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Abstract

With the recent and continuing advances in areas such as wireless communications and positioning
technologies, mobile, location-based services are becoming possible. Such services deliver location-
dependent content to their users. More specifically, these services may capture the movements of their
users in multidimensional databases, and their delivery of content in response to user requests may be
based on the issuing of complex, multidimensional queries.

The application of multidimensional technology in this context poses a range of new challenges.
The specific challenge addressed here concerns the provision of an appropriate multidimensional data
model. In particular, the paper extends an existing multidimensional data model and algebraic query
language to accommodate spatial values that exhibit partial containment relationships instead of the
total containment relationships normally assumed in multidimensional data models. Partial containment
introduces imprecision in aggregation paths. The paper proposes a method for evaluating the imprecision
of such paths. The paper also offers transformations of dimension hierarchies with partial containment
relationships to simple hierarchies, to which existing precomputation techniques are applicable.

1 Introduction

Several trends in hardware technologies combine to enable the deployment of mobile, location-based e-
services. These trends include continued advances in the miniaturization of electronics technologies, in
display devices, and in wireless communications. Other trends include the improved performance of general
computing technologies and the general improvement in the performance/price ratio of electronics. Perhaps
most importantly, geo-positioning is becoming increasingly available and accurate.

It is expected that the coming years will witness very large quantities of wirelessly Internet-worked
objects that are location-enabled and capable of movement to varying degrees. Example objects of interest
here include consumers using WAP-enabled mobile-phone terminals and personal digital assistants, tourists
carrying on-line and position-aware “cameras” and “wrist watches,” vehicles with computing and navigation
equipment, etc.

These developments pave the way to a range of qualitatively new types of Internet-based services [5].
These types of services—which either make little sense or are of limited interest in the traditional context
of fixed-location, desktop computing—include the following: traffic coordination, management, and way-
finding, location-aware advertising, integrated information services, e.g., tourist services, safety-related
services, and location-based games that merge virtual and physical spaces.

A single generic scenario may be envisioned for these location-based services. Moving service users
disclose their positional information to services, which in turn use this and other information to provide
specific functionality. The services capture the requests, including their geographical origins, they receive in
multidimensional databases, also called data warehouses [1]. Querying these databases enable the services
to analyze their interactions with the users, thus allowing the services to customize their interactions with
the users. As a result, each user receives a service customized to the user’s specific preferences and needs
and current situation. In addition, the accumulated data is used for delayed modification of the services
provided, and for longer-term strategic decision making.

This scenario entails the capture of spatial data in a multidimensional database, which poses new data
modeling challenges. For example, an appropriate data model should support non-normalized, i.e., non-
onto, non-covering, or non-strict, dimension hierarchies [13] where the hierarchies are not balanced trees.
Next, while dimension values in conventional multidimensional data models either are disjoint or exhibit
total containment relationships, partial containment is prevalent for spatial data. For example, a street
that extends from a city into a rural area is only partially contained in the city. Thus, partial containment
relationships between hierarchy members, i.e., location entities such as streets and cities, must be supported
by the conceptual data model. The inclusion of advanced modeling facilities in a data model should not

1



preclude the provision of an efficient implementation of the data model. In a multidimensional context, this
implies that conventional pre-aggregation techniques [17] should be applicable to databases conforming to
the data model.

This paper first analyzes the mobile e-service application domain, formulating requirements to a con-
ceptual model. It then presents a new multidimensional data model with an accompanying algebraic query
language that arguably meets the requirements. For example, the model supports non-normalized hierar-
chies and partial containment. Partial containment, together with its transitivity property, is the key new
aspect of the model, and the paper treats this topic in detail. Perhaps most notably, partial containment leads
to additional imprecision in aggregation paths. Because it is important to be able to evaluate the imprecision
of a path (e.g., for choosing the most precise one), the paper offers a path imprecision evaluation method.
Practical pre-aggregation, i.e., pre-computation of select aggregate results that can be reused to obtain other
aggregates, is a technique that is essential in efficiently implementing any multidimensional data model,
including the one proposed here. We thus propose algorithms for making its dimension hierarchies onto,
covering, and aggregation strict. This enables the application of standard pre-aggregation techniques in an
implementation of the model.

The present paper is a revised and substantially extended version of an earlier conference paper [6]. In
particular, the contents of Sections 3.4, 4, 5, 6, and Appendix A are entirely new. To the knowledge of the
authors, no other existing multidimensional data model offers built-in support for partial containment hier-
archies. This deficiency is also suggested by surveys of multidimensional data models [13, 18]. However,
rather than proposing an entirely new multidimensional data model and query language, the proposed model
and query language extend a previously proposed multidimensional model and algebra [11, 13]. The model
that we extend was chosen because it is formally defined and because it compares favorably to fourteen
related data models [13]. The paper’s algorithms for the normalization of partial containment dimension
hierarchies extend algorithms presented by Pedersen et al. [10, 12] for use with the model being extended.

Pedersen and Tryfona [14] propose a different approach to the modeling of spatial data. The authors
ignore partial containment relationships among hierarchy values and instead consider spatial facts, i.e.,
values characterized by hierarchy values, that are two-dimensional regions. Their focus in on how to support
practical pre-aggregation with such overlapping facts. The conceptual model underlying that work is the
model being extended here. Ferri et al. [4] propose a method to couple a multidimensional data model with
a Geographical Information System (GIS) to get the combined power of these technologies.

The area of “imperfect” data has received a great deal of attention in general and specialized database
contexts [3]. Within multidimensional databases, work has been done on irregular multidimensional data [2,
8, 13, 16] and the associated summarizability problems [9, 13, 15]. However, none of these works consider
partial containment dimension hierarchies.

The remainder of the paper is structured as follows. Section 2 describes key requirements to a multi-
dimensional data model for location-based services, and Section 3 then presents a data model that aims to
satisfy the requirements. Section 4 completes the description of the model by defining its algebraic query
language. Section 5 presents the method for evaluating the imprecision of an aggregation path. Section 6
provides an overview of the algorithms for normalizing dimension hierarchies. Section 7 concludes and
points to future work. Appendix A provides the details of the normalization algorithms. The paper can be
read and understood without reading the appendix.

2 Usage Scenario and Requirements

This section introduces a prototypical usage scenario for a multidimensional database in the context of a
location-based service, and it uses this scenario to illustrate important requirements to a multidimensional
data model. The scenario is also used for exemplification throughout the paper. We initially describe the
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usage scenario.

2.1 Usage Scenario

In our prototypical usage scenario, a user issues a service request that is characterized by a combination of
values, including values that capture the time and date of the request, the profile of the user, and the location
from which the request originates.

The ER diagram in Figure 1 describes location values that may be used for capturing the origins of
service requests, as well as location values that may prove useful in analyses of service requests that involve
the origins of the requests. The diagram uses its naming convention to distinguish among two different
types of binary relationships among entities, namely full and partial containment relationships among the
spatial extents of the related entities. In the diagram, an “F” in a relationship name indicates a total, or full,
containment relationship type, and a “P” indicates that only partial containment may be assumed.

All locations
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(1,n)

(1,1)
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(1,n)

(1,1)

pr-F-co
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(1,n)

(1,n)
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(1,n)

(0,n)
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(1,n)

(0,1)
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(1,n)

(0,1)

co-F-di
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(0,1)
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(1,n)
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(0,n)

(1,n)

ce-P-pr (1,n)

(1,n)

st-P-ci

(1,n)

(1,n)

st-P-co

(0,n)
ce-P-di

co-F-ip

(1,n)

(0,n)

(0,n)

Figure 1: Location ER Diagram
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For example, consider the relationship type co-F-st between entity types Coordinate and Street, and
consider st-P-di, which relates Street and District. The meaning is that a coordinate is either fully contained
or uncontained in a street, which may in turn additionally be contained only partially in a district.

Note that all the relationship types in the diagram are stored relationship types. For example, with
relationship types co-F-st and st-P-di present in the diagram, relationship type co-F-di may seem redundant.
However, this third relationship type captures non-redundant information. For example, some coordinates
are not contained in any streets, but are still contained in districts.

The existence of a partial containment relationship type between entity types in the case study also
implies the existence of a full containment relationship type between these entity types, as full containment
is a special case of partial containment. The intuition is that if objects of one type may be partially contained
in objects of another type, then some objects of the former type may also be fully contained in objects of
the latter type, although less objects will satisfy this relationship.

In a multidimensional data model, user requests are modeled as facts, and the values that characterize
the user requests are organized into dimensions. For our scenario, we will have three dimensions. The TIME
dimension captures the time of the user requests and has categories (levels) such as Second, Minute, Hour,
etc. The USER dimension captures aspects of the users issuing the request with categories such as Spoken
Language, Personal Interest, Actual Age, Main Occupation, etc. The LOCATION dimension captures the,
possibly changing, locations of the users when the requests were issued. Entity types in the Location ER
diagram are then represented as categories in the hierarchy of categories that makes up the LOCATION
dimension, and relationship types in the Location ER diagram may be represented as relationships among
categories in the LOCATION dimension.

In Section 3, we illustrate how the Location ER diagram can be mapped to a LOCATION dimension.

2.2 Data Model Requirements

We discuss next the requirements for a multidimensional data model that contends with our usage scenario.
While they are all highly relevant to our context, most of the requirements are more general and were
formulated earlier. We describe the requirements only briefly and refer to the literature for further detail [13].
Other requirements are given elsewhere [7].

1. Explicit and multiple hierarchies in dimensions Dimension values are assigned to categories of
values, and categories are related via containment relationships. For example, coordinates belong to a
Coordinate category, and Coordinate is contained in Country, meaning that coordinates are contained
in countries. Explicit hierarchies are highly useful in data analysis. Support for multiple hierarchies
means that multiple aggregation paths are possible. These are important for a number of reasons. The
key reason is that multiple hierarchies exist naturally in much data. Another reason is that these enable
better handling of the imprecision in queries caused by partial containment in dimension structures.
For example, in the LOCATION dimension, we would get a more precise result if streets are directly
rolled up to countries than if streets are rolled up to countries through districts, cities, and provinces.

2. Partial containment We have seen that two spatial values may not only be either disjoint or have
one be contained in the other—they may overlap. A multidimensional data model should provide
built-in support for dimensions with partial containment relationships. This will increase the mod-
eling power of the model, and it will enable new kinds of queries. Specifically, we will be able to
perform aggregation of data along hierarchies with partial containment (e.g., districts would (though
approximately) roll up to cities).

3. Non-normalized hierarchies Situations occur naturally where a hierarchy value has more than one
parent, where a value has no relationship to any value in the category immediately above it in the
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dimension hierarchy, and where a value has no relationship to any value in any category below it. For
example, a street value may be related to several district parent values, and a city value may have no
cell child values.

4. Different levels of granularity In our scenario, user requests are characterized by values drawn from
the dimensions. Support for different levels of granularity enables a request to refer to other values
than those in the category at the lowest level of a dimension hierarchy. For example, the position of
the user may be known at the level of a coordinate or at the level of a mobile phone cell.

5. Many-to-many relationships between facts and dimensions This requirement implies that a fact
may be related to more than one value in a dimension. This would be useful, e.g., in a situation where
a request may be related to more than one service user.

6. Handling of imprecision When facts are characterized by dimension values from different levels,
imprecision in the data occurs. In addition, partial containment introduces imprecision. Both types of
imprecision may lead to imprecise aggregate query results. In the first case, a result may be imprecise
because data for a query is missing. In the second case, the transitive relationships between members
on an aggregation path may become imprecise, in which case the result of a query may also be
imprecise. In order to reduce the error in a result, it is important to handle imprecision.

We base our proposal for a new model on an existing data model that satisfies Requirements 1, 3, 4,
and 5. Moreover, Requirement 6 is partially satisfied by the algebra associated with the preexisting model.
However, Requirement 2 (partial containment) is not met by this nor any other existing model.

3 Data Model

This section briefly describes the relevant aspects of the existing multidimensional data model [13], the
focus being to extend it to support partial containment. The section also presents properties of the model,
considers the model’s fulfillment of the requirements, and discusses the use of the model for the design of
dimensions.

3.1 Definition of the Data Model

An n-dimensional fact schema is a two-tuple +-,/.1032�465 , where 0 is a fact type and 4/,87�9!:;2�<=,?>@2�A�A�AB2�C=D
is a set of dimension types. A dimension type 9 is a four-tuple .1E!FG2�HIFG2&JKFL2&MKFN5 , where EOFP,Q7�E�RS2UTV,
>@2�A�A�A�2%WXD are category types of the dimension type 9 , HKF is a partial order on the set EYF , and J
F and M
F
are the top and bottom elements of the order, respectively. A function Z$[X\^]_E`Fba cBdfe is defined that
returns the set of immediate ancestors of a category type EOR . Function gih�j�\k]lEOFma c d e returns the set of
immediate descendants of ElR .

