
The VLDB Journal (2001) / Digital Object Identifier (DOI) 10.1007/s007780100058

Indexing of now-relative spatio-bitemporal data
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Abstract. Real-worldentitiesare inherently spatiallyand tem-
porally referenced, and database applications increasingly ex-
ploit databases that record thepast, present, andanticipated fu-
ture locations of entities, e.g., the residences of customers ob-
tained by the geo-coding of addresses. Indices that efficiently
support queries on the spatio-temporal extents of such entities
are needed. However, past indexing research has progressed
in largely separate spatial and temporal streams. Adding time
dimensions to spatial indices, as if time were a spatial dimen-
sion, neither supports nor exploits the special properties of
time. On the other hand, temporal indices are generally not
amenable to extension with spatial dimensions. This paper
proposes the first efficient and versatile index for a general
class of spatio-temporal data: the discretely changing spatial
aspect of an object may be a point or may have an extent; both
transaction time and valid time are supported, and a general-
ized notion of the current time,now, is accommodated for both
temporal dimensions. The index is based on the R∗-tree and
provides means of prioritizing space versus time, which en-
ables it to adapt to spatially and temporally restrictive queries.
Performance experiments are reported that evaluate pertinent
aspects of the index.

Keywords: Access method – Bitemporal data – Transaction
time – Valid time – Spatio-temporal data – Multidimensional
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1 Introduction

Society is facing rapid advances in key information technolo-
gies. Processors are becoming faster, cheaper, and smaller;
new wireless communications-related technologies such as
WAP and BlueTooth are being introduced; and positioning
technologies such asGPSbecome increasingly precise and in-
expensive. Trends such as these will render the outer reaches
of the Internet wireless and most users of the Internet mo-
bile. In addition, these trends will give increased prominence

to geo-referenced, or spatial, information and its evolution
across time.

Specifically, an increasing number of database applica-
tions will manage spatiotemporal aspects of real-world, phys-
ical objects. Such objects have positions and extents in space,
and these positions and extents may change as time passes.
Example spatiotemporal objects range from people and vehi-
cles to land parcels, residences, stores, hotels, and hurricanes
[8]. The past, present, and anticipated future positions of such
objects are often of interest in population studies, urban plan-
ning,marketing, sales, trafficmanagement, vehicle navigation
support, land management, and environmental studies. Some
of these applications are dependent on the capture of continu-
ous movement, while others are concerned with the discretely
changing positions and extents. This paper proposes an effi-
cient indexing technique for the latter kind of application.

Two temporal aspects of dataaregenerally considered fun-
damental. Thevalid timeof a fact is the time(s), past, present,
or future, when the fact is true in the modeled reality, while
thetransaction timeof a fact is the time(s) when the fact was
or is current in the database [11,21]. Data with both valid and
transaction time associated is termed bitemporal. Full spa-
tiotemporal support implies considering these two temporal
aspects as well as two or three dimensions of space.

In addition, special semantics of time must be supported
and, if possible, exploited. Specifically, time intervals asso-
ciated with objects may benow-relative, meaning that their
end points track the progressing current time. To illustrate,
consider the recording of addresses. The time a person resides
at a given address may often extend from a known start time
(the valid-time interval begin) to some unknown future time,
which is captured by letting the valid-time interval end extend
to the progressing current time. The same applies to the trans-
action time – the time a tuple is inserted into the database is
known, but we do not know when the tuple will be deleted.
This notion ofnow is peculiar to time and has no counterpart
in space.

The previously proposed spatiotemporal indices [17,24]
assume only one time dimension, adopting one of two ap-
proaches. Either overlapping index structures are used that in-
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dexspatial objectsat different time instancesandsavespaceby
sharing the unchanged parts of the indices [18,27,28], or time
is added as another dimension to an existing spatial index [25].
In this paper, we present an index, termed the RST-tree (“Spa-
tioTemporal”), that adopts the fundamental structure of the
spatial R∗-tree to index bitemporal-data and adds additional
dimensions to support spatiotemporal data. Section 6 consid-
ers the utility of previous proposals for the problem addressed
in this paper and compares them to the paper’s proposal.

Section 2 presents the type of data that can be indexed
with the new index. Section 3 solves the problem of choosing
the minimum bounding regions to be used in the entries of
the index, and algorithms for the tree operations are given
in Sect. 4. Section 5 presents performance studies, Sect. 6
considers related proposals, and Sect. 7 concludes the paper.

2 Background

This section presents two example application areas illustrat-
ing the spatiotemporal data and queries supported, and it de-
scribes the temporal aspects of the data to be indexed.

2.1 Example application areas

Demographic data is used in applications such as advertise-
ment, direct marketing, urban planning, and social studies. It
is of great value to record the changing addresses, or loca-
tions, of the people in the database, and we will assume that
the database records the history of the position (e.g., latitude
and longitude) of each person’s residence (and possibly place
of work). This means that we are faced with 2-D point loca-
tions that may change discretely from time to time. With this
data available, it is possible to answer a query such as “Who
lived close to a chemical plant during theperiodwhen theplant
leaked toxicmaterials into the environment?” or “Whomoved
out of a certain neighborhood during a specific period?”

Cadastral systems exemplify another kind of spatiotem-
poral application. Here the boundaries of land parcels are
recorded together with the history of their change. And for
legal reasons, all records must be maintained in an append-
only fashion so that even mistaken records are retained. This
is accomplished via transaction-time support. For indexing,
we bound each land parcel with a minimum bounding rectan-
gle and associate it with valid- and transaction-time intervals.
An example query could be “Who owned some part of a spe-
cific piece of land sometime during the period from 1975 to
1980, as best known by 1990?” This is a spatiotemporal con-
tainment query that constrains all four dimensions: the two
spatial dimensions, valid time, and transaction time.

The above examples illustrate the types of data and queries
supported by the new index. According to the criteria for
classification of spatiotemporal access methods proposed by
Theodoridis et al. [24], the RST-tree supports 2-D points and
regions; it is bitemporal; both the cardinality and the positions
of the spatial objects may change over time; the index is dy-
namic; and spatial, temporal, and spatiotemporal containment

Table 1.The demographic relation

Person Pos. TT� TT� VT� VT�

(1) John Pos1 4/97 UC 3/97 5/97

(2) Tom Pos2 3/97 7/97 6/97 8/97

(3) Jane Pos3 5/97 UC 5/97 NOW

(4) Julie Pos4 3/97 7/97 3/97 NOW

(5) Julie Pos4 8/97 UC 3/97 7/97

(6) Ann Pos5 5/97 UC 3/97 NOW+ 1
(7) Scott Pos6 4/97 UC 5/97 NOW− 2

queries are supported. As mentioned, the index also supports
now-relative data, which we proceed to characterize.

2.2 General bitemporal data

We adopt the standard four-timestamp format [22] for captur-
ing valid and transaction time. With this format, each tuple
is timestamped with four time attributes: VT� and VT�– the
times when the tuple’s information became and ceased to be
true in the modeled reality; TT� and TT�– the times when the
tuple became and ceased to be current in the database.

A tuple is now-relative if it is valid until the current time
or is part of the current database state. This is captured using
variables that denote the current time in the attributesVT� and
TT� [6]. Variable UC (denoting ‘until changed’) is used in
TT�, and variable NOW is used in VT�. Figure 1 shows an
example table with now-relative data. The time granularity is
a month, and the current time (CT) is 9/97.

