Section 4. Section 5 gives a procedure for determining when a transformation rule is applicable, and Sec-
tion 6 summarizes the paper. Two appendices provide precise definitions of auxiliary operations used in the
main body of the paper.

2 An Extended Algebra

To formally capture duplicates and ordering, the algebra to be defined must be based on relations that
are lists. Because it is also necessary to treat relations as sets or multisets, the semantics of the algebra
operations must follow the conventional relational algebra.

It is also desirable that the operations be minimal and orthogonal—each operation should perform one
single function and should minimally affect its argument(s) in doing so. This way, replication of functional-
ity is avoided, and it is easier to combine operations in queries. Combinations of operations, termed idioms,
may be included for efficiency, but should be identified as idioms.

We proceed to define the algebra, then exemplify the algebra and discuss pertinent properties.

2.1 Database Structures

We define relation schemas, tuples, and relation schema instances in turn. The definitions are the standard
ones, but adapted to address duplicates and order.

Definition 2.1 A relation schema is a four-tuple S = (2, A, dom, K), where € is a finite set of attributes,
A is a finite set of domains, dom : Q — A is a function that associates a domain with each attribute, and
K is a set of sets of attributes from 2. O

Consider relation PAYMENT in Figure 1. Relation schema PAYMENT consists of the attributes EmpID and
Salary and is formally a four-tuple (2, A, dom, K'), where Q = {EmpID,Salary}, A = {number},
dom = {(EmpID, number), (Salary, number)}, and K = {{EmpID}}; K is essentially a set of keys for
the schema.

Definition 2.2 A tuple over schema S = (2, A, dom, K) is a function ¢ : £ — Ugscad, such that for every
attribute A of Q, t(A) € dom(A). A relation schema instance over S is a finite sequence of tuples over
S such that for any tuples ¢1, t2 and for any set of attributes {A;,..., A} in K, t1(A41) # t2(41) V... V
tl(An) #* tQ(An). O

Note that the definition of a relation schema instance (relation, for short)
corresponds to the definition of a list. A relation can thus contain dupli-

PAYMENT cate tuples, and the ordering of the tuples is significant. The PAYMENT
EmpID | Salary relation from Figure 1 is then the list (t1,to,t3,t4,15), Where ¢; =
1 100K {(EmpID, 1), (Salary,100K)} and tuples to—t5 correspond to the other tu-
2 80K ples of the figure.

3 130K

4 110K 2.2 Algebra Operations

5 110K

We proceed to define the algebra operations. In the definitions, we use 7 to
be the set of all tuples of any schema and R to be the set of all relations, and
Figure 1: Relation PAYMENT letr € R,r = (t1,to,-..,t,). We use A-calculus for the definitions. The
definitions do not imply actual implementation algorithms. The schema of
the result relation is the same as the schema of the argument relation unless
noted otherwise.

Selection The selection operation o : [R x P] — R corresponds to the well-known selection operation in
the relational algebra [GUWOO]. The argument predicate P from the set of all possible selection predicates
P is expressed as a subscript, i.e., op(r).

o2 M, P(r=1)—>r,
(tail(r) =L) — (P(head(r)) — head(r), L),
(P(head(r)) — head(r), L) Qop(tail(r))

The arguments of an operation are given before the dot, and the definition is given after the dot. In this
definition, the first line says that if » is empty (we denote an empty relation by 1), the operation returns it.
Otherwise, the second line is processed, which says that if » contains only one tuple (the remaining part of
the relation, tail(r), is empty), we test the predicate P on the first tuple (head(r)). If the predicate holds,
the operation returns the tuple; otherwise, it returns an empty relation. If the second-line condition does not
hold, the operation returns the first tuple or an empty relation (depending on the predicate), with the result
of the operation applied to the remaining part of r appended (@).

Standard auxiliary functions such as head, tail, @, and tuple concatenation (o)—as well as the other
auxiliary functions used below—are defined in Appendices A and B.

Projection In the projection operation 7 : [R x F x ... x F] = R, F is a set of arithmetic expressions
fi + T — T, which includes any possible attribute names and which return single-attribute tuples. For the
PAYMENT relation, one possible expression f; is 2 - Salary AS X. Functions f1,..., f, are expressed as a
subscript, i.e., 7y, . 7. (7).

2N, fiyeo oy fu(r =1) = 7, fi(head(r)) o...0 fr(head(r)) @ Tfy,... £ (tail (r))

The schema of the result relation follows from the definition of tuple concatenation. The projection opera-
tion can be used to add new attributes to the schema. If a new attribute is added, its value is set to NULL for
each tuple of the argument relation.

We also define a foreign key below (for simplicity, foreign keys are defined at the instance level).

Definition 2.3 A set of attributes {A4,..., A, } of relation schema instance r; constitute a foreign key of
relation schema instance r; with respect to a key { B, ..., By} of relation schema instance r if and only
if TAL,...,An (Tl) g TBi,...,Bn (TQ)' O

Union-all Operation LI : [R x R] — R returns the union of two argument relations, retaining duplicates.
The operation appends the second relation to the first one.

