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Abstract. Real-world entities are inherently spatially andtem-to geo-referenced, or spatial, information and its evolution
porally referenced, and database applications increasingly exacross time.
ploit databases thatrecord the past, present, and anticipated fu- Specifically, an increasing number of database applica-
ture locations of entities, e.g., the residences of customers oliions will manage spatiotemporal aspects of real-world, phys-
tained by the geo-coding of addresses. Indices that efficientljcal objects. Such objects have positions and extents in space,
support queries on the spatio-temporal extents of such entitiesnd these positions and extents may change as time passes.
are needed. However, past indexing research has progressegdample spatiotemporal objects range from people and vehi-
in largely separate spatial and temporal streams. Adding timeles to land parcels, residences, stores, hotels, and hurricanes
dimensions to spatial indices, as if time were a spatial dimen{8]. The past, present, and anticipated future positions of such
sion, neither supports nor exploits the special properties obbjects are often of interest in population studies, urban plan-
time. On the other hand, temporal indices are generally nohing, marketing, sales, traffic management, vehicle navigation
amenable to extension with spatial dimensions. This papesupport, land management, and environmental studies. Some
proposes the first efficient and versatile index for a generabf these applications are dependent on the capture of continu-
class of spatio-temporal data: the discretely changing spatiadus movement, while others are concerned with the discretely
aspect of an object may be a point or may have an extent; botbhanging positions and extents. This paper proposes an effi-
transaction time and valid time are supported, and a generatient indexing technique for the latter kind of application.
ized notion of the current timepw, is accommodated for both Two temporal aspects of data are generally considered fun-
temporal dimensions. The index is based on thdrRe and  damental. Thealid timeof a fact is the time(s), past, present,
provides means of prioritizing space versus time, which en-or future, when the fact is true in the modeled reality, while
ables it to adapt to spatially and temporally restrictive queriesthetransaction timeof a fact is the time(s) when the fact was
Performance experiments are reported that evaluate pertineot is current in the database [11,21]. Data with both valid and
aspects of the index. transaction time associated is termed bitemporal. Full spa-
tiotemporal support implies considering these two temporal
Keywords: Access method — Bitemporal data — Transactionaspects as well as two or three dimensions of space.
time — Valid time — Spatio-temporal data — Multidimensional In addition, special semantics of time must be supported
indexing — R-tree and, if possible, exploited. Specifically, time intervals asso-
ciated with objects may beow-relative meaning that their
end points track the progressing current time. To illustrate,
consider the recording of addresses. The time a person resides
at a given address may often extend from a known start time
1 Introduction (the valid-time interval begin) to some unknown future time,
which is captured by letting the valid-time interval end extend

Society is facing rapid advances in key information technolo-t0 the progressing current time. The same applies to the trans-
gies. Processors are becoming faster, cheaper, and Sma“@(;:tion time — the time a tuple is inserted into the database is
new wireless communications-related technologies such aknown, but we do not know when the tuple will be deleted.
WAP and BlueTooth are being introduced; and positioningThiS notion ofnowis peculiar to time and has no counterpart
technologies such as GPS become increasingly precise and ilit SPace.

expensive. Trends such as these will render the outer reaches The previously proposed spatiotemporal indices [17,24]
of the Internet wireless and most users of the Internet moassume only one time dimension, adopting one of two ap-
bile. In addition, these trends will give increased prominenceProaches. Either overlapping index structures are used that in-
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dex spatial objects at differenttime instances and save space figble 1. The demographic relation
;hanng the unchanggd part's of the |nd!cgs [18, 2?, 2'8], ortime berson 1 Pos. 177 1T TvT™ T
is added as another dimension to an existing spatial index [25](.
In this paper, we present an index, termed tA&Ree (“Spa- John Posl | 4/97 | UC | 3/97 597
tioTemporal’), that adopts the fundamental structure of the(?) | __Tom Pos2 | 3/97 | 7/97 | 6/97 8/97
spatial R-tree to index bitemporal-data and adds additional(3) | Jane | Pos3 | 5/97 | UC | 5/97 | NOW
dimensions to support spatiotemporal data. Section 6 consid4) | Julie Pos4 | 3/97 | 7/97 | 3/97 | NOW
ers the utility of previous proposals for the problem addressed5) Julie Pos4 | 8/97 | UC | 3/97 7197
in this paper and compares them to the paper’s proposal.  (6) Ann Pos5 | 5/97 | UC | 3/97 | NOW + 1
Section 2 presents the type of data that can be indexegl) Scott Pos6 | 4/97 | UC | 5/97 | NOW — 2
with the new index. Section 3 solves the problem of choosing
the minimum bounding regions to be used in the entries of
the index, and algorithms for the tree operations are giverflueries are supported. As mentioned, the index also supports
in Sect. 4. Section 5 presents performance studies, Sect. ®W-relative data, which we proceed to characterize.
considers related proposals, and Sect. 7 concludes the paper.

2.2 General bitemporal data

2 Background We adopt the standard four-timestamp format [22] for captur-

This section presents two example application areas illustrat"d Valid and transaction time. With this format, each tuple
ing the spatiotemporal data and queries supported, and it déS timestamped with four time atiributes: VBnd VT'- the
scribes the temporal aspects of the data to be indexed. t|me§ when the tuple’s |'nformat|0n became. and ceased to be

true in the modeled reality; TTand TT'— the times when the

tuple became and ceased to be current in the database.
2.1 Example application areas A tuple is now-relative if it is valid until the current time

or is part of the current database state. This is captured using
Demographic data is used in applications such as advertisesariables that denote the current time in the attributes ¥id
ment, direct marketing, urban planning, and social studies. ITT™ [6]. Variable UC (denoting ‘until changed’) is used in
is of great value to record the changing addresses, or locaFT™, and variable NOW is used in VT Figure 1 shows an
tions, of the people in the database, and we will assume thatxample table with now-relative data. The time granularity is
the database records the history of the position (e.g., latituda month, and the current time (CT) is 9/97.
and longitude) of each person’s residence (and possibly place Tuple 1 records that the information “John lived at Pos1”
of work). This means that we are faced with 2-D point loca- was true from 3/97 to 5/97 and that this was recorded during
tions that may change discretely from time to time. With this 4/97 and is still current. Tuple 3 records that “Jane lives at
data available, it is possible to answer a query such as “Whd&0s3” from 5/97 until the current time, that we recorded this
lived close to a chemical plant during the period when the planbelief on 5/97, and that this remains part of the current state.
leaked toxic materials into the environment?” or “Who moved Note that while both UC and NOW refer to the current time
out of a certain neighborhood during a specific period?” (in transaction time and valid time, respectively) the valid-

Cadastral systems exemplify another kind of spatiotem-time end of NOW is constrained by the transaction time. For
poral application. Here the boundaries of land parcels arexample, in Tuple 3, for each time poinbetween 5/97 and
recorded together with the history of their change. And forthe current time, the valid-time interval extends from from
legal reasons, all records must be maintained in an append/97 tot.
only fashion so that even mistaken records are retained. This Considering again Tuple 3, the valid-time end being equal
is accomplished via transaction-time support. For indexingto NOW means that we currently do not believe that Jane
we bound each land parcel with a minimum bounding rectanwill live at Pos3 next month (on 10/97). Sometimes such an
gle and associate it with valid- and transaction-time intervalsassumption is too pessimistic. For example, there can exist a
An example query could be “Who owned some part of a sperestriction that a person can only move with a month’s notice.
cific piece of land sometime during the period from 1975 to Then we would believe that Jane would live at Pos3 also next
1980, as best known by 1990?” This is a spatiotemporal conmonth. To record this type of knowledge, Clifford et al. [6]
tainment query that constrains all four dimensions: the twopropose to use NOW A in the valid-time end attribute. The
spatial dimensions, valid time, and transaction time. offsetA may be any integer, positive or negative. For example,
The above examplesiillustrate the types of data and queriethe latter case can be useful if a regulation states that a person

supported by the new index. According to the criteria for has two months to report a change of address. Then we would
classification of spatiotemporal access methods proposed hyot know with certainty that Jane currently lives at Pos3, but
Theodoridis et al. [24], the ® -tree supports 2-D points and would be certain that she lived there two months ago. Tuples
regions; it is bitemporal; both the cardinality and the positions6 and 7 exemplify the usage of positive and negative offsets.
of the spatial objects may change over time; the index is dy-  Specific constraints apply to insertions, deletions, and mod-
namic; and spatial, temporal, and spatiotemporal containmenfications. When inserting a new tuple, the natural constraint
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Fig. 1. Bitemporal regions of tuples from Fig. 1

