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Abstract

With the proliferation of wireless communications and
the rapid advances in technologies for tracking the posi-
tions of continuously moving objects, algorithms for effi-
ciently answering queries about large numbers of moving
objects increasingly are needed. One such query is the re-
verse nearest neighbor (RNN) query that returns the objects
that have a query object as their closest object. While algo-
rithms have been proposed that compute RNN queries for
non-moving objects, there have been no proposals for an-
swering RNN queries for continuously moving objects. An-
other such query is the nearest neighbor (NN) query, which
has been studied extensively and in many contexts. Like the
RNN query, the NN query has not been explored for moving
query and data points.

This paper proposes an algorithm for answering RNN
queries for continuously moving points in the plane. As a
part of the solution to this problem and as a separate con-
tribution, an algorithm for answering NN queries for con-
tinuously moving points is also proposed. The results of
performance experiments are reported.

1 Introduction

We are currently experiencing rapid developments in key
technology areas that combine to promise widespread use
of mobile, personal information appliances, most of which
will be on-line, i.e., on the Internet. Industry analysts uni-
formly predict that wireless, mobile Internet terminals will
outnumber the desktop computers on the Internet.

This proliferation of devices offers companies the op-
portunity to provide a diverse range of e-services, many of
which will exploit knowledge of the user’s changing loca-
tion. Location awareness is enabled by a combination of
political developments, e.g., the de-scrambling of the GPS
signals and the US E911 mandate, and the continued ad-

vances in both infrastructure-based and handset-based posi-
tioning technologies.

The area of location-based games offers good examples
of services where the positions of the mobile users play a
central role. In the recently released BotFighters game, by
Swedish company It’s Alive, players get points for finding
and “shooting”other players via their mobile phones. Only
players close by can be shot. In such mixed-reality games,
the real physical world becomes the backdrop of the game,
instead of the world created on the limited displays of wire-
less devices [5].

To track and coordinate large numbers of continuously
moving objects, their positions are stored in databases.
Here, the conventional assumption, that data remains con-
stant unless it is explicitly modified, no longer holds. An
update is needed when the real position of an object de-
viates from that stored in the database by an application-
dependent threshold. Modeling the position of an object
as a static point either leads to very frequent updates or a
very outdated database. To reduce the amount of updates
needed, the positions of moving point objects have instead
been modeled as functions of time. This makes the recorded
positions more resilient to object movement, so that they
may be expected to approximately capture the actual posi-
tions for longer time periods.

We consider the computation of nearest neighbor (NN)
and reverse nearest neighbor (RNN) queries in this setting.
In the NN problem, which has been investigated extensively
in other settings, the objects in the database that are nearer
to a given query object than any other objects in the database
have to be found. In the RNN problem, which is new and
largely unexplored, objects that have the query object as
their nearest neighbor have to be found. In the example
to the left in Figure 1, the RNN query for point 1 returns
points 2 and 5. Points 3 and 4 are not returned because they
have each other as their nearest neighbors. Note that even
though point 2 is not a nearest neighbor of point 1, point 2
is the reverse nearest neighbor of point 1 because point 1 is
the closest to point 2.
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Figure 1. Static and Moving Points

A straightforward solution to computing reverse nearest
neighbor (RNN) queries is to check for each point whether
it has a given query point as its nearest neighbor. However,
this approach is unacceptable when the number of points is
large.

The situation is complicated further when the query and
data points are moving rather than static and we want to
know the reverse nearest neighbors during some time inter-
val. For example, if points are moving as depicted to the
right in Figure 1, then after some time, point 4 becomes a
reverse nearest neighbor of point 1, and point 3 becomes
a nearest neighbor of point 5, meaning that point 5 is no
longer a reverse nearest neighbor of point 1.

Reverse nearest neighbors can be useful in applications
where moving objects agree to provide some kind of ser-
vice to each other. Whenever a service is needed an object
requests it from its nearest neighbor. An object then may
need to know how many objects it is supposed to serve in
the near future and where those objects are. The examples
of moving objects could be soldiers in a battlefield, tourists
in dangerous environments, or mobile communication de-
vices in wireless ad-hoc networks. In mixed-reality games
like the one mentioned earlier, players may be “shooting”
their nearest neighbors. Then a player may be interested
to know who are her reverse nearest neighbors in order to
dodge their fire.