U £ Ar1,79.(r1 =L) — 79, head (1) @ (tail(r1) Urs)

Cartesian Product Operation x : [R x R] — R computes the Cartesian product of two argument relations
in nested loop fashion. The definition uses the auxiliary function oneLoop : [T x R] — R. The schemas
resulting from x and oneLoop follow from the definition of tuple concatenation.

X 2 Ary,ro.((r1 =L) V (ro =1)) =L, oneLoop (head (r1),r2) U (tail(r1) x r3)
oneLoop & M\, r.(r =L1) =L, (t o head(r)) @ oneLoop(t, tail(r))

Informally, nested-loop join is a nested-loop Cartesian product followed by a selection involving attributes
from both arguments of the Cartesian product, and, possibly, followed by a projection.

Difference Operation \ : [R x R] — R returns all tuples of the first argument relation that are not in the
second argument relation.

\ S ATl,TQ.((Tl :_L) V (7‘2 :L)) — T,
isIn(head(r1),r2) — (tail(r1) \ remove(head(r1),r2)), head(r1) Q (tail(r1) \ r2)

Function 4sIn returns True if the argument tuple exists in the argument relation, and function remove
removes the first occurrence of the argument tuple from the argument relation.The functions are defined in
Appendix A.

Duplicate Elimination Operation rdup : R — R removes duplicates from the argument relation. This
operation retains the first occurrence of each tuple and removes all subsequent occurrences, if any.

rdup = Ar.(r =1) >,
isIn(head(r), tail(r)) —>rdup(head(r) Q remove(head(r), tail(r))),
head(r)Qrdup(tail(r))

If the first tuple of the argument relation can be found in the remaining part of the relation, the operation
removes that found tuple. Otherwise, the operation returns the first tuple concatenated with the result of the
operation applied to the remaining part of the relation.

Aggregation Operation € : [R x Q2 x ... xQxFx...xF] — R performs aggregation according to given
grouping attributes and aggregation functions. The set of attributes in the schema of the argument relations
is denoted by €2, and the set of all aggregation functions is denoted by IF; an aggregate function F; : R — T
takes a relation as argument and returns a single-attribute tuple containing the aggregate value. An example
of an aggregate function is AVG(Salary) ASD.

The operation returns one tuple for each unique sequence of grouping attributes. The schema of the
result relation follows from the definition of concatenation. Our definition corresponds to that provided by
Klug [Klu82] and Garcia-Molina et al. [GUWO00].

EEAT L,y Gny Py Fop(r =1) =1,
(head(r).g1 © ... 0 head(r).gn
o Fy(getGroupy, o (r,head(r)))o...
o Fin(getGroupgy, . (r,head(r))))
Q&gy,...gn,Fi P (T \ getGroupy, o (r, head(r)))

The definition uses the auxiliary function getGroup : [R x T x Q x ... x Q] — R, which returns all tuples
from the argument relation that have grouping-attribute values equal to those of the argument tuple. If there
are no grouping attributes, the function returns a list with all tuples of the relation.

getGroup 2 Ar,t, g1,. .., gn.(r =1) =undef,
(t.g1 = head(r).giA... Nt.gn, = head(r).gn) —
(head(r) @ getGroup,, . (tail(r),t)),
getGroup,, . (tail(r),1)

Sorting Operation sort : [R x Og] — R sorts its argument relation r according to an order o, which
belongs to O, the set of all possible orders for relations in R. Order o is expressed as a subscript, i.e.,
sorto(r).

An order for arelation with schema S = (2, A, dom, K) is a relation with schema (Q,, Ao, dom,, K,),
where Q, = {Att, AD}, A, consists of the set of attributes in S, €2, and the set of the two possible orderings
of an attribute, {ASC,DESC}, dom, = {(Att,),(AD,{ASC,DESC})}, and K, = {{Att}}. For example,
((EmpID, ASC), (Salary,DESC)) is an example of an order for relation PAYMENT.

To define the sorting operation, we first define auxiliary function insertTuple : [T x R x Oq] — R,
which inserts a tuple into a sorted argument relation, maintaining its order. \We denote the argument order
by o.

insertTuple 2 Xt,r,0.(r =L) —(t),
mustPrecede(t, head(r),0) =t Qr,
head(r) Q@ insert Tuple(t, tail(r), o)

Function mustPrecede : [T x T x Or] — Boolean returns True if the first argument tuple precedes the
second argument tuple according to the argument order.

mustPrecede = \tq,t3,0.(0 = 1) —True,
ti1(head(0).Att) Mo.(head(0).AD = ASC) —»<, >
to(head(0).Att)
A mustPrecede(t1,tg, tail(0))

Operation sort invokes insert Tuple for each of its tuples.
sort 2 \r,0.(r =1) — L, insertTuple(head(r), sort(tail (1)), 0)

Top Operation top : [R x N'] — R returns the first n tuples of its argument relation r, where n belongs to
the set of natural numbers, A. Operation invocation uses the notation top,, (7).

top 2 Ar,n.(r =L Vn=0) =1, head(r) Q top,_,(tail(r))

2.3 Example Query

Having defined these operations, we exemplify their use in query plans, as well as indicate what kinds of
transformations may be applied during optimization.