We extend the definition of a dimension type by introducing an additional relation HonFqp E Fsr E F .
This new relation captures the partial containment relationships between category types. The properties of
the new relation are as follows.

1. t=.1Eu:;2�E�Rv5GwxEOF r EOF#.�.1Eu:Ly,mE�RB5{z|.1E}:~H nF ESRB5~��.1E�R�yH nF Eu:�5�5 (anti-symmetry)

2. t=.1Eu:;2�E�RS2�Eu��5GwxEOF r EOF r EOF#.�.�.1Eu:~H�nF ESR�5`z�.1ESR�H�nF EO�v5�5N��.1E}:~H�nF EO��5�5 (transitivity)

Relations HIF and H nF are related as follows.

t~.1E}:;2�E�RS2�Eu��5GwxEOF r EOF r EOF
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Figure 2: USER and TIME Dimensions

1. .�.1Eu:~H nF ESR�5`z�.1ESR�H�F�Eu�@5�5���.1Eu:=H nF Eu��5�5
2. .�.1Eu:~H�F|ESR�5`z�.1ESR�H nF Eu�@5�5���.1Eu:=H nF Eu��5�5

After the extension, a dimension type 9 is a five-tuple: .1E!FG2�H�FL2�H�nF 2&JKF�2&MKFN5 . We use the notation H�� n{�F
to indicate the union of the two orders H F and HInF . The functions Anc n and Desc n provide ancestors and
descendants based on the H nF relation. Similarly to above, the notation Anc � n{� (Desc � n{� ) provides ancestors
(descendants) based on both relations.

We term a relationship between category types E��=H ��� �F E�� direct if it is given directly in the relation

H � n{�F (without using transitivity); otherwise, the relationship is indirect. For example, the relationship�Y�(� h%h � H � n{�F go�1j �(� �(\ � is direct, and if also g��1j �(� ��\ � H � n{�F � � �(� then
�Y�(� h%h � H � n{�F � � �(� is an indirect

relationship.
Next, a fact schema defines the structure of some domain (in our case study, the domain of a mobile

e-service) at a high level of abstraction. The fact schema states that facts are entities of a particular type
(in our case, all the facts are requests of a mobile e-service), and it states that heterogeneous entities that
characterize facts (cities, age groups, streets, years, IP addresses, personal interests, coordinates, minutes,
job categories, etc.) are organized into dimensions, e.g., LOCATION and TIME dimensions. The definition
of a dimension type refines the structure of the domain. We see that in a dimension, each entity type has a
corresponding category type (e.g., Coordinate, City, etc.) and the types are organized into multiple contain-
ment hierarchies that reflect containment hierarchies of the domain (e.g., Coordinate � Cell � Province �
Country ��J and Coordinate � IP address � Province � Country �-J ).

Example 1 In Figures 2 and 3, we present the result of applying the model to our domain. The figures depict
the USER, TIME, and LOCATION dimensions. Nodes denote category types and links between nodes
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mean relationships between category types. Note that application requirements generally affect the design
of dimensions. For example, the LOCATION dimension models only selected aspects of the miniworld
captured in the ER diagram in Figure 1.

In Section 2, we identify three dimensions, so we have a 3-dimensional fact schema +����&����,�.10I�U�&����2�4����f�U��5 ,
where 0o�¡ £¢(¤�,¦¥�h%§�¨Yhfj � and the set of dimension types is 4i���&����,87�9O©�ª � 2£9u«v�U��¬B2£9u®:�¯���D . The dimension type
of the LOCATION dimension is 9Y©�ª � ,°7�EO©±ª � 2�H�F�² ³�´�2�H nF ² ³�´ 2�E � ©±©�2�E � ª�ª ¬�µ£:·¶@�£¸� D . The relations on set E�©�ª � ,
7�E �¡¹�¹�º¼»���½� �¾®¤ 2�EX¢(¾�º¼¤(¤�¾�2�E »���¢¡¾�º��·�U¾ 2�E!�U��¾�¿v2�E}À�º¼¹�Á;�±½��(¤@2�E!�¡¹£Â&½�¾�º�¿S2BE � À& £»£»£º¼¤U¢(¢ 2�E �(¤UÃ�Ã 2�E  �Ã�Ã D are given as follows: if there ex-
ists a relationship type of full (partial) containment variety between entity types, then the corresponding
category types are related by H$F�Ä Å1Æ ( H nF�Ä Å¼Æ ) (e.g., E!¢¡¾�º¼¤(¤�¾�H nF�Ä Å¼Æ E »���¢(¾·º��·�U¾ and E �(¹U¹£º¼»��±½� £¾�¤ H�F�Ä Å1Æ_E}À�º¼¹�Á;�±½��(¤ ).

All

Country

Province

City

District

Street

Coordinate

CellIP address

Full containment only

Partial or full
containment

Figure 3: LOCATION Dimension

After defining the schemas, or inten-
sions, of the data model, we proceed to
define the extensions of the data model,
starting out again with the prototypical data
model.

A dimension of type 9 is a two-tupleÇ , .�ÈGÉÊ2�HÊ5 , where ÈLÉË, 7vÈ=R�2UTÌ,
>@2�A�A�AB2%WXD is a set of categories. Each cat-
egory È=R has a unique corresponding type
ESR (a function ÍIÎ�Ï!Ði]OÈLÉ¦a Ñ : EOF�Ò is de-
fined and we write ÍIÎ�Ï!Ð�.�È R 5�,ÓE R ). A
category È=R is a set of dimension values of
type ESR . The relation H is a partial order on
Ñ R È=R (from now on we simply write g��¡Ô
instead of Ñ R È=R ). The definition of the par-
tial order is: given a pair of values ( Ðv:;2%Ð&R ),
Ð�:�HÕÐ%R means that Ð�: is fully contained
in Ð R . The category of type M F contains
values with the smallest size. The category
of type J
F (the largest value size) has ex-
actly one value, denoted J , containing all
values in the dimension. It is assumed that
the partial order on category types and the
functions Z$[X\ and gih�j�\ work directly on
categories, with the order given by the cor-

responding category types.
We extend the definition of a dimension by generalizing the existing partial order H on dimension

values, which is capable only of expressing full containment hierarchies and so is not powerful enough for
our needs. Specifically, we replace H by a relation Ö p g��¡Ô r go�1Ô rØ× ÙuÚ >fÛ . In a triple .�Ð�:�2%Ð%RS2(Ï!5GwÜÖ , we
refer to the value Ï as the degree of containment.

After we have introduced this extension, a dimension is a two-tuple
Ç ,�.�ÈKÉÊ2£Ök5 . We write as follows.

1. .�Ð : 2%Ð R 2�>�5owÝÖ or simply Ð : HKÞÊÐ R , if we guarantee that the dimension value Ð : is fully contained in
the dimension value ÐfR ;

2. .�Ð�:�2%Ð%R�2(Ï`5LwßÖ or simply Ð�:�H�à�Ð%R , if we guarantee that the dimension value Ð@: is partially contained
in the dimension value Ð�R and the smallest possible size of the contained part is .�Ïâá@> Ù�Ù 5 % ( Ù �|Ï^�
> );
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3. .�Ð : 2%Ð R 2 Ù 5
w�Ö or simply Ð : H�ã
Ð R , if it is possible that the dimension value Ð : is partially contained
in the dimension value ÐfR ;

4. t�Ïäw × ÙuÚ >fÛ�.�.�Ð : 2%Ð R 2(Ï!5kyw�Ö ) or simply Ð : yHsÐ R if we guarantee that the dimension value Ð : is neither
fully nor partially contained in the dimension value Ð�R .

Note that the value J of type J�F (the largest value size) is required to fully contain all other values.
Notice that if Ð�:IwåÈ�: and Ð&R3wåÈ=R ( ÍIÎBÏæÐ�.�È�:�5K,/Eu: and ÍIÎBÏæÐ�.�È~RB5$,�ESR ), then the following must hold:
t�Ïßw × ÙuÚ >�5�.�.�Ð�:�H�à
Ð&RB5���.1Eu:~H�nF ESR�5�5 and .�Ð�:~H Þ Ð%RB5N��.1E}:~H�FØESR�5 .

In the following, we assume that Ð : w�È : , Ð R wØÈ R , and Ð��âw�È�� . We also assume that ÍIÎBÏæÐl.�È : 5N,sE : ,
ÍIÎBÏæÐ�.�È=RB5�,sE�R , ÍIÎBÏæÐ�.�È���5N,sEO� and that .1EO:�H�F�ESRiH�F�EO� ). The basic properties of the new relation are
as follows.

1. reflexivity:
t`Ð�w^go�¡Ôç.�ÐkH Þ ÐB5

2. transitivity of full containment (1-to-1 transitivity):
t~.�Ð�:�2%Ð%RS2%Ð���5Gw^È�: r È=R r È���.�.�.�Ð�:�H Þ Ð%Rv5{z|.�Ð%RkH Þ Ð���5�5���.�Ð�:=H Þ Ð���5�5

When defining the transitivity of partial containment, we employ a “safe” approach, where the idea is
that we infer the relationships between dimension values with the maximum degrees of containment that
are guaranteed to hold.

3. transitivity of partial containment: Assume that .1E : HK� n{�F E R HK� n{�F Eu��5 . Then the following holds.
t~.�Ð�:�2%Ð%RS2%Ð���5Gw^È�: r È=R r È��k]

(a) p-to-1 transitivity: t�ÏØw × ÙuÚ >�5�.�.�ÐB:NH�à�Ð%RB5{z�.�Ð%RoH Þ Ð���5~��.�Ð�:�H�à
Ð���5�5
Obviously, Ð�� may contain the part of Ð : , which is not in Ð R , but generally we know nothing
about that. We infer what we can guarantee: what is contained in Ð�R is also contained in ÐB� .
For example, if 20% of Street1 is in District1, but District1 lies fully within Province2, then
we say that 20% of the street Street1 is in Province2. The result can be imprecise, but we
acknowledge that some part of Street1 lies in Province2 and indicate the guaranteed percentage.

(b) 1-to-p transitivity: t�ÏØw × ÙuÚ >�5�.�.�ÐB:NH Þ Ð%Rv5{z�.�Ð%RoH�à�Ð���5~��.�Ð�:�H ã Ð���5�5
If Ð�: is fully contained in Ð�R and Ð&R is partially contained in Ðv� , then we can only guarantee that
Ð�: may be contained in ÐB� .
For example, if the coordinate �~è�è ��éSê is in Cell1 and 80% of Cell1 is contained in Province1,
then we say that the coordinate �~è�è ��éSê may be in the province Province1.

(c) p-to-p transitivity: t=.�Ï : 2(Ï R 5�w × ÙuÚ >�5 rä× ÙuÚ >�5�.�.�Ð : H à�Ò Ð R 5{z�.�Ð R H à%ë Ð���5���.�Ð : H�ã�Ð��@5�5
The reasoning follows the pattern from above: if Ð : is partially contained in Ð R and Ð R is also
partially contained in Ðv� , then we can only guarantee that ÐB: may be contained in ÐB� .
For example, if 30% of Street1 is in District2, but 90% of District2 is in City1, then we say that
Street1 may be in City1.

A dimension contains dimension values that describes entities of some domain. For example, we could
have as values the coordinates �~è�è ��éSê , �~è�è ��é@ì , the streets

�Y�(� h&h ��ê ,
�Y�(� h%h �(ì , the cities � � �(�Sê , � � �(�@ì , the

district go�¼j �(� ��\ ��ê , the province í � è@î �¡[X\fh ê , etc. The values each belong to precisely one category (e.g.,�Y�(� h%h ��ê belongs to the Street category), and they are related to other values via a dimension hierarchy.
Specifically, one value is fully (partially) contained in another if the domain entities they represent are
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related according to full (partial) containment. For example, �~è�è ��é@ì may be fully contained in the province
í � è@î �1[X\fh ê , and

�Y�(� h%h �(ì may be partially contained in í � è@î �1[æ\&h ê . We can build multiple hierarchies on the
dimension values, with some values being of the finest granularity and thus not containing any other values
(coordinates) and with one value containing everything ( J ).

Notice that if there are no partial containment relationships in a domain then we could still use the
extended model. In that case, we would just use notation Ð�:ÊH Þ Ð%R and Ð�:kyH/Ð%R (guarantee of full and no
containment, respectively) and would never use notation Ð�:�H�à6Ð&R and Ð�:LH ã Ð%R (guarantee and possibility
of partial containment, respectively).

