©2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this

information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Indexing of Moving Objects for L ocation-Based Services

Simonas Saltenis ~ Christian S. Jensen
Department of Computer Science, Aalborg University
{simas,csj}@cs.auc.dk

Abstract

Visionaries predict that the Internet will soon extend to
billions of wireless devices, or objects, a substantial frac-
tion of which will offer their changing positions to location-
based services. This paper assumes an Internet-service sce-
nario where objects that have not reported their position
within a specified duration of time are expected to no longer
be interested in, or of interest to, the service. Due to the
possibility of many ““expiring” objects, a highly dynamic
database results. The paper presents an R-tree based tech-
nique for the indexing of the current positions of such ob-
jects. Different types of bounding regions are studied, and
new algorithms are provided for maintaining the tree struc-
ture. Performance experiments indicate that, when com-
pared to the approach where the objects are not assumed
to expire, the new indexing technique can improve search
performance by a factor of two or more without sacrificing
update performance.

1 Introduction

We are currently experiencing rapid technological devel-
opments that promise widespread use of on-line mobile per-
sonal information appliances. Industry analysts uniformly
predict that mobile Internet terminals will significantly out-
number the desktop computers on the Internet.

This proliferation of devices offers companies the oppor-
tunity to provide a diverse range of e-services. Successful
services are expected to be relevant, unobtrusive, personal-
ized, and context aware. It is essential for many services,
termed location-based services, that they be sensitive to the
users’ changing locations. Location awareness is made pos-
sible by a combination of political developments, e.g., the
de-scrambling of the GPS signals and the US E911 man-
date, and the continued advances in positioning technolo-
gies. Examples of location-based services include vehicle
navigation, tracking, and monitoring, where the positions
of air, sea, or land-based equipment such as airplanes, fish-
ing boats and freighters, and cars and trucks are of interest.

It is applications such as these that warrant the study of the
indexing of objects that move.

The continuous movement of such objects poses new
challenges to database technology. The conventional as-
sumption is that data remains constant unless it is explicitly
modified. Capturing continuous movement accurately with
this assumption requires very frequent updates. To reduce
the number of updates required, functions of time that ex-
press the objects’ positions may be stored instead of simply
the static positions [15]. Then updates are necessary only
when the parameters of the functions change “significantly.”
We use one linear function per object, with the parameters
of a function being the position and velocity vector of the
object at the time the function is reported.

Independently of how object positions are represented,
the accuracy of the positions and, thus, their utility for pro-
viding a location-based service decreases as time passes.
When an object has not reported its position for a certain
period of time, the recorded position is likely to be of little
use. Consequently, it is natural to associate expiration times
with positions so that the system can automatically remove
“expired” information.

This paper proposes the REXP -tree, an R*-tree [4] based
access method that indexes the current and anticipated fu-
ture positions of moving point objects, assuming that their
positions expire after specified time periods. To take advan-
tage of information being valid only for a limited time, the
proposed index uses a new type of bounding region. We
show that the choice of bounding regions is non-trivial, and
we experimentally compare a number of possible alterna-
tives. In addition, we equip the REXP-tree with insertion
and deletion algorithms that lazily remove expired informa-
tion from the index during the regular index update opera-
tions. Finally, the paper summarizes the results of an exper-
imental comparison with the closest competitor, the TPR-
tree, which assumes non-expiring information.

The next section presents the problem addressed by the
paper and covers related research. As a precursor to present-
ing the new index, Section 3 explores issues related to the
use of existing moving-object indexes, e.g., the TPR-tree,
for the indexing of data with expiration times. In Section 4,

this is followed by a description of the bounding regions
and algorithms employed by the new index. It is assumed
that the reader has some familiarity with the R*-tree. Sec-
tion 5 summarizes results of performance experiments, and
Section 6 concludes and offers research directions.

2 Problem Statement and Related Work

We describe in turn the data being indexed, the queries
being supported, and related work.

2.1 Problem Statement

An object’s position at time ¢ is given by Z(t) =
(x1(t), 25(t),. .., z,4(t)), where it is assumed that the times
t are not before the current time. We model this posi-
tion as a linear function of time, which is specified by two
parameters. The first is a position for the object at some
specified time ¢, #(t,.;), termed the reference position.
The second parameter is a velocity vector for the object,
U = (vy,0g,--.,04). ThUs, Z(t) = Z(t,.;) +0(t — t,p).
Although the times (¢,55) when different objects were most
recently sampled may differ, it is convenient to have the ref-
erence position for all objects be associated with the single
reference time, ¢, ... Such a reference position can always
be computed knowing the velocity vector o observed at £
and the position Z (t,ps) observed at ¢ps.

Modeling object positions as functions of time not only
enables us to make tentative near-future predictions, but,
more importantly, alleviates the problem of the frequent up-
dates that would otherwise be required to approximate con-
tinuous movement in a traditional setting where only po-
sitions are stored. In our setting, objects may report their
parameter values when their actual positions deviate from
what they have previously reported by some threshold. The
choice of update frequency then depends on the type of
movement, the desired accuracy, and the technical limita-
tions [9, 16]. For example, a mobile yellow pages service is
likely to be much less sensitive to imprecise positions than
a traffic monitoring system.