Tuple 1 records that the information “John lived at Pos1”
was true from 3/97 to 5/97 and that this was recorded during
4/97 and is still current. Tuple 3 records that “Jane lives at
Pos3” from 5/97 until the current time, that we recorded this
belief on 5/97, and that this remains part of the current state.
Note that while both UC and NOW refer to the current time
(in transaction time and valid time, respectively) the valid-
time end of NOW is constrained by the transaction time. For
example, in Tuple 3, for each time pointt between 5/97 and
the current time, the valid-time interval extends from from
5/97 tot.

Considering again Tuple 3, the valid-time end being equal
to NOW means that we currently do not believe that Jane
will live at Pos3 next month (on 10/97). Sometimes such an
assumption is too pessimistic. For example, there can exist a
restriction that a person can only move with a month’s notice.
Then we would believe that Jane would live at Pos3 also next
month. To record this type of knowledge, Clifford et al. [6]
propose to use NOW+ ∆ in the valid-time end attribute. The
offset∆maybeany integer, positive or negative. For example,
the latter case can be useful if a regulation states that a person
has two months to report a change of address. Then we would
not know with certainty that Jane currently lives at Pos3, but
would be certain that she lived there two months ago. Tuples
6 and 7 exemplify the usage of positive and negative offsets.

Specificconstraintsapply to insertions,deletions,andmod-
ifications. When inserting a new tuple, the natural constraint
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Fig. 1.Bitemporal regions of tuples from Fig. 1

VT� ≤ VT� applies to valid time, unless VT� is of the form
NOW+ ∆ (see below); and the constraints TT� = CT and
TT� = UCapply to transaction time.Anycurrentdatabase tu-
ple can be deleted ormodified. Deleting a tuple, theTT� value
UC is changed to the fixed value CT− 11, eliminating the tu-
ple from the current state (e.g., Tuple 2), but retaining it in the
database.Amodification is modeled as a deletion followed by
an insertion (e.g., an update led to Tuples 4 and 5).

The temporal aspects of a tuple can be represented graph-
ically by a (“bitemporal”) region in the 2-D space spanned by
transaction and valid time [11]. Figure 1 visualizes thebitem-
poral regionsof the tuples inTable 1.As shown, a now-relative
transaction-time interval yields a rectangle that “grows” in the
transaction time direction as time passes (Tuple 1). Having
both transaction- and valid-time intervals being now-relative
yields a stair-shaped region growing in both transaction time
and valid time as time passes (Tuple 3).

The conditionVT� < TT� +∆ yields a stair shape with a
highfirst step (Tuple6). If, on theother hand,VT� > TT�+∆,
the valid-time interval is “illegal” initially, as its end time is
larger than its start time.Sucha regionhasnoextent for thefirst
VT� − (TT� + ∆) time units after the time of its insertion;
it appears only in the future. Such is the case for Tuple 7,
where, although TT� = 4/97, the actual region appeared only
at 7/97. Specifically, from4/97 to 7/97, we supposed that Scott
did not live, lives, or will live at Pos6; in other words, no valid-
time interval is associated with this tuple at these transaction
times. For these times, no queries, as supported by the index,
will return this tuple – only the tuples with “legal” valid-time

1 We use closed intervals and let [TT�, TT�] denote the interval
that includes TT�and TT�.

intervals are returned. Nevertheless, it is convenient to be able
to insert such future-related information.

If at some time a tuple is deleted and thus stops being
current, the bitemporal region ceases to grow (Tuples 2 and 4).
If VT � > TT� + ∆ and the tuple is deleted before its region
appears, the region will never have an extent.

In general, we obtain six combinations of time attributes
for which the bitemporal regions are qualitatively different.
The combinations are listed in Fig. 2, where ‘tt1,’ ‘tt2,’ ‘vt1,’
and ‘vt2’ denote ground values that satisfy the constraints
given above and the offset∆ is an integer.

The spatial representation of the bitemporal extents of tu-
ples suggests the use of some spatial index as the basis for a
bitemporal index. As mentioned in Sect. 1, this approach may
also facilitate the incorporation of spatial dimensions into the
resulting bitemporal index.

3 Index structure

The new index has the same overall structure as the well-
known R-tree [9] (and R∗-tree [2]). As for the R-tree, each
internal node is a record of index entries, each of which is a
pair of a pointer to a node at the next level in the tree and a re-
gion that encloses all regions in the node pointed to. But unlike
in the R-tree, the enclosing region is not simply a minimum
bounding 4-D hyper-rectangle (in the sequel, we will simply
use “rectangle” for both two and four dimensions). This sec-
tion discusses the design of the bounding regions used in the
RST-tree.

The spatial and temporal dimensions may be considered
separately, as a 4-D region is the product of its two 2-D spa-
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Table 2.Possible combinations of time attributes

TT� TT� VT� VT� Conditions Examples

Case 1 tt1 UC vt1 vt2 Tuples 1 and 5

Case 2 tt1 tt2 vt1 vt2 Tuple 2

Case 3 tt1 UC vt1 NOW+ ∆ (vt1 ≤ tt1+ ∆) Tuples 3 and 6

Case 4 tt1 tt2 vt1 NOW+ ∆ (vt1 ≤ tt1+ ∆) Tuple 4

Case 5 tt1 UC vt1 NOW+ ∆ (vt1 > tt1+ ∆) Tuple 7

Case 6 tt1 tt2 vt1 NOW+ ∆ (vt1 > tt1+ ∆)

Minimum bounding rectangle

VT

CT Future TT

Fig. 2.A “hidden,” growing stair shape

tial and bitemporal regions. For the spatial dimensions, the
bounding region is simply a rectangle, as in theR-tree.We thus
proceed to consider only the temporal regions, and we let the
termsminimum bounding rectangleandminimum bounding
regionmean the projections of the corresponding 4-D region
into the bitemporal hyper-plane.

In its leaf nodes, the RST-tree records the exact geom-
etry of the bitemporal regions indexed (recall Sect. 2). The
following format is used for a leaf-node index entry.

(TT�,TT�,VT�,VT�/∆,now-flag, 〈spatial part〉, 〈ptr〉)
Here, the first three components are the attributes introduced
in the previous section, and they may obtain the same values
as described there.The fourth and fifth components compactly
encode the values of the VT� attribute. A value of the form
NOW+ ∆ is captured by setting thenow-flagand storing∆
inVT�/∆; other values are stored in this attribute, without the
now-flagset. Variable UC is represented as a special, reserved
value from the domain of timestamps.

Ideally, the bounding region of an entry of a non-leaf node
should enclose the regions pointed to as tightly as possible,
and this property should remain even if any of the enclosed
regions are growing. This implies that bounding region must
also be capable of growing. In addition, the bounding regions
should be compact and simple to manipulate.

Selecting a type of bounding bitemporal region that sat-
isfies these requirements is not trivial. For example, consider
the situation illustrated in Fig. 2, where a growing stair shape

is placed together with a non-growing (termed “static” for
short) rectangle in a minimum bounding rectangle growing
in transaction time. One day, the stair shape will outgrow its
bounding rectangle,making the tree invalid.Wecall a growing
stair shape “hidden,” if it is placed in a node with rectangles
that are, at least partly, above the highest point of the growing
stair shapes in the node.

As a first step in designing bounding regions for the tree
that alsohandle this problem,weconsider four typesof bound-
ing regions that may be used.

Following theR-tree, theminimumbounding regionsmay
be rectangles, which now may also be growing in transaction
time only or in both directions. Such rectangles may then use
UC for TT� and NOW+ ∆ for VT�. Then the TT� value
of UC and the VT� value of NOW+ ∆ would represent a
rectangle growing in both directions. In leaf node entries, this
combination of timestamp values represents a growing stair
shape. This interpretation may also be chosen for non-leaf
nodes. We consider these two first types of bounding regions
in connectionwith theabove-mentioned “hidden” stair shapes.

