
Management of Multiply Represented Geographic Entities

Anders Friis-Christensen��� David Skogan ��� Christian S. Jensen� Gerhard Skagestein � Nectaria Tryfona���

�Department of Computer Science, Aalborg University, Denmark, �afc,csj�@cs.auc.dk
� Product Development, National Survey and Cadastre, Denmark
�Department of Informatics, University of Oslo, Norway, gerhard@ifi.uio.no
�SINTEF Telecom and Informatics, Norway, david.skogan@sintef.no
�Computer Technology Institute, Athens, Greece, tryfona@cti.gr

Abstract

Multiple representation of geographic information oc-
curs when a real-world entity is represented more than once
in the same or different databases. In this paper, we propose
a new approach to the modeling of multiply represented en-
tities and the relationships among the entities and their rep-
resentations. A Multiple Representation Management Sys-
tem is outlined that can manage multiple representations
consistently over a number of autonomous databases. Cen-
tral to our approach is the Multiple Representation Schema
Language that is used to configure the system. It provides an
intuitive and declarative means of modeling multiple rep-
resentations and specifying rules that are used to maintain
consistency, match objects representing the same entity, and
restore consistency if necessary.

Keywords: data modeling, geographic information sys-
tem, multiple representation, consistency rules, data inte-
gration, data management

1 Introduction

Geographic information is needed in a wide range of ap-
plication domains. This information is often managed inde-
pendently by various parties and in specialized geographic
information systems (GISs). Often, the same real-world en-
tity (e.g., a river or a building) is represented by different ob-
jects in the same or different databases1. This phenomenon
is called multiple representation, and is a key problem in
managing geographic information [3].

Multiple representation may be caused by different ap-
proaches in data collection, different semantic definitions,
varying levels of detail, or differing application purposes.
It may be intended, in that an entity is represented at more
than one scale, e.g., the same road can be represented in

1Here object is used when an entity is represented in a database.

the scale of 1:10,000 and 1:50,000, or it may be acciden-
tal, e.g., when two unrelated databases represent the same
entity. In both cases, no tradition exists for maintaining
relations among objects representing the same entity, and
this may lead to inconsistencies. For example, this happens
when a new building is added to a register database, but not
to a corresponding topographical map database.

Geographic databases are often developed with a spe-
cific application in mind. Data are either captured or copied
from another source database and are possibly altered to fit
the application. Traditionally, little concern is given to the
fact that the source database may change. Since it is not
feasible to import the complete source database every time
a change occurs, procedures for detecting changes and up-
dating dependent objects should be developed.

Several characteristics of geographic information com-
plicates the process of keeping objects consistent in a mul-
tiple representation context. An example is that the spatial
extent of an entity may vary depending on the given ab-
straction. The spatial extent is a complex attribute, e.g., a
point, line, or polygon. Consider a city which can be repre-
sented as either a point or a polygon depending on the ab-
straction level used. Fundamental for the representation of
geographic information is the scale. Entities may be repre-
sented at different scales, which again influences the level of
detail of an object being represented. To ensure consistency
in a multiple representation context, it is necessary to spec-
ify the relationship between the geographic objects. Since
these relationships seldom are exact, we need to utilize gen-
eralization functions and spatial or topological operators to
bridge the gaps among the different abstraction levels. A
factor that complicates this process is the varying accuracy
of the objects that is to be compared.

The National Survey and Cadastre in Denmark is respon-
sible for a wide range of geographic databases. Previous
administrative reorganizations and decisions have led to a
range of independent geographic databases describing the
same entities at different scales for various juridical and

1

©2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.

All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted

without the explicit permission of the copyright holder.

planning purposes. Thus, a need exists for an effective
approach to the management of multiply represented ge-
ographic entities. To address this need, we introduce the
notion of a Multiple Representation Management System
(MRMS), the purpose of which is to maintain consistency
over selected autonomous databases storing geographic in-
formation. The problem of multiple representation is here
studied in the context of geographic information. How-
ever, it is our belief that the general principles of an MRMS
may be applied to other subject areas as well. In connec-
tion with the MRMS, we present a Multiple Representation
Schema Language (MRSL) that allows users to model mul-
tiply represented entities, and to specify consistency and
consistency restoration rules in a Multiple Representation
Schema (MRSchema). The MRMS operates according to
an MRSchema, and it protects prior investments in applica-
tion development and employee training by operating non-
intrusively on top of existing database management sys-
tems. A system fulfilling these requirements will ensure
geographic representation databases with higher data qual-
ity.

Our contributions are threefold:

� We develop a novel concept for modeling multiply rep-
resented entities and their consistent representations.

� We outline the Multiple Representation Management
System.

� We describe the Multiple Representation Schema Lan-
guage in detail.

The MRSL is based on an extension to the Unified Model-
ing Language (UML) and on UML’s accompanying Object
Constraint Language (OCL).

We assume that the objects representing the same entity
(called representation objects) exhibit semantic similarities
that enable us to model their correspondences. It is fun-
damental to our approach to describe how the objects corre-
spond to the entity they represent, rather than to describe the
correspondence among objects that represent the same en-
tity. We thus introduce a new type of object that represents
the entity (called an integration object), and we describe
the correspondence between the integration object and its
representation objects. The representation objects can then
be seen as “roles” of the integration objects. The need to
be able to model multiple representations and roles of geo-
graphic entities is described in previous work [9].