Let us consider two relations, PAYMENT (recall Figure 1) and EMPLOYEE (see Figure 2), and a query that

asks for a list of all employees (their IDs and

names) with salaries that are among the top

EMPLOYEE Resul t three highest salaries in the company, requir-
EmpID | Name EmpID | Name Salary | ing the list to be sorted on the Salary at-
1 John 3 Pet er 130K tribute in descending order. Note that the re-
2 Tom 4 Anna 110K sult (given in Figure 2) contains more than
3 Pet er 5 Suzanne | 110K three tuples because several employees re-
4 Anna 1 John 100K ceive the same salary.

5 Suzanne Figure 3(a) shows one possible initial

query plan. First, the PAYMENT relation is
projected on its Salary attribute, then dupli-
cates are removed, and the top three salaries
are selected. The Cartesian product and the subsequent selection then find the IDs of all employees that
receive a top three salary, and another Cartesian product with a selection is performed on the result and
the EMPLOYEE relation in order to obtain the employees’ names. Finally, the result is projected on required
attributes (for brevity, we do not specify from which relation the common attributes come) and sorted on
the Salary attribute.

Transformation rules that preserve different types of equivalences are applicable to different parts of a
query. This is illustrated by the regions in Figure 3(a). Transformations below the top sort operation and
above the top operation need not preserve order (indicated by the lighter shading). The top sort operation
ensures that the result is correctly ordered. Transformations performed below the rdup operation need not
preserve duplicates, which is indicated by the darker shading.

Figure 2: Relation EMPLOYEE and the Result Relation

Order needs not be preserved Duplicates are not relevant

SortSal ary DESC T[Er'r'pl D, Nane, Salary
Tt E o
‘ npl D, Nane, Salary ‘ 1.Enpl D = 2. Enpl D
0. Enpl D = 2. Enpl D X
% G EMPLOYEE
‘ 1.Salary = 2. Salary
EMPLOYEE 0-l. Salary = 2. Sal ary ><
/>< top, PAYMENT
PAYNENT t0p3 SortSal ary DESC
SortSal ary DESC ‘
‘ rdup
rdup
‘ Tlgy) ary
T[Sal ary ‘
‘ PAYNMENT
PAYMENT
(@ (b)

Figure 3: Initial Query Plan (a) and Resulting Query Plan (b)

By systematically exploiting transformation rules preserving different types of equivalences, we are able
to achieve an “optimized” query tree such as the one shown in Figure 3(b). In this tree, the orders of the
Cartesian products have been switched, so that the left-most relation is the PAYMENT relation projected on
the top three salaries. Since the Cartesian product is defined in nested-loop fashion, the order of its left
argument is preserved, and, consequently, the top sort operation is no longer necessary.

Note that the rdup, sort, and top operations do not have to be separate operations. Since they could be
efficiently implemented using a priority heap in main memory, an idiom involving the three operations may
be defined and used in query-plan generation.

2.4 Operation Properties

Section 2.2 defined only fundamental operations. The addition of derived operations (idioms), e.g., join
(Cartesian product followed by selection and projection) and regular SQL union (union-all followed by
duplicate elimination), would not introduce any new issues in the framework. However, idioms should be
included in an implementation of the algebra.

The algebra differs fundamentally from the algebra presented in [GUWAO0], in that this latter algebra

works on multisets, not lists. However, all our operations except top are list-insensitive, i.e., if their ar-
gument relations are identical as multisets (but different as lists), their result relations are also identical as
multisets. When we treat relations as multisets, our algebra is at least as expressive as the one presented
in [GUWOO] because each operation defined there may be expressed by combinations of the first seven
operations defined in Section 2.2.

Most operations—such as selection, Cartesian product, difference, duplicate elimination, and top—
retain the order of their (left) argument. Since the operation definitions constrain the orders of their results,
an operation from the conventional relational algebra with several implementation algorithms may result in
several operations being added to our algebra. For example, separate definitions are needed for nested-loop
join and sort-merge join, since both return differently ordered results.

The projection result is ordered on the largest prefix of its argument order that contains the projected
attributes. For example, if we project relation r, which is sorted on ((A, ASC), (B, ASC), (C,DESC)), on A and
C, the result would be sorted on A. Similarly, the result of aggregation is ordered by the largest prefix of
its argument order that contains the grouping attributes. The result of sorting is the order specified by the
sorting parameter if the latter is not a prefix of the argument’s order, and the argument’s order otherwise.
The result of union-all is unordered,

An operation may (1) eliminate duplicates so that the result would only have distinct tuples, (2) retain
duplicates, i.e., the result would have distinct tuples only if the argument relation(s) contains only distinct
tuples, or (3) may generate duplicates in the result even if duplicates do not exist in the argument relation(s).
Duplicate elimination and aggregation eliminate duplicates; and selection, Cartesian product, difference,
sorting, and top retain duplicates. Projection generates duplicates only if the projection attributes do not
contain a key of the argument relation, and union-all always generates duplicates.