When we employ bounding rectangles that grow in both
directions, a bounding rectangle for a set of regions that in-
cludes one or more growing stair shapes has initially its VT�

set to NOW+∆, where∆ is large enough for the rectangle to
enclose all rectangles above the stair shapes. This is illustrated
in Fig. 3a, where the regions from Fig. 2 are being bounded.
This approach has the disadvantage that the bounding rectan-
gles are not minimum after some time, making the index un-
necessarily cover areas, termed “dead space,” not covered by
any data regions and also leading to increased overlap among
bounding rectangles.

The use of a growing stair shape large enough to bound
all regions is illustrated in Fig. 3b. At the current time, such
a bounding stair shape may have a larger area than the corre-
sponding bounding rectangle (cf. Figs. 3a,b). However, after
some time, the area of the rectangle becomes larger than the
area of the stair shape. It can be proven that for any set of
bitemporal regions that can be bounded with either a rectan-
gle growing in both directions or a growing stair shape, the
rectangle will eventually outgrow the stair shape.

The last two types of bounding regions derive from the
GR-tree [3], where hidden stair shapes are handled using a
flaghiddenin the non-leaf node entries. This enables regions
with hidden stair shapes and rectangles above the diagonal to
initially be bounded with a rectangle growing only in transac-
tion time. This idea may also be applied here, but due to the
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Fig. 3. aAbounding rectangle,babounding stair shape,cabounding
rectangle using the flaghidden, andd a bounding stair shape using
the flaghidden

RST-tree’s more general bitemporal regions, the flaghidden
should be accompanied by an offset∆max, which is themaxi-
mumoffset of the hidden stair shapes. Then, whenever the flag
hiddenof a rectangle is set and the current time plus∆max

exceeds theVT� value for this rectangle,VT� maybeadjusted
to continue to bound the stair shapes that have outgrown its
rectangle.

In effect, we turn the rectangle, which grows only in trans-
action time, into a rectangle growing in both directions or
into a growing stair shape. In the first case, VT� is set to
NOW + ∆max. This leads to a bounding rectangle that is
minimal at all times, see Fig. 3c.

In the second case, where the original rectangle is replaced
by a growing stair shape, VT� is set to NOW+ ∆, where∆
is the difference between the old value of VT� and the value
of TT�. The resulting growing stair shape fully encloses the
rectangle it replaces, see Fig. 3d. Creating a bounding stair
shape this large is necessary because we cannot know what
regions the original rectangle is bounding without accessing
the child node. Some of those regions may be located in the
upper-left corner. The large bounding stair shapes is the main
disadvantage of this approach.

The two types of bounding regions that employ thehidden
flag have the disadvantage of a larger andmore complex entry

structure. This might be justified if the flag is used frequently.
But our experiments with the GR-tree [3] show that the flag is
not used very often (because the insertion algorithms obtain
“good” groupings of regions).

In conclusion, we use the second kind of bounding re-
gion, illustrated in Fig. 3b, in the RST-tree. With this choice,
the structure of a non-leaf and a leaf node are exactly the same,
and the kindsof bounding regionsavailable is exactly the same
as the kinds of bitemporal data regions possible. This homo-
geneity simplifies the algorithms associated with the tree. In
general, a bounding region (TT�, TT�, VT�, VT�) for a set of
bitemporal regionsri is computed as shown in Fig. 3, where
VT� is subsequently encoded in the VT�/∆ andnow-flagat-
tributes given for leaf nodes earlier in this section.

Note that the argument to functionarea denotes a static
stair shapewhere the function isusedfirst andastatic rectangle
were it is used the second time.

The computations of TT�, TT�, and VT� are trivial. The
value of VT� determines whether the region is a stair shape
or a rectangle. To avoid creating unnecessary growing stair
shapes, we setVT� to NOW+∆b only if at least one growing
stair shape exists among the regions(the condition∃i (TT�

ri
=

UC∧VT�
ri

= NOW+ ∆)), or if all the regions are static (the
condition∀i (TT�

ri
�= UC)) and a minimum bounding stair

shape (alsostatic) hasasmaller area thanaminimumbounding
rectangle (the last condition).

If a stair-shaped bounding region must be created,∆b is
set to be large enough to enclose all upper-left corners of
rectangles (∆b ≥ VT�

ri
− TT�

ri
) and all stair shapes (∆b ≥

∆ri). Otherwise, the upper bound of the bounding rectangle
(VT�

b ) is set large enough to enclose both rectangles and stair
shapes. In this case, the stair shapes are all static, and each of
them extends in valid time up to TT�ri

+ ∆ri .
It should be noted that growing stair shapes with VT� >

TT� + ∆ (Fig. 1, Tuple 7) are treated exactly the same as all
other growing stair shapes.When bounding such stair shapes,
the minimum bounding region is set so that it encloses all
regions that will appear in the future, although it may not be
minimal for some time.

4 Index algorithms

This section describes the algorithms that serve to maintain
the index structure just described. Section 4.1 offers a road
map of the algorithms. Section 4.2 extends the heuristics used
in the R∗-tree insertion algorithm to support the new types
of data regions. Sections 4.3–4.5 then describe the insertion
algorithm, and Sect. 4.6 shows how the index can be tuned
to support specific types of queries. Section 4.7 compares the
algorithmic complexity of the new index algorithms to the
corresponding algorithms of the R∗-tree.

4.1 Road map of algorithms

The overall structure of the RST-tree is the same as that of the
R∗-tree. As a result, the R∗-tree’s search, deletion, and inser-
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Fig. 4.Computation of a bounding re-
gion for a set of bitemporal regionsri

tion algorithms may be used for the new index, provided that
these algorithms employ a set of algorithms that manipulate
the new kinds of regions presented in Sect. 3. This set in-
cludes an algorithm that determines whether a pair of regions
overlap and algorithms that compute the area and margin of a
region, the intersection of a pair of regions, and the minimum
bounding region of a node. Indeed, the RST-tree reuses the
R∗-tree’s search and deletion2 algorithms, which have been
adapted to use these low-level algorithms. This leaves only
insertion unaccounted for.

The insertion algorithm is central because it is responsi-
ble for maintaining an efficient tree. The R∗-tree’s insertion
algorithm is likely to be inefficient for the new types of data
and bounding regions in the RST-tree. Before improving this
algorithm, we describe its general working.

Given a new entry, the R∗-tree’s insertion algorithm starts
at the root node and traverses the tree downwards until it
reaches a leaf node. At each visited node, it uses the Choos-
eSubtree algorithm to choose one subtree among the subtrees
rooted at this node and then proceeds to the root of the cho-
sen subtree. ChooseSubtree evaluates each subtree rooted at a
node with respect to the new entry, and it chooses one subtree
according to a set of heuristics.

If a new entry is to be inserted into a leaf node that is full,
an overflow occurs. If, during the insertion of the new entry,
this is the first overflow at a given level in the tree, the algo-
rithmRemoveTop is invoked; otherwise, the Split algorithm is
invoked.RemoveTop3 removesp entries fromanode and rein-
serts them. The entries to be removed are chosen according to
heuristics. In the worst case, where all these entries are rein-
serted into the same node or they overflow some other node,
the Split algorithm is used instead of RemoveTop. The split
of a node can result in an overflow of a parent node. If this
happens, the described procedure is repeated for the parent
node.

The algorithm Split distributes the entries of an over-full
node into twogroups, forming twonodes. Because the number
of possible distributions is exponential in the number of en-
tries, only a subset of all possible distributions is consideredby
the Split algorithm. Again, the choice of the best distribution
is made according to heuristics.

2 It should be noted that the logical deletion presented in Sect. 2
is implemented in the index as a deletion of an old region followed
by an insertion of a new one with a fixed TT� value.