An object’s reference position and velocity vector de-
scribe its predicted movement from now and indefinitely
far into the future. In the applications we consider, such
far-reaching predictions are not possible. An object does
not usually move for a long period of time within a useful
threshold of its predicted movement. Rather, if such an ob-
ject does not report a new, up-to-date position and velocity
after some time, its old positional information becomes too
imprecise to be useful—we say that it expires.

To avoid reporting such expired objects in response to
queries, we associate an expiration time, ¢.,,, with each
object and call it an expiring object. If unknown, the expi-
ration time can be set to infinity, although in most cases, it

should be easy to find a finite upper bound. Upper bounds
can be dictated by a number of application specific fac-
tors. For example, moving objects may be forced to make
changes in their movement due to an underlying infrastruc-
ture such as a road network, or objects may move according
to some predetermined routes and schedules, as in a public
transportation system. Finally, trivial upper bounds on the
expiration times can be derived from the finite extents of the
space in which the objects move.

Figure 1 exemplifies how predicted trajectories of mov-
ing objects are recorded and updated. For simplicity, one-
dimensional moving objects, such as cars on a road, are
shown. The positions of objects are plotted on the y-axis,
and time is on the x-axis. The current time is assumed to
be 6, and the part of the picture to the left of the current-
time line shows the past evolution of the data set, where
insertions, deletions, and updates are represented by verti-
cal bars and expiration times are represented by arrows. For
indexing purposes, the data set at any time point consists of
a set of finite line segments in (x, t)-space.

pos

30 + 2

I I I I I i I I I I
T T T T T T T

10 11 time

Figure 1. One-Dimensional Data and Queries

The figure illustrates that many objects are updated be-
fore they expire, while some expire before being updated.
For example, object o1 was updated at time 2—nbefore its
expiration time (3). But then no update occurred prior to its
new expiration time (5). The latter may be more common
in applications with unreliable or intermittent connectivity.
For example, mobile telephones that are turned off may not
be guaranteed to report to the system. In these cases, only
expiration times guarantee that objects are removed from
the data set.

The figure also exemplifies the types of queries that we
aim to support. These queries retrieve all objects with pre-
dicted positions within specified regions at specified times.
We distinguish among three kinds, based on the space-time
regions they specify. In the sequel, a d-dimensional rectan-
gle R is specified by its d projections [a], a{],...[a}},a]],

aj. < a;-‘, onto the coordinate axes.

Let R, and R, be two d-dimensional rectangles and ¢~
and ¢ (t"<t™) be times that do not precede the current
time. A moving query Q = (Ry, Ry,t",t™) specifies the
(d + 1)-dimensional trapezoid obtained by connecting R,
at time ¢~ to R, at time ¢™ (see Q3 in Figure 1). A win-
dow query (@2, in Figure 1) is a special case of the moving
query when R; = R». Finally, a timeslice query (Q1) is a
special case of a window query when ¢~ = ¢,

Notice that queries are positioned on the time axis ac-
cording to the times ¢, ™, and ¢™ specified in the queries,
not according to the time they were issued. The greater the
distance between these times and the query issue time, the
more tentative the answer of the query is, because objects
update their parameters as time goes or they expire. For ex-
ample, if issued before time 2, query Q1 would return ol;
and no object would have qualified if it were issued later
because o1 was updated at time 2.

For these reasons, we expect queries to be concentrated
in some limited time window extending from the current
time. The more frequently the parameters of the objects are
updated, the shorter this window is likely to be.

We introduce a problem parameter, querying window
length (W), which represents an expected upper bound on
how far queries “look” into the future. Thus, for most
queries, iss(Q) < t < iss(Q) + W and iss(Q) < 7 <
t < iss(Q) + W, where iss(Q) is the query issue time.

2.2 Previous Work

A number of approaches for indexing of the current and
predicted future positions of moving points involve parti-
tioning of the space into which the objects are embedded.
Tayeb et al. [14] use PMR-Quadtrees [11], Kollios et al. [8]
employ the so-called dual data transformation, and Agarwal
et al. [1] use the ideas of so-called kinetic data structures
[3]. While addressing similar problems, the approaches ex-
plored in these papers are not closely related to our work.

Since the technique proposed in this paper builds on the
basic ideas of the TPR-tree, we review briefly the TPR-tree
and related access methods.

The TPR-tree is based on the R*-tree and indexes points
that move in one, two, or three dimensions. It employs
the basic structure and algorithms of the R*-tree, but the
indexed points as well as the bounding rectangles in non-
leaf entries are augmented with velocity vectors. This way,
bounding rectangles are time-parameterized—they can be
computed for different time points. The velocities of the
edges of bounding rectangles are chosen so that the en-
closed moving objects remain inside the rectangles at all
times in the future. Figure 2 shows three one-dimensional
moving points together with their one-dimensional bound-
ing rectangle (i.e., a bounding interval). The figure shows

that answering window or moving queries in the TPR-tree
involves the checking for intersection between two (d + 1)-
dimensional trapezoids—a query and a bounding rectangle.