There are proposed solutions for efficiently answering
reverse nearest neighbor queries for non-moving points [12,
23, 25], but we are not aware of any algorithms for moving
points. While much work has been conducted on algorithms
for nearest neighbor queries, we are aware of only one work
that has explored algorithms for a moving query point and
static data points [22] and of no solutions for moving data
and query points in two or higher dimensional space.

This paper proposes an algorithm that efficiently com-
putes RNN queries for a query point during a specified time
interval assuming the query and data points are continu-
ously moving in the plane. As a solution to a subprob-
lem, an algorithm for answering NN queries for continu-
ously moving points is also proposed.

In the next section, the problem addressed by the paper
is defined and related work is covered in further detail. In
Section 3 our algorithms are presented. In Section 4 the
results of the experiments are given, and Section 5 offers a

summary and directions for future research.

2 Problem Statement and Related Work

We first describe the data and queries that are considered
in this paper. Then we survey the existing solutions to the
most related problems.

2.1 Problem Statement

We consider two-dimensional space and model the posi-
tions of two-dimensional moving points as linear functions
of time. That is, if at time �� the coordinates of a point are
��� �� and its velocity vector is �� � ���� ���, then it is as-
sumed that at any time � � �� the coordinates of the point
will be �� � ��� ������ � � �� � ������, unless a new (po-
sition, velocity) pair for the point is reported.

With this assumption, the nearest neighbor (NN) and re-
verse nearest neighbor (RNN) query problems for continu-
ously moving points in the plane can be formulated as fol-
lows.

Assume (1) a set � of moving points, where each point
is specified by its coordinates ��� �� and its velocity vector
���� ��� at some specific time; (2) a query point � � �; and
(3) a query time interval ���� ���, where �� � �������� , and
�������� is the time when the query is issued.

Let ��� and ���� denote sets of moving points
and �� denote a time interval. The NN query returns
the set ����� � ����, and the RNN query returns the set
������ � ����. These sets satisfy the conditions

�
� �� �

���� ��� and � �� 	 � �� 	 �� � 
. In addition, each point
in ��� is a nearest neighbor to � during all of interval � � ,
and ���� is the set of the reverse nearest neighbors to �

during all of interval �� . That is, �	 �
 � ��� �� �
� � �
� ����� 
� 
 ���� ��� and �	 �
 � ���� �� �
���
� ����� 
� 
 ��
� ��� during all of �� , where ��
�� 
��
is the Euclidean distance between points 
� and 
�.

The requirement that the query point � belongs to data
set � is natural for RNN queries—the points from � are
“looking” for their neighbors among the other points in �.
Nevertheless, none of the solutions presented in this paper
rely inherently on this assumption. Thus, � could as well be
a point not belonging to �.

Observe that the query answer is temporal, i.e., the fu-
ture time interval ���� ��� is divided into disjoint intervals ��

during which different answer sets (��� , ���� ) are valid.
Some of these answers may become invalidated if some of
the points in the database are updated before ��.

According to the terminology of Sistla et al. [20], we
term queries with answer sets that are maintained under up-
dates persistent. It may be useful to change the query time
interval in step with the continuously changing current time,
i.e., it may be useful to have ���� ��� � ���� ���� � ��,



where ��� is the continuously changing current time. Such
a query is termed continuous. Algorithms for updates and
persistent and continuous queries are available in the ex-
tended version of this paper [2].

2.2 Related Work

Reverse nearest neighbor queries are intimately re-
lated to nearest neighbor queries. In this section, we
first overview the existing proposals for answering near-
est neighbor queries, for both stationary and moving points.
Then, we discuss the proposals related to reverse nearest
neighbor queries.