VTF < VT applies to valid time, unless VTis of the form intervals are returned. Nevertheless, it is convenient to be able
NOW + A (see below); and the constraints' TE CT and  to insert such future-related information.
TT™ = UC apply to transaction time. Argurrentdatabase tu- If at some time a tuple is deleted and thus stops being
ple can be deleted or modified. Deleting atuple, the Vdlue  current, the bitemporal region ceases to grow (Tuples 2 and 4).
UC is changed to the fixed value CT1%, eliminating the tu-  If VT > TT" + A and the tuple is deleted before its region
ple from the current state (e.g., Tuple 2), but retaining it in theappears, the region will never have an extent.
database. A modification is modeled as a deletion followed by  In general, we obtain six combinations of time attributes
an insertion (e.g., an update led to Tuples 4 and 5). for which the bitemporal regions are qualitatively different.
The temporal aspects of a tuple can be represented grapfihe combinations are listed in Fig. 2, where ‘tt1,’ ‘tt2,” ‘vt1,
ically by a (“bitemporal”) region in the 2-D space spanned byand ‘vt2’ denote ground values that satisfy the constraints
transaction and valid time [11]. Figure 1 visualizesltitem-  given above and the offset is an integer.
poral regionsof the tuples in Table 1. As shown, a now-relative The spatial representation of the bitemporal extents of tu-
transaction-time interval yields a rectangle that “grows” in the ples suggests the use of some spatial index as the basis for a
transaction time direction as time passes (Tuple 1). Havingitemporal index. As mentioned in Sect. 1, this approach may
both transaction- and valid-time intervals being now-relativealso facilitate the incorporation of spatial dimensions into the
yields a stair-shaped region growing in both transaction timeresulting bitemporal index.
and valid time as time passes (Tuple 3).
The condition VT < TT" + A yields a stair shape with a
high first step (Tuple 6). If, onthe other hand,VE TT-+4, 3 Indexstructure
the valid-time interval is “illegal” initially, as its end time is

largerthanits starttime. Such aregion has no extentforthefirﬁ-ghe ne\g ;ndexghas tgeﬁiamezovepr\allf StrtL:]Ctquet as the v;/]ell-
VT" — (TT" + A) time units after the time of its insertion; 0" R-le€€ [8] (and Rtree [2]). As for the R-tree, eac

it appears only in the future. Such is the case for Tuple 7’lnternal node is a record of index entries, each of which is a

where, although TT = 4/97, the actual region appeared only pair of a pointer to a node at the next level in the tree and a re-
at 7/97,. Specifically, from 4/97 to 7/97, we supposed that Scotgion that encloses all regi_ons in t_he n_ode po?nted to. B_ut_unlike
did notlive, lives, or will live at Pos6; in other words, no valid- In the R-tree, the enclosing region is not simply a minimum

time interval is associated with this tuple at these transactior?our,]‘d'ng 4-D ’r,]yper—rectangle (in the s.equel,_ we will §|mply
use “rectangle” for both two and four dimensions). This sec-

times. For these times, no queries, as supported by the indeX, ~ . . : : :

will return this tuple — only the tuples with “legal” valid-time i‘g’; cti:zzusses the design of the bounding regions used in the
1 We use closed intervals and let [TTTT"] denote the interval The spatial and temporal dimensions may be considered

that includes TTand TT". separately, as a 4-D region is the product of its two 2-D spa-
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Table 2. Possible combinations of time attributes

L N YA VT Conditions Examples
Case 1 tl uc vtl vi2 Tuples 1 and 5
Case 2 t1 tt2 vil vi2 Tuple 2

Case 3 ttl UC vtl NOW+ A (vil<ttl+ A) Tuples3and6
Case 4 ttl tt2 vtl  NOW+ A (vtl <ttl4+ A) Tuple4

Case 5 ttl UcC vt NOW+ A (vil>ttl+A) Tuple7

Case 6 ttl tt2 vil  NOW+ A  (vtl > ttl + A)

<
—

is placed together with a non-growing (termed “static” for
short) rectangle in a minimum bounding rectangle growing
in transaction time. One day, the stair shape will outgrow its
Minimum bounding rectangle bounding rectangle, making the tree invalid. We call a growing
- stair shape “hidden,” if it is placed in a node with rectangles
*/7 > that are, at least partly, above the highest point of the growing
o stair shapes in the node.
As a first step in designing bounding regions for the tree
! that also handle this problem, we consider four types of bound-
| ing regions that may be used.
Following the R-tree, the minimum bounding regions may
! be rectangles, which now may also be growing in transaction

- . time only or in both directions. Such rectangles may then use
I N W UC for TT' and NOW+ A for VT ™. Then the TT value
cT Future TT of UC and the VT value of NOW+ A would represent a
Fig. 2.A “hidden,” growing stair shape rectangle growing in both directions. In leaf node entries, this

combination of timestamp values represents a growing stair

shape. This interpretation may also be chosen for non-leaf
tial and bitemporal regions. For the spatial dimensions, thenodes. We consider these two first types of bounding regions
bounding regionis simply arectangle, as in the R-tree. We thusn connection with the above-mentioned “hidden” stair shapes.
proceed to consider only the temporal regions, and we letthe \When we employ bounding rectangles that grow in both
termsminimum bounding rectangend minimum bounding  directions, a bounding rectangle for a set of regions that in-
regionmean the projections of the corresponding 4-D regioncludes one or more growing stair shapes has initially its VT
into the bitemporal hyper-plane. setto NOW+ A, whereA is large enough for the rectangle to

In its leaf nodes, the R'-tree records the exact geom- enclose all rectangles above the stair shapes. This is illustrated

etry of the bitemporal regions indexed (recall Sect. 2). Thein Fig. 3a, where the regions from Fig. 2 are being bounded.
following format is used for a leaf-node index entry. This approach has the disadvantage that the bounding rectan-
gles are not minimum after some time, making the index un-
necessarily cover areas, termed “dead space,” not covered by

Here, the first three components are the attributes introduce@™Y data regions and also leading to increased overlap among

in the previous section, and they may obtain the same valuet%Oundlng rectangles. . .

as described there. The fourth and fifth components compactlg Th? use O.f a growing St‘?‘“ shape large enoug_h to bound
encode the values of the VTattribute. A value of the form I regions Is |Ilgstrated in Fig. 3b. At the current time, such
NOW + A is captured by setting theow-flagand storingA a boundlng stalr_shape may have a.Iarger area than the corre-
inVT7/A: other values are stored in this attribute, without thespondlng bounding rectangle (cf. Figs. 3a,b). However, after

now-flagset. Variable UC is represented as a special, reservegP™me time, the_area of the rectangle becomes larger than the
value from the domain of timestamps. area of the stair shape. It can be proven that for any set of

Ideally, the bounding region of an entry of a non-leaf nodebitemporal regions that can be bounded with either a rectan-

should enclose the regions pointed to as tightly as possiblegIe growing in both directions or a growing stair shape, the

and this property should remain even if any of the enclosedreCt"’mgle will eventually outgrow the stair shape.