Figure 2. A Bounding Interval and a Query in
the TPR-tree

In addition to the use of time parameterized bounding
rectangles, the TPR-tree differs from the R*-tree in how its
insertion algorithms group points into nodes. The R*-tree
uses the heuristics of minimized area, overlap, and margin
of bounding rectangles to assign points to the nodes of a
tree. To take into account the temporal evolution of these
heuristics, they are replaced by their integrals over time in
the TPR-tree. The area of the shaded region in Figure 2
illustrates a time integral of the length of the bounding in-
terval. This use of integrals in the algorithms allows the
index to systematically take the objects’ velocities as well
as their current positions into account when grouping them.

The bounding interval in Figure 2 is minimum only at
the current time (CT). At later times, it is larger than the
true minimum bounding interval. It is possible to record a
true minimum bounding interval by storing all future events
when the true minimum bounding interval changes (e1, es,
and ez in the figure), but this is impractical because the
number of such events in the worst case is equal to the
number of objects enclosed by the bounding interval. Agar-
wal et al. [2] show how to achieve a trade-off between the
number of events and the accuracy of the bounding inter-
val. Based on these ideas, Pocopiuc et al. [10] propose the
STAR-tree index for moving objects. This index seems to
be most suited for workloads with quite infrequent updates.

Cai and Revesz have recently proposed a Parametric R-
tree [5] that is quite similar to the TPR-tree. The main dif-
ference is that they index the past evolution of objects with
extent, meaning that they know at index construction time

the entire evolution of the objects. This is a differentand, in
some ways, simpler problem than the one addressed here.

3 Usingthe TPR-Treefor Expiring Objects

The TPR-tree presented in the previous section indexes
the future trajectories of moving objects as infinite lines.
The future trajectories of expiring objects may also be in-
dexed with the TPR-tree, by replacing the finite line seg-
ments of the expiring objects with corresponding infinite
lines.

This setup introduces two issues that must be addressed.
First, objects that have expired by the times specified in a
query may introduce false drops in query answers, leading
to overly large intermediate results from the index that must
be filtered to produce the correct answer. Second, it may
be desirable to have automatic means of deleting expired
objects, which clutter the index.

One way of eliminating expired entries is to schedule
deletions. To accomplish this, a secondary data structure
is required that maintains the resulting queue of scheduled
deletions. This structure must support operations not only
for checking and removing the top element of the queue and
inserting a new element, but also for efficiently deleting or
updating any of the scheduled deletion events in the queue.
This latter functionality is necessary because objects may
be deleted or updated before they expire.

Such a structure does not generally fit in main memory,
as its size is on the order of the size of the primary index
structure. A B-tree on the composite key of the expiration
time and the object id could be used. The topmost element
of the queue can be found easily in the leftmost leaf page of
the tree, and the insertion, deletion, and update operations
can be performed efficiently.

In such a setting, the amortized cost of introducing one
expiring object consists of four terms. First, the object has
to be inserted into the TPR-tree, and the scheduled dele-
tion event has to be inserted into the B-tree. Next, when
processing the deletion event, the event has to be removed
from the B-tree, and the deletion has to be performed in the
TPR-tree. Performance experiments [13] indicate that this
approach can be competitive with the RFXP -tree only if the
B-tree costs are ignored.

It should be also mentioned that unless queries arrive in
chronological order, the scheduling of deletions does not al-
low to avoid the filtering step in answering future queries.
Obijects that expire after the current time, but before the
query time, are reported as false drops and must be filtered.

4 Structure and Algorithms

This section presents the structure and algorithms of the
REXP_tree. We first explore possibilities for computing

time-parameterized bounding rectangles by maximally ex-
ploiting expiration times. Then we describe the modified
insertion and deletion algorithms that ensure the efficient
disposal of expired entries.

In the following, when only one-dimensional moving
points or bounding intervals are mentioned, it is assumed
that the extension to higher dimensions is trivially done by
applying the same procedure or definition to each of the di-
mensions, or by exchanging interval length with area, vol-
ume, or hyper-volume. Also, we use the term rectangle for
any d-dimensional hyper-rectangle.

41 Index Structure and Time Parameterized
Bounding Rectangles

The RFXP-tree is a balanced, multi-way tree with the
structure of an R-tree. Entries in leaf nodes are pairs of
the position of a moving point and a pointer to the moving
point, and entries in internal nodes are pairs of a pointer to
a subtree and a (time-parameterized) region that bounds the
positions of all moving points or other bounding regions in
that subtree.

411 Representation of Points and Bounding Rectan-
glesin the Index

As suggested in Section 2, the position of a moving point is
represented by a reference position, a corresponding veloc-
ity vector, and an expiration time—(z, v, t,,,) in the one-
dimensional case, where z = z(t,.;). We lett,, . be equal
to the index creation time, ¢g.

To bound a group of d-dimensional moving points,
d-dimensional rectangles are used that are also time-
parameterized and that enclose all enclosed points or rect-
angles at all times not earlier than the current time.