3 This algorithm implements forced re-insertion, introduced in [2].

The insertionalgorithmof theRST-treehas the samestruc-
ture as that of the R∗-tree, but the heuristics that drive the
decisions in the ChooseSubtree, Split, and RemoveTop algo-
rithms are tailored to take into account the growth of bounding
regions throughout the tree.

4.2 Heuristics and time parameterization

The R∗-tree uses three basic heuristics in its insertion algo-
rithm.

H1. The volumes of bounding hyper-rectangles should be
minimized.

H2. The overlap (volume of intersection) among bound-
ing rectangles should be minimized.

H3. The margin of bounding rectangles should be mini-
mized.

Recent analytical studies of the performance of R-trees val-
idate these heuristics [13,19,23]. For a 4-D rectangle with
side lengths given by(s1, s2, s3, s4), the margin is given by
the following sum:Σisi +Σi<jsisj +Σi<j<ksisjsk (where
1 ≤ i, j, k ≤ 4) [13]. The intuition underlying the margin
heuristic is covered in Sect. 4.6.

In the RST-tree, the same three types of heuristics are used
in the tree algorithms, but because the quantities of volume,
overlap, and margin are functions of time, the insertion algo-
rithm should consider not only the current values of these, but
also their future evolutions.

Let us investigate Heuristic H1. The evolution of the vol-
ume of a bounding region depends on the following four char-
acteristics:

i. The type of the region:
(1) Static regions (rectangles and stair shapes),
(2) growing rectangles, and
(3) growing stair shapes.

ii. The rate of growth of the region’s volume.
iii. The time period from now to the moment when the

region starts to appear.
iv. The volume of the region at the current time.

We say that an entry is of typet if the region in the entry is of
type t. Similarly, a node is of typet if its bounding region is
of typet.

Let us assume that no updates are performed after the cur-
rent time and that the goal is to minimize the volume of the
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bounding regions (Heuristic H1) over all times starting from
the current time and extending indefinitely far into the future.
Then, the characteristics of regions should be prioritized in
the order given above. It is easy to see why, under these as-
sumptions, this is the only suitable order of prioritization.

The types of the regions should be considered first. High-
est priority should be given to static rectangles and static stair
shapes, independently of their volume because any growing
rectangle or stair shape will eventually outgrow a static rect-
angle or a static stair shape. For the same reason, growing
rectangles (which grow only in transaction time) should be
given a higher priority than growing stair shapes.

The second characteristic of a region is its rate of growth.
Among two growing rectangles, the one that is narrower in the
spatial dimensions or in valid time should be given highest
priority because it grows by a smaller amount at each time
unit. Similarly, a growing stair shape with a larger projection
onto the spatial dimensions will eventually build upmore area
than a stair shape with a smaller projection.

Third, if two growing regions have the same type and
growth rate, it may be possible to prioritize them according
to the times when they appear. The later a region begins it
existence, the more preferable it is.

Static regions are only compared using the fourth charac-
teristic, exactly as is done in the R∗-tree.

Heuristic H2, which minimizes overlap between regions,
can also be extended in a similar way to address the growth
of regions. This is done by considering the same four charac-
teristics as above, but for the regions obtained by intersecting
overlapping regions. Finally, the presented scheme can be ap-
plied similarly to the margin heuristic (H3).

As noted, the a prioritization scheme such as the one given
here is based on the assumption that the index is queried for
an indefinite time and that no assumptions are made about
future insertions and deletions. In fact, these quite general
assumptions underlie the algorithms of most access methods.
However, due to the presence of growing data regions, in a
realistic scenario where the index is updated continuously, a
less strict prioritization of the four characteristics of regions
may be desirable. For example, a very small, but growing
rectangle is preferable over a very large static rectangle if
the growing rectangle is updated and becomes static before it
outgrows the static one.

The above prioritization scheme is implemented in the
RST-tree in a relatively straightforward andflexible (to ac-
commodate realistic scenarios) manner by introducing atime
parameter pin the insertion algorithm, which then computes
the areas of regions as ofp time units into the future (for some
p). If a sufficiently large time parameter is used when com-
puting and comparing areas, we effectively obtain results that
follow the above-described scheme. Relaxed prioritizations
are achieved by using smaller time-parameter values. Which
time-parameter values to use is investigated experimentally
(Sect. 5.2) and depends mostly on the intensity of updates.

Experiments with the GR-tree [3] show that its perfor-
mance is substantially boosted when strict heuristics are used
that look only at node types and group regions of the same

type, trying single-mindedly to avoid introducing growing
rectangles and, especially, growing stair shapes. While ex-
perimenting with different designs of the insertion algorithm,
we noticed that these heuristics not only donotwork for spa-
tiotemporal data, but even have a negative effect.

To understand why, consider the situation in a node split
algorithm where there is a choice between having one “large”
bounding, growing stair shape and one static bounding re-
gion versus having two “smaller” bounding, growing stair
shapes.With only two temporal dimensions, the former choice
is clearly preferable; the “large” stair shape will most prob-
ably not be much larger than one of the two “smaller” stair
shapes, and these two overlap substantially. This is so because
all growing stair shapes follow theVT� = NOWdiagonal and
have equal transaction-time end values. Introducing two spa-
tial dimensions, the spatial extents of the two “smaller” stair
shapes may be non-overlapping and far apart in the spatial
dimensions. Forcing them into one bounding stair shape may
produce a truly large growing stair shape.

Summarizing, the time parameter is a simple and flexible
way to extend the R∗-tree heuristics. Using the time parame-
ter, the four characteristics of regions, be it bounding regions
or the regions that occur as intersections between bounding
regions, do not have to be inspected explicitly. The next sec-
tions explain in detail the workings of the Split, RemoveTop,
and ChooseSubtree algorithms.

4.3 The ChooseSubtree algorithm

The ChooseSubtree algorithm is used for deciding where to
insert a new entry. The algorithm chooses one subtree among
the subtrees rooted at a node and then repeats the procedure
for that subtree until it reaches a leaf node. To optimize the
overlap heuristic (H2), theR∗-tree’sChooseSubtree algorithm
considers the enlargement of the overlap between the bound-
ing regions of the subtrees that would result from inserting the
new entry in a subtree.

To determine this overlap enlargement, the overlaps be-
tween a subtree’s current minimum bounding region and the
minimum bounding regions of all the other subtrees are de-
termined. Then the subtree’s minimum bounding region is
extended with the new entry, and the overlaps are determined
anew. This is done for all subtrees, and ChooseSubtree pro-
ceeds with the subtree where including the new entry yields
the least overlap-area enlargement. Ignoring the spatial di-
mensions, Fig. 5 gives an example, where inclusion of a new
entry in node 1 is chosen.

Ties are resolved by choosing the node whose minimum
bounding region requires theleast area enlargement, and fur-
ther ties are resolved by choosing the node whose minimum
bounding region has thesmallest areawith the new entry en-
closed.4

The RST-tree employs the above sketched R∗-tree’s
ChooseSubtree algorithm [2], with the exception that com-

4 For non-leaf nodes, overlap area enlargement is not considered
– only area enlargement and area are considered.
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Fig. 5. aInitial bounding regions,b insertion of a new entry into node 1, andc insertion of a new entry into node 2

putations of overlap enlargement, area enlargement, and area
are time-parameterized. Fig. 6 shows the result of applying
ChooseSubtree with a later time-parameter value. Now, node
2 is the best choice for the new entry, as it yields a smaller
overlap area enlargement than inclusion in node 1, and its area
enlargement is smaller than that of node 3.