3 Relation Equivalences

The query optimizer does not always need to consider relations as lists. For example, if ORDER BY is
not specified in a query, it is enough to consider relations as multisets. To enable this type of treatment
of relations, three types of equivalences between relations are introduced: list equivalence (=,), multiset
equivalence (=,,), and set equivalence (=g). Two relations are list equivalent if they are identical; multiset
equivalent if they are identical as multisets, taking into account duplicates, but not order; and set equivalent
if they are identical as sets, ignoring duplicates and order.

Definition 3.1 Let functions =, , =,,, and =g be given, all with signature [R x R] — Boolean. Rela-
tions 71 and ro are list equivalent (r1 =, r2), multiset equivalent (r; =, r2), and set equivalent (r; =g 79)
if and only if function =, , =,,,and =5 return True, respectively.

=, £)\’1"1,’1"2.(7‘1 =1 Amrg :J_) — True,
(ri =L @ ry =1) —False,
(head(r1) = head(r3)) —tail(r1) =, tail(re),
False

=y = Ary,ro.(r1 =L Arg =1) — True,
(ri =L @ry=1) —False,
isIn(head(r1),re) —tail(r1) =y remove(head(r1),r2),
False

=5 £ Ar1,ro.(r1 =L Arg =1) — True,
(ri =1L @& ry =1) —False,
isIn(head(r1),r2) —rmAll(head(r1),m1) =5 rmAll(head(r1),72),
False 0

Auxiliary function rmAll : [T x R] — R removes all occurrences of the argument tuple from the argument
relation and returns the resulting relation.

rmAll & M, r.(r =1) =1,
(t = head(r)) =rmAll(t, tail (r)),
head (r)QrmAll(t, tail (r))

We can exemplify different types of equivalences using different variations of the PAYMENT relation
(Figures 1 and 4). Relations PAYMENT and PAYMENT 4 are not equivalent as lists because the tuple ordering
is different, but they are equivalent as multisets and sets. Relations PAYMENT 4 and PAYMENT p are equivalent
only as sets, because the tuple for employee ID 3 is repeated twice in PAYMENT g.

The examples illustrate that we have an ordering be-
tween the types of equivalences. Two relations being equiv-

PAYMENT 4 PAYMENT alent as multisets implies that they are also equivalent as

EmpID | Salary | | EmpID | Salary sets, and two relations being equivalent as lists implies that

i fggK ; 5138&'(they are equivalent as both multisets and sets.

3 130K 3 130K The different types of equivalences can be exploited in

Z 110K 3 130K heuristics-based query optimization. Transformation rules

5 110K 4 110K (to be discussed in detail shortly) can be divided into three
5 110K categories, one for each type of equivalence. For example,

we may have a rule expr; —, expry, which says that after
the replacement of expression ezpr in the original query
plan by expression ezprs, the result relation produced by
the new plan will be list equivalent to the result relation
produced by the original plan, when evaluated on the same argument relation(s). That said, the result
relations will also be multiset and set equivalent.

Another rule ezpr; —, exprs says that if we replace ezpr, by exzpr,, the new plan will yield a result
relation that may only be multiset equivalent to the result relation produced by the original plan, because the
application of this rule does not preserve the order. This may be acceptable though, if the result needs to be
a multiset. For example, query msaiary (PAYMENT) can return tuples in any order. In general, the type of the
result specified by a query determines which transformation rules can be exploited. The next two sections
list transformation rules and describe when they are applicable.

Figure 4: Variations of the PAYMENT Relation

4 Transformation Rules

In this section, we provide an extensive set of transformation rules for the algebra. First, we provide rules
that derive from the conventional relational algebra. Then we discuss rules involving the duplicate elimina-
tion, sorting, and top operations.

The rules are given as equivalences that express that two algebraic expressions are equivalent accord-
ing to one of the three equivalence types from Section 3; we always give the strongest equivalence type
that holds. An algebraic equivalence represents both a left-to-right and a right-to-left transformation rule.
If necessary, we mark pre-conditions that apply only for the left-to-right transformation by [1r] and pre-
conditions that apply only for the right-to-left transformation by [r1]. Pre-conditions with no such marks

apply to both directions. All rules can be verified formally, as the operations and equivalence types have
formal definitions. We believe the transformations are correct; reference [SIS99] provides an example proof
of one transformation rule.

In transformation rules, r can be a base relation or an operation tree. We denote the attribute domain of
the schema of relation » by €.,.. Function attr returns the set of attributes present in a selection predicate,
projection functions, or a sorting list.

4.1 Conventional Rules

The conventional transformation rules derive from the rules for multisets given by [GUWOO]; we list them
in Figure 5. The rules are ordered based on the operation they concern, e.g., rules C1-C4 concern selection.