A tradeoff exists between how tightly a bounding rectan-
gle bounds the enclosed moving points or rectangles across
time and the storage needed to capture the bounding rectan-
gle. It would be ideal to employ time-parameterized bound-
ing rectangles that are always minimum, but as noted in Sec-
tion 2.2, doing so deteriorates in the general case to enu-
merating all the enclosed moving points or rectangles, as
demonstrated in Figure 3.

To achieve a compact description of the enclosed en-
tries, we use a single linear function as the bound (upper
or lower) of the bounding interval. Following the repre-
sentation of moving points, we let ¢, = ¢, and cap-
ture a one-dimensional time-parameterized bounding in-
terval [z7(t),z7(t)] = [27(to) + v"(t — to), 27 (to) +
vt — to)] for t < t3,, as (z7, 27,0707, t,,). Here

t = maxi{oi.tewp}, where ¢ ranges over the moving

exp

points or bounding intervals to be enclosed.

Figure 3. Conservative (Bold), Always Mini-
mum (Dashed), and Static (Dotted) Bounding
Intervals

Note that we could as well choose not to record ¢, for
bounding rectangles, reducing the size of internal index en-
tries. Even in this case, a “natural,” finite ¢ ., can be derived
for bounding rectangles that shrink in some dimension, i.e.,
vf > v, for some 4. For such a rectangle, ¢,,,, should be
set to the time when its area becomes zero. In performance
experiments, we investigate whether it pays off to record
expiration times in internal index entries. In the following,
we assume that bounding rectangles have expiration times
even though some of them may be infinite.

There are a number of possible ways to compute z, 7,
v, and v™. One goal is to choose these parameters so as to
minimize the integral of the interval’s length from the time
of bounding interval computation, ¢, ;, to ¢, ,; + h, where
h = min{H,?.,, —t,,,} and H approximates how far into
the future queries are most likely to access the computed
bounding rectangle (see Section 4.2).

Minimizing this integral is equivalent to minimizing the
area (or the part of it between ¢, , and ¢, , + h) of a trape-
zoid that bounds the trajectories of the enclosed points or
intervals and that has bases orthogonal to the time axis. The
shaded region in Figure 2 exemplifies such a trapezoid. In
the following, the term “bounding trapezoid” is used to refer

to this kind of a trapezoid.

412 Simple Time-Parameterized Bounding Rectan-
gles

If all entries are infinite, the only reasonable choice—if the
interval is described by the above four parameters—is the
conservative bounding rectangles that are used in the TPR-
tree. They are minimum at the point of their computation,
but possibly (and most likely!) not at later times. To en-

sure that a conservative bounding interval is bounding for
all future times, the lower (upper) bound of the interval is
set to move with the minimum (maximum) speed of the en-
closed points (speeds are negative or positive, depending on
the direction). This is a very simple construction that is in-
dependent of H.

Figure 3 illustrates a conservative bounding interval, as
used in the TPR-tree. This interval bounds the four points
tightly at ¢o, but to keep all points enclosed at all future
times (assuming that objects have infinite trajectories), the
upper bound of the interval moves at the speed of object o1,
while the lower bound of the interval moves at the speed
of object 03. Although the figure illustrates the concept, it
should be noted that the TPR-tree algorithms most likely
would not place o1 and 03 in the same node as 02 and o4.

The straightforward bounding interval for finite entries
has both v" and »™ equal to zero and is termed a static
bounding interval. Figure 3 also illustrates such a bounding
interval. In addition to being simple, the main advantage of
this type of interval is that by not storing »" and »™ in the
internal index entries, we increase the fan-out of internal
tree nodes by almost a factor of two.

X

)

Figure 4. Update-Minimum Interval (Bold) and
the Same Interval Recomputed after Insertion
of 05 (Dashed)

The last obvious and simple way of taking advantage of
the expiration times is to use improved conservative bound-
ing intervals, where the speed of the upper bound is re-
duced as much as possible and, analogously, the speed of
the lower bound is increased as much as possible. We term
such bounding intervals update-minimum intervals because,
like conservative intervals, they are minimum at the time
of the last update. Figure 4 shows how the speeds of the
bounds are reduced or increased. Here, the speed of the up-
per bound of the bounding interval is not set to the speed

of the fastest object (01), but to some smaller speed that
is enough to contain o1, knowing its expiration time. No-
tice that because the resulting bounding interval is relatively
“nice” (it barely grows), the tree algorithms are very likely
to group the four given objects in a single node. However,
if the bounding interval is recomputed at some later time
(tupa)s €., because of the insertion of a new object (05),
the interval-length integral is increased unnecessarily. How
often this will happen and how it will affect the performance
of the index is investigated in performance experiments.