regions are growing. This implies that bounding region must The last two types of bounding regions derive from the

also be capable of growing. In addition, the bounding regions>R"r€€ [3], where hidden stair shapes are handled using a

should be compact and simple to manipulate flag hiddenin the non-leaf node entries. This enables regions
Selecting a type of bounding bitemporal region that Sat_yvith hidden stair shapes and rectangles above the diagonal to

isfies these requirements is not trivial. For example, conside}Mitially be bounded with a rectangle growing only in transac-

the situation illustrated in Fig. 2, where a growing stair shapetIon time. This idea may also be applied here, but due to the

(TTH, TT, VT, VT /A, now-flag (spatial par}, (ptr))
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‘ structure. This might be justified if the flag is used frequently.
S But our experiments with the GR-tree [3] show that the flag is
=l ! not used very often (because the insertion algorithms obtain
f “good” groupings of regions).
In conclusion, we use the second kind of bounding re-
gion, illustrated in Fig. 3b, in the & -tree. With this choice,
the structure of a non-leaf and a leaf node are exactly the same,
and the kinds of bounding regions available is exactly the same
as the kinds of bitemporal data regions possible. This homo-
geneity simplifies the algorithms associated with the tree. In

<
=
<
=
|

./ " |‘ / ot , general, a bounding region (TTTT", VT, VT ™) for a set of
cr Future  TT cr Future  TT bitemporal regions; is computed as shown in Fig. 3, where
a b VT ™ is subsequently encoded in the VA andnow-flagat-
= tributes given for leaf nodes earlier in this section.

Note that the argument to functianea denotes a static
stair shape where the function is used firstand a static rectangle
were it is used the second time.

The computations of T, TT™, and VT" are trivial. The
. value of VT determines whether the region is a stair shape
or a rectangle. To avoid creating unnecessary growing stair
! shapes, we set VTto NOW-+ A, only if at least one growing

g stair shape exists among the regions(the conditiafT T;'I_ =
UC/\VTji = NOW+ A)), or if all the regions are static (the
conditionVi (TT,| # UC)) and a minimum bounding stair
. shape (also static) has a smaller area than a minimum bounding
B = rectangle (the last condition).

<
3
<
=

cT Fuure TT cT Fuure TT If a stair-shaped bounding region must be creat&dis
c d set to be large enough to enclose all upper-left corners of

o - ;
Fig. 3. aA bounding rectangldy a bounding stair shapea bounding rectangles 4, > VT, — TTn) and all stair shapes’y, >

rectangle using the flagidden andd a bounding stair shape using 4r:)- cherwise, the upper bound of the bounding rectangle_
the flaghidden (VT;') is set large enough to enclose both rectangles and stair

shapes. In this case, the stair shapes are all static, and each of
them extends in valid time up to 'l;';l'+ AV

RST-tree’s more general bitemporal regions, the fidden It should be noted that growing stair shapes with
should be accompanied by an offgef, ..., which is the maxi- TT" + A (Fig. 1, Tuple 7) are treated exactly the same as alll
mum offset of the hidden stair shapes. Then, whenever the flagther growing stair shapes. When bounding such stair shapes,
hiddenof a rectangle is set and the current time pli$,. the minimum bounding region is set so that it encloses all
exceeds the VTvalue for this rectangle, VTmay be adjusted re_gi_ons that will appear in the future, although it may not be
to continue to bound the stair shapes that have outgrown it§linimal for some time.

rectangle.

In effect, we turn the rectangle, which grows only in trans-
action time, into a rectangle growing in both directions or
into a growing stair shape. In the first case, ViE set to
NOW + A,,.... This leads to a bounding rectangle that is
minimal at all times, see Fig. 3c.

Inthe second case, where the original rectangle is replace

4 Index algorithms

This section describes the algorithms that serve to maintain
the index structure just described. Section 4.1 offers a road
map of the algorithms. Section 4.2 extends the heuristics used
X i 91 the R‘-tree insertion algorithm to support the new types

by a growing stair shape, VTis setto NOW+ A, whereA ot a5 regions. Sections 4.3-4.5 then describe the insertion
is the difference between the old value of Vand the value algorithm, and Sect. 4.6 shows how the index can be tuned

'_ . . .
of TT. lTh_e reslultlng growing stz:\jw shapg fullybencltzjs_es the_to support specific types of queries. Section 4.7 compares the
rectange_ It rep aces, see Fig. 3d. Creating a bounding Staﬁlgorithmic complexity of the new index algorithms to the
shape this large is necessary because we cannot know Wh@érresponding algorithms of the* Rree

regions the original rectangle is bounding without accessing
the child node. Some of those regions may be located in the
upper-left corner. The large bounding stair shapes is the maia.1 Road map of algorithms
disadvantage of this approach.
The two types of bounding regions that employhiidden  The overall structure of the'R -tree is the same as that of the
flag have the disadvantage of a larger and more complex entrig*-tree. As a result, the 'Rtree’s search, deletion, and inser-
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TT™ = min;(TT,)

VT"™ = min, (VT},)
— {UC if 3i (TT,, = UC)

max;(TT,,) otherwise

NOW + A, if 3i (TT,, = UCA VT, = NOW + A)v
VT — (Vi (TT,. # UC)A

area(TT, TT7,VT",NOW + A,) < area(TT", TT™,VT",VT};))
VT, otherwise

Ay = maX(maXi:VT:i;éNOW-Q—A
VT, = max(

MAVT, 2NOW: 2

VT, —TT,, Ay, _ , .
( : i)y maXizVT:i=N0W+A( ) Fig. 4. Computation of a bounding re-
(VT;))

7maxi:VT:i:NOW+A(TT:i + Ar,)) gion for a set of bitemporal regions

tion algorithms may be used for the new index, provided that ~ The insertion algorithm of the®R -tree has the same struc-
these algorithms employ a set of algorithms that manipulatéure as that of the Rtree, but the heuristics that drive the
the new kinds of regions presented in Sect. 3. This set indecisions in the ChooseSubtree, Split, and RemoveTop algo-
cludes an algorithm that determines whether a pair of regionsithms are tailored to take into account the growth of bounding
overlap and algorithms that compute the area and margin of eegions throughout the tree.

region, the intersection of a pair of regions, and the minimum

bounding region of a node. Indeed, thé"Rree reuses the o . o

R*-tree’s search and deletidalgorithms, which have been 4-2 Heuristics and time parameterization

%iaerr):i?)i fngzgotgr?tzz Ifc;vr\f level algorithms. This leaves onl)ﬁfhe R‘-tree uses three basic heuristics in its insertion algo-

The insertion algorithm is central because it is responsi-mhm'
ble for maintaining an efficient tree. The'free’s insertion
algorithm is likely to be inefficient for the new types of data
and bounding regions in the’R-tree. Before improving this
algorithm, we describe its general working.

Given a new entry, the Rtree’s insertion algorithm starts
at the root node and traverses the tree downwards until it H3
reaches a leaf node. At each visited node, it uses the Choos-
eSubtree algorithm to choose one subtree among the subtreBgcent analytical studies of the performance of R-trees val-
rooted at this node and then proceeds to the root of the chddate these heuristics [13,19,23]. For a 4-D rectangle with
sen subtree. ChooseSubtree evaluates each subtree rooted aide lengths given bysy, so, s3, s4), the margin is given by
node with respect to the new entry, and it chooses one subtrdbe following sum>~;s; + X;«js;s; + Yicj<ksisjs, (Where
according to a set of heuristics. 1 < 4,4,k < 4) [13]. The intuition underlying the margin

If a new entry is to be inserted into a leaf node that is full, heuristic is covered in Sect. 4.6.
an overflow occurs. If, during the insertion of the new entry,  Inthe R"-tree, the same three types of heuristics are used
this is the first overflow at a given level in the tree, the algo-in the tree algorithms, but because the quantities of volume,
rithm RemoveTop is invoked; otherwise, the Split algorithm is overlap, and margin are functions of time, the insertion algo-
invoked. RemoveTojremove entries from anode and rein-  rithm should consider not only the current values of these, but
serts them. The entries to be removed are chosen according &so their future evolutions.
heuristics. In the worst case, where all these entries are rein- Let us investigate Heuristic H1. The evolution of the vol-
serted into the same node or they overflow some other nodeaime of a bounding region depends on the following four char-
the Split algorithm is used instead of RemoveTop. The splitacteristics:

H1l. Thevolumes of bounding hyper-rectangles should be
minimized.