Multiple representation of geographic entities has been
subject to research especially in the field of cartographic
and model based generalization [27]. Kilpeläinen [14] in-
vestigates the principles of a system of databases called a
multiple representation database. Her work focuses on gen-
eralization where there is an exact dependency among rep-
resentation objects, whereas we focus on multiple represen-
tation from a more general point of view.

A subfield of multiple representation databases concerns
multi-scale databases. Jones et al. [12] propose a single
multi-scale database that is capable of storing geographic
objects with multiple geometries. This approach requires
an integrated database and does not take into account het-
erogeneous independent databases. Another approach by
Devogele et al. [7] bears similarities with ours. They pro-
pose a multi-scale database that maintains scale-transition
relationships between objects at different scales. However,
they focus mainly on integration and only consider relation-
ships between pairs of objects, whereas our approach han-
dles consistency among more than two representation ob-
jects. A current research initiative is the MurMur project,
described by Spaccapietra et al. [24, 23]. Its focus is to
extend commercial data management software (DBMS or
GIS) to support multiple representation, which is similar to
our goal. However, no result of this work has been pub-
lished yet.

The paper is organized as follows. Section 2 presents
an example to be used throughout the paper. Section 3
describes the MRMS, and Section 4 describes the MRSL,
which is the main contribution of the paper. Finally Sec-
tion 5 concludes and identifies future work.

2 Case Study

The following section presents an example that illus-
trates the challenge of managing multiple representation.
Excerpts of three databases with their respective schemas
in UML are shown in Figure 1. We assume that the reader
is familiar with the UML notation [2].

id : Local_id
location : Point
timeConstructed : Date
usage : BR_useCode

BR_Building

id : Local_id
shape : Polygon
height : Integer
usage : T10_useCode

T10_Building

id : Local_id
shape : Polygon
height : Integer

TM_Building

Technical map
(1:5,000)

Topographic map
(1:10,000)

Buldings register

farmhouse
detached house
apartment house
office
industry
store

«enumeration»
BR_useCode

residential
non-residential

«enumeration»
T10_useCode

D1:TM D2:T10 D3:BR

Figure 1. Representation Classes

The scopes of the different databases are described as the
follows:

� The technical map database (TM) is used as a digital
basis for administrative considerations and register in-
formation. It is based on aerial photo interpretation and

2

on-site registrations. All buildings greater than 10m�

are stored as polygons. Updates happen regularly and
whenever administrative changes occur.

� The topographic map database, 1:10,000, (T10) is
used for analysis purposes and furthermore provides
source data for the production of maps in smaller
scales. It is based on aerial-photo interpretation. All
buildings greater than 25m� are stored as polygons,
but with less geometric detail than in the technical map
database. Buildings smaller than 25m� are not repre-
sented. Updates occur every fifth year.

� The buildings register (BR) gives access to various
kinds of juridical information about buildings. A
building is stored as a point and defined by its us-
age. Only buildings of a certain size are registered,
i.e., small sheds and outbuildings are not registered.
Updates occur regularly.

The classes in the three schemas describe the same en-
tity. Because their objects represent an entity in a spe-
cific database, we call these classes representation classes
(r-classes). The r-classes all have spatial attributes. The
shape is of the spatial type polygon and the location
is of the spatial type point. The attribute domains for
the usage attribute in T10 BUILDING and BR BUILDING

are based on two different enumerations. The height
attribute in T10 BUILDING is in meters above sea level,
whereas the height attribute in TM BUILDING is the
exact height of the building. Finally there is an attribute
timeConstructed in the BR BUILDING, which tells us
when the building was constructed.

The inexpedience in this multiple representation scenario
is that the three databases have been developed separately.
There is for example no explicit correspondence between
the usage of a building in T10 and BR, even though pre-
cise information about the usage exists in BR and could be
used in T10 instead of using aerial photo interpretation to
resolve the usage. If we can describe the exact correspon-
dence and ensure consistency between these two representa-
tions, it would save maintenance efforts and would improve
data quality.

An example of building objects can be seen in Figure 2.
Here we have a building in TM and the same building in
T10 with less detail. In BR, two building objects exist be-
cause the extent of the building overlaps two different prop-
erties. The usage in BR is “store” and “office”, respec-
tively. In T10 the usage is “non-residential”. The height
of the building location in T10 is 50 meters above sea level,
whereas the exact height of the building itself in TM is 5
meters. The example uncovers several potential consistency
requirements:

1. The shape of the building in T10 should be a simplifi-
cation of the corresponding building in TM.

Object O2
id: 3992
height: 50 m.a.s.
useCode: non-residential
shape

Topographic map
(1:10,000)

D2:T10

Technical map
(1:5,000)

Object O1
id: 69993
height: 5 m.
shape

Entity E1

D1:TM

Buldings register
Object O3
id: 2300
useCode: store
timeConstructed: 1965
location

Object O4
id: 2301
useCode: office
timeConstructed: 1970
location

D3:BR

Entity E1
Entity E1

Figure 2. Examples of Building Objects

2. The location of the building in BR should be inside the
shape of the corresponding building in TM.

3. The height of the building in T10 should correspond
to the sum of the height of the terrain and the building
in TM.

4. The usecode enumeration in T10 should correspond
to the enumeration in BR. Since two different value
domains exist, transformation from one to the other is
needed.

These requirements are later specified in a Multiple Repre-
sentation Schema, which can be used to configure the Mul-
tiple Representation Management System described next.