Example 2 Our LOCATION dimension is given by
Ç ©�ª � ,ï.�È�©±ª � 2£Öð©±ª � 5 , where ÈG©±ª � ,�7 �~è�è ��é �¡[Xñ � h�2�Y�(� h%h � 2�g��1j �(� ��\ � 2 � � �(� 2&í � è@î �¡[X\fhS2 �~è ¨}[ �(�&� 2&ò�í`Z éSé�� h�j%j�2 � h�ó¡óU2&J3D (one category for each node in Figure 3).

If 20% of the street
�X�(� h&h ��ê is in district go�1j �(� �(\ ��ê , we could write

�Y�(� h%h ��ê H ãfô õ go�1j �(� �(\ ��ê . Next, we write
�~è�è ��é@ì H Þ í � è@î �¡[X\&h ê for the coordinate �~è�è ��é@ì , which lies in province í � è@î �¡[X\fh ê . As for the properties
of the new relation, it is natural that, for example, í � è@î �1[æ\&h ê is fully contained in itself ( í � è�î �¡[X\&h ê H Þ
í � è@î �1[X\fh ê ).

We term a relationship between dimension values Ð : H à Ð R direct if it is given directly in the rela-
tion Ö (without using transitivity); otherwise, the relationship is indirect. For example, the relationship�Y�(� h%h ��ê H ãfô õ go�¼j �(� ��\ ��ê is direct, and if also go�¼j �(� ��\ ��ê Hqí � è@î �¡[X\fh ì then

�Y�(� h%h ��ê H ãfô õ í � è@î �¡[X\&h ì (p-to-1
transitivity) is an indirect relationship.

Consider a set of facts ö of type 0 and a dimension
Ç ,÷.�ÈÊÉÊ2£Ök5 . A fact-dimension relation ø is

defined as ø p ö r go�1Ô . A fact ù|wÜö is said to be characterized by dimension value Ð�� , written ùÜúûÐB� ,
if ü�Ð�:~wßgo�1Ôý.�.�ùæ2%Ð�:�5�wßøþzVÐ�:~HþÐ��@5 . It is required that t!ùØwÜö�.�üOÐkw^go�¡ÔÌ.�.�ùæ2%Ðv5GwÜøo5�5 .

We extend this definition in only one aspect: we deal with p-characterization as a consequence of
introducing partial containment. We say that a fact ù|wVö is 0-characterized by dimension value Ð}� , written
ùÜú ã Ð�� , if ü�Ð�:=w^go�¡ÔQ.�.�.�ùæ2%Ð�:U5�wÜøo5�zâ.�Ð�:~H�à
Ð���5�zâ.�Ï^�¦>�5�5 . In addition, we will refer to characterization
as introduced in the prototypical model as 1-characterization, written ù#ú Þ Ð�� , if üOÐ�:�w-go�¡Ô°.�.�.�ùæ2%Ð�:U5�w
øo5`z�.�Ð�:=H Þ Ð���5�5 .

A fact-dimension relation links facts and corresponding dimension values, e.g., a request could be issued
from

�X�(� h&h ��ê . Each fact is related to at least one dimension value in each dimension. Characterization is
propagated up along a hierarchy of dimension values. We use 1-characterization to state that a fact is known
for sure to be characterized by a dimension value, and we use 0-characterization to say that a fact may be
characterized by a dimension value.

Example 3 In our case, the set of facts of type 0iº¼¤(ÿ�Âf¤�¢(¾ is ö�º1¤¡ÿ�Â�¤U¢(¾G,Q7��k2��x2&È$2�A�A�A1D . The fact-dimension
relation between

Ç ©±ª � and öNº¼¤(ÿ�Âf¤�¢(¾ could be denoted as ø�©±ª � . If request � was issued from the street
�Y�(� h%h ��ê ,

we write .��o2 �X�(� h&h ��ê 5$w�ø
©±ª � and Z¦ú-ã�go�1j �(� �(\ ��ê . If request � was issued from the coordinate �~è�è ��é@ì ,
�/ú Þ í � è@î �¡[X\fh ê holds.

Finally, a multidimensional object (MO) is a four-tuple ��,�.¡+Ê2£öL2 Ç�� 2£ø � 5 , where +Q, .10V2�4b,
7�9u:;2�<=,?>@2�A�A�AB2_[_Dv5 is a fact schema, ö is a set of facts of type 0 ,

Ç � ,Õ7 Ç :�2�<�, >@2�A�A�A�2�C=D is a set
of dimensions, where dimension

Ç : is of type 9O: , and where ø � , 7�øÊ:�2�<k, >@2�A�A�A�2�C=D is a set of fact-
dimension relations such that tX<o.�.�ùæ2%Ðv5iw�ø
:L� .�.�ùqw-ök5=z�ü�È°wþÈGÉ_Ò£.�ÐÜwåÈk5�5�5 . A multidimensional
object brings the different parts of the domain model together.

Example 4 In our case, we can define the multidimensional object �¦�( �¢�¤L,/.¡+{���&����2£öNº¼¤(ÿUÂ�¤�¢¡¾£2 Ç �( �¢�¤@2£øi�( �¢�¤�5 .
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3.2 Model Properties

We proceed to define important model properties of the data model. The definitions extend the ones given
in the prototypical model with support for partial containment. In the definitions, we assume a multidimen-
sional object � , .¡+Ê2£öL2 Ç	� 2£ø � 5 and a dimension

Ç w Ç	� . We also assume that ÍIÎBÏæÐl.�È : 5â, E : ,
ÍIÎBÏæÐ�.�È=RB5�,mESR , and ÍÊÎ�ÏæÐl.�È���5~,mEO� .
Definition 1 Given two distinct categories È�: and È=R , where È~R6wäZ$[æ\ � n{� .�È�:�5 , we say that the mapping
from È�: to È~R is onto if t!ÐfR6w#È=R .�ü`.�Ð�:�2(Ï!5
w#È�: r-× ÙuÚ >fÛL.�Ð�:�H�à6Ð%Rv5�5 ; otherwise, it is non-onto. If all the
mappings in a dimension are onto, we say that the dimension hierarchy is onto; otherwise, it is non-onto.

Example 5 The mapping from Province to Country is onto because each country is partitioned into
provinces. However, the mapping from IP Address to City is non-onto because some cities have no com-
puters (IP addresses). Thus, the hierarchy of the dimension

Ç Ã ¹U� is non-onto. The hierarchy of the
Ç ¾·��
ð¤

dimension is onto.

Definition 2 Given three distinct categories È�: , È=R , and È�� , where Eu:3HK� n{�F ESR�HK� n{�F Eu� , we say that
the mapping from È~R to È�� is covering with respect to ÈG: if t=.�Ð�:;2(Ï`5�w È�: rm× ÙuÚ >fÛk.¼t`Ð��äw È�� .�.�Ð�: H�à
Ð���5��ïü`.�Ð%RS2(ÏY:�2(ÏuRB5Kw-È=R r-× ÙuÚ >fÛ r�× ÙuÚ >fÛL.�.�Ð�:�H�à�ÒNÐ&R�5_z .�Ð%RxH�à&ë�Ð���5�5�5�5 ; otherwise, it is non-covering. If
in a dimension all the mappings with respect to all the categories are covering, we say that the dimension
hierarchy is covering, otherwise, it is non-covering.

Example 6 Consider the categories Street, Province, and Country. Each street going through some country
also goes through a province. So, the mapping from Province to Country is covering with respect to Street.
Consider the categories Coordinate, Street, and District. Some coordinates do not lie on any street, so we
map them directly to districts. This means that the mapping from Street to District is non-covering with
respect to Coordinate. Thus, the hierarchy of the dimension

Ç Ã ¹�� is non-covering. In contrast, the hierarchy
of the dimension

Ç ¾���
=¤ is covering.

Definition 3 Given two distinct categories È�: and È=R , where È~R6wäZ$[æ\ � n{� .�È�:�5 , we say that the mapping
from È : to È R is strict if t=.�Ð : 2(Ï :� 2(Ï :�� 5�w^È :ur�× ÙuÚ >fÛ r�× ÙuÚ >fÛ�.¼t=.�Ð R� 2%Ð R�� 5GwØÈ R�r È R .�.�Ð : H à�Ò  Ð R� 5�zâ.�Ð : H à�Ò �
Ð%R���5�� .�.�Ð&R�â,ýÐ%R���5~z-.�ÏY:� , ÏX:���5�5�5�5 ; otherwise, it is non-strict. If in a dimension all the mappings are
strict, we say that the dimension hierarchy is strict; otherwise, it is non-strict.

Example 7 The mapping from IP Address to Province is strict because an address uniquely identifies a
province. But the mapping from Cell to Province is non-strict because a cell may be shared by provinces.
Thus, the hierarchy of the dimension

Ç Ã ¹U� is non-strict. The hierarchy of the dimension
Ç ¾���
=¤ is strict.

Definition 4 We say that a dimension hierarchy is aggregation strict if it is strict or the following holds: if
a mapping from È : to È R exists, i.e., È R w^Z$[æ\ � n{� .�È : 5 , that is non-strict, then ZK[X\ � n{� .�È R 5�,�� ; otherwise,
it is aggregation non-strict.

Example 8 Consider the categories Cell and Province. As the mapping from Cell to Province is non-strict
and Z$[X\ � n{� .(Ö������l<�C���ÐB5 y, � , the hierarchy of the dimension

Ç Ã ¹�� is aggregation non-strict. The hierarchy
of dimension

Ç ¾���
=¤ is aggregation strict because it is strict.

Definition 5 We say that a dimension hierarchy is normalized, if it is onto, covering, and aggregation strict;
otherwise, it is non-normalized. We say that a multidimensional object is normalized, if all the dimensionsÇ : are normalized and t!ø : wVø � .�.�.�ùæ2%Ðv5LwÜø : 5���.�Ðkw^M É_Ò 5�5 ; otherwise, it is non-normalized.

Example 9 The hierarchy of the dimension
Ç ¾���
ð¤ is normalized because it is onto, covering, and strict. But

the hierarchy of the dimension
Ç Ã ¹�� is non-normalized because it is non-onto, non-covering, and aggregation

non-strict. Therefore, the multidimensional object �¦�( �¢�¤ is non-normalized.
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3.3 Meeting the Requirements

We now examine whether the requirements stated in Section 2.2 have been met. Explicit and multiple hierar-
chies are supported with the help of the partially ordered dimension types. Partial containment is supported
with the help of special relations on category types and dimension values. The relation on dimension values
supports non-normalized hierarchies. Non-strict hierarchies are captured by allowing a dimension value
in a category to be related to several values in an ancestor category. Non-onto hierarchies may be built:
a dimension value in a category is allowed to have no children in a descendant category. Non-covering
hierarchies are also supported because a value is not required to be related to another value in an immediate
parent category, i.e., a link between dimension values may “skip” one or more levels.

Many-to-many relationships between facts and dimensions can be implemented by relating a fact to
several dimension values in a dimension and relating a dimension value to several facts. This is allowed
by the definition of fact-dimensional relationships. Different levels of granularity are handled: facts may
map to dimension values from different categories. The combination of support in the data model for
different levels of granularity of facts and partial containment of dimension values is a basis for supporting
imprecision in the data [13].

3.4 Building Dimension Schemas

By allowing partial containment relationships in dimensions, the model presented here generalizes existing
multidimensional models and offers new means of modeling dimensions. In this section, we explore per-
tinent implications for the design of dimensions using the new, generalized model. The insights presented
here should be taken into account in a complete methodology for dimensional database design.

Section 2.1 describes a prototypical usage scenario for a multidimensional database in the context of a
location-based service. In particular, Figure 1 depicts an ER diagram that presents various location values
of relevance to location-based services. We proceed to consider the process of mapping the ER diagram to
the LOCATION dimension shown in Figure 3.

The ER diagram in Figure 1 captures information about containment relationships among various loca-
tion entity types. Transitive relationships among the types are not shown, and there are no explicit descrip-
tions of hierarchies. When designing a dimension, we build explicit hierarchies based on this diagram that
enable the capture of data and the relevant analyses of data. For example, as a reflection of relationship types
st-P-di and di-P-ci in the ER diagram, our dimension hierarchy will have a category Street that is below a
category City. We identify the Coordinate category as the lowest category because its corresponding entity
type is only contained in other types. The highest category has a single value, denoted J , that contains all
other values. In our case, the ER diagram happens to have a corresponding entity type.

When building the LOCATION dimension, we obtain multiple hierarchies. The use of these is caused
in part by the new support for partial containment, so we explore this aspect in some detail.