The overlap (volume of intersection) among bound-
ing rectangles should be minimized.

The margin of bounding rectangles should be mini-
mized.

of a node can result in an overflow of a parent node. If this i, The type of the region:
happens, the described procedure is repeated for the parent (1) Static regions (rectangles and stair shapes),
node. (2) growing rectangles, and

The algorithm Split distributes the entries of an over-full (3) growing stair shapes.
node into two groups, forming two nodes. Because the number ji.  The rate of growth of the region’s volume.
of possible distributions is exponential in the number of en- jii. The time period from now to the moment when the
tries, only a subset of all possible distributions is considered by region starts to appear.

the Split algorithm. Again, the choice of the best distribution jv. The volume of the region at the current time.

Is made according to heuristics. We say that an entry is of typgef the region in the entry is of

2 |t should be noted that the logical deletion presented in Sect. 2YPet. Similarly, a node is of typeif its bounding region is
is implemented in the index as a deletion of an old region followedOf typet.
by an insertion of a new one with a fixed TTalue. Let us assume that no updates are performed after the cur-

3 This algorithm implements forced re-insertion, introduced in [2]. rent time and that the goal is to minimize the volume of the
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bounding regions (Heuristic H1) over all times starting from type, trying single-mindedly to avoid introducing growing
the current time and extending indefinitely far into the future.rectangles and, especially, growing stair shapes. While ex-
Then, the characteristics of regions should be prioritized inperimenting with different designs of the insertion algorithm,
the order given above. It is easy to see why, under these asve noticed that these heuristics not onlyrdu work for spa-
sumptions, this is the only suitable order of prioritization.  tiotemporal data, but even have a negative effect.

The types of the regions should be considered first. High-  To understand why, consider the situation in a node split
est priority should be given to static rectangles and static staialgorithm where there is a choice between having one “large”
shapes, independently of their volume because any growingounding, growing stair shape and one static bounding re-
rectangle or stair shape will eventually outgrow a static rect-gion versus having two “smaller” bounding, growing stair
angle or a static stair shape. For the same reason, growinghapes. With only two temporal dimensions, the former choice
rectangles (which grow only in transaction time) should beis clearly preferable; the “large” stair shape will most prob-
given a higher priority than growing stair shapes. ably not be much larger than one of the two “smaller” stair

The second characteristic of a region is its rate of growth.shapes, and these two overlap substantially. This is so because
Among two growing rectangles, the one that is narrower in theall growing stair shapes follow the VT= NOW diagonal and
spatial dimensions or in valid time should be given highesthave equal transaction-time end values. Introducing two spa-
priority because it grows by a smaller amount at each timeial dimensions, the spatial extents of the two “smaller” stair
unit. Similarly, a growing stair shape with a larger projection shapes may be non-overlapping and far apart in the spatial
onto the spatial dimensions will eventually build up more areadimensions. Forcing them into one bounding stair shape may
than a stair shape with a smaller projection. produce a truly large growing stair shape.

Third, if two growing regions have the same type and  Summarizing, the time parameter is a simple and flexible
growth rate, it may be possible to prioritize them accordingway to extend the Rtree heuristics. Using the time parame-
to the times when they appear. The later a region begins iter, the four characteristics of regions, be it bounding regions

existence, the more preferable it is. or the regions that occur as intersections between bounding
Static regions are only compared using the fourth characregions, do not have to be inspected explicitly. The next sec-
teristic, exactly as is done in the' Rree. tions explain in detail the workings of the Split, RemoveTop,

Heuristic H2, which minimizes overlap between regions, and ChooseSubtree algorithms.
can also be extended in a similar way to address the growth
of regions. This is done by considering the same four charac-
teristics as above, but for the regions obtained by intersecting.3 The ChooseSubtree algorithm
overlapping regions. Finally, the presented scheme can be ap-
plied similarly to the margin heuristic (H3). The ChooseSubtree algorithm is used for deciding where to
As noted, the a prioritization scheme such as the one giveinsert a new entry. The algorithm chooses one subtree among
here is based on the assumption that the index is queried féhe subtrees rooted at a node and then repeats the procedure
an indefinite time and that no assumptions are made aboder that subtree until it reaches a leaf node. To optimize the
future insertions and deletions. In fact, these quite genera®verlap heuristic (H2), the Rtree’s ChooseSubtree algorithm
assumptions underlie the algorithms of most access methodgonsiders the enlargement of the overlap between the bound-
However, due to the presence of growing data regions, in @1d regions of the subtrees that would result from inserting the
realistic scenario where the index is updated continuously, #ew entry in a subtree.
less strict prioritization of the four characteristics of regions ~ To determine this overlap enlargement, the overlaps be-
may be desirable. For example, a very small, but growingtween a subtree’s current minimum bounding region and the
rectangle is preferable over a very large static rectangle iminimum bounding regions of all the other subtrees are de-
the growing rectangle is updated and becomes static before iermined. Then the subtree’s minimum bounding region is
outgrows the static one. extended with the new entry, and the overlaps are determined
The above prioritization scheme is implemented in theanew. This is done for all subtrees, and ChooseSubtree pro-
RST-tree in a relatively straightforward arftéxible (to ac- ~ ceeds with the subtree where including the new entry yields
commodate realistic scenarios) manner by introducitima  the least overlap-area enlargemerignoring the spatial di-
parameter fin the insertion algorithm, which then computes mensions, Fig. 5 gives an example, where inclusion of a new
the areas of regions aspfime units into the future (for some entry in node 1 is chosen.
p). If a sufficiently large time parameter is used when com-  Ties are resolved by choosing the node whose minimum
puting and comparing areas, we effectively obtain results thapounding region requires theast area enlargemenand fur-
follow the above-described scheme. Relaxed prioritizationgher ties are resolved by choosing the node whose minimum
are achieved by using smaller time-parameter values. Whichounding region has themallest areavith the new entry en-
time-parameter values to use is investigated experimentalljl|0$€d‘-1
(Sect. 5.2) and depends mostly on the intensity of updates. ~ The R'"-tree employs the above sketched-fRee’s
Experiments with the GR-tree [3] show that its perfor- ChooseSubtree algorithm [2], with the exception that com-
mance is substantially boosted when strict heuristics are useds £, yon-leaf nodes, overlap area enlargement is not considered

that look only at node types and group regions of the same only area enlargement and area are considered.
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Fig. 5. alnitial bounding regionsh insertion of a new entry into node 1, andhsertion of a new entry into node 2

putations of overlap enlargement, area enlargement, and area The R*T-tree makes this algorithm time-parameterized
are time-parameterized. Fig. 6 shows the result of applyingand introduces the generation of one more candidate distri-
ChooseSubtree with a later time-parameter value. Now, nodbution after Step S2. The new distribution is generated by
2 is the best choice for the new entry, as it yields a smalleitrying to split entries of an over-full node so that the resulting
overlap area enlargement than inclusion in node 1, and its ardaounding regions are of the best types possible. At the same

enlargement is smaller than that of node 3. time, the algorithm aims to not distribute entries of the same
type into two different nodes. This procedure is described in
detail next.