3 Multiple Representation Management Sys-
tem

The aim of this section is to present the motivation and
context of our approach. We do this by describing a Multi-
ple Representation Management System (MRMS). It is not
our intention to describe the system in detail, but rather to
introduce important requirements to such a system.

The main purpose of the MRMS is to actively maintain
multiply represented entities with respect to a set of consis-
tency rules. The MRMS can be seen as a loosely coupled,
federated database system [21], as it is a collection of coop-
erating, but autonomous component database systems. The
component database systems encapsulate the representation
databases. We use the term representation object (r-object)
to refer to an object stored in a representation database. The
MRMS is loosely coupled since it does not require full con-
trol over the representation databases, and neither does it re-
quire a complete integrated federated schema. A federated
schema usually provides an integrated view of the underly-
ing representation databases. The purpose of the MRMS,
however, is different and its schema is called the Multiple
Representation Schema (MRSchema). Related work can be
found in the field of distributed integrity constraint mainte-
nance [11, 13].

The MRSchema is central to the MRMS. This schema
defines a number of consistency, matching, and restoration

3

rules expressed in the Multiple Representation Schema Lan-
guage (MRSL) specified in Section 4. The representation
databases are assumed to be part of GISs that are main-
tained by independent parties. As a result, it is techni-
cally and politically difficult, if not impossible, to change
the schemas or the data manipulation interfaces of the rep-
resentation databases to accommodate the MRMS. There-
fore, the MRMS must operate on top of the representation
databases and must be non-intrusive so that the autonomies
of the representation databases are maintained.

We identify the following requirements as essential for
the management of multiple representations. The MRMS
must:

� Be configurable according to the rules defined in the
MRSchema.

� Be able to match r-objects located in different repre-
sentation databases and identify multiply represented
entities according to the matching rules stated in the
MRSchema.

� Provide a repository over the multiply represented en-
tities in order to keep track of the entities that are con-
sistent and those that are not.

� Evaluate the consistency rules with respect to a multi-
ply represented entity.

� Monitor the representation databases for changes to
the r-objects that may affect the consistency of the mul-
tiply represented entities managed by the MRMS.

� Send requests for consistency restoration actions to
the relevant representation database when an incon-
sistency is detected. The requests are based on the
restoration rules given in the MRSchema.

The MRMS will maintain an acceptable level of consistency
among the representation databases. The MRMS also needs
efficient access to the rules expressed in the MRSchema to
be operational. Since the MRMS is non-intrusive, the con-
sistency restoration actions must be forwarded to the rep-
resentation databases. Based on the type of the restoration
action, it is up to the representation database manager to de-
cide whether the request can be performed automatically or
whether it should be handled manually.

Figure 3 shows the architecture of an MRMS. It consists
of six components and is associated with a set of compo-
nent database systems containing representation databases
��� � � � � ��. The MRSchema component represents the
MRSchema, which defines the multiply represented enti-
ties to be managed. The Multiple Representation Engine
is the main processing component and is responsible for
evaluating the consistency rules given by the MRSchema.
It uses the MR Repository to store necessary information
about the multiply represented entities managed, and their

MRMS

D2D1

Multiple Representation Engine

Action
Scheduler

Change
Monitor

Object
Matcher

Dn-1 Dn....

MRSchema

MR
Rep.

Figure 3. Example MRMS Architecture

current consistency state. The Multiple Representation En-
gine uses the Object Matcher, Change Monitor and Ac-
tion Scheduler helper components, to interact with the rep-
resentation databases. The Object Matcher is responsible
for finding corresponding representation objects in the un-
derlying databases that form multiply represented entities.
The Change Monitor component is responsible for moni-
toring the representation databases for changes. If a change
occurs, that may lead to an inconsistent state, it notifies
the Multiple Representation Engine, which re-evaluates the
consistency rules for the respective multiply represented en-
tity. The Action Scheduler is used if an inconsistent is de-
tected. It is mainly responsible for dispatching consistency
restoration action requests to the underlying representation
databases.

4 Multiple Representation Schema Lan-
guage

This section presents the multiple representation schema
language (MRSL) that is used to model multiply repre-
sented entities with consistency rules, matching rules, and
restoration rules. We first present the main concepts be-
hind the language. Then the semantics of the most im-
portant constructs are explained together with two concrete
language syntaxes, a graphical one and a lexical one. The
graphical language syntax is based UML and the lexical lan-
guage syntax is based on OCL [26]. UML and OCL are
chosen because of their expressive power and because they
can be extended to suit our needs. Further they are platform
independent and not tied to a specific implementation. To
realize a MRMS system we therefore need to create map-
pings to specific implementation platforms.