An obvious reason for introducing multiple hierarchies is that mutually exclusive hierarchies exist in the
miniworld and ER diagram. For example, the groupings of the coordinates of service requests by mobile
cells and by an administrative unit such as streets are exclusive. Therefore, the Cell category does not fit
anywhere in the (main) hierarchy, Coordinate � Street � District � City � Province � Country �¦J . It
is instead part of separate hierarchies, e.g., Coordinate � Cell � Province � Country ��J , which skip
the Street category. In general, building these kinds of hierarchies translates into inserting categories and
corresponding relationships in the LOCATION dimension. The other cases where it is necessary to build an
additional hierarchy are discussed next.

An additional relationship may be inserted to “mend” non-covering hierarchies. To illustrate, recall
from Example 6 that it is possible for a coordinate to not lie on any street, while it does lie in some district.
The consequence is that we cannot map all coordinates to their corresponding districts via the Street entity
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type in Figure 1 or the Street category in Figure 3. As we consider this mapping important for data analyses,
we include a direct relationship from Coordinate to District in the LOCATION dimension. This relationship
then creates a new path, or hierarchy, from Coordinate to J .

Next, note that there are some relationship types from the ER diagram that do not have corresponding
relationships in the dimension. For example, the st-P-co relationship type would yield a direct relationship
between the Street and Country categories, which is absent from the dimension. The following reasoning
went into this design decision.

First, in the real world, each street goes through a province that is part of some country, meaning that the
relationship between the Province and the Country categories is covering with respect to the Street category.
This means that we are able to relate streets to corresponding countries through values from the Province
category—we do not depend on a direct relationship between the Street and the Country categories. Second,
transitive partial containment relationships between dimension values are generally less precise than direct
ones. However, in some situations, such as the one we are considering, maintaining a high precision of the
degrees of containment in relationships between values of two categories may not be important.

If high-precision partial containment relationships are important, we insert direct relationships. For
example, had it been important that streets roll-up to countries as precisely as possible, we would add a
direct relationship between Street and Country. This illustrates a trade-off: if one wants high fidelity, this
comes at the cost of increased the size and complexity of a dimension. The higher precision we want, the
more direct relationships are needed.

Another aspect of dimension design, created by the introduction of partial containment, is how to deter-
mine which category should be below which other category. While this may not be obvious in the general
case, it is most often easy to decide how to relate two dimension categories. This is the case when values
from one category are inherently “smaller” than those of another category. For example, since provinces
are parts of countries, there is a full containment relationship from Province to Country, not the other way
around.

To illustrate that the relationships between categories are not always obvious, consider the relationship
between the District and City categories. In the miniworld, districts exist that are contained in cities—they
are termed city districts. The LOCATION dimension assumes this district type. However, there are also
districts that contain cities, e.g., church districts may include several small cities. In addition, dimension
values from two different categories can be of the same size, e.g., cities and districts are not related by
containment relationships, but simply overlap.

One partial solution to the problem is to divide the common District category into several categories,
one for each district type, thus introducing, e.g., Church District and City District categories. The category
City District is then placed below the City category, and Church District is placed above City. The solution
is partial because it does not contend well with large cities and city districts that contain church districts.

Another possible solution is to allow districts of all types to belong to the unique District category, with
a pair of symmetric direct relationships between the City and District categories, i.e., � � �(� H6� n{�F ² ³�´ g��1j �(� ��\ �
and go�¼j �(� ��\ � H � n{�F ² ³�´ � � �(� . With these relationships present, we are able to capture the desired relationships
between district and city dimension values. For example, if city � � �(�Sê and church district g��1j �(� ��\ ��ê overlap,
we may include two relationships with the appropriate degrees of containment, e.g., � � �(�Sê Hkãfô !Kg��1j �(� ��\ ��ê
and go�1j �(� �(\ ��ê H ãfô õ � � �(�Sê .

However, the anti-symmetry property of the order on categories does not allow symmetric, direct re-
lationships. This restriction aims to avoid inappropriate transitive relationships between dimension values.
For example, without anti-symmetry, in our case, by p-to-p transitivity it may be inferred that g��1j �(� ��\ ��ê H ã
go�¼j �(� ��\ ��ê , which has a lower degree of containment than what we obtain automatically by the reflexivity of
the order on dimension values, i.e., go�1j �(� �(\ ��ê H Þ go�1j �(� �(\ ��ê . In addition, in case of relationships between
the same dimension value, the latter degree is logically and practically the most suitable.
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4 The Algebra

In this section, we present an algebra for the extended data model. It is based on the algebra for the
prototypical model. We redefine the operators (selection, union, and aggregate formation) that need to
be extended in order to support partial containment. The operators that can be taken directly from the
prototypical algebra without modification include projection, rename, difference, and identity-based join,
as well as derived operators such as value-based join, duplicate removal, SQL-like aggregation, star-join,
drill-down, and roll-up.

For unary operators, we assume a single C -dimensional MO � ,÷7�+I2£ö�2 Ç � 2£ø � D , where
Ç � ,

7 Ç :�2�<o, >@2�A�A�AB2�C=D and ø � , 7�ø$:�2�<k, >@2�A�A�A�2�C=D . For binary operators we assume two C -dimensional
MO’s �åÞ , .¡+=Þ�2£ö�ÞB2 Ç"�  2£ø �  5 and � õ , .¡+{õ@2£ö_õ@2 Ç"� � 2£ø � � 5 , where g$#&%I,87vg('� 2
�=, ê 2�A�A�Av2�[�D , g #*) ,87vg�+� 2�<L, >@2�A�A�A�2�C=D , ø � Ê,b7�ø Þ: 2�<L, >@2�A�A�A�2�C=D , and ø � �$,Q7�ø õ: 2�<L,Ì>@2�A�A�A�2�C=D .
Given a dimension

Ç : with the set of categories È�É_ÒN,b7vÈ=R�2UTx, >@2�A�A�AB2%WXD , we use the notation g��¡Ô : for
Ñ R È=R .
Example 10 In order to illustrate the workings of the operators, we construct two example MO’s denoted
� Þ�¡ £¢(¤ and � õ�( �¢�¤ . In Figure 4(a), the schema of the LOCATION dimension of the MO’s is depicted, which
is a simplified version of that of �q�¡ £¢(¤ . In Figures 4(b) and 4(c), the structure of the LOCATION dimen-
sions of � Þ�( �¢�¤ and � õ�( �¢�¤ respectively is presented, with numbers near the links denoting the degrees of
containment. The arrows in Figures 4(b) and 4(c) represent the fact-dimension relationships in the LOCA-
TION dimensions. Note that facts may map directly to dimension values in non-bottom categories. The
TIME and USER dimensions of the MO’s are identical to the corresponding dimensions of �8�( �¢�¤ .
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Figure 4: Schema (a) and LOCATION dimensions of � Þ�¡ £¢(¤ (b) and � õ�¡ £¢(¤ (c)

4.1 Selection Operator

The selection operator is used to select a subset of the facts in an MO based on a predicate. We first
restate the definition from [13]. Given a predicate ,�]Ogo�¡Ô Þ r A�A�A r go�1Ôâ¶ßa 7 �(� ¨Yh�2.-�ñ@ó�j�h�D , the selection
operator for the prototypical model, / , is defined as: / × ,�Û�..�?5N,0�21�,�.¡+31(2£ö�1(2 Ç 1�&4 2£ø$1�54 5 , where +61�,P+ ,
ö 1 ,Ì7Bù�wäö87Yü`.�Ð Þ 2�A�A�A�2%Ð�¶�5
w-g��¡Ô Þ r A�A�A r g��¡Ô6¶�.�.�,O.�Ð Þ 2�A�A�AB2%Ð�¶u5�5=z .�ùäú�Ð Þ 5_zÝA�A�A�zä.�ù ú Ð�¶u5�5%D ,Ç 1� 4 , Ç"� , ø 1 � 4 ,87�ø 1: 2�<=,?>@2�A�A�AB2�C=D , and ø 1: ,87l.�ù 1 2%ÐB5�wÜø : 7�ù 1 wÜö 1 D .
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The selection operator for the extended model, / ¤.9£¾ , uses the new cvC -ary predicate , ¤�9£¾ ]lg��¡ÔVÞ r A�A�A r
go�1Ô�¶ rä× ÙuÚ >fÛ r A�A�A rä× ÙuÚ >fÛða 7 �(� ¨�h�2.-�ñ@ó�j�h�D . The resulting set of facts is ö:1�,�7Bù�w^ö;7Sü{.�Ð Þ 2�A�A�A�2%Ð�¶u5�w
go�1Ô Þ r A�A�A r g��¡Ôâ¶Ü.�ü`.�Ï Þ 2�A�A�A�2(ÏX¶u5Lw × ÙuÚ >fÛ r A�A�A rä× ÙuÚ >fÛN.�.�,�¤.9�¾%.�Ð Þ 2�A�A�A�2%Ð�¶X2(Ï Þ 2�A�A�A�2(ÏY¶�5�5{z�.�ùØú|à  Ð Þ 5�z
A�A�Avz�.�ùÜú�à=<oÐ�¶�5�5�5%D .

We thus restrict the set of facts to those that are characterized by dimension values where ,l�?>� evaluates
to
�(� ¨Yh . In addition, we restrict the fact-dimension relations accordingly, while the dimensions and the

fact schema stay the same. The operator supports partial containment by letting the value of the predicate
depend on degrees of containment. This allows us to formulate queries that select either facts that are surely
characterized by a dimension value, or facts that may be characterized by a value, or both.

Example 11 Suppose we want to select requests from � Þ�( �¢�¤ that were surely issued from go�¼j �(� ��\ �(ì . In
addition, the time of the requests we are interested in is July 14, 2001, and the users associated with the
requests must be 21–30 years old. The predicate for the query is: .�ÐS©±ª � , go�1j �(� �(\ �(ì 5�zq.�.�Ð�«B���U¬���@&��w
× cu> Ú�A@Ù Û¡5Gz�.�Ð�®:�¯��x, ×�BDCFE êHG E ì BIB ê Û�5~zå.�Ïæ©±ª � , >�5�z�.�ÏY«B���U¬���@%��,÷>�5�z�.�ÏY®:�¯��x, >�5 . Notice that �÷ú Þ
go�¼j �(� ��\ �(ì , so request � will be in the result.

Example 12 Suppose we want to select requests from � õ�( �¢�¤ that may have been issued from � � �(�Sê . More-
over, we take only night-time requests (i.e., from 10 p.m. to 6 a.m.) into consideration. The predicate for this
query may be given as follows: .�Ðv©�ª � , � � �(�Sê 5�z .�Ð�®:�¯��
wØ7�> Ù p.m. 2�A�A�AB2�>�c p.m. 2�A�A�A�2�> a.m. 2�A�A�A�2�J a.m. 5lz
.�ÏX©�ª � , Ù 5{z�.�ÏY®:�¯��L,?>�5 . Notice that �sú ã � � �(�Sê , so the request � will be in the result.

4.2 Union Operator

The union operator is used to take the union of two MOs. Consider two dimensions
Ç Þ , .�ÈGÉK�2�HIÉL%5

and
Ç õ^,Ó.�È ÉM� 2�H ÉM� 5 of the same type 9 , where È ÉK ,û7vÈ ÞR 2UTå,Õ>@2�A�A�AB2ON|D and È ÉM� , 7vÈ õR 2UTå,

>@2�A�A�A�2ON|D . The union operator on dimensions for the prototypical model, Ñ É , is defined as follows:
Ç 1X,Ç Þ Ñ É Ç õ , .�È É 4 2�H É 4 5 , where È É 4 ,°7vÈ ÞR ÑåÈ õR 2UT|, >@2�A�A�A�2ON|D and t=.�Ð Þ 2%Ð õ 5âw .�go�1Ô Þ6P go�¡Ô õ 5 r

.�go�1ÔÜÞ P go�¡Ô6õ�5I.�.�Ð�ÞKH É 4 Ð�õ�5LQ .�.�Ð@Þ
H ÉL Ð�õ�5SR�.�Ð@Þ
H ÉM� Ð�õ�5�5�5 . In what follows, we use notation È 1R for
È ÞR ÑåÈ õR .

Consider two C -dimensional MO’s with +�ÞV, +{õ . The union operator on MOs for the prototypical
model, Ñ , is defined as: �T1`,2� ÞæÑ � õ ,ç.¡+31¡2£ö�1(2 Ç 1� 4 2£ø$1� 4 5 , where +61{, + Þ , ö�1{,?ö ÞæÑ ö õ , Ç 1� 4 ,
7 Ç Þ: Ñ É Ç õ: 2�<=,�>@2�A�A�A�2�C=D , ø 1 � 4 , 7�ø Þ: Ñ�ø õ: 2�<~,?>@2�A�A�A�2�C=D .