4.1.3 One-Dimensional Optimal Time-Parameterized
Bounding Rectangles

As mentioned earlier, the goal is to find a trapezoid with
minimum area that is bounding and extends from¢ = ¢, ,
tot =t,,, +h Tofind such a trapezoid, it suffices to
consider only the endpoints of trajectories. When we are to
bound moving points, each trajectory has one endpoint, and
when we are to bound time-parameterized intervals, each
trajectory has two endpoints—a"(¢,,,,) and 27 (t,,,). Let
the set .S include all trajectory endpoints. To capture the
positions of points or intervals at ¢, ,;, the minimum and
maximum of these positions at ¢,,,; are also included in S.
Figure 5 shows these points—=a,,;, = min;{o;.2" (tupd)}
and Zmae = maxi{o;.z7(t,,4)}, Where 0.2 (t,,,) =
0;-27(tpg) = 04-2(t,,,) When points, not intervals, are
being bounded. As noted by Cai and Revesz [5], the fol-
lowing lemma holds.

Lemma4.1 The lower and the upper bounds of a bounding
trapezoid of .S with minimum area between times ¢, ; and
tupa + h are the lines containing the edges of the convex
hull of S that intersect the median linet =t¢,,,; + h/2.

Here, the lower and upper bounds of the trapezoid are the
lines described by the trajectories of the lower and the upper
bound of the corresponding time-parameterized interval.
To understand why this lemma holds, consider the upper
bound of the trapezoid. It is trivial that this bound should
contain at least one vertex of the upper chain of the convex
hull of S. Suppose it contains only vertices of the hull to
the left of the median line, and let p be the rightmost of
these (cf. Figure 5). Then we can reduce the area of the
trapezoid by replacing this upper bound (u") with a line u
that has a smaller slope and contains the edge of the convex
hull with p as its left point. Figure 5 illustrates why the area
is reduced. The shaded triangle to the right of p shows the
area that was eliminated, which is larger than the area of the
shaded triangle to the left of p that shows the area that was
gained. This is true for any p to the left of the median line.
We can continue this process until the upper bound contains
vertices both to the left of the median line and to the right
of it. Similar argument can be made when we start with

an upper bound that contains only points to the right of the
median line and when the lower bound is considered.

tpa g+ H/2

tupd+ H t@(p t

Figure 5. A Convex Hull and an Optimal
Bounding Interval

It should be noted that if the median line contains one
of the vertices of the convex hull, any line that crosses the
convex hull only at this vertex can serve as the bound of the
minimum trapezoid.

Any of a number of convex-hull computation algorithms
(e.g., a Graham scan [6]) can be used to find the convex hull
of S'in O(|S|log|S|) time. However, observe that we need
to find only the edges of the convex hull that intersect the
median line. This can be formulated as a linear program-
ming problem. Inspired by linear programming algorithms,
Kirkpatrick and Seidel [7] provide a linear algorithm to find
such edges, which they call “bridges.” Compared to the
Graham scan, the algorithm is quite complex, and its im-
plementation uses finite precision floating point arithmetics
and is complicated. Therefore our implementation uses a
bridge-finding algorithm based on the Graham scan.

4.1.4 Multi-Dimensional Time-Parameterized Bound-
ing Rectangles

The more general problem of finding a minimum Time-
Parameterized Bounding Rectangle (TPBR) in multiple di-
mensions is much harder. We desire a simple algorithm that
produces “satisfactory” results. One approach is to compute
the parameters of the bounding rectangle independently in
each dimension [5]. For the ¢-th dimension, the bridge-
finding algorithm could be applied to the projections of the
trajectories into the (z;, t)-plane.

It is easy to improve such a straightforward algorithm
without adding complexity. The idea is to introduce depen-
dencies among the dimensions. Specifically, when consid-
ering the 4-th dimension, the already computed dimensions
can be taken into account by adjusting the position of the

T . Equal area
. integrals

Figure 6. Finding a Median Line for the Sec-
ond Dimension (Top), When the First Dimen-
sion is Computed (Bottom)

median line in the bridge-finding algorithm. Note that, to
prove Lemma 4.1, we rely on the fact that the shaded trian-
gle to the left of any point p that is to the left of the median
has a smaller area than the triangle to the right of p (cf. Fig-
ure 5). If p lies on the median line, both triangles have the
same area. In multiple dimensions, not simple areas, but
time integrals of hyper-volumes have to be compared.

To understand the issue, consider an example (illustrated
in Figure 6). In the first dimension z1, the computed bound-
ing interval grows from left to right, i.e., with increasing
time. Then a unit of bounding interval length in the second
dimension z, has less weight at smaller times than at later
times. Thus, the median line should be shifted to the right
when computing its bounding interval.

In the following, we assume without loss of generality
that ¢,,,, = 0. Suppose k£ dimensions are already com-
puted and we want to find the median line for the com-
putation of the (k + 1)-st dimension. Let a; = z;' — 2
and w; = vy —vf, 1 < i < k, be the spatial and ve-
locity extents of the bounding rectangle. Then, considering
only the computed dimensions, the hyper-volume at time ¢
is [T, (a; + w;t) = ¢ C(i)t?, where C(i) is the sum
of the coefficients of ¢ to the i-th power in the above poly-
nomial.