4

4.1 Towards Integration

To enable a functional MRMS, we need to define perti-
nent correspondences among the representation databases.
Traditional methods of defining correspondences among
databases—used, e.g., by Rusinkiewicz et al. [18] and Ceri
and Widom [5]—employ data dependency descriptors to
describe how objects of a source class are related to objects
of a target class in another database. An r-class is typically
defined in the context of one database, which stores repre-
sentation objects (r-objects). It is assumed that r-classes are
defined in a common schema language, in our case UML. A
dependency from a source class to a target class is denoted
by an arrow, which states that a source object is dependent
on the existence of a target object and on some of the target
object’s properties. Figure 4(a) shows a complex depen-

R2 R3 R2' R3'

R1'

R1 R2

I

(a) (b) (c)

R1

R2

Figure 4. Approaches to Define Correspon-
dence

dency scenario. The r-classes R1, R2, and R3 are from dif-
ferent schemas describing a similar concept, i.e., a multiply
represented entity. We can see that R2 is dependent on R1
and R3, that R1 is dependent on R2 and that R3 is depen-
dent on R1. If for example R1 or R3 are updated, R2 might
need to be updated as well. A problem with this method
is that it is only possible to specify dependencies between
pairs of source and target classes. This may be sufficient
in the field of data warehousing and geographic generaliza-
tion [27], where the target representation classes are con-
trolled by derivation rules. The main problem, however, is
when the r-classes constitute a multiply represented entity
that depends on more than one class. This is illustrated by
the complex dependencies among the three classes shown
in Figure 4(a). No common concept exists that binds the
classes together and controls the priority and sequence of
updates. Thus we cannot maintain multiple representation
using dependency descriptors alone.

Another approach is model integration where the aim is
to remove inconsistencies in both schema and data. Sheth
[20] gives an overview of the interoperability area in which
schema [6] and data [7] integration have central parts.

Figure 4(b) illustrates the model integration approach.
Our three classes R1, R2, and R3 are here integrated in a
class hierarchy by modifying the existing classes resulting
in three new classes R1’, R2’, and R3’. The actual instances

then must be converted into the new, integrated schema and
inconsistencies resolved.

4.2 Integration Class

The two approaches presented above do not comply with
our needs. First, we want to ensure the consistency among
multiply represented entities without changing the repre-
sentation database schemas. Second, we want only binary
dependency descriptions to avoid complex correspondence
scenarios. The main concept behind our language is the in-
tegration class (i-class). It allows us to explicitly model
multiply represented entities and use them as a basis for
defining consistency rules. An i-class is a special class that
describes how semantically similar r-classes are related to a
multiply represented entity.

Figure 4(c) shows an i-class, I, that controls the depen-
dencies to its r-classes, R1, R2, and R3. It forms a par-
tial integration of its r-classes and constitutes a concept of
a multiply represented entity that covers, or includes more
than one r-class, because integration is not possible if we
have only one r-class. Notice that only the i-class knows of
its r-classes—no dependencies among the r-classes exist.

The r-classes associated with the i-class bear similari-
ties to the object-oriented concept of roles [17, 10]. The
r-classes can be seen as roles to an i-class and is similar to
the description of roles as being adjunct instances, which
carries role specific characteristics [25]. In our modeling
approach the roles (r-classes) are specified beforehand and
then an i-class is created based on a synthesis of the r-
classes. This is similar to the role model synthesis in the
OOram methodology [16].

An instance of the i-class, the i-object, is a proxy for a
multiply represented entity and is responsible for maintain-
ing links to its r-objects and for keeping them consistent
with respect to a set of rules. These consistency rules are
divided into object correspondences and value correspon-
dences and will be described in Sections 4.3 and 4.4. An
i-object is created in a matching process where it is associ-
ated with its r-objects. The matching rules will be described
in Section 4.5.

Figure 5(a) shows the i-class concept modeled as a meta-
class in UML. It defines generic attributes for identifying
the i-object, representing object and value correspondences,
and for storing matching and restoration rules. It further de-
fines generic operations for evaluating the rules. The meta-
class defines a stereotype called <<i-class>>, which
is used to model user-defined i-classes where application-
dependent attributes and operations are specified. An ex-
ample is shown in Figure 5(b). The i-class’ attributes and
operations are essential for the specification and evaluation
of the consistency rules. Graphically, a new specification
compartment for expressing value correspondences is added

5

to an i-class. This is an extension to the three standard spec-
ification compartments of a UML class.

checkConsistency()
restoreConsistency()
checkAndRestoreConsistency()

Global Id
Object Correspondence
Value Correspondence
Matching Rules
Restoration Rules

«metaclass»
I-class

operations()

attributes

«i-class»
Name

VC specification:

(a) (b)

Figure 5. Integration Class

An multiple representation association (mr-association)
is a directed association from an i-class to an r-class. An
i-class has mr-associations to its r-classes to indicate which
r-classes are its roles. Similar to the UML association we
specify the role name and the multiplicity of the end of
an mr-association close to the r-class, as shown in Fig-
ure 6. The multiplicity specifies the minimum and max-
imum number of r-objects needed to form a complete i-
object. It is important to emphasize that an mr-association
is not an ordinary association, as in the UML terminology,
but combines a UML dependency relation (dashed directed
line) and an ordinary UML association (normal line). The
mr-association is expressed using a dot-dashed, directed
line as shown in Figure 6. If the r-class in an mr-association

«i-class»
IC1

RC2RC1

-r11 -r21..*
«i-class»

IC2

RC3

-r3

2..*

RC4
-r4

1

(a) (b)

Figure 6. Multiple Representation Associa-
tions

is a subordinate concept and perceived as an aggregation,
e.g., a built-up area is an aggregation of buildings, this can
be symbolized by attaching the UML aggregation symbol
to the end of the mr-association, as shown in Figure 6(b).