We proceed to first define an extended dimension union operator (denoted Ñ É�?>� ). Consider two dimen-
sions

Ç Þ ,�.�ÈGÉL�2£Ö=ÉL%5 and
Ç õ ,/.�ÈGÉS�B2£Ö=ÉS��5 of the same type 9 . We modify the condition for the partial

order in the resulting dimension. Specifically, we require as follows.

1. t=.�Ð Þ 2%Ð õ 56w8.�go�¡Ô Þ6P go�1Ô õ 5 r .�go�¡Ô ÞUP go�1Ô õ 5K.�.�üvÏPw × ÙuÚ >fÛ�.�.�Ð Þ 2%Ð õ 2(Ï!5âwPÖ É 4 5�Q .�ü`.�Ï Þ 2(Ï õ 56w
× ÙuÚ >fÛ rä× ÙuÚ >fÛ�.�.�.�Ð Þ 2%Ð õ 2(Ï Þ 5�wÜÖðÉL&5�R|.�.�Ð Þ 2%Ð õ 2(Ï õ 5�wÜÖ=ÉM��5�5�5�5 ;

2. t=.�Ð Þ 2%Ð õ 2(Ï`5Vw Ö É 4 .�.�.�Ð Þ 2%Ð õ 5Vw?È$1: r È$1R 5Nzm.�È$1R w Z$[æ\ � n{� .�È$1: 5�5�5 � .�ü`.�Ï Þ 2(Ï õ 5Üw × ÙuÚ >fÛ rP× ÙuÚ >fÛ
.�.�.�Ð Þ 2%Ð õ 2(Ï Þ 5�wÜÖðÉL&5�R�.�.�Ð Þ 2%Ð õ 2(Ï õ 5GwVÖ=ÉM��5�5�z�.�Ï3, Ô6ñ=V=.�Ï Þ 2(Ï õ 5�5�5�5 .

Only the degrees of containment for the direct relationships are found using these rules. The indirect
relationships between values in the resulting dimension are inferred using our transitivity rules.

In other words, given two MO’s with common fact schemas, the union operator for the extended model
takes the set union of facts and the fact-dimension relations. Dimensions are combined with the help of the
Ñ É�?>� operator. Specifically, given two dimensions of the same type, we perform set union on corresponding
categories and build a new relation on dimension values: there exists a relationship between two dimension
values if there exists a relationship between the values in the first dimension, in the second dimension, or
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in both. The degree of containment for a resulting relationship is determined in a natural way. Namely, if
two values are directly related in one of the two dimensions only, then their degree is transfered unchanged
into the resulting dimension. However, if the values are directly related in both the dimensions with two
different degrees, then without breaking the principle of the safe approach, we can return the maximum of
the two as the new degree.

Example 13 The LOCATION dimension of an MO obtained by uniting � Þ�( �¢�¤ and � õ�¡ £¢(¤ is depicted in
Figure 5. Note that some degrees of containment for the indirect relationships, e.g., Street1 Hiãfô W City1, are
not found in any of the original MOs, and can only be inferred using the transitivity rules.

4.3 Aggregate Formation Operator

District3

A

City1 City2

1 1

District1 District2

Street2 Street3 Street4

B

C

1 0.3
0.8

1

0.6 1
1 0.4

D

Street5

0.7

Street1

E

Figure 5: A union of � Þ�¡ £¢(¤ and � õ�( �¢�¤

The aggregate formation operator is used
when applying aggregate functions to an
MO. We first restate the definition from the
prototypical model. We assume a family of
aggregation functions X that “look up” the
required data for the facts in the relevant
fact-dimension relation, e.g., �*Y[Z]\_^ :
finds its data in the fact-dimension relation
ø$: and counts it.

In addition, the operator ` � è ¨�a ]
go�¡Ô Þ r A�A�A r go�1Ô�¶ a ccb is defined.
The operator groups the facts character-
ized by the same dimension values, i.e.,
` � è ¨�a�.�Ð Þ 2�A�A�A�2%Ð�¶O5-, 7Bùd7x.�ù w ök5Êz
.�ùÜúÕÐ Þ 5`zØA�A�A�z|.�ùÜúûÐ�¶�5%D .

Given a new (result) dimension
Ç ¶�e Þ

of a new (result) type 9 ¶ce Þ , an aggrega-
tion function fÌ]ic�bûa g��¡Ô6¶�e Þ and a
set of grouping categories 7vÈ : w Ç : 2�<â,
>@2�A�A�A&C=D , the aggregate formation opera-

tor for the prototypical model, g , is defined as follows. � 1 , g × Ç ¶ce Þ 2�fX2&È Þ 2�A�A�A�2&È�¶�Û�..� 5 ,
.¡+31(2£ö�1¡2 Ç 1� 4 2£ø$1� 4 5 , where

+ 1 ,�.10 1 2�4 1 5 , 0 1 ,sc�h , 4 1 ,87�9 1: 2�<~,?>@2�A�A�A�2�C=DðÑ 7�9u¶�e Þ D ,
9 1: ,�.1E 1: 2�H 1 F�Ò 2&M 1 F�Ò 2&J 1 F�Ò 5 , E 1: ,87�E : R wÜ9 : 7 ^ � aOhu.�È : 5�H F�Ò E :�R D , H 1 F�Ò , H F�Òji k 4Ò , M 1 F�Ò , ^ � aOh}.�È : 5 , J 1 F�Ò ,¦J F�Ò ,
ö�1Y,87l` � è ¨�a�.�Ð Þ 2�A�A�A�2%Ð�¶O557u.�.�Ð Þ 2�A�A�A�2%Ð�¶O5�w^È Þ r A�A�A r È�¶u5�zVzL.H` � è ¨�a�.�Ð Þ 2�A�A�A�2%Ð�¶�5Ky,��S5%D ,Ç 1 ,87 Ç 1: 2�<~,?>@2�A�A�A�2�C=DðÑ37 Ç ¶ce Þ D , Ç 1: ,�.�È 1É 4Ò 2�H 1 É 4Ò 5 ,
È$1É 4Ò ,87vÈ$1: R w Ç :L7 ^ � aOhu.�È$1: R 5Gw3Em1: D , H51 É 4Ò ,âH É�Òni o 4Ò ,
ø$1� 4 ,87�ø$1: 2�<=,?>@2�A�A�AB2�C=D Ñ 7�ø$1¶�e Þ D ,
ø 1: , 7l.�ù 1 2%Ð 1: 5p7Sü`.�Ð Þ 2�A�A�AB2%Ð�¶�5�w^È Þ r A�A�A r È�¶!.�.�ù 1 ,q` � è ¨�a�.�Ð Þ 2�A�A�AB2%Ð�¶O5�5{z�.�ù 1 wÜö 1 5{z�.�Ð�:�,sÐ 1: 5%D , and
ø$1¶ce Þ , Ñ � ��Or ô�ô�ô r � < �.sct vu ô�ô�ô u t < 7l.H`

� è ¨�a�.�Ð Þ 2�A�A�A�2%Ð�¶O5&2�f!.H` � è ¨�a�.�Ð Þ 2�A�A�A�2%Ð�¶O5�5�5&7m` � è ¨�a�.�Ð Þ 2�A�A�A�2%Ð�¶O5Ky,0�lD .
Thus, for every combination of dimension values .�Ð Þ 2�A�A�A�2%Ð�¶�5 in the given grouping categories, the aggre-
gation function f is applied to the set of facts that are characterized by .�ÐOÞ�2�A�A�A�2%Ð ¶ 5 , and the result is placed
in the new dimension. The new facts are of type sets of the argument fact type, and the argument dimension
types are restricted to the category types that are greater than or equal to the types of the grouping categories.
The dimension type for the result is added to the set of dimension types.
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The new set of facts consists of sets of the original facts, where original facts in a set share a combination
of characterizing dimension values. The argument dimensions are restricted to the remaining category types,
and the result dimension is added. The fact-dimension relations for the argument dimensions now link sets
of facts directly to their corresponding combination of dimension values, and the fact-dimension relation
for the result dimension links sets of facts to the function results for these sets.

Example 14 Consider the MO � Þ�( �¢�¤ in Figure 4(b). Suppose we want to count the number of requests is-
sued from different districts regardless of issue time and user information. The aggregate formation operator
for the query would look as follows: g × ¥5w � Z]xK^ 2 �*Y[Z�\y^ 2&go�1j �(� �(\ � 2&Ji2&JÊÛ�..� Þ�( �¢�¤ 5 .
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(a)

District3

City1 City2

1 1

District2

{B}

1 0.3
0.7

1{E}

District1

(b)

District3

City1 City2

1 1
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{B}

1 0.3
0.7

1

{A, E}

1

{B}

(c)

1

{E}

1

{A, E}

(d)

21

1

{B}

Figure 6: LOCATION and RESULT dimensions after the query g , conservative (a, c) and liberal (b, d)
groupings

In the extended model, we have introduced Ï -characterization of facts, which allows us to capture im-
precision in the data. This sort of imprecision must be accommodated by the aggregate formation operator.
Specifically, this imprecision in data may be handled by grouping facts in different ways, i.e., by using
alternative grouping operators. There are three ways of handling this, namely by means of conservative,
liberal, and weighted fact groupings.

In the conservative grouping, we include only those facts into a group that are known for sure to belong
to that group. We define the corresponding operator, ` � è ¨�a � , as follows: ` � è ¨�a � .�Ð Þ 2�A�A�AB2%Ð�¶�5�, 7Bùz7Y.�ù|w
ök5�zß.�ùÜú Þ Ð Þ 5XzxA�A�A�zß.�ùÜú Þ Ð�¶�5%D . Since only precise data will be used in calculations and the remaining
data will be discarded, this kind of grouping is useful for computing a “lower bound” for a query result, in
the sense that the query result contains as little data as possible.

Example 15 Assume the aggregation query from Example 14. The requests � and { are guaranteed
to have been issued from certain districts, while for the request � we only know that it may have been
issued from the district go�1j �(� �(\ ��ê . This means that the conservative grouping of the requests by districts
would yield the fact groups 7�{âD and 7�� D mapped to the values go�1j �(� �(\ ��ê and go�1j �(� �(\ �(ì in the LOCATION
dimension respectively as depicted in Figure 6(a). In this case, the count for both groups of requests would
be 1, which can be seen from the result dimension in Figure 6(c).

In the liberal grouping, a group is formed from the facts that are known to belong to the group as well
as from those facts that might belong to that group. We define the corresponding operator, ` � è ¨�a © , as:
` � è ¨�a © .�Ð�Þ�2�A�A�A�2%Ð ¶ 5�, 7Bùz7�.�ù|wÜök5�z .�ùÜú àc Ð@Þf5lzâA�A�A£z .�ùÜú à=< Ð ¶ 5lz�.¼tX<�w|7�>@2�A�A�AB2�C=Dl.�.�Ï : ,�>�5|R .�Ï : ,
Ù 5�5�5%D . Liberal grouping can be used for computing an “upper bound” for a query result, in the sense that
the query result contains as much data as possible, because all the data, both precise and imprecise, is taken
into consideration.
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Example 16 Assume the aggregation query from Example 14. The liberal grouping of the requests by
districts would include the request � into a group, i.e., we would get the fact groups 7��k2�{âD and 7�� D
mapped to the values go�¼j �(� ��\ ��ê and g��1j �(� ��\ �(ì as depicted in Figure 6(b). In this case, the count for the
groups would be 2 and 1 respectively, which is shown in Figure 6(d).

Finally, in the weighted grouping, we gather both kinds of facts, but apply a weight of membership to
each fact in a group. For this kind of grouping, we use the liberal grouping operator, i.e., ` � è ¨�a6}�,~` � è ¨�a © .
We determine the weight of membership for a fact with the help of a function �^h������ � ]lgo�1Ô Þ r A�A�A r go�¡Ô6¶ r
ö�a�� by combining the fact’s degrees of containment.

For example, the simplest way to combine the degrees is to take their product. Namely, if ù w
` � è ¨�a } .�Ð Þ 2�A�A�A�2%Ð�¶u5 and ùVú�à  Ð Þ 2�A�A�A�2%ùÜú�à < Ð�¶ , then �^h������ � �U:�¯_à .�Ð Þ 2�A�A�A�2%Ð�¶æ2%ù{5~,0� ¶:�� Þ ÏY: .