4.4 The split algorithm

A node split algorithm can be characterized by the set of dis-
tributions of entries into two nodes that it considers, and by
the criteria it employs for selecting one (the “best”) of these
candidate distributions.

The subset of all possible distributions considered by the
R∗-tree’s Split algorithm is selected as follows.Along each of
the axes, entries of the over-full node are sorted according to
their bottom and top values. Then, assuming two dimensions,
for eachof the four sortings, a total ofM−2m+2distributions
are considered, whereM is the maximum number of entries
in the node, andm is the minimum allowed number of entries
in the node. Thei-th distribution is generated by assigning the
firstm − 1 + i entries of the sorting to the first node and the
rest to the other.

The best distribution is selected based on the three heuris-
tics H1–H3, introduced in Sect. 4.2. For the pair of bound-
ing rectangles resulting from a distribution of entries, we use
area-valuefor the sum of their volumes,overlap-areafor the
volume of their intersection, andmargin-valuefor the sum of
their margins. Using Heuristic H3 (minimum margin-value),
one axis is selected. Then Heuristics H1 and H2 are used con-
sidering only the distributions along this axis.

The original R∗-tree split algorithm
S1 For each axis, sort the rectangles by their lower then by
their upper value and determine all distributions as described
above. Compute the sum ofmargin-values for all distributions
for each axis.
S2 Let the axis with the minimum sum of margin-values be
the split axis.
S3Along the split axis, choose the distribution with the mini-
mum overlap-value. Resolve ties by choosing the distribution
with the minimum area-value.

The RST-tree makes this algorithm time-parameterized
and introduces the generation of one more candidate distri-
bution after Step S2. The new distribution is generated by
trying to split entries of an over-full node so that the resulting
bounding regions are of the best types possible. At the same
time, the algorithm aims to not distribute entries of the same
type into two different nodes. This procedure is described in
detail next.

Each of the two nodes produced by a split may be bounded
by a region of one of the three types defined in Sect. 4.2, leav-
ing six possible pairs of types. These pairs are prioritized ac-
cording to their “goodness,” as defined in Fig. 7. Stated math-
ematically, a pair of bounding regionsx1 andx2 is considered
better than a pair of bounding regionsy1 andy2 if:

(type(x1) �= type(y1) ∨ type(x2) �= type(y2))∧
((type(x1) ≤ type(y1) ∧ type(x2) ≤ type(y2))∨
(type(x1) < max(type(y1), type(y2))∧
type(x2) < max(type(y1), type(y2)))).

The generation of the additional distribution is based on
this ranking of pairs of node types.

Generation of the additional candidate distribution

S2.1Among the six pairs of types of bounding regions, select
the pair (t1, t2) such that, according to the conditions given
in Fig. 7: (a) it is possible to achieve this pair of bounding-
region types when dividing the entries of the over-full node
into two nodes; and (b) no other pair with a higher priority can
be achieved. Lett1 ≤ t2, and name the node bounded with
a region of typet1 andt2 asN1 andN2, respectively. LetS
contain all entries of the over-full node.
S2.2Move toN2 all entries fromS that cannot be put intoN1
because of the type of its bounding region. (Growing rectan-
gles cannot be put into static regions, and growing stair shapes
cannot be put into growing rectangles or static regions.)
S2.3 Let St denote all entries fromS of type t. If |S1| ≤
M−m+1,moveS1 intoN1.Next, if |S2|+|N1| ≤ M−m+1,
moveS2 intoN1. Here, we try not to distribute entries of the
same type into two different nodes.
S2.4 If |S| = 0 (i.e.,S2.3succeeded), gotoS3; (N1, N2) is a
new distribution.
S2.5 If |N1| = 0 ∧ |N2| = 0, gotoS3; no new distribution
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was generated (all entries were of the same type).
S2.6 If |N1| = 0, pick a “seed” entrye fromS for Guttman’s
quadraticDistributealgorithm [9] such that its inclusion into
N2 would enlarge that node’s minimum bounding region the
most. Pute intoN1. GotoS2.8.
S2.7 If |N2| = 0, pick a seed entrye from S and put it into
N2.
S2.8Apply Guttman’s quadraticDistributealgorithm.

The above algorithm uses a time-parameterized version of
Guttman’s quadraticDistributealgorithm. Section 5 studies
the impact on query performance of considering this addi-
tional distribution.

4.5 The remove-top algorithm

The original R∗-tree RemoveTop algorithm sorts the entries
of an over-full node by the distances of their centers from the
center of the minimum bounding rectangle of the over-full
node and then removes and reinserts a certain percentage of
the entries with the largest distances.

A time-parameterized version of this algorithm could be
used for the RST-tree, but performance experiments show that
a RemoveTop algorithm based on the heuristic of volumes
works better for spatiotemporal data. The RST-tree employs
an algorithm of quadratic complexity in the number of entries
in a node. This algorithm repeatedly removes the entry that,
when removed, shrinks the time-parameterized volume of the
minimum bounding region the most.

4.6 Prioritizing space versus time

The insertion algorithm described in the previous sections
aims to produce a tree that yields high performance of spa-
tiotemporal intersection queries. The heuristics used so far
have been based on the assumption that intersection queries
are square on average, i.e., all the dimensions (temporal and
spatial) are constrainedby intervals of approximately the same
length.

Due to the quite different semantics of the dimensions in-
volved, this may not always be a good assumption. In some

applications, most queries may be much more restrictive on
the spatial dimensions than on the temporal dimensions. For
example, queries in a cadastral systemmsaay retrieve the cur-
rent knowledge of the full history of ownership of some piece
of land. In other applications, queries may be most restrictive
on the temporal dimensions. Specifically, timeslice queries,
which specify time points in the temporal dimensions, have
very natural semantics and are often important. For example, a
query in a demographic database may retrieve the population
for a county, as it was two years ago, as currently best known.

Non-square queries may be due just to the different units
of measurement used for the spatial and temporal dimensions.
Forexample, if thegranularity of time is1 sand thegranularity
of space is 1m, and most queries are formulated in days and
meters, the queries will be long in the temporal dimension.
The solution to the problem of non-square queries addresses
the issuesof different semantics andgranularities of the spatial
and temporal dimensions.

In the extreme, if a substantial number of queries offer no
restrictions on either space or time, additional, separate tem-
poral and spatial indices may be introduced for these queries.
Whether the likely increase in query performance obtained
from using these specialized indices justifies the extra cost of
update and the extra storage space occupied will depend on
the specific application requirements.

In order to obtain a versatile spatiotemporal index thatmay
serve well the full spectrum queries – ranging from having
only spatial constraints to having only temporal constraints
– it is desirable to introduce a mechanism into the RST-tree
that allows it to be tuned to support better either spatially or
temporally restrictive queries.

In any R-tree-based index, one dimension can be priori-
tized over the others by specifically favoringminimumbound-
ing rectangles that are narrow in this dimension and long in
the other dimensions. In Fig. 8, a 2-D space is considered. The
two sets of minimum bounding rectangles cover the same ar-
eas and do not overlap. Scenario (b) favors queries restrictive
in thex dimension and not in they dimension.

Analytical studies also offer some insight into the effect
of the shapes of the bounding regions on query performance
[13,19]. For a 4-D query with side lengths(q1, q2, q3, q4),
the estimated number of page accesses is proportional to
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i=1(sm,i+qi)), wheresm,i is the side length of bound-
ing rectanglesm in thei-th dimension andm ranges over all
bounding rectangles of the tree. Expanding the product in this
formula, it can be seen that the notion of margin, as defined in
Sect. 4.2, plays a significant role. The formula suggests that
non-rectangular queries may be supported better by weigh-
ing the components of the margin expression. However, in
R∗-tree-based indices, the margin-value is used only as a sec-
ondary heuristic and only in the node split algorithm, and so
a prioritization scheme based on margin will not be effective.