4.4 The split algorithm Each of the two nodes produced by a split may be bounded

by a region of one of the three types defined in Sect. 4.2, leav-

A node split algorithm can be characterized by the set of dis-Ing six possible pairs of types. These pairs are prioritized ac-

tributigns_ of entries into two nOQes that it copsideﬂrs, and bycording to their “goodness,” as defined in Fig. 7. Stated math-
the criteria it employs for selecting one (the “best”) of theseematically, a pair of bounding regions andzz; is considered

candidate distributions. . . . .
better than a pair of bounding re andys if:
The subset of all possible distributions considered by the bat unding regromsandys |

R*-tree’s Split algorithm is selected as follows. Along each of  (type(z,) # type(y,) V typg(wzs) # type(ys))A

the axes, entries of the over-full node are sorted according to ((type(z;) < type(y;) A typezs) < type(ys))V

their bottom and top values. Then, assuming two dimensions, (typgz;) < max(typgy: ), type(y2))A

for each of the four sortings, a total bf —2m+-2 distributions typgz2) < max(typey:), typgy2)))).

are considered, wher® is the maximum number of entries _ . S

in the node, andh is the minimum allowed number of entries The generation of the additional distribution is based on
in the node. The-th distribution is generated by assigning the this ranking of pairs of node types.

firstm — 1 + 4 entries of the sorting to the first node and the Generation of the additional candidate distribution
rest to the other.

The best distribution is selected based on the three heurig22-1Among the six pairs of types of bounding regions, select
tics H1-H3, introduced in Sect. 4.2. For the pair of bound-€ Pair €1, t2) such that, according to the conditions given

ing rectangles resulting from a distribution of entries, we useln F19- 7 (8) it is possible to achieve this pair of bounding-
area-valuefor the sum of their volumeswverlap-aredfor the ~ '€9ion types when dividing the entries of the over-full node
volume of their intersection, andargin-valugfor the sum of Nt two nodes; and (b) no other pair with a higher priority can
their margins. Using Heuristic H3 (minimum margin-value), P achieved. Let, < ¢,, and name the node bounded with

one axis is selected. Then Heuristics H1 and H2 are used cor '€gion of type, andt; as N, and Ny, respectively. LeS

sidering only the distributions along this axis. contain all entries of the over-full node. ,
S2.2 Move to N, all entries fromS that cannot be put int&/;

The original R*-tree split algorithm because of the type of its bounding region. (Growing rectan-
S1 For each axis, sort the rectangles by their lower then bygles cannot be putinto static regions, and growing stair shapes
their upper value and determine all distributions as describedannot be put into growing rectangles or static regions.)
above. Compute the sum of margin-values for all distributionsS2.3 Let S; denote all entries frond of typet. If |S;| <

for each axis. M —m+1, moveS; into Ny. Next, if|So|+| N1 | < M—m+1,
S2 Let the axis with the minimum sum of margin-values be movesS, into N;. Here, we try not to distribute entries of the
the split axis. same type into two different nodes.

S3 Along the split axis, choose the distribution with the mini- S2.4If |S| = 0 (i.e.,S2.3succeeded), got®3 (N1, Vo) is a
mum overlap-value. Resolve ties by choosing the distributiomew distribution.
with the minimum area-value. S2.5 If |[N1| = 0 A |Nz| = 0, goto S3 no new distribution
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Fig. 6. aCase b from Fig. 5 after a period of time an@ase ¢ from Fig. 5 after a period of time

was generated (all entries were of the same type). applications, most queries may be much more restrictive on

S2.6 If |[N1| = 0, pick a “seed” entry from S for Guttman’s  the spatial dimensions than on the temporal dimensions. For
quadratidDistribute algorithm [9] such that its inclusion into  example, queries in a cadastral system msaay retrieve the cur-
N> would enlarge that node’s minimum bounding region therent knowledge of the full history of ownership of some piece

most. Putke into V;. GotoS2.8 of land. In other applications, queries may be most restrictive
S2.7 If |[N2| = 0, pick a seed entry from S and putitinto  on the temporal dimensions. Specifically, timeslice queries,
No. which specify time points in the temporal dimensions, have
S2.8 Apply Guttman’s quadratiDistribute algorithm. very natural semantics and are often important. For example, a

. . . . uery in a demographic database may retrieve the population
The above algorithm uses a time-parameterized version O?oracount as it Was two Vears ado. as currently best known
Guttman’s quadrati®istribute algorithm. Section 5 studies Y. Y g0, y |

the impact on query performance of considering this addi- Non-square queries may be d_uejust to the dlffe_rent u_nlts
tional distribution. of measurement used for the spatial and temporal dimensions.

Forexample, ifthe granularity of time is 1 s and the granularity
of space is 1 m, and most queries are formulated in days and
meters, the queries will be long in the temporal dimension.
The solution to the problem of non-square queries addresses

The original R-tree RemoveTop algorithm sorts the entries theissues ofdlfferent_semanncs and granularities of the spatial
and temporal dimensions.

of an over-full node by the distances of their centers from the . ) i
In the extreme, if a substantial number of queries offer no

center of the minimum bounding rectangle of the over-full o . ; -
restrictions on either space or time, additional, separate tem-

node and then removes and reinserts a certain percentage 5 B : .
the entries with the largest distances. poral and spatial indices may be introduced for these queries.

A time-parameterized version of this algorithm could be Whether the likely increase in query performance obtained
used for the R™-tree, but performance experiments show thatfrom using these specialized indices justifies the extra cost of

a RemoveTop algorithm based on the heuristic of volumeg!Pdate and the extra storage space occupied will depend on
works better for spatiotemporal data. Th&'Rree employs 1€ SpE((;IfIC ap%lmguon requ!lremenFs. indexh
an algorithm of quadratic complexity in the number of entries In orderto obtain a versatile spatiotemporal index that may

in a node. This algorithm repeatedly removes the entry that>¢"ve well the full spectrum queries — ranging from having

when removed, shrinks the time-parameterized volume of thé’nIy spatial constraints to having only temporal constraints
minimum bounding region the most — it is desirable to introduce a mechanism into the Rree

that allows it to be tuned to support better either spatially or
temporally restrictive queries.

In any R-tree-based index, one dimension can be priori-
tized over the others by specifically favoring minimum bound-

The insertion algorithm described in the previous sectiond"d rectangles that are narrow in this dimension and long in
aims to produce a tree that yields high performance of Spat_he otherdmgn_smns. InFig. 8, a2-D space s considered. The
tiotemporal intersection queries. The heuristics used so fafV0 Sets of minimum bounding rectangles cover the same ar-
have been based on the assumption that intersection queri€&S and do not overlap. Scenario (b) favors queries restrictive
are square on average, i.e., all the dimensions (temporal arlfl the= dimension and not in thg dimension.

spatial) are constrained by intervals of approximately the same Analytical studies also offer some insight into the effect
length. of the shapes of the bounding regions on query performance

Due to the quite different semantics of the dimensions in-[13,19]. For @ 4-D query with side lengtiig:, g2, g3, q4),

volved, this may not always be a good assumption. In somdhe estimated number of page accesses is proportional to

4.5 The remove-top algorithm

4.6 Prioritizing space versus time
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Priority | Region1l | Region2 | Enabling conditions The margin-value computation in the formula presented in
Sect. 4.2 is updated similarly, so that the temporal and spatial

1 L] L] GR+GS=0 extents are weighted with-«a or 1+«. It follows thata values

2 [ [ GS=0 and 0<CR<=k less than 0 favor spatially selective queries, as, for example,

3 C C GS=0and GR>k queries in a cadastral system asking to retrieve the full history

4 ] yd GS>0 and GR+GS<=k of a specific area of land. The valuescofreater than 0 favor

5 [ A 0<GS<=k and GR+GS>k temporally restrictive queries, such as timeslicg queries that