Since weighted data will be used in calculations, with this kind of grouping, an “average” for a query
result could be computed. However, the choice of weighting function is crucial: an inadequate function
may introduce additional imprecision into the query result. For example, �^h����c� � �U:·¯ðà may sometimes be
inadequate because it applies zero weights even for data that is imprecise with respect to just one dimension,
i.e., t!ùØw�` � è ¨�a } .�Ð@ÞB2�A�A�A�2%Ð ¶ 5�.�.�üOÐ : w|7BÐ�Þ�2�A�A�A�2%Ð ¶ Dl.�ùÜú-ã�Ð : 5�5N��.c�^h����c� � �U:�¯_à .�Ð�Þ�2�A�A�A�2%Ð ¶ 2%ù{5�, Ù 5�5 .
Example 17 Assume the aggregation query from Example 14 and the corresponding liberal grouping of
the facts from Example 16 . The function �^h������ � ¢(��
æÀ would apply weights of membership to our facts as
follows: �^h����c� � ¢(��
æÀ .�go�¼j �(� ��\ ��ê 2&Ji2&Ji2��
5�, ÙNr > r >K, Ù , �^h����c� � ¢¡��
XÀ .�go�1j �(� �(\ ��ê 2&Ji2&Ji2�{i5N,?> r > r >
,
> , �^h������ � ¢(��
æÀ .�go�¼j �(� ��\ �(ì 2&Ji2&Ji2��65�,/> r > r >
,�> . Thus, the weighted grouping will, unlike the liberal
grouping, show that { is certain to be in District1 while � only may be in District1. This can then be
exploited by the aggregation function, e.g., by counting the facts with their expected degree of membership
in the group, which is > for { and Ù A�� for � , resulting in a count for District1 of >@A�� .

5 Imprecision In The Aggregation Path

With partial containment in the model and transitivity of partial containment defined, we face the problem
of how to choose the most precise data aggregation path while processing a query, or more generally how
to evaluate the level of imprecision of a path. We address these aspects next.

Given a dimension
Ç ,°.�ÈLÉ$2£Öi5 , an aggregation path of

Ç
is a sequence of distinct categories such

that for any element of the sequence ÈL: and its successor È�R w#Z$[X\ � n{� .�È�:�5 . In our case, we could define
the aggregation path g|, 7 �Y�(� h&h � 2·go�1j �(� �(\ � 2 � � �(� 2&í � è�î �¡[X\&hlD .

Two aggregation paths g_: and gæR are alternative aggregation paths if È :� º�¢(¾ , È R� º�¢(¾ and È :Ã  �¢(¾ ,8È RÃ  �¢(¾ ,
where È :� º�¢(¾ and È R� º�¢(¾ are their first elements and È :Ã  �¢(¾ and È RÃ  �¢(¾ are their last elements. So, g and g � ©  ,
7 �Y�(� h%h � 2&í � è�î �¡[X\&hlD are alternative aggregation paths. An aggregation path is direct if it consists of just two
elements. Thus, g  �Ã ¾ is a direct aggregation path.

Recall that we term a relationship between dimension values Ð : H à Ð R direct if it is given directly in the
relation Ö (without using transitivity); otherwise, the relationship is indirect.

Given an aggregation path � , ÐB:Nw�È�: , and Ð&R w|È=R , we say that a direct relationship ÐB:NHNàkÐ%R is on the
path � if È=R is successor of ÈG: in � (in our case,

�Y�(� h&h ��ê H ãfô õ g��1j �(� ��\ ��ê is a direct relationship on path g ).
Consider an aggregation path �å, 7vÈ5� :·¬£�U 2�A�A�A�2&È�© �f�� D and its alternative direct aggregation path � � ©  .

We build two sets � and � � ©  for � and � � ©  , respectively. Both sets contain relationships ÐI� :�¬��U H�àiÐ�© �f�� ,
where Ð�� :�¬£�U wåÈ*� :�¬£�� and Ð�© �&�U w�È�© �f�� . Set � contains indirect relationships that are deduced using the
transitivity property on the relationships on the path � . Set � � ©  contains relationships on the path � � ©  .

We proceed to compare the aggregation paths, for which purpose, we introduce the concept of impreci-
sion level of an aggregation path � (denoted �|�U� ). The imprecision level �|�6� is evaluated by the following
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algorithm:

(1) procedure EvaluateImprecision
(2) �������;�
(3) for each ���H�������� M¡M¢¤£l¥?¦ §¨�¤©�ª��� j«¨¬®(ª�©¯ 
(4) where � �¤������  ¬®° �������� ²± � ©�ª���  ¬®° ©�ª���  do
(5) if �³�H�������. �¡M¢¤£´�¤©�ª��� n«M¬"
(6) then µ�~8¶3·����H�������� �¡M¢¤£´��©�ª��� j«O¸
(7) �����¹�;�����Uº¼» ½D¾ ¥?¦ §m¿ ½D¾À»
(8) else ��� � �~��� � º®½ ¾ ¥?¦ §
(9) for each ��� ��������  ¡ ¢ £´� ©�ª���  «¨¬® do �����¹�~�����Uº®½D¾

The algorithm distinguishes among three cases. First, if the link between two values exists in both paths
(lines 6–7), the difference between the containment degrees is added to the running imprecision level total.
Second, if the link exists only in the alternative path (line 8), the alternative containment degree is added.
Third, for the remaining links, i.e., links existing only in the original paths, the original containment degrees
are added.

The algorithm gives a high imprecision-level value if there is a large difference between the degrees
of containment in the original and those in the alternative path. Note that the algorithm is meant only for
choosing the best path among several alternatives, i.e., the algorithm does not provide an absolute estimate
of the imprecision. This definition of imprecision level conforms with the intuitive understanding of im-
precision, i.e., the greater the value of the imprecision level of a path, the more imprecise, results from
aggregating data along the path become.

The method does not take non-covering mappings into consideration. Specifically, it ignores direct
relationships that exists to accommodate non-covering hierarchies, e.g., relationships between dimension
values in the Coordinate and District categories. If this is the case, we introduce additional imprecision,
and the result of the algorithm could lead to the choice of a wrong candidate for the most precise aggregation
path. Thus, we have to use the ignored relationships. However, it is not reasonable to use as an alternative
direct aggregation path the one that is included to accommodate non-covering hierarchies because this
introduces excessive imprecision in the structure. For example, if not every coordinate is directly related to
a province, Á � ©  ,87 �~è�è ��é �¡[Xñ � h�2&í � è@î �1[æ\&hOD must not be used.

The proposed method is helpful in choosing aggregation paths while managing the trade-off between the
speed of aggregation and the amount of pre-aggregation applied to the warehouse. Without pre-aggregation,
there is no difference in speed between aggregation along a path and the alternative direct path. However,
with pre-aggregation, we can speed up aggregation along a given path considerably by pre-computing some
steps in it. Thus, having evaluated the imprecision level and aggregation speed (possibly with different
pre-aggregation variants) of several alternative aggregation paths, we could choose the path with the highest
speed (if we are interested in speed), the path with the lowest imprecision level (if we are interested in
precision), or a path that balances aggregation speed and imprecision.

The applicability of the method is limited by the fact that in many cases, we do not have an alterna-
tive direct aggregation path. In this situation, we can split the path according to the available paths and
evaluate the level of imprecision of its subpaths. For example, in our case, we cannot use the method
directly for the path Â6, 7 �~è�è ��é �1[Xñ � hS2 �X�(� h&h � 2_go�¼j �(� ��\ � 2 � � �(� 2&í � è@î �1[X\fh�2 �~è ¨u[ �(�&� 2&J6D because the path
Â � ©  ,�7vÈ²�c����Ã�<�C�Ä|Å�Ð�2&JiD is absent. Instead, we could split Â into two subpaths, Â Þ ,?7 �~è�è ��é �1[Xñ � hS2 �X�(� h&h � 2
go�¼j �(� ��\ � 2 � � �(� 2&í � è@î �1[æ\&hSD and Â õ ,87ví � è@î �¡[X\fhS2 �~è ¨u[ �(�f� 2&JkD . Then Â Þ could be compared to Â Þ� ©  (suppos-
ing every coordinate is directly related to a province) to get the imprecision level of the subpath.
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Figure 7: Transformations by the PMakeCovering and PMakeOnto Algorithms

6 Hierarchy Transformations

Using the data model described in Section 3, we are able to specify non-normalized dimension hierarchies.
However, such hierarchies pose problems to practical pre-aggregation, as will be explained shortly. In
this section, we briefly present algorithms that normalize hierarchies (the algorithms are described in details
elsewhere [10, 12]) and extend the algorithms to accommodate partial containment. Due to space constraints
the details are deferred to Appendix A.

If a hierarchy is non-covering, then some links between dimension values skip one or more levels So,
at a “skipped” level some data is missing, and we cannot use aggregation results at a “skipped” level for
computing aggregates at higher levels. For example, suppose a coordinate �~è�è ��é�ê does not lie on any street,
but lies in district District1. The mapping from category Street to category District is then non-covering with
respect to the category Coordinate, and the level of Street is “skipped.” Thus, we cannot use aggregates at
the Street level to calculate aggregate results at the District level.

If a dimension hierarchy is non-onto, we are not able to reach some dimension values moving from
bottom to top. Again, this means that we cannot reuse aggregates at the lowest level to compute aggregate
results for the levels with “unreachable” values. For example, suppose there are no computers (IP addresses)
in city City1. The mapping from category IP Address to category City is non-onto and City1, the dimension
value of City, is “unreachable.” Thus, we are unable to use aggregates at the Coordinate level to calculate
aggregate results at the City level.

Finally, if a hierarchy is non-strict, some dimension values have multiple parents. So, moving from a
child level to a parent level, we may count the same data several times. This means that we are not able to
use aggregation results at the child level to compute aggregates at the parent level. For example, suppose a
street Street1 crosses districts District1 and District2. So, Street1 has two parent dimension values, District1
and District2, in the category District. Moving from the level of Street to the level of District, we count
aggregates for Street1 twice. Thus, we cannot use aggregates at the level of Street to calculate aggregate
results at the level of District.

A suite of hierarchy transformation algorithms remove these problems and thus enable correct use of
pre-aggregation for non-normalized hierarchies transparently to the user. The algorithms normalize dimen-
sion hierarchies in three steps: hierarchies are first made covering, then onto and, finally, aggregation strict.

Hierarchies are made covering by introducing intermediate “placeholder” values in the levels that are
skipped by the original links between dimension values, and by linking these values appropriately to the
relevant existing dimension values (which may be placeholder values). Similarly, a hierarchy is made onto
by “padding” the hierarchy downwards by inserting “dummy” child values for dimension values with no
children. Aggregation strictness is achieved by “fusing” the set of parent values of a lower-level dimension
value into one fused value and linking this new value to the appropriate child, parent, and grandparent values
before continuing the process upwards in the hierarchy.
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The transformations include the rearranging of relationships between dimension values, but they do not
take the partial containment relationships and their degrees of containment into account in the process.

When extending the transformations, we must assign the proper degrees of containment with the rela-
tionships created during the transformations. We pose two requirements to the extended algorithms. First,
full containment relationships between dimension values must be preserved. The reason is that if we guar-
antee that a dimension value is fully contained in another one, then this is the best we can get for the values.
It would be unreasonable to eliminate or degrade such relationships. Second, as we follow the safe approach
to the transitivity of containment, a new degree must be less than or equal to the corresponding old one.

Example 18 The workings of the algorithms is best illustrated by an example. For the PMakeCovering
algorithm, consider the transformation to the left in Figure 7. Here, the direct link between Ð}� (using the
example of a non-covering hierarchy in the beginning of this section, ÐS� may correspond to District1) and
Ð�:�� (corresponding to �~è�è ��éSê ) is transformed by inserting a new placeholder value È�Ð�� (in our example,
CDistrict1) in the intermediate category. This new value is then linked to Ð�� and Ð�:�� . The degree of con-
tainment of the first link is naturally > , while the degree of the second link is inherited from the original
direct link. For the PMakeOnto algorithm, consider the transformation to the right in Figure 7. Here, a new
dummy value ��Ð&R � (or LCity1 in our example of a non-onto hierarchy) is inserted below ÐBR � (City1) with a
natural containment degree of > . For the PMakeStrict algorithm, consider the transformation in Figure 8.
Here, the multiple parents of value ÐB: (corresponding to Street1 in our example introducing a non-strict
hierarchy) are fused into one new value Ði,ç7BÐ�R��2�A®A®A®2%Ð&R�ÆID (in our example, Nû,/c and the fused value is
7 District1, District2 D ), which is then linked to Ð@: and the parents ÐfR��2�A®A®A®2%Ð%R Æ (i.e., District1 and District2).
To keep the figure simple, we have not shown additional values in the Ð : category, nor the grandparents of
Ð�: which Ð is also linked to. The degree of containment is computed to provide the highest possible degree
that can still be guaranteed, see Appendix A for details.