2.2.1 Nearest Neighbor Queries

A number of methods were proposed for efficient process-
ing of nearest neighbor queries for stationary points. The
majority of the methods use index structures. Some pro-
posals rely on index structures built specifically for nearest
neighbor queries [3]. Branch-and-bound methods work on
index structures originally designed for range queries. Per-
haps the most influential in this category is an algorithm for
finding the 
 nearest neighbors proposed by Roussopoulos
et al. [16]. In this solution, an R-tree [6] indexes the points,
and traversal of the tree is ordered and pruned based on a
number of heuristics. Cheung and Fu [4] simplified this al-
gorithm without reducing its efficiency. Other branch-and-
bound methods modify the index structures to better suit
the nearest neighbor problem [10, 24]. A number of in-
cremental algorithms for similarity ranking have been pro-
posed that can efficiently compute the �
 � 	�-st nearest
neighbor, after the 
 nearest neighbors are returned [9, 8].
They use a global priority queue of the objects to be visited
in an R-tree.

Kollios et al. [11] propose an elegant solution for an-
swering nearest neighbor queries for moving objects in one-
dimensional space. Their algorithm uses a duality trans-
formation, where the future trajectory of a moving point
���� � �� � ��� is transformed into a point ���� ��� in
a so-called dual space. The solution is generalized to the
“1.5-dimensional” case where the objects are moving in the
plane, but with their movements being restricted to a num-
ber of line segments (e.g., corresponding to a road network).
However, a query with a time interval predicate returns the
single object that gets the closest to the query object dur-
ing the specified time interval. It does not return the near-
est neighbors for each time point during that time interval
(cf. the problem formulation in Section 2.1). Moreover, this
solution cannot be straightforwardly extended to the two-
dimensional case, where the trajectories of the points be-
come lines in three-dimensional space.

Most recently, Song and Roussopoulos [22] have pro-
posed a solution for finding the 
 nearest neighbors for a

moving query point. However, the data points are assumed
to be static. In addition, in contrast to our approach, time is
not assumed to be continuous—a periodical sampling tech-
nique is used instead. When computing the result set for
some sample, the algorithm tries to reuse the information
contained in the result sets of the previous samples.

2.2.2 Reverse Nearest Neighbor Queries

To our knowledge, three solutions exist for answering RNN
queries for non-moving points in two and higher dimen-
sional spaces. Stanoi et al. [23] present a solution for an-
swering RNN queries in two-dimensional space. Their al-
gorithm is based on the following observations [21]. Let
the space around the query point � be divided into six equal
regions ���	 
 � 
 
� by straight lines intersecting at �,
as shown in Figure 2. Assume also that each region � � in-
cludes only one of its bordering half-lines. Then, there exist
at most six RNN points for �, and they are distributed so that
there exists at most one RNN point in each region ��.
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Figure 2. Division of the Space Around Query
Point �

The same kind of observation leads to the following
property. Let 
 be a NN point of � among points in � �.
Then, either � is the NN point of 
 (and then 
 is the RNN
point of �), or � has no RNN point in ��. Stanoi et al. prove
this property [23].

These observations enable a reduction of the RNN prob-
lem to the NN problem. For each region ��, an NN point
of � in that region is found. We term it an RNN candidate.
If there are more than one NN point in some � �, they are
not RNN candidates. For each of the candidate points, it
is checked whether � is the nearest neighbor of that point.
The answer to the ��� ��� query consists of those candi-
date points that have � as their nearest neighbor.



In another solution for answering RNN queries, Korn and
Muthukrishnan [12] use two R-trees for the querying, inser-
tion, and deletion of points. In the RNN-tree, the minimum
bounding rectangles of circles having a point as their cen-
ter and the distance to the nearest neighbor of that point
as their radius are stored. The NN-tree is simply an R*-
tree [1] where the data points are stored. Yang and Lin [25]
improve the solution of Korn and Muthukrishnan by intro-
ducing the Rdnn-tree, which makes possible to answer both
RNN queries and NN queries using a single tree. Struc-
turally, the Rdnn-tree is an R�-tree where each leaf entry is
augmented with the distance to its nearest neighbor (���)
and where a non-leaf entry stores the maximum of its chil-
dren’s ���’s.

None of the above-mentioned methods handle continu-
ously moving points. In the next section, before presenting
our method, we discuss the extendibility of these methods
to support continuously moving points.

3 Algorithms

This section first describes the main ideas of the TPR-
tree [18], which is used to index continuously moving
points. Then, we briefly discuss the suitability of the meth-
ods described in Section 2.2.2 as the basis for our solution.
The algorithms for answering the NN and RNN queries us-
ing the TPR-tree are presented next, followed by a simple
example of a query.