We propose a simple way to prioritize the dimensions in
an R-tree-based index, which works with the existing tree al-
gorithms. For eachn-dimensional rectangle, instead of con-
sidering the extents(∆x1, ∆x2, . . . , ∆xn), weighted extents
((∆x1)α1 , (∆x2)α2 , . . . , (∆xn)αn) are used. If allαi are
equal to one, none of the dimensions are prioritized. The prior-
ity of dimensioni is increased by settingαi to a value greater
than 1, and the priority of dimensioni lowered by settingαi

to a value smaller than 1. Settingαi to 0 makes the algorithms
disregard the dimension.

Following this scheme the RST-tree uses a single parame-
terα ∈ [−1..1].Thevolumeofa4-D regionr is thencomputed
as follows.

vol(r) =
{
bitemparea(r)1+α · spatialarea(r) if α ≤ 0
bitemparea(r) · spatialarea(r)1−α otherwise

wherebitempareais theareaof the region’s time-parameterized
bitemporal extent andspatialareais the area of its spatial ex-
tent.

Themargin-value computation in the formula presented in
Sect. 4.2 is updated similarly, so that the temporal and spatial
extentsareweightedwith1−αor1+α. It follows thatα values
less than 0 favor spatially selective queries, as, for example,
queries in a cadastral system asking to retrieve the full history
of a specific area of land. The values ofα greater than 0 favor
temporally restrictive queries, such as timeslice queries that
ask to retrieve a complete map of land ownership as it was at
some specific time in the past. As mentioned above,α values
of −1 and1 turn the RST-tree into a spatial and a temporal
index, respectively. Section 5 investigates the effects of using
differentα values.

4.7 Algorithmic complexity

It is appropriate to consider how the complexity of the pro-
posed index algorithms relates to the complexity of the corre-
sponding algorithms of the R∗-tree, on which the new index
is based.

In the worst case, the Split algorithm relies on Guttman’s
quadratic distribute algorithm. Thus, the Split, as well as Re-
moveTop, algorithms have a quadratic complexity in the num-
ber of entries in a node. This ismore thatO(n log n) complex-
ity of the R∗-tree Split and RemoveTop algorithms.

We performed a number of experiments to measure the
CPU running times of the different parts of the insertion algo-
rithm. These studies show that the combined running time of
the Split and RemoveTop algorithms constitutes less than one
percent of the total CPU time. This is as could be expected,
for the following reasons. The number of entries in a leaf node
of the tree was approximately 200 in our experiments. This
means that, on average, it takes at least 100 insertions to pro-
duce a split (or a call to the RemoveTop algorithm). On the
other hand, each insertion calls the ChooseSubtree algorithm
as many times as there are levels in the tree. Thus, the vast
majority of the CPU time is spent in the ChooseSubtree algo-
rithm, and the complexity of this algorithm in the RST-tree is
the same as in the R∗-tree – quadratic in the number of entries
in a node.

In practice, the average running timeof theChooseSubtree
algorithm can be substantially reduced by first determining
whether there are any entries in a node that completely enclose
a new entry. If so, the step of looking for minimum overlap
enlargement can be skipped, and this is the stepwith quadratic
complexity.

5 Performance studies

Section 5.1 details the experimental setup and data generation.
Section 5.2 then describes the effect of the introduction of
the time parameter and the additional split distribution in the
tree, and Sect. 5.3 studies the use of theα-parameter. Finally,
Sect. 5.4 compares the RST-tree with its only competitor, a
minimally adapted R∗-tree.
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5.1 Experimental setup and data generation

Thestudiesusean implementationof theRST-tree that isbased
on theGeneralized Search Tree Package, GiST [10]. The page
size (and tree node size) is set to 4k bytes, and a page buffer
of 200 k bytes, i.e., 50 pages, is used [16] where the root of
a tree is pinned and the least-recently-used page replacement
policy is employed. Nodes changed during an index operation
are marked as “dirty” in the buffer and are written to disk at
the end of the operation or when they otherwise have to be
removed from the buffer.

The performance studies are based on so-calledworkloads
that intermix queries and update operations on the index, thus
simulating index usage across a period of time. The reminder
of this section describes the generation of workloads.

The workloads simulate the evolving spatiotemporal as-
pects of a set of objects. Each change to an object is char-
acterized by three parameters: the time duration for which
the previous spatial value of the object was valid (VL), the
displacement of the center of the spatial value relative to its
previous center, and the change of the area of the spatial value
relative to its previous area. These parameters account for the
spatial and valid-time aspects of objects and are adapted from
the GSTD algorithm [26]. These spatial and valid-time values
are augmented with transaction times when they are stored in
the database, and GSTD is extended to make it possible to
simulate the storage of these changing values of objects in the
database. Insertions may be retroactive or predictive [12]. A
retroactive insertion occurswhen the valid-timebegin of an in-
serted record is less than the timeof insertion (transaction-time
begin), and a predictive insertion occurs when the valid-time
begin exceeds the time of insertion.

A large number of parametersmay be introduced that con-
trol the generation of workloads. The present experimental
studies attempts to discern and put focus on the novel aspects
of spatiotemporal data. One central such aspect is the concept
of a history. A history captures the current knowledge about
the (spatial) evolution of a single object.An object’s history is
composed of a number of triples consisting of a spatial value, a
valid-time interval, and a transaction-time interval; the valid-
time intervals meet, yielding at most one spatial value at each
point in time, and for the transaction-time intervals, TT�=UC.

The spatial value associated with the first valid-time inter-
val in a history is taken from a set of spatial values generated
using theÀ La Carte spatial data generator [7]. This set con-
tains 2,000 rectangles generated in an area spanning 20,000
units in thex andy dimensions. The spatial density is set to 1,
and the distribution of the bottom-left corners of the rectan-
gles is uniform.Point data is obtainedby taking thebottom-left
corners of the rectangles.

The spatial value associated with any other valid-time in-
terval in a history is generated from the spatial value asso-
ciated with its predecessor valid-time interval, by extending
this value by∆x and∆y, if it is a rectangle, and by adding
(∆x, ∆y) to it if it is a point. The values of∆x and∆y
are uniformly distributed over[−SpChange,SpChange]. This

enables the modeling of shrinking/expanding rectangles and
moving points.

The history of an object isactiveif it has a spatial extent
with a valid time that includes the current time. For active
histories, the interval having the largest valid-time begin is
made now-relative. Histories that are not active contain no
now-relative valid-time intervals. Valid-time interval lengths
are uniformly distributed between0 andVL. For now-relative
intervals, the∆-offset is normally distributedwithmean0 and
deviation100, and its valid-time begin is normally distributed
with mean equal to the insertion time (transaction-time begin)
and deviationDev = 500.

The transaction-time intervals in the triples are obtained
by simulating database modifications. To accomplish this, the
workload generator maintains a list of the currently active
histories. Each history has associated the time when the next
insertion for the history will occur, along with the pair of the
spatial value and valid-time interval to be inserted. The list is
ordered on the insertion times.

An insertion is done by updating the valid-time end of the
most recent entry in the history from being now-relative to
being static, so that it meets the beginning of the new entry.
This is accomplished by logically deleting the original now-
relative data, inserting the data with the new static interval,
and finally inserting the new, now-relative data.

Afteran insertion,anew,planedentry isgenerated together
with its insertion time. This new entry’s valid-time begin is
normally distributed with deviationDev and mean equal to
its planned insertion time, which, in turn, is generated so that
after inserting the new entry, the length of a previous interval
will not exceedVL.Thisway, parameterVLcaptureshowoften
objects change, and parameterDev controls the correlation
between transaction and valid time.