The transformation algorithms described in the above example enable the use of practical pre-aggregation
while still preserving the information about partial containment.
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Figure 8: Transformations by the PMakeStrict Algorithm

7 Conclusions and Research Directions

Mobile e-services promises to become a significant application domain for multidimensional modeling of
spatial data. This domain poses a number of interesting requirements to a multidimensional data model.
One of them, partial containment among dimension values, is not supported by existing data models. This
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paper extends an existing, so-called prototypical, model that satisfies other important requirements (e.g.,
non-normalized dimension hierarchies) to support for partial containment.

A key problem faced is to define transitivity of partial containment. The essence of the problem is which
degree of containment to assign to an inferred relationship: if .�.�Ð�:�H�à�Ò�Ð&RB5ðzä.�Ð&R�HNà%ë�Ð���5�5I� .�Ð�:�H�à6Ð��@5 ,
then what is the value of Ï ? We have provided a “safe” definition of partial containment, meaning that we
deduce only those relationships that we can guarantee. But at the same time we try to maximize degrees of
inferred relationships. We feel that this is the most basic and useful approach.

The algebra for the prototypical model, with extended selection, union, and aggregate formation opera-
tors, serves well as a formal basis for an end-user query language for our model. We have extended several
elements of the algebraic operators to reflect support for partial containment in the model. Specifically, the
predicate for selection depends on degrees of containment as well as on dimension values. In addition, the
union operator on dimension assigns proper degrees of containment to resulting dimension values. Finally,
the aggregate formation operator uses different grouping strategies.

The presence of partial containment introduces imprecision in dimension hierarchies. In particular, one
aggregation path from one level in a hierarchy to a higher level may be more precise than an alternative path.
In order to make informed choices of which path to choose among several alternatives, the paper provides
a means of evaluating the imprecisions of paths. This enables the choice of paths based on their precision
and their associated speed of aggregation.

Enabling practical pre-aggregation requires that dimension hierarchies be onto, covering, and aggre-
gation strict. We have extended existing hierarchy transformations to support partial containment. This
extension was based on two requirements to hierarchy transformations. The first requires that full con-
tainment relationships between dimension values be preserved. The second requires that the degrees of
containment in partial containment relationships should be as close to the original degrees as possible, but
not higher (safe approach). Extending the existing transformations for making hierarchies onto and covering
is straightforward, and we have retained all old degrees. Incorporating support for partial containment into
the transformation that makes hierarchies aggregation strict is a more complex task. We have succeeded in
preserving full containment at the expense of degrees for partial containment relationships (some degrees
reduce to “zero”).

It would be of interest to further study several aspects of the proposed data model. The paper adopts a
“safe” approach to inferring partial containment relationships among dimension values. Other approaches
could be explored where “probable” partial relationships are inferred. Such approaches could be used
together with the safe approach. In addition, it is possible to use more information when safely inferring
partial containment relationships. Next, with the partial containment, summarizability [14] is generally not
guaranteed, even if a multidimensional object is normalized. It is of interest to determine which conditions
are sufficient for summarizability with partial containment. Moreover, the extended aggregate formation
operator does not handle the imprecision introduced by mapping of facts to dimension values of different
granularities. It seems that the approach suggested in the literature [13] to handling this sort of imprecision
can be extended to also contend with partial containment. Furthermore, it is very relevant to devise a
prototype implementation of the model using an existing OLAP system [17]. Data models of existing
systems do not meet all the formulated requirements. Therefore, they do not provide direct support for all
the elements of our model. This raises issues related to model-to-model transformations.
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A Hierarchy Transformation Algorithms

We now describe the hierarchy transformation approach in detail.

A.1 Pre-Aggregation and Non-Normalized Hierarchies

To pre-aggregate data means to store results of aggregate queries. It is done in order to decrease the query
response time of a data warehouse system. However, results of full pre-aggregation, when all combinations
of aggregates are pre-computed, may require too much storage space, thus making full pre-aggregation
impractical. Instead, in modern data warehouse systems practical pre-aggregation is used, which means
that only select combinations of aggregates are stored and reused later for computing other aggregates.

Furthermore, it is important that we could pre-aggregate values at any combination of dimension levels
and reuse the pre-aggregated values to compute higher level aggregate results. If this requirement is met,
we say that our data is summarizable. In [14], it is mentioned that data captured by the model that we
present in Section 3 (though without our extension for handling partial containment) is summarizable, if a
multidimensional object for the data is normalized. So, the problems with practical pre-aggregation occur,
if in a multidimensional object facts map to dimension values at different levels or dimension hierarchies
are either non-onto, non-covering, or non-strict.

Generally, pre-aggregation procedure performed at the lowest level does not take into consideration
fact-dimension relationships at higher levels. So, if all the facts do not map to dimension values at a lowest
level, then some data is missing. This means that we cannot reuse aggregates at the lowest level to compute
higher-level aggregate results. For example, suppose a user has issued a request from a street

�Y�(� h%h ��ê . So,
the corresponding fact is mapped to the value

�Y�(� h%h ��ê , which belongs to the category Street—not the lowest
one. Data for the request at the lowest level is missing. Thus, we are not able to use aggregates at the level
of lowest category Coordinate to calculate aggregate results at the level of Street.

With the extension for capturing partial containment introduced into the model, generally data in a
normalized multidimensional object may become non-summarizable. The proposed transitivity property
infers only guaranteed relationships between dimension levels, which means that in a real-world situation
we would miss some data. Anyway, normalization of dimension hierarchies is a first step towards achieving
summarizability.

A.2 Hierarchy Transformation Algorithms

We present the pseudocoded version of the algorithms. The input to each algorithm is a set of tables
ø t Ò.r t ëHr Ç that specifies the relationships between dimension values in categories È$: and È=R ( È=R÷w
Z$[X\ � n{� .�È�:�5 ). A column È in a table contains degrees of containment. In Figures 7 and 8, we illus-
trate the effect of the algorithms that make hierarchies covering, onto, and aggregation strict. On the left a
fragment of a dimension hierarchy is depicted, while on the right the same fragment after the transformation
is presented.

When analyzing the algorithms, we do not get into details on how mappings are transformed (this is
done in [10] and [11]). Instead, we explain the extension and how new hierarchies meet the formulated
requirements.

A.3 Making Hierarchies Covering

To the left in Figure 7, we assume that Ðv:��wmÈ�: , Ð�:��3wmÈ�: , Ð%R^wmÈ=R , È�Ð��^wqÈ=R , and Ð��|wmÈ�� . We also
assume that ÈG�6wÝZ$[X\ � n{� .�È R 5 , È��6wÝZ$[X\ � n{� .�È : 5 , and È R wÝZ$[X\ � n{� .�È : 5 . Finally, we assume a degree of
containment Ï^w × ÙuÚ >fÛ .
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Before the transformation we have: Ð :�� H à=É Ò ��Ê É�Ë Ð�� We may retain the same relationship between the
values after the transformation, if for the new degrees of partial containment we let Ï=��Ò � r t � Ë , ÏX�;Ò � r � Ë
and Ï t � Ë r � Ë , > . By using 1-to-1 or p-to-1 transitivity (depending on the values of degrees), we get:
.�.�Ð�:��3H�à É Ò � Ê Ì É Ë ÈoÐ��v5~z-.�ÈoÐ��ØH�à Ì É Ë Ê É Ë Ð���5�5o� .�Ð�:��3H�à=É Ò � Ê É.ËßÐ��@5 . So, the relationship Ð�:��3H�à=É Ò � Ê É.Ë Ð�� is
retained by the algorithm. Obviously, the first requirements is met: if before the transformation Ï �;Ò � r � Ë ,?> ,
so is after the transformation. The second requirement is also met: the degree Ïð�;Ò � r � Ë never increases after
the transformation (in fact, it remains the same).

Notice that after the transformation, altering the relationships between È$: , È~R , and È�� may be required.
Namely, we state that ÍIÎBÏæÐ�.�ÈG:�5GH�nF ÍIÎBÏæÐl.�È=R�5 , if ÍIÎBÏæÐ�.�È�:�5GHInF ÍIÎ�Ï!Ð�.�È���5 , and ÍIÎ�Ï!Ð�.�È�:�5GH�FØÍÊÎ�ÏæÐl.�È=RB5 ,
if ÍIÎBÏæÐ�.�È�:�5GHIFØÍIÎ�Ï!Ð�.�È���5 . By doing so, we allow arbitrary value of Ï{�;Ò � r t � Ë . In addition, we must add the
relationship ÍIÎ�Ï!Ð�.�È~RB5GH�FØÍIÎBÏæÐ�.�È���5 , if it was not present before the transformation, to allow Ï t � Ë r � Ë ,?> .
(1) procedure PMakeCovering( ° )
(2) for each ÍÎ¬®Ï6ÐDÑHÒ�ÓÕÔ���°p« do
(3) begin
(4) for each Ö×¬"Ï6ÐØÑ Ò�ÓÕÔ ��°p« where ÙLÚv½Û�c�³Í5«�¡ Ò�ÓÜÔÝ ÙLÚv½Ø����Ö	« ± ÙLÚv½Û�c�³Í5«LÞß ÙLÚv½Û�c�³Ö	« do
(5) begin
(6) �(�qà3áÜâ ã¹��ä6áÜâ ãMâ å*«Ü¶Mà3áÜâ ã¹��à3áÜâ Ó �³äUáÕâ Ó â å*«Üæ�çpà Ó â ã��³ä Ó â ãMâ åU«?«
(7) èé�;à6ã��³�S«
(8) Íê�;Íìë	·vîí�ï=ðF��ñØ«S»vñò¬®èÀ¸
(9) ä Ó â ãMâ å¼�;ä Ó â ãMâ åóë	·���îí�ï=ðF��ñÛ«�ô�ñÜô�õv«S»�ñ[¬®èÀ¸
(10) ä áÜâ Ó â å �;ä áÜâ Ó â å ë	·���öHô�îí�ï=ðF��ñØ«Oô�½Ø÷ â ø «S»��³ö=ô�ñØ«M¬[� ± �³ö=ô�ñÜô³½Ø÷ â ø «¨¬[ä áÜâ ãMâ å ¸
(11) end
(12) PMakeCovering( Í )
(13) end

A.4 Making Hierarchies Onto

To the right in Figure 7, we assume that Ðv:Iw�È�: , ��Ð%R��âw�È�: , Ð%R�kw�È=R , Ð&R��6w-È=R , and Ð��Vw-È�� . We also
assume that ÈG�Üw-ZK[X\ � Öi5�.�È=RB5 and È=R3w�Z$[X\ � Ök5�.�È�:U5 . Finally, we assume that a degree of containment
Ï^w × ÙuÚ >fÛ .

The transformation does not require altering the present degrees of containment. We let the completely
new degree Ïmùl�(ë � r �¡ë � ,?> (it conforms with the logic: a “placeholder” ��Ð�R � for a value Ð&R � is fully contained
in that value). Obviously, since no degrees are altered, the first and second requirements are met. Finally,
we add the needed relationship between the categories ÈI: and È~R , i.e., ÍIÎ�Ï!Ð�.�È�:�5�HIFØÍIÎ�Ï!Ð�.�È=RB5 .
(1) procedure PMakeOnto( Í )
(2) for each °ú¬®û�ü�ý�Ñ��³Í5« Ò�ÓÜÔ do
(3) begin
(4) èé�;Íþ¶Mà Ó �³äUáÕâ Ó â å*«
(5) °î�~°ìë	·vîí�ï=ðF��ÿÜ«M»¤ÿ	¬®èÀ¸
(6) äUáÜâ Ó â å´�;ä6áÜâ Ó â åóë	·���îí�ï=ðF�³ÿÜ«Oô?ÿ]ô�õ�«S»¤ÿy¬®èÀ¸
(7) PMakeOnto( ° )
(8) end
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A.5 Making Hierarchies Aggregation Strict

In Figure 8, we assume that ÐB:ßwçÈ�: , t��Üw 7�>@2�A�A�A�2ON|Dl.�Ð&R;²ßwýÈ=R�5 , t��^wý7�>@2�A�A�AB2�C=Dl.�Ð�� ² wýÈ��v5 , and
ÐÜ, 7BÐ%R��2%Ð%R��B2�A�A�A�2%Ð&R?ÆID�wsÈ �R (a category containing “fused” dimension values of È�R ). We also assume

that before the transformation È��iw^Z$[æ\ � n{� .�È=RB5 and È=Row^Z$[X\ � Ök5�.�È�:U5 , but after the transformation È��iw
Z$[X\ � n{� .�È �R 5 , È=RÝw?Z$[X\ � Ök5�.�È �R 5 , and È �R w8Z$[X\ � n{� .�È�:U5 . Finally, we assume a degree of containment
Ï^w × ÙuÚ >fÛ .