An integration attribute (i-attribute) holds the authorita-
tive value on which value correspondences are evaluated.
When an i-class is instantiated, its i-attributes are assigned
values from the r-class attributes. It has to be decided
which r-attributes that are to be used in this assignment,
and the ones chosen are denoted as master r-attributes. The
i-attributes are assigned according to the following proce-
dure. Let � be the set of all attributes of the r-classes that
correspond to the i-class. Identify subsets of semantically
similar attributes in �. For each subset �� � �, define an

i-attribute ��. Define the initial and authoritative value of
an i-attribute based on the attributes in ��. In most cases it
can be defined as �� � �� , where the i-attribute is assigned
to exactly one r-attribute. The more general definition is
�� � ����� � � � � ���, where ��� is a function using more
r-attributes (��� � � � � ��), which all are considered as master
attributes to ��. The type and resolution of the i-attribute
are defined by the master r-attribute.

The next two sections describe how to define consistency
rules among the i-class and the r-classes at two levels: the
object correspondence level and the value correspondence
level. These are similar to the existence dependency and
value dependency [5, 15].

4.3 Object Correspondence

An object correspondence (OC) specifies how an ob-
ject of one class should be related to an object of another
class. Here object correspondences define existence depen-
dencies between the instantiation of the i-class and its asso-
ciated r-objects. An OC specifies which r-objects that must
be present to form a complete i-object, and it is described
by the mr-association. The OC can be restricted by attach-
ing constraints to the mr-association indicating that only r-
objects satisfying the constraints will form i-objects. OCL
is used to specify these constraint, and an example is seen in
Figure 7 where a building has two roles to TM BUILDING

and T10 BUILDING. The constraint on the tm role spec-
ifies that only TM BUILDINGs with an area larger than
or equal to 25 m� should be considered. The multiplic-
ity of the mr-associations indicates that we require at least
one T10 BUILDING and at least one TM BUILDING to
be present to form an i-object. If the OC is not satisfied

-t101-tm1

{tm.shape.area() >= 25} «i-class»
Building

T10_BuildingTM_Building

Figure 7. Example of Object Correspon-
dences

then both the i-object and its other corresponding r-objects
should be deleted. Alternatively a new r-object could be
created to satisfy the OC. See Section 4.6 for a further de-
scription of restoration rules. In our lexical language, we
can specify the OC as:

Object Correspondence:
tm [1] : TM_Building

{ tm.shape.area() >= 25 }
t10 [1] : T10_Building

6

4.4 Value Correspondence

A value correspondence (VC) specifies how attribute
values of the i-object and the r-objects should be related.
We have previously introduced a special form of value cor-
respondence, which describes how the i-attributes are re-
lated to their master r-attributes. Here we describe how the
r-attributes, which are not used as master attributes, are re-
lated to the i-attributes. In brief, we denote this relationship
as �� � ��, where the r-attribute, �� , has some form of
similarity to the corresponding i-attribute, � �.

A VC is described as an OCL constraint. An OCL con-
straint is an OCL expression that is Boolean-valued. Thus,
if the constraint evaluates to true the VC holds. If the con-
straint evaluates to false the VC is not satisfied, which in-
dicates that an inconsistency exists. OCL defines a num-
ber of different operators. It provides access to object’s
attributes and operations, as well as navigation of associ-
ations and it has mechanisms to iterate over many valued
collections. Examples of OCL operators include �����,
forAll, exists, and, or, and xor. We extend
these with spatial and topological comparison operators that
allows us to compare spatial attributes, e.g., overlaps,
inside, and touches. Furthermore it is necessary to
provide derivation functions that can be applied to the at-
tributes, e.g., simplify���� where simplify is a spe-
cial generalization function that simplifies a curve or a poly-
gon by removing certain points according to a specific al-
gorithm. The most simple form of a VC is of course the
comparison operator � with no functions applied to the at-
tributes. A more complex VC can use a combination of the
above operations.

Examples of VCs are given in Table 1 that summarizes
the VCs of an i-class, � , that integrates the three r-classes
��, ��, and ��. The left hand side of the table defines

Table 1. Value Correspondences
�

��� � � � ���

�� � ����� ����

�� � ��

�� � ���

�� � ��

�� �� ��

��� � � � ��� ��� � � � ��� ��� � � � ����

�� � �� �� � �� ��
�� � �� �� ���

�� �	 � �� ���
�� � �� �� � �� ���

four i-attributes ��� � � � � �� and how they are assigned to the
respective attributes of the r-classes. The right hand side of
the table defines how the r-attributes correspond (� or �)
to the i-attributes. Notice that the VC (�) needs further
specification. In the example, the master of �� is defined as
a function that aggregates �� and ���. The master of ��� ��,
and �� is equal to ��� ���, and ��, respectively. The VCs
corresponding to ��’s attributes specify that �� and �� are
similar (�) to �� and ��, respectively, that �� is a master

(denoted by the underline), and that �� has an exact (=) VC
to ��. The rest of the table can be read in the same way. An
attribute �� with no underline is not included as a master
attribute, and neither does it have a correspondence to any
i-attribute.

If a VC is not satisfied the MRMS needs to restore con-
sistency. If a master r-attribute is changed, the restoration
procedure is to change the corresponding i-attribute and
then reevaluate the affected VCs. This implies that a com-
parison operation � will be interpreted as an assignment if
the constraint is not satisfied. The restoration procedures
will be further described in Section 4.6.