6 / / GS>k ask to retrieve a complete map of land anershlp as it was at
some specific time in the past. As mentioned abevealues

[Jtyper [ Type2 . Type3 k=M+1-m of —1 and1 turn the RT-tree into a spatial and a temporal

GR: Number of growing rectangles ~ GS: Number of growing stair shapes index, respectively. Section 5 investigates the effects of using

. . . . . "y differenta values.
Fig. 7. Pairs of bounding-region types and enabling conditions

y y
o o 4.7 Algorithmic complexity

********************************************

S A L It is appropriate to consider how the complexity of the pro-
‘ ! posed index algorithms relates to the complexity of the corre-
boniidifaiiiiiiiin N sponding algorithms of the*Riree, on which the new index
| | B I is based.
T T AT L T In the worst case, the Split algorithm relies on Guttman’s
S A : RN A quadratic distribute algorithm. Thus, the Split, as well as Re-
L L moveTop, algorithms have a quadratic complexity in the num-
a ber of entries in a node. This is more tidatn log n) complex-
Fig. 8. Geometries of minimum bounding rectangles ity of the R'-tree Split and RemoveTop algorithms.
We performed a number of experiments to measure the

CPU running times of the different parts of the insertion algo-
Em(]_[le(sm,i +q;)), wheres,, ; is the side length of bound-  rithm. These studies show that the combined running time of
ing rectangles,, in thei-th dimension andn ranges over all  the Split and RemoveTop algorithms constitutes less than one
bounding rectangles of the tree. Expanding the product in thigercent of the total CPU time. This is as could be expected,
formula, it can be seen that the notion of margin, as defined irfor the following reasons. The number of entries in a leaf node
Sect. 4.2, plays a significant role. The formula suggests thadf the tree was approximately 200 in our experiments. This
non-rectangular queries may be supported better by weighmeans that, on average, it takes at least 100 insertions to pro-
ing the components of the margin expression. However, irduce a split (or a call to the RemoveTop algorithm). On the
R*-tree-based indices, the margin-value is used only as a seother hand, each insertion calls the ChooseSubtree algorithm
ondary heuristic and only in the node split algorithm, and soas many times as there are levels in the tree. Thus, the vast
a prioritization scheme based on margin will not be effective.majority of the CPU time is spent in the ChooseSubtree algo-

We propose a simple way to prioritize the dimensions inrithm, and the complexity of this algorithm in thé'Rtree is
an R-tree-based index, which works with the existing tree althe same as in the*Rree — quadratic in the number of entries
gorithms. For each-dimensional rectangle, instead of con- in a node.
sidering the extent§Ax, Az, ..., Az, ), weighted extents In practice, the average running time of the ChooseSubtree
((Azq)*, (Azg)?2, ..., (Az,)*) are used. If allo; are  algorithm can be substantially reduced by first determining
equalto one, none of the dimensions are prioritized. The priorwhether there are any entries in a node that completely enclose
ity of dimensior is increased by setting; to a value greater a new entry. If so, the step of looking for minimum overlap
than 1, and the priority of dimensiarlowered by settingy; enlargement can be skipped, and this is the step with quadratic
to a value smaller than 1. Setting to O makes the algorithms complexity.
disregard the dimension.
Following this scheme the'R -tree uses a single parame-

tera € [~1..1]. The volume of a4-Dregionisthencomputed 5 performance studies
as follows.

bitemparea(r)'** - spatialarea(r) if o < 0 Section 5.1 details the experimental setup and data generation.
VO|( ) = . . s = . . . . .
bitemparea(r) - spatialarea(r)! ~® otherwise Section 5.2 then describes the effect of the introduction of
the time parameter and the additional split distribution in the
wherebitempareais the area of the region’s time-parameterizettee, and Sect. 5.3 studies the use ofdhgarameter. Finally,
bitemporal extent anspatialareais the area of its spatial ex- Sect. 5.4 compares the’Rtree with its only competitor, a
tent. minimally adapted R-tree.
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5.1 Experimental setup and data generation enables the modeling of shrinking/expanding rectangles and
moving points.
The history of an object iactiveif it has a spatial extent

The studies use animplementation of tifé Rree thatisbased ~ With a valid time that includes the current time. For active
on the Generalized Search Tree Package, GiST [10]. The paddstories, the interval having the largest valid-time begin is
size (and tree node size) is set to 4k bytes, and a page buffépade now-relative. Histories that are not active contain no
of 200 k bytes, i.e., 50 pages, is used [16] where the root opow-relative valid-time intervals. Valid-time interval lengths
a tree is pinned and the least-recently-used page replacemefe uniformly distributed betweenandVL. For now-relative
policy is employed. Nodes changed during an index Operatiori,ntervals, theA-offset is normally distributed with med@mand

are marked as “dirty” in the buffer and are written to disk at deviation100, and its valid-time begin is normally distributed
the end of the operation or when they otherwise have to pavith mean equal to the insertion time (transaction-time begin)
removed from the buffer. and deviationDev = 500.

The performance studies are based on so-called workloads The transaction-time intervals in the triples are obtained
that intermix queries and update operations on the index, thuBY simulating database modifications. To accomplish this, the
simulating index usage across a period of time. The remindeorkload generator maintains a list of the currently active
of this section describes the generation of workloads. histories. Each history has associated the time when the next

The workloads simulate the evo|ving Spatiotempora| asjnsertion for the history will occur, along with the pair of the
pects of a set of objects. Each change to an object is chagpatial value and valid-time interval to be inserted. The list is
acterized by three parameters: the time duration for whictPrdered on the insertion times.
the previous spatial value of the object was vaML), the An insertion is done by updating the valid-time end of the
displacement of the center of the spatial value relative to itgN0St recent entry in the history from being now-relative to
previous center, and the change of the area of the spatial vallR€iNg static, so that it meets the beginning of the new entry.
relative to its previous area. These parameters account for thENis is accomplished by logically deleting the original now-
spatial and valid-time aspects of objects and are adapted frofelative data, inserting the data with the new static interval,
the GSTD algorithm [26]. These spatial and valid-time valuesand finally inserting the new, now-relative data.
are augmented with transaction times when they are stored in Afteraninsertion, anew, planed entry is generated together
the database, and GSTD is extended to make it possible tyith its insertion time. This new entry’s valid-time begin is
simulate the storage of these changing values of objects in theormally distributed with deviatioev and mean equal to
database. Insertions may be retroactive or predictive [12]. At planned insertion time, which, in turn, is generated so that
retroactive insertion occurs when the valid-time begin of an in-after inserting the new entry, the length of a previous interval
serted recordis less than the time of insertion (transaction-tim&ill notexceed/L. This way, parametefL captures how often
begin), and a predictive insertion occurs when the valid-timeoPjects change, and paramefeev controls the correlation
begin exceeds the time of insertion. between transaction and valid time.

Alarge number of parameters may be introduced that con- [N addition to generating operations that insert new entries
trol the generation of workloads. The present experimentai”to active histories, index operations corresponding to one of
studies attempts to discern and put focus on the novel aspectdree actions are generated at each time point:
of spatiotemporal data. One central such aspect is the concepfl.  Introducing a new object, thus starting a new history.
of ahistory. A history captures the current knowledge about 2. Ending an active history.
the (spatial) evolution of a single object. An object’s historyis 3. Updating a history.
composed of a number of triples consisting of a spatial value,a  In our experiments, workloads start at tim®&tart= 2000.
valid-time interval, and a transaction-time interval; the valid- For the first 2000 time units, at each time point, we introduce
time intervals meet, yielding at most one spatial value at eacla new object. After this initialization, a history may be started,
pointin time, and for the transaction-time intervals,ETUC. ended, and updated with probabilityi, 0.1, and0.8, respec-

The spatial value associated with the first valid-time inter-tively, at each time point.
val in a history is taken from a set of spatial values generated A history is started by generating a new pair of a spatial
using theA La Carte spatial data generator [7]. This set con-value and a valid-time interval along with an insertion time. A
tains 2,000 rectangles generated in an area spanning 20,00@story is ended by updating the valid-time end of the last in-
units in thex andy dimensions. The spatial density is setto 1, terval from being now-relative to being static. A history is up-
and the distribution of the bottom-left corners of the rectan-dated by either inserting a new valid-time interval somewhere
glesisuniform. Point datais obtained by taking the bottom-leftbetween the beginning and the current end of the history, or
corners of the rectangles. deleting some existing valid-time interval from the history.