Before the transformation we have the set of relationships �b, 7BÐ�:iHNà=É Ò Ê É ë ² Ð%R;²U2��
, >@2�A�A�A�2ON|D . We
would like to have these relationships between the values with the same degrees after the transformation.
But notice that in the transformed hierarchy the relationships can be inferred only with the help of transitivity
property ( t�� w?7�>@2�A�A�Av2ON|Dl.�.�.�Ð�:6H�à É Ò Ê É ÐB5�zå.�Ð H�à É Ê É ë ² Ð%R ² 5�56� .�Ð�: HNà É Ò Ê É ë ² Ð%R ² 5�5 ). The common initial
condition for each relationship in the set � is Ðv:�H�à É Ò Ê É Ð . In general, presence of the common condition
does not allow us to retain all the old degrees of containment in the set. We deal with the situation in a
following way: if the set � has any full containment relationships, we retain them (using 1-to-1 transitivity,
the first step to this is to let Ï ��Ò�r � , > ) and otherwise we perform approximation, which conforms to the
“safe” approach, and retain the minimal degree in the set (using p-to-1 transitivity, the first step to this is
to let ÏX�;Ò�r �Ü, NV<�CN.�7�ÏX�;Ò�r �¡ë ² 2��i, >@2�A�A�A�2ON|D ). After having assigned a value to Ï`�;Ò�r � , we perform further
assignment. If we retain the full containment, then for completion we let t��_w|7�>@2�A�A�Av2ON|Dl.�.�.�Ïð�;Ò.r �(ë ² ,?>�5N�
.�ÏX��r �¡ë ² , >�5�5~z-.�.�Ïæ��Òjr �¡ë ² y, >�5k� .�ÏX��r �¡ë ² , Ù 5�5�5 . But if we retain the minimal degree in the set, then for
completion we must let t��Gw-7�>@2�A�A�Av2ON|Dl.�Ï ��r �¡ë ² ,Ì>�5 , and by p-to-1 transitivity we get the required result:
t��$wP7�>@2�A�A�AB2ON|Dl.�Ð�:
H ¯N:�¶ � � à É Ò Ê É ë ² r © � Þ r ô�ô�ô r ¯�� � Ð&R ² 5 . Notice that in the former case for some relationships by

1-to-1 transitivity we get ÐB:=H Þ Ð%R ² , but for some relationships we cannot avoid using 1-to-p transitivity and
we only get Ð�:ÊH ã Ð%R ² . This means that we preserve the full containment indeed, but miss the guaranteed
degrees that were less than one.

Another set of relationships to deal with is �÷,?7BÐ@:�H�à É Ò Ê É Ë ² Ð��%²;2��ð,b>@2�A�A�A�2�C=D (the set is defined for a

hierarchy before the transformation). We do it taking into consideration the fact that the actions for the set
� have already been performed. Again, we would like to have these relationships between the values with
the same degrees after the transformation. And again in the transformed hierarchy the relationships can be
inferred only by using transitivity property (t��=w|7�>@2�A�A�AB2�C=Dl.�.�.�Ð@:NH�à É Ò Ê É Ðv5Sz6.�ÐkH�à É Ê É Ë ² Ð��%²�5�5���.�Ð�:~H�à É Ò Ê É Ë ²
Ð��&²(5�5 ). Notice that the common initial condition for each relationship in the set is already given after we
have dealt with the set � . This, of course, limits our capabilities. But anyway we deal with the situation
according to the logic applied in the case of the set � : if the set � has any full containment relationships,
we retain them and otherwise we perform approximation which conforms with the “safe” approach. We can
preserve full containment for sure, because if the set � has any full containment relationships, the degree in
the first condition Ï �;Ò�r � is equal to one. If this is the case, we split the set � into �ÜÞ and � à ( � ,���ÞXÑ	� à
and � Þ�
 �Êà|, � ). Elements of the set � Þ are full containment relationships, while elements of the set
�$à are partial containment relationships. We let t��Lwå7�>@2�A�A�AB2�C=Dl.�.�.�Ð��%²Iw�� Þ 5Ê� .�ÏX��r � Ë ² ,ý>�5�5ðz#.�.�Ð��&²Lw
�$à�5â� .�ÏX��r � Ë ² , Ù 5�5�5 . By doing so, we really retain full containment where it is present, but miss the
guaranteed degrees that were less than one (analogy with the case of the set � ). If Ïð�;Ò�r � is not equal to one,
the set � does not have any full containment relationships. It means that we must perform approximation.
We let t��Lw�7�>@2�A�A�AB2�C=Dl.�.�üOÐ&R ² 4 .�Ð%R ² 4 HåÏX�(ë ² 4 r � Ë ² Ð�� ² 5�5=zä.�.�Ïæ�¡ë ² 4 r � Ë ² ,ý>�5I� .�ÏX��r � Ë ² ,ý>�5�5_z#.�ÏX�(ë ² 4 r � Ë ² y,ç>�5Ê�
.�ÏX��r � Ë ² , Ù 5�5 . So, for some relationships in the set � by p-to-p transitivity we get Ð�:KH ã Ð�� ² (this is true
before the transformation as well) and for some relationships in � by p-to-1 transitivity we get Ð}:ðH�à É Ò Ê É Ë ² Ð��%²
(the degree is less than that before the transformation, but still above zero).

We see that the first and the second requirements to a procedure of recording new degrees of containment
are met.

The drawback of the algorithm is that in some cases it substitutes zero degrees for non-zero ones. For
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example, if C#,���,bc , then there are four degrees to work with and sixteen variants for the set of degree
values (each degree is allowed to be one or non-one). Therefore, there are sixty-four relationships. Twelve
of them turn their degree from non-zero to zero.

In a transformed dimension, we modify relationships between category types as needed. If we need
partial containment for the algorithm to work as described, we allow partial containment between dimension
value of a corresponding categories. Otherwise, we only allow full containment. Thus, we perform the
modification of the relationships between category types according to the rules presented in the list below.
We assume that ÍIÎBÏæÐ�.�È : 5�,PE : , ÍIÎ�Ï!Ð�.�È R 5~,mE R , ÍIÎ�Ï!Ð�.�È���5~,mEO� , and ÍIÎ�Ï!Ð�.�È �R 5�,mE �R .

1. .1Eu:~H�FØESR�H�FØEO�@5~��.�.1E}:~H�F|E �R 5{z�.1E �R H�FØESR�5{zßzL.1E �R H�FØEu�@5�5
2. .1Eu:~H�nF ESR�H�FØEO�@5~��.�.1E}:~H�nF E �R 5{z�.1E �R H�nF ESR�5{zßzL.1E �R H�FØEu�@5�5
3. .1E : H F E R H�nF EO�@5~��.�.1E : H F E �R 5{z�.1E �R H F E R 5{zßzL.1E �R H�nF Eu�@5�5
4. .1Eu:~H nF ESR�H nF EO�@5~��.�.1E}:~H nF E �R 5{z�.1E �R H nF ESR�5{zßzL.1E �R H nF Eu�@5�5
Notice that the pseudocode contains a new (compared to the variant in [10] and [11]) function

è [}íIñ � �Ü] ×�B{Ú ê Û=a ×�B{Ú ê Û . The function works as follows: if .�.�ÐB:~H�à�Ò{Ð&RB5�zK.�Ð%RkH�à%ëIÐ���5 , then è [}í�ñ � �{.�ÏuR�5N,
ÏY: .
(1) procedure PMakeStrict( ° )
(2) for each ÍÎ¬®Ï6ÐDÑHÒ�ÓÕÔ���°p« do
(3) begin
(4) if ������6¬®°$�������ô?���*¬[Í���v½���â ��ô³½��Oâ �������6¡M¢���� �K��� ± ���6¡M¢���� �¨��� ± ����Þß ���¤«?«n«?« ± Ï6ÐØÑHÒ�ÓÕÔO��Í5«UÞß��
(5) then begin
(6) èé�~°UïH�ví �j�H°*í!�j��"$#vïvÚD�&% Ó «
(7) if v½��Oâ �U�¯½��Oâ � ß õ�« ± �³���=ô?���Hô�½��Oâ �¤«¨¬[ä6áÜâ Ó â å
(8) then ä áÕâ '¨â å � ·���� � ô)(�*�+¤�c�j·�� � »��³� � ô�� � ô³½ ��â � «¨¬òä áÜâ Ó â å ¸v«�ô�õv«�¸
(9) else äUáÜâ '¨â å � ·c�³���vô,(�*�+��c�.·v���6»������vô?����ô³½��Oâ ��«¨¬[äUáÕâ Ó â å&¸v«Oô�-/.�ÿ��.·?½���â �6»������vô?����ô³½��Oâ �¤«M¬®äUáÕâ Ó â å5¸v«n«O¸
(10) èé�;à ' ��ä áÜâ '¨â å «
(11) ä0'¨â Ó â å � ·c�³��1�ô�����ô � «�»���1p¬òè ± ���*¬32*ÿ546*�+��c�³��1�«�¸
(12) for each �7�*¬82Uÿ546*�+��c�³��1¤« where ��1p¬®è do
(13) begin
(14) if ½���â 1 ß õ ± ½��Oâ ��Þß õ ± ���7�=ô?��1=ô�½��Oâ 1�«¨¬[äUáÕâ '¨â å ± ���7�Hô?���=ô�½��Oâ ��«¨¬[ä6áÜâ Ó â å
(15) then ä '¨â Ó â å �;ä '¨â Ó â å ë	·��³� 1 ô?� � ô���«�¸_¶ ·��³� 1 ô�� � ô � «�¸
(16) else ä0'Kâ Ó â å �~ä9'¨â Ó â åóë"·�����1�ô?����ô�õ�«O¸_¶ ·�����1�ô?����ô � «O¸
(17) end
(18) Ï6ÐDÑvÒ�ÓÜÔ���°p«�� Ï6ÐØÑvÒ�ÓÕÔO��°p«Õë	·vèÀ¸S¶3·�Í�¸
(19) Ï6ÐDÑ Ò�ÓÜÔ �³è	«�� ·�Í�¸
(20) for each :Î¬	Ï6ÐØÑHÒ�ÓÕÔO��Í5« do
(21) begin
(22) �ó�;à<;3�³à 'Kâ Ó �³ä '¨â Ó â å «]æ�ç*à Ó â ;L�³ä Ó â ; â å «n«
(23) ä9'Kâ ; â å � ·c�³��1�ô�����ô � «�»���1p¬òè ± ���*¬ò�L¸
(24) for each ���*¬®� do
(25) begin
(26) if ½��Oâ 1 ß õ ± ���7�Hô?��1�ô�½��Oâ 1�«M¬[ä6áÜâ '¨â å ± ��1p¬[è
(27) then
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(28) if ½=��â � ß õ ± ½���â � ß õ ± ½��Oâ �*¬/#vÿÕÍpí �nñl�¯½=��â �¤« ± ���*¬®Í
(29) then ä '¨â ; â å �~ä '¨â ; â å ë ·���� 1 ô?� � ô¤õ�«O¸_¶ ·���� 1 ô?� � ô � «O¸
(30) else ä0'Kâ ; â åz�;ä0'¨â ; â å ëT·c�³��1=ô�����ô?��«�¸À¶ó·c�³��1�ô�����ô � «�¸
(31) else if ½ ��â � ß õ ± � � ¬[Í
(32) then ä0'¨â ; â å �~ä9'¨â ; â å(ë	·��³��1�ô?���Hô�õv«�¸À¶ ·��³��1=ô����=ô � «�¸
(33) else ä 'Kâ ; â å �;ä '¨â ; â å ë	·���� 1 ô?� � ô?��«O¸_¶ ·���� 1 ô?� � ô � «O¸
(34) end
(35) Ï6ÐØÑ Ò�ÓÕÔ ��è	«��qÏ6ÐØÑ Ò�ÓÕÔ ��è	«Fë	·�:�¸
(36) Ï6ÐØÑ=Ò�ÓÕÔO��Í5«��qÏ6ÐØÑ=Ò�ÓÕÔO��Í5«Ü¶3·�:�¸
(37) end
(38) PMakeStrict( è )
(39) end
(40) else PMakeStrict( Í )
(41) end
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