Lemma4.2 If the parameters of a TPBR in the first & di-
mensions are computed and fixed, the optimal parameters
of the TPBR in the (k + 1)-st dimension can be computed
using the median line t = m, where

k P41 .
_ Ei:o 124_2 0(7’)
- k i N
> im0 ii—10(l)
PROOF: As mentioned earlier, the median line has the prop-
erty that, for any point contained in it, the hyper-volume
integral corresponding to its left “shaded triangle” is equal

to the integral corresponding to its right “shaded triangle”
(cf. Figure 6). The left integral is I, = [;"(tanp —

tana)(m — t) YF_, C(i)tidt. The right integral is I, =
fTZ(tan,B — tana)(t — m) YF_, C(i)tidt. It is not diffi-

cultto see that I, = I; + (tan S —tan @) (15, 222-C(5) -

mY i o £5C(i)). Solving the equation I; = I, for m
proves the lemma. O

As an example, if £ = 1, m = h(3a; + 2w, h)/(6a, +
3w, h).

Using this lemma, our algorithm for computing a multi-
dimensional TPBR visits dimensions one by one until the
TPBR parameters in all the dimensions have been com-
puted. The order in which dimensions are visited may in-
fluence the resulting TPBR. We choose a random order, so
that no dimension is given preference. This algorithm, com-
bined with a linear bridge-finding algorithm, has a worst-
case running time of O(d|S|), where d is the number of
dimensions. We term the bounding rectangles produced by
this algorithm near-optimal.

For the sake of comparison, we also implemented an al-
gorithm that computes true optimal multi-dimensional TP-
BRs. The worst-case running time of this algorithm is
O(]S|% 11og|S|), which is described elsewhere [13].

Although we do not discuss this in detail, the presented
algorithms can easily be generalized to handling the case
where some of the bounded points or rectangles have infi-
nite expiration times.

Any of these types of TPBRs can be used for answering
queries in the same way that conservative TPBR’s are used
for query processing in the TPR-tree, only with expiration
times taken into account.

4.2 Heuristicsfor Tree Organization

The heuristics that determine how to group moving ob-
jects and their TPBRs into nodes in the RFXP-tree are
adopted from the TPR-tree.

The idea is to tune the index so that it efficiently sup-
ports queries when assuming a querying window length, W.
In addition, UI—the average duration between the two suc-
cessive updates of an object is an important problem param-
eter. Intuitively, the total duration of time when queries will

“see” the current insertion is H = UI + W. We term this
the time horizon.

As in the TPR-tree, the REXP-tree insertion algorithms
have the structure of the R*-tree algorithms, but the objec-
tive functions A,.(t) of area, margin, and overlap of bound-
ing rectangles are replaced with their integrals over the time
periods where queries are most likely to access the index.

tupa+min{ H,r.tesp }
/ An(t)dt @)

tupd

The computation of such integrals is described in more
detail elsewhere [12].

To avoid the user of the index having to set manually
the parameters UI and W, we provide an automatic means
of maintaining the values of these parameters, which is de-
scribed elsewhere [13].

4.3 Removal of Expired Entries

To contend with expiring entries in both the leaf level
and in internal nodes of a tree, the insertion and deletion
algorithms must address two issues.

First, expired entries should be discarded from the tree
at one time or another. Second, a node may be noticed to be
underfull, counting only non-expired entries, termed live,
not only after removing an entry from a node during a dele-
tion operation, but at any stage in both the deletion algo-
rithm and the insertion algorithm.

To address this, a range of strategies can be adopted,
ranging from very eager strategies, where expired entries
are deleted by scheduled deletions as soon as they expire,
to lazy strategies, where expired entries are allowed to stay
in the index. We adopt a lazy strategy for the removal of
expired index entries. Only live entries are considered dur-
ing search, insertion, and deletion operations, but expired
entries are physically removed from a node only when the
contents of the node is modified and the node is written to
disk. In addition, when an expired entry in an internal node
is discarded, either when writing the node to the disk or
deallocating it, the whole subtree rooted at this entry has to
be deallocated.

To handle consistently the events of nodes becoming un-
derfull (and overfull), the algorithms for insertion or dele-
tion have a very similar structure. First, as in the regular
R*-tree, the leaf node is found where a new entry has to
be inserted or the existing one deleted. From here, both
algorithms proceed in the same way by calling the func-
tion CorrectTree(leaf), below, for the leaf node that was
changed.

CorrectTree(leaf):

CT1 Initialize a list of orphaned entries, orphans, to be
empty. The level of the tree from which the entry was
removed is recorded with each entry in orphans.

CT2 Call orphans = PropogateUp(leaf ,orphans).

CT3 While orphans is not empty

CT3.1 Remove an entry with the highest level from orphans
and insert it into a node at the appropriate tree level (in
the same way as a data entry is inserted at leaf level),
or if the root node of the tree is empty, insert it into the
root node. Let node be the node where the entry was

inserted.
CT3.2 Call orphans = PropogateUp(node,orphans).
CT4 If the root node was modified and has only one entry,

reduce the number of tree levels by declaring its child
the new root.

The exotic case of the root becoming empty in CT3.1
may occur if all but one entry in the root expire and the
single live entry is removed from the root by function
PropogateUp. This function checks for both the node
being underfull or overfull (counting only live entries) and
propagates the necessary changes up the tree.