In UML we specify the value correspondence between
an i-attribute and its master r-attribute as an initial value
in the attribute compartment. A dedicated specification
compartment is used to express the other VCs. For the r-
class we use a different specification compartment to spec-
ify which attributes are used as master and which are in-
cluded in the VC. Each VC is associated with an identi-
fier. Figure 8 shows an example of an i-class with value
correspondences which model the consistency requirements
given in Section 2. References to the requirements are given
in parentheses. VC v1 specifies that t10.shape must
be a simplification of the i-attribute shape. The VC is
expressed as t10.shape = gl.simplify(shape),
where simplify is included in a generalization library
gl. VC m1 indicates that the shape attribute should corre-
spond exactly to the its master value tm.shape. VCs v1
and m1 jointly satisfy requirement 1. VC v4 requires that
br.location is inside shape (requirement 2). VCs m3
and v2 specify that the height attribute is assigned to the
terrain height of the building plus the buildings height taken
from tm and furthermore that t10 height is required to be
equal to this value (requirement 3). VCs m2 and v3 resolve
the possibly many usages of br and map this to the t10
usage (requirement 4).

An example of the VC is given below where the i-class
Building is specified in the lexical language. In the VC,
the <<master>> keyword indicates that the i-attribute has
the corresponding r-attribute as master.

iclass Building
Attributes:

shape : Polygon
usage : BR_useCode
height : Integer

Operations:
resolveUsage(set<BR_useCode>) : BR_useCode
mapUsage(BR_useCode) : T10_useCode

Object Correspondence:
tm [1] : TM_Building

{ tm.shape.area() >= 25 }
t10 [1] : T10_Building
br [1..*] : BR_Building

Value Correspondence:
m1: shape = <<master>> tm.shape
m2: usage = <<master>> resolveUsage(br.usage)

7

resolveUsage() : BR_useCode
mapUsage() : T10_useCode

shape : Polygon = tm.shape {m1}
usage : BR_useCode = resolveUsage(br) {m2}
height : Integer = terrain.height + tm.height {m3}

«i-class»
Building

id : Local_id
shape : Polygon
height : Integer

TM_Building

m1
m3

id : Local_id
shape : Polygon
height : Integer
usage : T10_useCode

T10_Building

v1
v2
v3

id : Local_id
location : Point
timeConstructed : Date
usage : BR_useCode

BR_Building

v4

m2

-br1..*

VC specification:
v1: t10.shape = gl.simplify(shape)
v2: t10.height = height
v3: t10.usage = mapUsage(usage)
v4: br.location inside shape

-t101

-tm1

{tm.shape.area() >= 25}

Figure 8. Integration class with VC

m3: height = <<master>> terrain.height(shape)+
tm.height

v1: t10.shape = gl.simplify(shape)
v2: t10.height = height
v3: t10.usage = mapUsage(usage)
v4: br.location inside shape

end iclass

4.5 Object Matching Rules

To create an i-object, we need to identify the r-objects
that form a multiply represented entity. This process is
called object matching, and it is controlled by object match-
ing rules associated with the i-classes. An object matching
rule specifies a strategy for how to find corresponding r-
objects.

The object matching process for an i-class follows cer-
tain steps. The first step is to identify the r-objects that
are candidates to be matched. The mr-associations together
with additional constraints can be used to select the ini-
tial set of r-objects, one set for each mr-association. The
next step is to select an mr-association as the starting point
for the match and to create an incomplete i-object with at-
tributes instantiated with the master r-attributes. Then, for
each remaining mr-association, we need to find the r-objects
that match the i-object under construction. The process is
continued until all r-objects have been associated with an
i-object.

Three different matching criteria can be used: global

object identifier, attribute comparison, and manual inspec-
tion. The global object identifier approach provides an ex-
act match criterion. It is assumed that the r-objects share a
common unique global identifier that exactly identifies the
entity represented. Thus if two or more r-objects have the
same global identifier, matching becomes trivial. The need
for global identifiers in the management of geographic in-
formation is described in previous work [1, 19].

The attribute comparison approach involves finding ob-
jects based on similar attribute values. The selection of the
attributes and the comparison operators can be based on
the value correspondences, but also on other criteria. Spa-
tial attributes may provide a basis for matching, because
we normally can assume that two objects that are spatially
overlapping represent the same entity. The attributes’ res-
olution differences may complicate the matching criteria,
and there is a need to define tolerances and operations that
take into account the resolution difference between two ob-
jects [8, 22]. Attribute comparison may fail due to poor
data quality or resolution differences among the r-objects.
In such cases the r-objects may still be matched by manual
inspection. These rules can in their simplest form rely on
visual interpretations.

An example is a matching rule for the i-class BUILDING

shown in Figure 7. The mr-association to TM BUILDING

is selected as a source, and a set of tm buildings greater
than 25 m� is prepared. For each tm building, a match is
attempted in the t10 set using VC v1 as a matching cri-
terion. After all tm objects are associated with an i-object
then the possibly remaining unmatchedt10 objects are also
associated with an i-object.

The result of the matching process is a set of i-objects,
where each i-object is associated with a number of r-objects;
the consistency rules can then be evaluated. If the OCs are
not satisfied, the i-object is incomplete, i.e., all the required
r-objects have not been found. This means that further con-
sistency checks cannot be performed. If the i-object on the
other hand has a valid OC then it can be evaluated against
its VCs. If the VCs or the OCs are not satisfied we say that
the i-object is inconsistent. After the object matching pro-
cess, we may end up with a set of inconsistent i-objects. In
the next section, we describe restoration rules that can be
used to restore an i-object’s consistency.