In addition to generating operations that insert new entries
into active histories, index operations corresponding to one of
three actions are generated at each time point:
1. Introducing a new object, thus starting a new history.
2. Ending an active history.
3. Updating a history.
In our experiments,workloads start at timeTStart= 2000.

For the first 2000 time units, at each time point, we introduce
a new object.After this initialization, a history may be started,
ended, and updated with probability0.1, 0.1, and0.8, respec-
tively, at each time point.

A history is started by generating a new pair of a spatial
value and a valid-time interval along with an insertion time.A
history is ended by updating the valid-time end of the last in-
terval from being now-relative to being static. A history is up-
dated by either inserting a new valid-time interval somewhere
between the beginning and the current end of the history, or
deleting some existing valid-time interval from the history.
The spatial part of an inserted interval is obtained by chang-
ing the spatial part of the interval in the history just before it
using∆x and∆y. Special action is necessary to ensure that
the valid-time intervals in a history continue to meet after an
update. Following the insertion of a new interval, all intervals
fully covered by it are logically deleted, and partially covered
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Table 3.Workload parameters

Parameter Description Values Used

SpChange Maximum value used for∆x and∆y. 0, 40,200, 1000, 5000

VL Maximum valid-time interval length. 250, 500,1000, 2000, 4000

T : S Ratio between the temporal and spatial parts of a query.1 : 1000, 1 : 10, 1 : 1, 10 : 1, 1000 : 1

intervals are updated. Following the deletion of an interval,
the valid-time end of the previous interval, if it exists, is set to
the valid-time end of the deleted interval.

Each workload used in an experiment contains 200,000
logical deletions and insertions, so that after running thework-
load, 200,000 data items are stored in the index. Depending on
parameterVL, this results inworkloads ranging approximately
from 8,000 to 34,000 time units in length. A workload also
contains10 queries for each200 insertions or deletions. The
queries are intersection queries represented as 4-D rectangles
with square spatial and temporal projections. The valid-time
begin of a query is uniformly distributed between0 and the
largest valid-time begin of an entry in the index. For half of
the queries, the transaction-time end is set to the current time;
for the others, it is uniformly distributed betweenTStartand
the current time. The 4-D volumes of queries are uniformly
distributed between 1 and4 · 1012. The volumes are divided
into bitemporal and spatial areas according to the ratioT : S,
which ranges from1 : 1000 for temporally restrictive queries
to 1000 : 1 for spatially restrictive queries (see Table 3).

In addition, we experimented with bitemporal and spatial
point queries as extreme cases of temporally and spatially
restrictive queries. For these queries, the 4-D volume of a
query varied from 1 to108. Another query type that is very
likely to be seen in real-world applications is the transaction
timeslice, which retrieves the history of some region in space
as current in the database at some specific time point. In our
experiments we constrain the region of space to a point.

The parameters that control the generation of workloads
are given in Table 3. Standard parameter values are given in
bold-face. These are the values used if a parameter was not
varied in an experiment. In each experiment, wemeasured the
average number of disk I/O operations per single query in a
workload.

5.2 Effects of the time-parameterization
and the additional split distribution

Compared to the R∗-tree, the RST-tree includes a time param-
eter and considers one additional distribution of the entries
in an over-full node, when it is split. This section studies the
effects of these additions.

It was pointed out inSect. 4.2 that using amoderately large
time-parameter value might yield a well-performing tree in a
realistic setting. In addition, the characteristics of the datamay
affect the utility of different time parameters.

A set of experiments was performed to determine the per-
formance resulting from using different time parameters for

different workloads. The results were that the performance is
not very sensitive to differences in the time parameter value,
but that a range of values yield quite similar performance;
only the extreme values of0 and “very large” tend to decrease
the query performance (up to100% for some workloads), es-
pecially for rectangle data (as opposed to point data). As a
result, we fixed the time-parameter value at 5,000 in all other
experiments.

The experiments also show that what is a good time-
parameter value is somewhat dependent on the average num-
ber of operations per time unit, which, in turn, depends on the
VL parameter. This should be expected. The time-parameter
value, used when splitting a node, should intuitively be de-
pendent on for how long the resulting nodes will exist before
being deallocated or reorganized by other splits ormultiple in-
sertions and deletions. The smaller the number of operations
per timeunit, the longer an averagenode survives,which tends
to favor a large time-parameter value.

Switching the attention to the additional distribution con-
sidered in the split algorithm, a set of experiments aimed to
determine how often this distribution is actually chosen by
the split algorithm. If it is chosen quite often, it is interesting
to see how its availability improves query performance. The
experiments used workloads with different types of queries
along with settings for theα parameter that favor the partic-
ular type of queries (see Sect. 5.3). Each workload was run
with and without the additional distribution available.

For α values favoring queries withT : S = 1 : 1 and
spatially restrictive queries, i.e.,α ≤ 0, the additional dis-
tribution is chosen very infrequently, and so its presence is
insignificant. For the workloads with temporally restrictive
queries, the additional distribution is chosen in up to19% of
all splits, in turn improving the query performance by 10% to
25% (see Fig. 9).

5.3 Space-time prioritization

Section 4.6 presented theα-parameter, the use of which aimed
at tailoring the index to different types of queries. A set of
experiments was performed in order to investigate the effect
of this parameter on the performance of different types of
queries. Eight workloads with different types of queries were
run using differentα values.

As shown in Figs. 10 and 11,α = 0 is best for workloads
with neutral queries (T : S = 1 : 1). This is as expected.
(Note that the workload withT : S = 1 : 1 queries appears
in both coordinate systems in each figure.)

Interestingly, for spatially restrictive queries,α values of
−1.0 and0, for rectangle data, and−0.5 and0, for point data,
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Fig. 9. aPercentage of splits choosing the additional distribution and
b the resultingqueryperformance improvement (in%) for temporally
restrictive queries

outperform other values almost independently fromT : S
ratio in the queries. Forα < 0,most of the bounding regions in
a tree are growing stair shapes.Onlywhenα = 0, the insertion
algorithm starts to group growing rectangles, growing stair
shapes, and static regions into different nodes and this pays
off even for spatially restrictive queries. Nevertheless, values
larger than0 penalize the spatially restrictive queries.

For temporally restrictive queries, depending on theT : S
ratio, the optimalα value ranges from 0 to 0.75. The asym-
metrical nature of these “spatial” and “temporal” results is as
expected and reflects the very different geometries of bitem-
poral versus spatial regions. In contrast to average spatial re-
gions, bitemporal regions tend to be quite long in transaction
time. In addition, the distribution of regions in the bitemporal
plane is different from their distribution in the spatial plane.

Figures 10 and 11 also show that temporally restrictive
queries require much more I/O than do spatially restrictive
queries. This is because spatially restrictive queries are much
more selective, which is due to the specifics of our work-
loads. Intuitively, a temporally restrictive query will retrieve
one version of each object, while a spatially restrictive query
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Fig. 10.Query performance for varyingα values, rectangle data

will retrieve all versions of a few objects. In the workloads,
each object has a much smaller number of versions than the
total number of objects.

When the mix of queries posed against an RST-tree does
not exhibit a strong temporal restrictiveness or when it is not
knownwhichmix toexpect, aneutralαvalueof0 is preferable.
A value of ca.0.25 is preferable for temporally restrictive
queries. For temporal point queries that are non-restrictive
in the spatial dimensions, a value of ca.0.75 shows the best
performance.