PropogateUp(node,orphans):

PUL1 If node is overfull, then, as in R*-tree, either move a
number of its live entries to orphans for later reinser-
tion (if that was not yet performed at this level), or split
node.

PU2 If node is underfull, then move all its live entries to or-
phans and deallocate the node.

PU3 Remove the entry from node’s parent, parent, if the
node was deallocated; install a new entry in parent, if
the node was split (a new root is created if the root was
split). Otherwise, update the bounding rectangle in the
parent’s entry that points to the node, if necessary.

PU4 If node is not the root, call orphans =
PropogateUp(parent,orphans). Return orphans.

The presented algorithm ensures that all nodes modified by
the algorithm have the right number of live entries. All other
nodes, even if read by the algorithm, may be underfull.

It should be noted that the deletion algorithm in the
REXP_tree uses a regular search procedure to find a leaf en-
try to be deleted. This procedure does not “see” expired
entries. Consequently, if a delete operation is performed on
an expired entry, the operation fails. This could be changed
to allow the deletion algorithm to see the expired entries, but
performance experiments show this to be unnecessary. The
lazy strategy of purging expired entries as described above
is able to maintain a very low percentage of expired entries
in the index.

Figure 7 illustrates the workings of the algorithm (the
expiration times of the entries are shown after the slashes).
Here, an insertion of a new entry purges expired entries in
part of the tree, shrinking the tree in the process. The exam-
ple assumes a maximum of 5 and a minimum of 3 entries

Current Time =5, Insert X/20

B/

A/10 B/- Orphans

Level 1:

C underfull

-

j [D/12 EISJ Level 0: F/-, X/20
| |

/20 C/- D/I12 ER3

OO0 @ om0

AJ10 Orphans

B underfull Level 1: D/12

E expired
Level 0: F/-, X/20

OO

Figure 7. Purging of Expired Entries Triggered by an Insertion

in a node. In the first step, the entry X/20 is directed to leaf
node C. As G and H in C have expired (the current time is
5), C is underfull and is discarded, while its live entries are
temporarily stored in orphans. After removing C’s entry
from B, we notice that B is underfull. Again, B is discarded,
and its live entries are posted to orphans, now in the list
of level 1. In addition, when discarding B’s expired entry
E, we take care to deallocate the whole subtree rooted at E,
which in this case happens to be a single leaf node. It is also
worth noting that after this step, if A had expired, the algo-
rithm would run into the situation of an empty root (CT3.1)
where a new root is created from entries in orphans. In
the last two steps, entries from orphans are inserted one by
one, starting with the higher-level entries. Finally, the tree
is shrunk by discarding the single-entry root.

Except for always checking for underfull or overfull
nodes, the presented algorithm does not differ substan-
tially from the R*-tree insertion and deletion algorithms.
It should be noted, though, that in the new algorithm, the
number of entries in the list orphans in the worst case is
bounded only by the number of entries in the whole tree,
meaning that the list may not fit in main memory. For ex-
ample, this could happen after a long period during which
the system, for some reason, did not receive any updates. A
natural solution to this problem is to fix the maximum size
of orphans and stop handling underfull nodes in step PU2
when orphans is almost full. Limiting the size of orphans
also limits the worst-case cost of a single update operation.

5 Summary of Performance Experiments

This section summarizes the findings of the performance
experiments that were performed with the REXP-tree. The
detailed description of the experimental setup and the re-

sults of the experiments can be found in the longer version
of this paper [13].

The performance studies are based on artificially gen-
erated index workloads that mix updates and queries. In
most of the experiments, workloads are generated based on
the simulation of objects moving on a two dimensional net-
work of “roads.” In some of the workloads, positions of
objects expire after a predefined period of time after the last
update—the expiration duration. In other workloads, an ob-
ject’s position expires when the object has traveled a prede-
fined distance from its last update—the expiration distance.

We also experimented with workloads where simulated
objects do not delete themselves, but stop reporting their
positions. New objects are introduced to replace the “dead”
ones.

Performance experiments with various types of time pa-
rameterized bounding rectangles show that, in most cases,
near-optimal bounding rectangles without expiration times
(expiration times are stored only with data entries) per-
form the best. Use of optimal bounding rectangles does
not substantially change query performance. In most cases,
optimal bounding rectangles do not differ, or differ only
slightly, from their near-optimal counterparts. Most inter-
estingly, update-minimum bounding rectangles are almost
as good as near-optimal ones, although their influence on
performance is more dependent on the characteristics of a
workload. Static bounding rectangles, having the virtue of
almost doubling the fan-out of non-leave nodes, perform
satisfactorily for workloads with relatively short expiration
durations.

Despite of only moderate gains achieved from introduc-
ing new kinds of bounding rectangles, the REXP-tree out-
performs the TPR-tree by almost a factor of two, if expi-
ration durations of objects are not exceedingly large. The

gains are increased when some objects become “dead” and
new objects are introduced. In such situations, the size of
the TPR-tree keeps increasing, degrading its performance.