The spatial value associated with any other valid-time in-The spatial part of an inserted interval is obtained by chang-
terval in a history is generated from the spatial value assoing the spatial part of the interval in the history just before it
ciated with its predecessor valid-time interval, by extendingusing Az and Ay. Special action is necessary to ensure that
this value byAz and Ay, if it is a rectangle, and by adding the valid-time intervals in a history continue to meet after an
(Az, Ay) to it if it is a point. The values ofAz and Ay update. Following the insertion of a new interval, all intervals
are uniformly distributed ovdrSpChangeSpChange This  fully covered by it are logically deleted, and partially covered



S.Saltenis, C.S. Jensen: Indexing of now-relative spatio-bitemporal data

Table 3.Workload parameters

Parameter| Description \ Values Used
SpChange| Maximum value used forAz and Ay. 0, 40,200, 1000, 5000
VL Maximum valid-time interval length. 250, 500,100Q 2000, 4000
T:S Ratio between the temporal and spatial parts of a querly.. 1000, 1 : 10,1 :1,10: 1, 1000 : 1

intervals are updated. Following the deletion of an interval,different workloads. The results were that the performance is
the valid-time end of the previous interval, if it exists, is set to not very sensitive to differences in the time parameter value,
the valid-time end of the deleted interval. but that a range of values yield quite similar performance;

Each workload used in an experiment contains 200,00@nly the extreme values 6fand “very large” tend to decrease
logical deletions and insertions, so that after running the work+the query performance (up 190% for some workloads), es-
load, 200,000 data items are stored in the index. Depending opecially for rectangle data (as opposed to point data). As a
parameteYL, this results in workloads ranging approximately result, we fixed the time-parameter value at 5,000 in all other
from 8,000 to 34,000 time units in length. A workload also experiments.
containsl0 queries for eacR00 insertions or deletions. The The experiments also show that what is a good time-
queries are intersection queries represented as 4-D rectanglparameter value is somewhat dependent on the average num-
with square spatial and temporal projections. The valid-timeber of operations per time unit, which, in turn, depends on the
begin of a query is uniformly distributed betweerand the VL parameter. This should be expected. The time-parameter
largest valid-time begin of an entry in the index. For half of value, used when splitting a node, should intuitively be de-
the queries, the transaction-time end is set to the current timggendent on for how long the resulting nodes will exist before
for the others, it is uniformly distributed betwe&Startand  being deallocated or reorganized by other splits or multiple in-
the current time. The 4-D volumes of queries are uniformly sertions and deletions. The smaller the number of operations
distributed between 1 ant- 10'2. The volumes are divided pertime unit, the longer an average node survives, which tends
into bitemporal and spatial areas according to the fAtic5, to favor a large time-parameter value.
which ranges from : 1000 for temporally restrictive queries Switching the attention to the additional distribution con-
to 1000 : 1 for spatially restrictive queries (see Table 3). sidered in the split algorithm, a set of experiments aimed to

In addition, we experimented with bitemporal and spatialdetermine how often this distribution is actually chosen by
point queries as extreme cases of temporally and spatiallyhe split algorithm. If it is chosen quite often, it is interesting
restrictive queries. For these queries, the 4-D volume of &o see how its availability improves query performance. The
query varied from 1 td0%. Another query type that is very experiments used workloads with different types of queries
likely to be seen in real-world applications is the transactionalong with settings for the: parameter that favor the partic-
timeslice, which retrieves the history of some region in spaceaular type of queries (see Sect. 5.3). Each workload was run
as current in the database at some specific time point. In ourith and without the additional distribution available.
experiments we constrain the region of space to a point. For « values favoring queries witl" : S = 1 : 1 and

The parameters that control the generation of workloadsspatially restrictive queries, i.eq; < 0, the additional dis-
are given in Table 3. Standard parameter values are given itribution is chosen very infrequently, and so its presence is
bold-face. These are the values used if a parameter was natsignificant. For the workloads with temporally restrictive
varied in an experiment. In each experiment, we measured thgueries, the additional distribution is chosen in ug & of
average number of disk I/O operations per single query in all splits, in turn improving the query performance by 10% to
workload. 25% (see Fig. 9).

5.2 Effects of the time-parameterization 5.3 Space-time prioritization

and the additional split distribution Section 4.6 presented theparameter, the use of which aimed

at tailoring the index to different types of queries. A set of
Compared to the Rtree, the RT-tree includes a time param- experiments was performed in order to investigate the effect
eter and considers one additional distribution of the entrieof this parameter on the performance of different types of
in an over-full node, when it is split. This section studies the queries. Eight workloads with different types of queries were
effects of these additions. run using differentx values.

Itwas pointed outin Sect. 4.2 that using a moderately large  As shown in Figs. 10 and 14, = 0 is best for workloads
time-parameter value might yield a well-performing tree in awith neutral queries : S = 1 : 1). This is as expected.
realistic setting. In addition, the characteristics of the data mayNote that the workload witl” : S = 1 : 1 queries appears
affect the utility of different time parameters. in both coordinate systems in each figure.)

A set of experiments was performed to determine the per-  Interestingly, for spatially restrictive queries,values of
formance resulting from using different time parameters for—1.0 and0, for rectangle data, and0.5 and0, for point data,
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Fig. 9. aPercentage of splits choosing the additional distribution andFig. 10. Query performance for varying values, rectangle data
b the resulting query performance improvement (in %) for temporally

restrictive queries ] ] ) )
will retrieve all versions of a few objects. In the workloads,

each object has a much smaller number of versions than the
) total number of objects.
out.ptlerform oth_er values almost mdependen'gly frm S . When the mix of queries posed against aif Rree does
ratiointhe queries. For < 0, mostofthe bounding regionsin - ot exhibit a strong temporal restrictiveness or when it is not
atree are growing stair shapes. Only whes 0, theinsertion  ynownwhich mix to expect, a neutravalue ofo is preferable.
algorithm starts to group growing rectangles, growing staira yajue of ca.0.25 is preferable for temporally restrictive
shapes, and static regions into different nodes and this pay§yeries. For temporal point queries that are non-restrictive

off even for spatially restrictive queries. Nevertheless, valuesy, the spatial dimensions, a value of €a75 shows the best
larger tharD penalize the spatially restrictive queries. performance.