4.6 Restoration Rules

If an i-object is inconsistent, we need to identify the rea-
son behind the problem and apply appropriate restoration
actions that will restore the i-object to a consistent state. A
restoration rule specifies not only the actions needed for
restoring consistency but also the conditions that should
trigger an update action. The restoration rules define the
core set of restoration actions that can be applied when an

8

OC or VC is not satisfied. This may happen when changes
occur in the representation databases.

Changes to the r-objects involve insertion of new r-
objects and update or deletion of existing r-objects. The
restoration actions are highly dependent on the represen-
tation databases and what correspondence statements that
have been violated. They involve everything from sim-
ple requests for actions, such as insert, update, and delete,
to complex combinations of such requests. Restoration
rules may be automatically generated by analyzing the
MRSchema, following the principles described in Ceri and
Widom [4].

If an OC is not satisfied, it means that the expected cor-
respondence among the i-object and its r-objects no longer
exists. Two strategies can be applied: Either the inconsis-
tent i-object and the remaining r-objects can be deleted, or
the absent r-objects can be inserted and then the i-object
can be updated. For example if a required r-object has been
deleted, a restoration action can be to delete the i-object and
its other r-objects altogether. The actions when violating an
OC seem straightforward, but the difficult part is to decide
which of the two restoration strategies to follow.

If a VC is not satisfied, it means that a value or several of
the values of the r-attributes no longer correspond with the
i-attributes. There are two ways of restoring an i-object’s
consistency, either by updating the i-attributes or by chang-
ing the i-objects’ respective r-objects. An example of the
former is if a master r-attribute has changed. Then the re-
spective i-attributes must be updated accordingly. If a VC
is violated then the restoration action can be extracted from
the VC. This results in a modification request to change the
respective r-object.

The restoration actions can either be directly applied to
the representation database or they can be applied indirectly,
by notifying the representation database manager about the
inconsistency and request necessary restoration actions to
be made.

An example of a restoration rule for the BUILDING i-
class shown in Figure 7 is: if a TM BUILDING object exists
and no corresponding object is found in the T10 representa-
tion database, then a T10 BUILDING object shall be created
using the VC v1.

5 Conclusion

In this paper we have presented a new approach to the
modeling and management of multiply represented enti-
ties in the context of a Multiple Representation Manage-
ment System. We have described a Multiple Representa-
tion Schema Language (MRSL) that enables users to ex-
press their consistency requirements across a system of au-
tonomous databases. Our approach provides a solution to
the consistency problems that arise from the multiple rep-

resentation of entities among geographic information sys-
tems.

The MRSL is a comprehensive and expressive language
that makes it possible to model multiple representation as
well as specifying consistency rules, matching rules, and
restoration rules. In addition, it is extendible so that user-
defined operations can be specified. A key concept in our
approach is the integration class (i-class). Its use permits
us to manage multiply represented entities by integrating
heterogeneous representation objects via a single integra-
tion object. The i-object is responsible for keeping its r-
objects consistent according to the consistency rules given
by its class. The i-class concept comprises an intuitive ap-
proach to multiple representation modeling and it enables
us to model the consistency requirements described in the
case study. Compared to the traditional dependency de-
scription approaches, the i-class reduces the complexity of
handling correspondences among several semantically sim-
ilar r-classes.

Our approach is non-intrusive, which fulfills the require-
ment that the databases are to be kept autonomous. We use
UML and OCL as the basis for our graphical and lexical
language syntaxes, and we have found that the extension
mechanisms in UML have been sufficient for our needs.

Future work involves formalization of the MRSL, where
matching rules and restoration rules must be addressed in
particular. We further want to investigate methods to ensure
correctness of the rules specified in the MRMS to avoid
discrepancies among them. Finally, to test the efficacy of
our approach, we need to design and implement a prototype
MRMS and evaluate it with respect to a more comprehen-
sive case study.

Acknowledgements

This work was supported in part by a mobility schol-
arship from the Nordic Academy for Advanced Study
(NorFA), the Norwegian Research Council’s DYNAMAP-I
project 118048/223, the Wireless Information Management
network, funded by NorFA through grant 000389, and by a
grant from the Nykredit corporation. The authors wish to
thank Bjørn Skjellaug for helpful comments.

References

[1] Y. Bishr. A Global Unique Persistent Object ID for Geospa-
tial Information Sharing. In Proceedings of the 2nd Interna-
tional Conference on Interoperating Geographic Informa-
tion Systems, Volume 1580 of Lecture Notes in Computer
Science, pages 55–64. Springer, 1999.

[2] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Mod-
eling Language User Guide. Object Technology Series.
Addison-Wesley, USA, 1st edition, 1999.

9

[3] B. P. Buttenfield and J. S. DeLotto. Multiple Representa-
tions – Scientific Report for the Specialist Meeting. Report
89-3, National Center for Geographic Information Analysis,
NCGIA, Department of Geography, SUNY at Buffalo, Buf-
falo, NY 14260, 18-21 Februrary 1989.

[4] S. Ceri and J. Widom. Deriving Production Rules for Con-
straint Management. In Proceedings of the 16th Interna-
tional Conference on Very Large Data Bases, pages 566–
577, Brisbane, Queensland, Australia, 13-16 August 1990.
Morgan Kaufmann.

[5] S. Ceri and J. Widom. Managing Semantic Heterogeneity
with Production Rules and Persistent Queries. In Proceed-
ings of the 19th International Conference on Very Large
Data Bases, pages 108–119, Dublin, Ireland, 24–27 Aug.
1993.