(C1) 0P1AP2()—L op (0'p2())
(C2) TP VP, (T) =s UP1() Uop, (T)
(C3) op (op,(r)) =L op, (0P (1))
(C4) o-p(r)=cr\op(r)

(C5) 7y, fo(Thy b (7)) =gy g (7)
[1r] attr(fi,..., fn) C Q
[r1] attr(hyi,..., hy) C Q,
(CO) 7yy,..p(op(r)) = op(mpy,. 1. (1)) [1x] attr(P) C attr(fi,..., fr)
CT) 7hpo(op(r) =0 Tpy 10 (0P (Thy b (7)),
where by ={a|i € {1,...,m} A(h; € {f1,..., fn} V h;i € attr(P))} [rl]attr(P)C Q,
(C8) T XTo=pTo XTq
(C9) op(r1 xre) = op(r1) X ro [1r] attr(P) C Q,,
(C10) op(r1 x 12) =L 71 X op(r2) [1r] attr(P) C Q,,
(C11) mp, . p.(r1 X T2) =1 ma, (r1) X wa,(r2), Where
Ay ={filie{l,...,n} Aattr(f;) CQ,},
Ay ={filie{l,...,n} Aattr(f;) CQ,}
1r]Vie {1,... ,n} attr(f;) C Q. V attr(f;) C Qp,
[r1] attr(A;) N attr(A2) =0
(C12) 7py gl X 1) =gy 1 (T4 (1) X T4, (r2)),
where A1 = {a|a € Q, Na € attr(fi,..., fn)},
Ay ={alae€Q, ANa € attr(fi,...,fn)} [x1] attr(fi,---, fn) C Qrixry
(C13) (7‘1 X 7‘2) Xry3=,r X (’1"2 X 7‘3)

(C14) Up(’r‘l \’)"2) =r O'p(’r‘l) \’)"2

(C15) op(ri \r2) =L op(ri) \ op(rs)

(C16) rilUre =y ro Ly

(C17) op(r1 Urg) =, op(r1) Uop(re)

(C18) my,, ..po(riUre) = mpy p(r) Ump 5, (12)

(C19) UP(fgl,---,gn,Fh---,Fm(7')) =L 591,..-,gn,F1,...,Fm(‘7P(r)) attr(P) C {g1,---,9n}
(CZO) §g1,---,gn,F1,---,Fm (’l") =L ‘fgl,---,gn,Fh---,Fm (ﬂ'H()) attr(gla s L P aFm) CH

Figure 5: Conventional Rules

Most rules satisfy the list equivalence, but the commutativity rules, e.g., for Cartesian product and
union-all, satisfy only the =,, equivalence because the result relations produced by the left- and right-

10

side expressions have differently ordered tuples (see rules C8 and C16). Finally, rule C2 only satisfies
=, equivalence because if both predicates P; and P, are satisfied for a tuple of r, the right-hand side of the
transformation would return two instances of the same tuple.

4.2 Duplicate Elimination Rules

Figure 6 lists duplicate elimination rules. Rules D1-D2 indicate when duplicate elimination is not necessary.
Rule D6 follows because aggregations involving only functions MIN and MAX are insensitive to duplicates.

(D1) rdup(r) =, 7

(D2) rdup(r)=sr

(D3) rdup(op(r)) =L op(rdup(r))

(D4) rdup(my,,....1, (rdup(r))) =5 rdup(7y,,..1, (1))
(D5) rdup(ry X) =, rdup(r1) X rdup(re)

(D6) &g......gn,F1,.... o (rdup(r)) =1 gy gn,F1 o o (T) aggrFs(Fy,. .., Fp) C {MIN,MAX}

r does not have duplicates

Figure 6: Duplicate Elimination Rules

Duplicate elimination cannot be pushed before union-all because the latter may generate duplicates even
if its arguments do not contain any. Also, duplicate elimination cannot be pushed down before difference,
because difference is sensitive to the number of duplicates in both arguments. If tuple ¢ occurs z times in
the first argument and y times in the second argument (y < x), it occurs — y times in the result. However,
if we were to remove duplicates first, tuple ¢ would occur only once in each argument to the difference, and
it would be absent from the result.

If duplication elimination is applied after an operation that does not manufacture duplicates, we can re-
move the duplicate elimination using rule D1. Thus, duplicate elimination can be removed if it is performed
on top of duplicate elimination or aggregation.

4.3 Sorting Rules

Sorting can be eliminated if performed on a relation that already satisfies the sorting, if we can treat the
relation as multiset, or if there is a subsequent sorting operation. Predicate isPrefizOf, defined formally
in Appendix A, takes two lists as argument and returns True is the first if a prefix of the second. Predicate
order(r, o), also defined formally in Appendix A, takes a relation r and an order o and returns true if relation
r has order o. The sorting rules are given in Figure 7.

If we wish to sort the result of some operation, the sorting can be performed on the argument relation(s)
for that operation if the operation preserves the ordering. All operations except U fully or partially preserve
the ordering of their first argument.