The performance experiments show that most of the per-
formance gain of the RFXP-tree when compared to the
TPR-tree is achieved by the regrouping of entries that oc-
curs due to the lazy removal of expired entries. The perfor-
mance studies also show that, in the simulated workloads
that we used, the frequency of updates is high enough for
the algorithms described in Section 4.3 to remove most of
the expired entries.

Finally, the experiments also show that the lazy removal
of expired entries does not degrade update performance. On
contrary, due to an improved grouping of entries, the up-
date performance appears to be better than the update per-
formance of the TPR-tree.

6 Conclusionsand Future Work

Motivated by the emerging mobile Internet and location-
based services, which may benefit from the ability to track
large numbers of on-line mobile objects, this paper proposes
an R*-tree-based index for the current and anticipated fu-
ture positions of moving point objects.

The proposed RFXP-tree captures the future trajectories
of moving points as linear functions of time. To address the
issue that, in many applications, the positional information
is expected to be irrelevant and outdated not long after it
is recorded, the REXP-tree stores expiration times in leaf
entries of the index.

We provide insertion and deletion algorithms for the in-
dex that support expiration times. The algorithms imple-
ment a lazy technique for removing expired entries from
the index. Performance experiments show that, for realisti-
cally dynamic index workloads, the algorithms are able to
eliminate all but a very small fraction of the expired entries.
By removing expired entries and, in the process, recomput-
ing bounding rectangles and handling the resulting under-
full nodes, the RFXP-tree algorithms reorganize the index
to improve query performance, without sacrificing update
performance.

The REXP-tree borrows the idea of time-parameterized
bounding rectangles from the TPR-tree, but to take advan-
tage of expiration times, we have investigated a number of
different ways of computing such rectangles. Performance
experiments show that choosing the right bounding rect-
angles and corresponding algorithms for grouping entries
is not trivial and is dependent on the characteristics of the
workloads.

The long-term effect that different types of bounding
shapes have on the grouping of finite line segments deserves
a more detailed study [13]. The studies of bounding shapes

may be also useful in connection with the indexing of the
histories of moving points, represented as polylines.

Acknowledgments

This research was supported in part by a grant from
the Nykredit Corporation and by the Danish Technical Re-
search Council, grant 9700780.

References

[1] P. K. Agarwal, L. Arge, and J. Erickson. Indexing Moving
Points. Proc. of the PODS Conf., pp. 175-186, 2000.

[2] P. K. Agarwal and S. Har-Peled Maintaining Approximate
Extent Measures of Moving Points. Proc. of the ACM-S AM
Symposium on Discrete Algorithms, pp. 148-157, 2001.

[3] J. Basch, L. Guibas, and J. Hershberger. Data Structures for
Mobile Data. Proc. of the 8th ACM-SIAM Symposium on Dis-
crete Algorithms, pp. 747-756, 1997.

[4] N.Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The
R*-tree: An Efficient and Robust Access Method for Points
and Rectangles. Proc. of the ACM S GMOD Conf., pp. 322—
331, 1990.

[5] M. Cai, and P. Z. Revesz. Parametric R-Tree: An Index Struc-
ture for Moving Objects. Proc. of the COMAD Conf., 2000.

[6] R. L. Graham. An Efficient Algorithm for Determining the
Convex Hull of a Finite Planar Set. Information Processing
Letters, 1:132-133, 1972.

[7] P. G. Kirkpatrick and R. Seidel. The Ultimate Planar Convex
Hull Algorithm? S AM Journal on Computing 15(1): 287-
299, 1986.

[8] G. Kaollios, D. Gunopulos, and V. J. Tsotras. On Indexing
Mobile Objects. Proc. of the PODSConf., pp. 261-272, 1999.

[9] D. Pfoser and C. S. Jensen. Capturing the Uncertainty of
Moving-Object Representations. Proc. of the SSDBM Conf.,
pp. 111-132, 1999.

[10] C. M. Procopiuc, P. K. Agarwal, and S. Har-Peled. STAR-
Tree: An Efficient Self-Adjusting Index for Moving Objects.
Manuscript, 2001.

[11] H. Samet. The Design and Analysis of Spatial Data Struc-
tures. Addison-Wesley, Reading, MA, 1990.

[12] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez.
Indexing the Positions of Continuously Moving Objects.
Proc. of the ACM SGMOD Conf., pp. 331-342, 2000.

[13] S. Saltenis and C. S. Jensen. Indexing of Moving Objects for
Location-Based Services. TIMECENTER Tech. Rep. TR-63,
2001.

[14] J. Tayeb, O. Ulusoy, and O. Wolfson. A Quadtree Based
Dynamic Attribute Indexing Method. The Computer Journal,
41(3): 185-200, 1998.

[15] O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving
Objects Databases: Issues and Solutions. Proc. of the SSDBM
Conf., pp. 111-122, 1998.

[16] O.Wolfson, A. P. Sistla, S. Chamberlain, and Y. Yesha. Up-
dating and Querying Databases that Track Mobile Units. Dis-
tributed and Parallel Databases 7(3): 257-387, 1999.