5.4 Comparison with straightforward R∗-tree-based
indexing

Replacing all occurrences of UC and NOW+ ∆ in the data
by the maximum time values for each dimension renders the
data static and enables a standard 4-D R∗-tree, followed by a
filteringstep, to index thespatiotemporal data consideredhere.
The filtering step reverts to the correct temporal extent and re-
applies the query predicate, thus eliminating false drops.

Figure 12 compares the RST-tree to this straightforward
solution, without considering the filtering step. Based on the
reults shown in Figs. 10 and 11, forT : S = 1000 : 1 queries,
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Fig. 11.Query performance for varyingα values, point data

we used optimal settings ofα = −1 for rectangle data and
α = −0.5 for point data.

When comparing Fig. 12 with Figs. 10 and 11, one should
take intoaccount thatFigs. 10and11correspond to thesettings
ofVL = 1000andSpChange = 200. For example, the results
for the RST-tree withT : S = 1000 : 1 queries for point data,
as reported by the lowest curve in Fig. 12b, can be found in
part in Fig. 11 as follows. In Fig. 12b,α = −0.5 is used, and
in Fig. 11,SpChange = 200 is used, so the third data point
of the lowest curve in Fig. 12b corresponds to the third data
point of theT : S = 1000 : 1 curve (with square data points)
in the top diagram in Fig. 11.

In our experiments, the R∗-tree generally requires from
approximately50% to 100% more I/O operations than the
RST-tree for neutral queries and temporally restrictive queries
(not shown in Fig. 12); for spatially restrictive queries, the R∗-
treegenerally requires fromapproximately50% to300%more
I/Ooperations.Thesenumbers are quite significant, especially
given that the workloads used in these experiments are quite
favorable towards the R∗-tree.

The difference in performance among the two indices is
highly dependent on the distribution of the queries. As more
and more queries reach above theVT= TT primary diagonal
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in the bitemporal plane, the more false drops will occur in
the result obtained from the R∗-tree; retrieving these incurs
extra I/O not incurred by the RST-tree. The workloads used
in the experiments reported here are very favorable towards
the straightforward approach in this regard. For example, the
workload used for the data points in Fig. 12a forVL = 4000
producedonly ca.9% falsedrops, but still incurred100%more
I/O operations.

While not illustrated here, the performance of the R∗-tree
is also highly dependent on the number of now-relative spa-
tiotemporal extents; the more of these, the worse the perfor-
mance. The RST-tree does not experience a similar effect.

6 Related proposals

Spatiotemporal indices can be divided into two groups – those
that assume discrete motion of objects and those that assume
continuous motion. Discretely moving objects are assumed
to remain stationary and of non-changing shapes in-between
explicit updates to the database (or samples of the objects’
movements). In somecases, suchasmultimedia presentations,
objects are not assumed to move at all, they may only appear
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and disappear. In other applications, objects are assumed to
move continuously, and the database is expected to record
interpolated positions of the objects for the time points in-
between the samples. As mentioned in the introduction, this
paper addresses the problem of indexing discrete movement,
and so in this section we mainly consider indices supporting
discrete movement.

The previously proposed spatiotemporal indices for dis-
cretelymovingpoints or regions [17,24] assumeonly one time
dimension, adoptingoneof twoapproaches.Thefirst approach
is to use overlapping index structures. These index spatial ob-
jects at different time instances and save space by sharing
the unchanged parts of the indices. Examples include the HR-
tree [18], theMR-tree [28], and theoverlappingquadtree [27]).
The second approach is to add time to an existing spatial in-
dex, aswas time an additional spatial dimension. For example,
the 3D R-tree [25] indexes the history of evolution of a set of
2-D discretely moving points. The so-called 2+3 R-tree [17]
additionally uses a 2D R-tree to index the most recent state of
a set of objects. This way, it supports now-relative data in one
time dimension.

The overlapping index structures have the disadvantage of
using a lot of space, especially if objects change positions fre-
quently. In addition, it is unclearwhether this approachmaybe
generalized to two time dimensions.Most importantly, in con-
trast to theRST-tree, none of the above-mentioned approaches
support now-relative bitemporal data.

The R∗-tree [2] has previously served as the outset for an
index [3] that supports now-relative bitemporal data (albeit a
somewhat less general kind than the one supported here). As
does theRST-tree, theGR-tree indexes bitemporal data as 2-D
regions, which grow continuously if the data is now-relative.
Both indices exploit a particular and quite unique property of
the R∗-tree, namely that it partitions the data itself. Most other
multidimensional access methods, e.g., Quadtrees, partition
the embedding space. Unless transformations are employed
[4], the continuous growth of the data regions caused by now-
relative data renders it difficult to extend the latter type of
access method to index now-relative data.

A different treatment of temporal and spatial dimensions
has been pursued by Kleiner and Lipeck [14], who use a 3-D
R∗-tree to index 2-D objects that move, or change, discretely.
Specifically, they experiment with different heuristics in the
insertion algorithms. For example, instead of the volume of a
minimum bounding cube, they use a quantity that is equal to
the product of the minimum bounding cube’s extents in the
two spatial dimensions plus the temporal extent squared. The
authors mention the possibility of prioritizing (or scaling) of
the temporal dimensionwith respect to the spatial dimensions.

For completeness, four recent proposals [1,5,15,20] that
index continuous data deserve mention. Unlike the index pro-
posed here, these proposals capture neither the valid nor the
transaction time of data; rather, the continuity occurs because
they index the current positions of continuously moving ob-
jects. The first proposal [15] applies the so-called duality data-
transformation to address this indexing problem. The second
[1] uses data-transformation, kinetic, and partial-persistence

techniques. The third [20] and fourth [5] proposals take the
R∗-tree as their outset. While these proposals share this gen-
eral outset with the RST-tree, the specifics of these and the
present proposal are very different and reflect the differences
in the problems being solved. Although designed for contin-
uously moving objects, the proposal of Cai and Revesz [5]
could possibly be used to index the valid-time history of dis-
cretely moving objects, by assuming zero velocities between
the updates of the objects’ positions.

7 Conclusions and research directions

This paper addresses the emerging need for efficient support
for spatiotemporal data in databases by proposing a new, ver-
satile spatiotemporal indexing technique, termed the RST-
tree, for indexing discretely changing spatial extents-points
or rectangles. The RST-tree solves a new problem: it dif-
fers from all previously proposed spatiotemporal indices in
that it provides support for both transaction time and valid
time, termed bitemporal support, and it accommodates gen-
eral, now-relative transaction-time and valid-time intervals.

The paper details how to address the special features of the
temporal dimensions by using novel bounding regions in the
index that grow continuously with the advancement of time
and that also take into account the spatial dimensions. Most
prominently, these new bounding regions are accompanied by
a new set of insertion algorithms. In addition, the tree offers
the ability to weigh the spatial and temporal aspects of data,
so that either queries that are very selective in the spatial or
temporal dimensionsare supportedmoreefficiently.TheGiST
package is used in the implementation of the index. Perfor-
mance comparisons with a straightforward, R∗-tree-derived
spatiotemporal index demonstrate that the new bounding re-
gions and algorithms significantly increase performance. It is
also demonstrated that the mechanism for assigning weights
makes it possible to better support spatially and temporally
selective queries.

In future work, we plan to further investigate support for
different types of spatiotemporal queries. Experiments show
that anα-parameter of−1.0 seems to provide the best perfor-
mance for spatially selective queries. A spatial index may be
competitive in such cases. In general, given a spatiotemporal
query, we would like to be able to determine which existing
spatial, temporal, or spatiotemporal index is the better one
and to know how the new index compares to the more spe-
cialized, existing indices. In addition, we hope to be able to
obtain and experiment with real or partly real data, whichmay
yield additional insights.
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