44 TOP N Rules

Rules for the top operation are given in Figure 8. Several rules have applicability conditions involving the
cardinality of the argument relations. These rules can only be applied if the exact cardinality is known, i.e.,
if the cardinality is only estimated, these rules are not applicable.

11

(S1) sorta(r) =L isPrefizOf (A, 0) A order(r, o)
(S2) sorta(r)=um
(S3) sorta(sortp ()) =1L sort 4(r) isPrefizrOf (B, A)
(S4) sorta(op(r)) =L op(sorta(r))
(S5) sorta(my,,..1,(1)) =0 Th,... 1, (sOTEA(T)) [1r] attr(A) C Q,
[r1] attr(A) C attr(f1,..., fn)
(S6) sorta(ry x re) =L sort4(r1) X ro [1r] attr(A) C Q,,
(S7) sorta(ri \ o) =1 sorta(r1) \ o
(S8) sorta(&gy,....gn,Firres P (1)) =1 Egi,eogn, oy (SOTEA(T)) attr(A) € {g1,...,9n}
(S9) sorta(rdup(r)) = rdup(sorta(r))

Figure 7: Sorting Rules

(T1) top,(r) =L n(r) <n

(T2) topn(nfy,..go (1)) =1 Tfps s (t09n (1)

(T3) top,(r1 x r2) =1, top,(top,(r1) X r2)

(T4) tOpn(rl X TQ) =L tOpn(rl X tOpn('r2))

(T5) top,(op(r1 x re)) =L op(top,(r1) xr2) (A1 =BiA...ANA,=B,) €P)
AN{Ai,...,A,} is aforeign key of r;
A{Bi,...,Bp} isakey of ry

(T6) top,,(r1 Ury) =, top,(r1) n(ry) >n

(T7) top,,(r1 Ure) =, 71 Utop,(re) n(ry) +n' =n

Figure 8: TOP N Rules

5 Applicability of Transformation Rules

Queries expressed in SQL are mapped to an initial algebraic expression, to which the optimizer then applies
transformation rules according to some strategy. The resulting, new algebraic expressions must, when evalu-
ated, return relations that are equivalent to the relation returned by the original expression, which we assume
correctly computes the user’s query. The type of equivalence required between result relations depends on
the actual query statement; we name the required equivalence between results the outer equivalence and
assign it to the root of the query tree.

For SQL queries, the outer equivalence is =,, or =, 4, !, depending on whether the query given in-
cludes ORDER BY A. The presence of ORDER BY specifies a list; otherwise, the query specifies a mul-
tiset, rendering order of the result tuples immaterial. Intuitively, we can apply transformation rules to a
query evaluation plan if the result relations produced by the new plan and the original plan are equivalent as
multisets or lists, depending on whether or not ORDER BY was specified.

Having the outer equivalence, we can derive the required equivalence for each operation in the query
tree. Due to the different characteristics of operations, an operation somewhere in the query tree may
require an equivalence that is not the same as the outer equivalence. For example, in the query tree shown
in Figure 3(a), the outer equivalence is =, , but the operations between the top sort operation and the top
operation do not need to preserve order; hence, =,, rules are applicable.

The required equivalences constrain the types of transformation rules that can be applied during query

Tworelationsare =1, 4 equivalent if they are =,, equivalent and their projections on attributelist A are =, equivalent. The
=., 4 equivalenceisdightly lessrestrictivethan =;, ; the =, equivalenceimpliesthe =, . equivalence.

12

plan enumeration. There are no restrictions on rules of type =, —these can always be applied safely
because a transformed expression evaluates to a result identical as a list to that obtained from evaluating the
original expression.

To enable the formal procedure of determining when a transformation rule is applicable to a query plan,
we introduce properties for the operations in an operation tree.

5.1 Definitions of Properties

Table 1 introduces two Boolean properties of operations of a query tree. For each combination of the prop-
erty values, Table 2 gives an equivalence type that should hold for results of that operation. A transformation
rule of some type can be applied at some location in a query tree if the result produced by its right-hand side
is equivalent to the result produced by its left-hand side according to the required equivalence type, as spec-
ified by the properties for the top-most operation at that location. For example, rule G8 guarantees only the
=, equivalence between its right- and left-hand side, but it can be applied to the query plan in Figure 3(a)
to both Cartesian products because the required equivalence at each location is =, (the orderReq property
value is False).

| Property Name | Description \
orderReq True if the result of the operation must preserve some ordering
dupRelevant True if the operation cannot arbitrarily add or remove duplicates

Table 1: Properties of an Operation in an Operation Tree

‘ orderReq(op) ‘ dupRelevant (op) ‘ Type ‘

True True or False =ra
False True =,
False False =

Table 2: Combinations of Property Values and Corresponding Equivalence Types

During query optimization, the properties are first set for the initial query evaluation plan. For the root,
the orderReq property is set to True only if the ORDER BY clause is specified at the outer-most level of
the user query, and the dupRelevant property is always set to True. Then, the two properties are propagated
down the tree from the root.