For temporally restrictive queries, depending onthesS
ratio, the optimaky value ranges from 0 to 0.75. The asym-
metrical nature of these “spatial” and “temporal” results is as5.4 Comparison with straightforward*Rree-based
expected and reflects the very different geometries of bitemindexing
poral versus spatial regions. In contrast to average spatial re-
gions, bitemporal regions tend to be quite long in transactiorReplacing all occurrences of UC and NOWA in the data
time. In addition, the distribution of regions in the bitemporal by the maximum time values for each dimension renders the
plane is different from their distribution in the spatial plane. data static and enables a standard 4:&tiee, followed by a
Figures 10 and 11 also show that temporally restrictivefiltering step, to index the spatiotemporal data considered here.
queries require much more I/O than do spatially restrictiveThe filtering step reverts to the correct temporal extent and re-
queries. This is because spatially restrictive queries are muchpplies the query predicate, thus eliminating false drops.
more selective, which is due to the specifics of our work-  Figure 12 compares the’R-tree to this straightforward
loads. Intuitively, a temporally restrictive query will retrieve solution, without considering the filtering step. Based on the
one version of each object, while a spatially restrictive queryreults shown in Figs. 10 and 11, fér: S = 1000 : 1 queries,
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Fig. 11.Query performance for varying values, point data Fig. 12.Query performance faa rectangle data with varying and
b point data with varyingspChange
we used optimal settings of = —1 for rectangle data and i the bitemporal plane, the more false drops will occur in

a = —0.5 for point data. o the result obtained from the*Rree; retrieving these incurs
When comparing Fig. 12 with Figs. 10 and 11, one shouldexra 1/0 not incurred by the B -tree. The workloads used
take into accountthat Figs. 10and 11 correspond tothe settingg the experiments reported here are very favorable towards
of VL = 1000 andSp Change = 200. For example, theresults - the straightforward approach in this regard. For example, the

for the RT-tree withT : S = 1000 : 1 queries for pointdata, \yorkload used for the data points in Fig. 12a¥dr = 4000

as reported by the lowest curve in Fig. 12b, can be found ifyroduced only ca1% false drops, but still incurreth0% more
partin Fig. 11 as follows. In Fig. 12y = —0.5is used, and /0 gperations.

in Fig. 11, SpChange = 200 is used, so the third data point While not illustrated here, the performance of thetRee

of the lowest curve in Fig. 12b corresponds to the third datgg gi50 highly dependent on the number of now-relative spa-
point of theT": 5 = 1000 : 1 curve (with square data points) tiotemporal extents; the more of these, the worse the perfor-

in the top diagram in Fig. 11. . mance. The R'-tree does not experience a similar effect.
In our experiments, the ‘Rtree generally requires from

approximately50% to 100% more 1/O operations than the

R5T-tree for neutral queries and temporally restrictive queriess Related proposals

(notshown in Fig. 12); for spatially restrictive queries, the R

tree generally requires from approximatsly, to300% more  Spatiotemporal indices can be divided into two groups —those

I/0O operations. These numbers are quite significant, especiallthat assume discrete motion of objects and those that assume

given that the workloads used in these experiments are quiteontinuous motion. Discretely moving objects are assumed

favorable towards the Rtree. to remain stationary and of non-changing shapes in-between
The difference in performance among the two indices isexplicit updates to the database (or samples of the objects’

highly dependent on the distribution of the queries. As moremovements). In some cases, such as multimedia presentations,

and more queries reach above the ¥TT'T primary diagonal  objects are not assumed to move at all, they may only appear
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and disappear. In other applications, objects are assumed techniques. The third [20] and fourth [5] proposals take the
move continuously, and the database is expected to recor@*-tree as their outset. While these proposals share this gen-
interpolated positions of the objects for the time points in-eral outset with the B -tree, the specifics of these and the
between the samples. As mentioned in the introduction, thipresent proposal are very different and reflect the differences
paper addresses the problem of indexing discrete movement the problems being solved. Although designed for contin-
and so in this section we mainly consider indices supportinguously moving objects, the proposal of Cai and Revesz [5]
discrete movement. could possibly be used to index the valid-time history of dis-

The previously proposed spatiotemporal indices for dis-cretely moving objects, by assuming zero velocities between
cretely moving points or regions [17,24] assume only one timethe updates of the objects’ positions.
dimension, adopting one of two approaches. The firstapproach
is to use overlapping index structures. These index spatial ob-
jects at different time instances and save space by sharin9 Conclusions and research directions
the unchanged parts of the indices. Examples include the HR-
tree [18], the MR-tree [28], and the overlapping quadtree [27]).

The second approach is to add time to an existing spatial inThis paper addresses the emerging need for efficient support
dex, as was time an additional spatial dimension. For exampléor spatiotemporal data in databases by proposing a new, ver-
the 3D R-tree [25] indexes the history of evolution of a set of satile spatiotemporal indexing technique, termed tRé-R

2-D discretely moving points. The so-called 2+3 R-tree [17]tree, for indexing discretely changing spatial extents-points
additionally uses a 2D R-tree to index the most recent state ofr rectangles. The F-tree solves a new problem: it dif-

a set of objects. This way, it supports now-relative data in ongers from all previously proposed spatiotemporal indices in
time dimension. that it provides support for both transaction time and valid

The overlapping index structures have the disadvantage afme, termed bitemporal support, and it accommodates gen-
using alot of space, especially if objects change positions freeral, now-relative transaction-time and valid-time intervals.
quently. Inaddition, itis unclear whether this approach maybe  The paper details how to address the special features of the
generalized to two time dimensions. Mostimportantly, in con-temporal dimensions by using novel bounding regions in the
trastto the R™-tree, none of the above-mentioned approachesndex that grow continuously with the advancement of time
support now-relative bitemporal data. and that also take into account the spatial dimensions. Most

The R'-tree [2] has previously served as the outset for anprominently, these new bounding regions are accompanied by
index [3] that supports now-relative bitemporal data (albeit aa new set of insertion algorithms. In addition, the tree offers
somewhat less general kind than the one supported here). ARe ability to weigh the spatial and temporal aspects of data,
does the R"-tree, the GR-tree indexes hitemporal data as 2-Dso that either queries that are very selective in the spatial or
regions, which grow continuously if the data is now-relative. temporal dimensions are supported more efficiently. The GiST
Both indices exploit a particular and quite unique property ofpackage is used in the implementation of the index. Perfor-
the R'-tree, namely that it partitions the data itself. Most other mance comparisons with a straightforward:-tRee-derived
multidimensional access methods, e.g., Quadtrees, partitiogpatiotemporal index demonstrate that the new bounding re-
the embedding space. Unless transformations are employeglons and algorithms significantly increase performance. Itis
[4], the continuous growth of the data regions caused by nowalso demonstrated that the mechanism for assigning weights
relative data renders it difficult to extend the latter type of makes it possible to better support spatially and temporally
access method to index now-relative data. selective queries.

A different treatment of temporal and spatial dimensions  |n future work, we plan to further investigate support for
has been pursued by Kleiner and Lipeck [14], who use a 3-Dyifferent types of spatiotemporal queries. Experiments show
R*-tree to index 2-D objects that move, or change, discretelythat ana-parameter of-1.0 seems to provide the best perfor-
Specifically, they experiment with different heuristics in the mance for spatially selective queries. A spatial index may be
insertion algorithms. For example, instead of the volume of acompetitive in such cases. In general, given a spatiotemporal
minimum bounding cube, they use a quantity that is equal tqquery, we would like to be able to determine which existing
the product of the minimum bounding cube’s extents in thespatial, temporal, or spatiotemporal index is the better one
two spatial dimensions plus the temporal extent squared. Thgnd to know how the new index compares to the more spe-
authors mention the possibility of prioritizing (or scaling) of cialized, existing indices. In addition, we hope to be able to
the temporal dimension with respect to the spatial dimensionsebtain and experiment with real or partly real data, which may

For completeness, four recent proposals [1,5,15,20] thajield additional insights.
index continuous data deserve mention. Unlike the index pro-

posed h_ere,_these prop.osals capture nglth_er the valid nor tr}l\ecknowledgementsThis research was supported in part by grants
transaction time of data; rather, the continuity occurs becausgom the European Commission, the Danish Technical Research

they index the current positions of continuously moving 0b- o e, the Danish Centre for IT Research, and the Nykredit cor-
jects. The first proposal [15] applies the so-called duality datapration.

transformation to addreSS_ this i_nde_xing pr0b|em- The _SGCOHd The authors wish to thank the anonymous referees for their in-
[1] uses data-transformation, kinetic, and partial-persistenceightful comments, which clarified the presentation.
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