[6] T. Devogele, C. Parent, and S. Spaccapietra. On Spatial
Database Integration. International Journal of Geographic
Information Systems, 12(4):335–352, 1998.

[7] T. Devogele, J. Trevisan, and L. Raynal. Building a Multi-
scale Database with Scale-transition Relationships. In Pro-
ceedings of the 7th International Symposium on Spatial
Data Handling, pages 337–351, Delft, Netherlands, 1996.

[8] M. J. Egenhofer, E. Clementini, and P. D. Felice. Evalu-
ating Inconsistencies Among Multiple Representations. In
Proceedings of the 6th International Symposium on Spatial
Data Handling, pages 901–920, Edinburgh, Scotland, UK,
1994.

[9] A. Friis-Christensen, N. Tryfona, and C. S. Jensen. Require-
ments and Research Issues in Geographic Data Modeling.
In Proceedings of the 9th ACM International Symposium on
Advances in Geographic Information Systems, pages 2–8,
Atlanta, Georgia, November 2001.

[10] G. Gottlob, M. Schrefl, and B. Röck. Extending Object-
Oriented Systems with Roles. ACM Transactions on Infor-
mation Systems, 14(3):268–296, July 1996.

[11] P. W. P. J. Grefen and J. Widom. Protocols for Integrity
Constraint Checking in Federated Databases. Distributed
and Parallel Databases, 5(4):327–355, 1997.

[12] C. Jones, D. Kidner, L. Luo, G. Bundy, and J. Ware.
Database Design for a Multi-scale Spatial Information Sys-
tem. International Journal of Geographic Information Sys-
tems, 10(8):901–920, 1996.

[13] G. Karabatis, M. Rusinkiewicz, and A. Sheth. In-
terdependent Database Systems. In A. Elmagarmid,
M. Rusinkiewicz, and A. Sheth, editors, Management of
Heterogeneous and Autonomous Database Systems, Data
Management Systems, Chapter 8, pages 217–252. Morgan
Kaufman, 1999.

[14] T. Kilpeläinen. Multiple Representation and Generaliza-
tion of Geo-databases for Topographic Maps. PhD thesis,
Finnish Geodetic Institute, 1997. ISBN 951-711-211-4.

[15] Q. Li and D. McLeod. Managing Interdependencies among
Objects in Federated Databases. In Proceedings of the IFIP
Database Semantics Conference on Interoperable Database
Systems (DS-5), IFIP Transactions A-25, pages 331–347,
Lorne, Victoria, Australia, Nov. 1992.

[16] T. Reenskaug. Working With Objects : The OORAM Soft-
ware Engineering Method. Manning Publications Co., USA,
1996.

[17] J. Richardson and P. Schwarz. Aspects: Extending Objects
to Support Multiple, Independent Roles. In Proceedings of
the ACM SIGMOD International Conference on Manage-
ment of Data, pages 298–307, Denver, Colorado, USA, May
1991.

[18] M. Rusinkiewicz, A. Sheth, and G. Karabatis. Specifying In-
terdatabase Dependencies in a Multidatabase Environment.
Computer, 24(12):46–53, Dec. 1991.

[19] P. Sargent. Features Identities, Descriptors and Handles. In
Proceedings of the 2nd International Conference on Inter-
operating Geographic Information Systems, Volume 1580 of
Lecture Notes in Computer Science, pages 41–53. Springer,
1999.

[20] A. P. Sheth. Changing Focus on Interoperability in Infor-
mation Systems: From System, Syntax, Structure to Seman-
tics. In M. F. Goodchild, M. J. Egenhofer, R. Fegeas, and
C. A. Kottman, editors, Interoperating Geographic Informa-
tion Systems. Kluwer, 1998.

[21] A. P. Sheth and J. A. Larson. Federated Database Systems
for Managing Distributed, Heterogeneous, and Autonomous
Databases. ACM Computing Surveys, 22(3):183–236, 1990.

[22] D. Skogan. Managing Resolution in Multi-Resolution
Databases. In Proceedings of the 8th Scandinavian Research
Conference, pages 99–113, Ås, Norway, 2001.

[23] S. Spaccapietra, C. Parent, and C. Vangenot. GIS Databases:
From Multiscale to MultiRepresentation. In B. Choueiry
and T. Walsh, editors, Proceedings of the 4th International
Symposium on Abstraction, Reformulation, and Approxima-
tion, Volume 1864 of Lecture Notes in Artificial Intelligence,
pages 57–70. Springer, July 2000.

[24] S. Spaccapietra, C. Vangenot, C. Parent, and E. Zimanyi.
MurMur: A Research Agenda on Multiple Representa-
tions. In Proceedings of the International Symposium on
Database Applications in Non-Traditional Environments,
Kyoto, Japan, November 1999.

[25] F. Steimann. On the Representation of Roles in Object-
Oriented and Conceptual Modelling. Data & Knowledge
Engineering, 35(1):83–106, 2000.

[26] J. B. Warmer and A. G. Kleppe. The Object Constraint Lan-
guage : Precise Modeling with UML. Object Technology
Series. Addison-Wesley, USA, 1st edition, 1999.

[27] R. Weibel and G. H. Dutton. Generalising Spatial Data
and Dealing with Multiple Representations. In P. Long-
ley, M. Goodchild, D. Maguire, and D. Rhind, editors, Geo-
graphic Information Systems - Principles and Technical Is-
sues, Volume 1, pages 125–155. John Wiley & Sons, 2 edi-
tion, 1999.

10