Table 3 defines the dupRelevant property values for a non-root operation op. This property depends
almost entirely on the parent of the operation, denoted op,, and it is independent of the specific op. For
binary operations, keywords left and right denote the location of op relative to its parent. If this property
holds at the parent, it also holds at a child, except: (1) when the parent operation is difference, the operation
in question is located at the right child, and the relation produced by the left child does not contain dupli-
cates; (2) when the parent operation is duplicate elimination, because then the child operation may deal with
duplicates in any way, since they will later be removed; and (3) when the parent operation is aggregation
with only the duplicate-insensitive aggregation functions (MIN and MAX).

To set the property for the right child of difference, an auxiliary property mayHaveDups is used, which
tells if the relation produced by the child operation may contain duplicates. This property is propagated
bottom-up from the base relations using the duplicate-preservation properties of operations as described in
Section 2.4.

13

‘ opp ‘ dupRelevant (op)

op, Tf .. f. U (left and right), | dupRelevant(opy)
x (left and right), sort 4, top,,

\ (left) True

\ (right) mayHaveDups(opies (0pp))

rdup False

€g1rsgn sty Fim False if aggrFs(Fy,...,F,) C {MIN,MAX}

True otherwise

Table 3: The dupRelevant Property

The next case to consider is when the property does not hold at the parent. Then, the property holds at
a child in the following situations: (1) when the parent operation is difference, the operation in question is
located at the left child, or it is located at the right child, and the relation produced at the left child does not
contain duplicates; and (2) when the parent operation is aggregation with at least one duplicate-sensitive
function (AVG, SUM, or COUNT).

Table 4 describes the propagation of the orderReq property. This property also depends almost entirely
on the parent of the operation. Most often, the orderReq property holds for an operation at a child node
when it holds for the operation at the parent node and the parent node operation preserves the order of its
argument. For example, if order is required for a select operation (o), then order will be required of the
immediate child of that operation. However, if the parent operation is sort, the property does not hold for
its immediate child because the order of the argument is immaterial. In contrast, if the parent operation is
top, the property holds for its immediate child because the order of the argument is important.

‘ opp ‘ orderReq(op) ‘
OP, Ty, fnr X (left), \ (left), rdup, &g, ... go.F1,...F,, | OrderReq(opy)
U (left and right), x (right), \ (right), sort 4 False
top,, True

Table 4: The orderReq Property

When a transformation rule is applied during query optimization, the properties must be adjusted. The
top-down nature of property definitions ensures that adjustments for most of the rules are local, i.e., it is not
necessary to scan the whole operation tree [SJS01].

6 Summary

With the advent of on-line analytical processing and the use of database technology in Internet search,
the ordering of query results has gained new interest and prominence. Thus, TOP-N like queries have
received increased attention in the user community, and major DBMS vendors have included support for
such queries into their products over the past few years. However, order is far from a first-class citizen in
query optimization, where relations are often viewed as sets or multisets. In contrast, we believe that, like
duplicates, order should be afforded fully integrated treatment in query optimization.

This paper presents a foundation for relational query optimization that offers comprehensive and pre-
cise handling of duplicates and order. This is enabled by a list-based algebra where relations thus can be
equivalent as sets, multisets, or lists. This leads to three types of transformation rules that can be exploited

14

during query optimization, depending on whether the ORDER BY or DISTINCT clauses are specified in
an SQL query. In addition, a procedure is offered for determining when a rule of some type is applicable
to a query tree. This foundation proposes to handle the sorting and top operations as all the other algebra
operations during the search-space generation.

While the foundation proposed here may readily be integrated into database textbooks so that students
get exposed to the issues related to duplicates and order, much research and engineering remains to be done
to reflect the foundation in an efficient query optimizer.

References

[AIb91] J. Albert. Algebraic Properties of Bag Data Types. In Proc. VLDB, pp. 211-219 (1991).

[CK97] M. J. Carey and D. Kossmann. Processing Top N and Bottom N Queries. Data Engineering
Bulletin, 20(3):12-19 (1997).

[CS01] S. Chaudhuri and K. Shim. Storage and Retrieval of XML Data using Relational Databases.
Tutorial presented at VLDB 2001.

[DGK82] U. Dayal, N. Goodman, and R. H. Katz. An Extended Relational Algebra with Control over
Duplicate Elimination. In Proc. PODS, pp. 117-123 (1982).

[GMCc93] G. Graefe and W. J. McKenna. The Volcano Optimizer Generator: Extensibility and Efficient
Search. In Proc. IEEE ICDE, pp. 209-218 (1993).

[GUWO00] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database System Implementation. Prentice Hall
(2000).

[1IBM] DB2 Universal Database and DB2 Connect for Windows, OS/2 and Unix. Administration
Guide. <ww\4.ibm coni cgi - bi n/ db2ww/ dat a/ db2/ udb/ wi nos2uni x/ support/
docunent . d2w/ r epor t ?f n=db2v7d0f r Bt oc. ht nt>, current as of August 2, 2001.

[Kie85] W. Kiessling. On Semantic Reefs and Efficient Processing of Correlation Queries with Aggre-
gates. In Proc. VLDB, pp. 241-249 (1985).

[Klu82] A. Klug. Equivalence of Relational Algebra and Relational Calculus Query Languages Having
Aggregate Functions. JACM, 29(3): 699-717 (1982).

[PLH97] H.Pirahesh, T.Y. C. Leung, and W. Hasan. A Rule Engine for Query Transformation in Starburst
and IBM DB2 C/S DBMS. In Proc. IEEE ICDE, pp. 391-400 (1997).

[Mic] Microsoft SQL Server Product Documentation. <www. nmi cr osof t . coni sql / t echi nf o/
pr oduct doc/ 2000/ >, current as of July 27, 2001.

[OraDev] Oracle8i Application Developer’s Guide - Fundamentals. <t echnet . or acl e. com doc/
server. 815/ a68003/t oc. ht nt>, current as of July 27, 2001.

[Ric92] J. Richardson. Supporting Lists in a Data Model (A Timely Approach). In Proc. VLDB,
pp. 127-138 (1992).

[SJS99] G. Slivinskas, C. S. Jensen, and R. T. Snodgrass. Query Plans for Conventional and
Temporal Queries Involving Duplicates and Ordering. TIMECENTER TR-49 (1999).
<wwwv. cs. auc. dk/ Ti meCent er >, current as of July 27, 2001.

15

[SJS01] G. Slivinskas, C. S. Jensen, and R. T. Snodgrass. A Foundation for Conventional and Temporal
Query Optimization Addressing Duplicates and Ordering. IEEE TKDE, 13(1):21-49 (2001).

[SLR94] P. Seshadri, M. Livny, and R. Ramakrishnan. Sequence Query Processing. In Proc. ACM
SIGMOD, pp. 430-441 (1994).

[SLR95] P. Seshadri, M. Livny, and R. Ramakrishnan. SEQ: A Model for Sequence Databases. In Proc.
IEEE ICDE, pp. 232-239 (1994).

A Auxiliary Operations on Relations

Head Function head : R — T returns the first tuple of the argument relation.

head 2 Mr.(r =1) — undef,

Tail Function tail : R — R returns the argument relation without its first tuple.
tail 2 \r.(r =L) — undef, (ta, ..., 1)

According to the definition, tail applied to a relation with one tuple returns an empty relation.

Append Function @ : [T x R] — R prepends the argument tuple to the argument relation.

QE X, r.(r=1) = (), {t,t1,... 1)
isin Function isIn : [T x R] — Boolean returns True if the argument tuple exists in the argument relation
and False, otherwise.

isIn £ \t,r.(r =1) —False,
(t = head(r)) —True,
isIn(t, tail(r))

Remove Function remove : [T x R] — R removes the first occurrence of the argument tuple from the
argument relation. The schema of the argument relation is retained for the result relation.

remove 2 \t,r.(r =1) =1,
(t = head(r)) —tail(r),
head (r)@Qremove(t, tail(r))

isPrefixOf Function isPrefizOf : [R x R] — Boolean returns True if one relation is a prefix of other
relation.
isPrefirOf 2 \rq,ro.(r; =1) —True,
(head(r1) = head(ra)) A isPrefizOf (tail(ry1), tail(r2))
order Function order : [R x Og| — Boolean returns True if the argument relation has the argument

order.

order 2 \r,o.(head(tail(r)) =L) —True,
mustPrecede(head(r), head(tail(r)),0) A order(tail(r), o)

16

B Auxiliary Operationson Tuples

Concatenation Function o : [T x 7] — T concatenates two tuples. Let two tuples be ¢; and ¢, and their
corresponding schemas be S1 = (21, A1,domq) and Sy = (Q9, Ay, doms). We define the result tuple ¢,
and its schema S, = (€., A,,dom,) as follows. An attribute name of the schema of the result tuple is

prefixed by 1 and 2 only if the attribute appears in the schemas of both argument tuples.

t, £ {(attr,value) | ((attr,value) € t; A attr ¢ Q) V ((attr,value) € ty A attr ¢ Q1)}
U {(1.attr,value) | ((attr,value) € t1 A attr € Qa)}
U {(2.attr,value) | ((attr,value) € to A attr € Qp)}

Q2{al(@aeNNadQ)V(aeNAad)}
U{la|(a € nac)}
U{2.a|(aeQ2Naec)}

Aré A1 UAs

domy = {(attr,type) | ((attr,type) € domy A attr ¢ Qo) V ((attr, type) € doma A attr ¢ 1)}
U {(1.attr, type) | (attr, type) € domi A attr € Q9)}
U {(2.attr, type) | (attr,type) € doma A attr € 1)}

For example, the concatenation of tuples t; = {(Name, Bill), (Salary,20), (T1,10), (T2,20)}
and t2 = {(Name, Bill), (Department, Sales)} leads to tuple t, = {(1.Name, Bill), (Salary, 20),
(T1,10), (T2,20), (2.Name, Bill),(Department, Sales)}.

17