3.1 TPR-tree

We use the TPR-tree (Time Parameterized R-tree [18]) as
an underlying index structure. The TPR-tree indexes con-
tinuously moving points in one, two, or three dimensions.
It employs the basic structure of the R�-tree [1], but both
the indexed points and the bounding rectangles are aug-
mented with velocity vectors. This way, bounding rectan-
gles are time parameterized—they can be computed for dif-
ferent time points. The velocities of the edges of bounding
rectangles are chosen so that the enclosed moving objects,
be they points or other rectangles, remain inside the bound-
ing rectangles at all times in the future. More specifically, if
a number of points 
� are bounded at time �, the spatial and
velocity extents of a bounding rectangle along the � axis is
computed as follows:

����� � ��
��
�������� ����� � �����
��������
��� � ��
��
������ ��� � �����
�����.

Figure 3 shows an example of the evolution of a bound-
ing rectangle in the TPR-tree computed at � � �. Note that,
in contrast to R-trees, bounding rectangles in the TPR-tree
are not minimum at all times. In most cases, they are mini-
mum only at the time when they are computed. Other than

t = 0 t = 1

Figure 3. Time-Parameterized Bounding Rect-
angle

that, the TPR-tree can be interpreted as an R-tree for any
specific time, �. This suggests that the algorithms that are
based on the R-tree should be easily “portable” to the TPR-
tree.

3.2 Preliminaries

Our RNN algorithm is based on the proposal of Stanoi et
al. [23], described in Section 2.2.2. This algorithm uses the
R-tree and does not require any specialized index structures.
The other two proposals mentioned in Section 2.2.2 store,
in one form or another, information about the nearest neigh-
bor(s) of each point. With moving points, such information
changes as time passes, even if no updates of objects occur.
By not storing such information in the index, we avoid the
overhead of its maintenance.

The sketch of the algorithm is analogous to the one de-
scribed in Section 2.2.2. Our RNN algorithm first uses the
NN algorithm to find the NN point in each ��. For each of
these candidate points, the algorithm assigns a validity time
interval, which is part of the query time interval. Then, the
NN algorithm is used again, this time unconstrained by the
regions ��, to check when, during each of these intervals,
the candidate points have the query point as their nearest
neighbor.

3.3 Algorithm for Finding Nearest Neighbors

Our algorithm for finding the nearest neighbors for con-
tinuously moving points in the plane is based on the algo-
rithm proposed by Roussopoulos et al. [16]. That algorithm
traverses the tree in depth-first order. Two metrics are used
to direct and prune the search. The order in which the chil-
dren of a node are visited is determined using the function
�	��	
���� ��, which computes the minimum distance be-
tween the bounding rectangle � of a child node and the
query point �. Another function, �	�����	
���� ��, which



gives an upper bound of the smallest distance from � to
points in R, assists in pruning the search.

Cheung and Fu [4] prove that, given the �	��	
� -based
ordering of the tree traversal, the pruning obtained by Rous-
sopoulos et al. can be achieved without use of�	�����	
� .
Their argument does not seem to be straightforwardly ex-
tendible to our algorithm, where �	��	
� is extended to
take into account temporal evolution. Nevertheless, because
the �	�����	
� function is based on the assumption that
bounding rectangles are always minimum [16], which is not
the case in the TPR-tree (cf. Figure 3), we cannot adapt this
function to our need.

In describing our algorithm, ������, the following
notation is used. The function ���
� �� denotes the square
of the Euclidean distance between query point � and point 

at time �. Similarly, function ����� �� indicates the square
of the distance between the query point � and the point on
rectangle � that is the closest to point � at time �.

Because the movements of points are described by linear
functions, for any time interval ���� ���, ���
� �� � ��� �
�� � �, where � � ���� ��� and �, �, and � are constants
dependent upon the positions and velocity vectors of 
 and
�. Similarly, any time interval ���� ��� can be subdivided
into a finite number of non-intersecting intervals � � so that
����� �� � ���

� � ��� � ��, where � � �� and ��, ��, and
�� are constants dependent upon the positions and velocity
vectors of� and �. Function �� ��� �� is zero for times when
� is inside �. The details of how the interval is subdivided
and how the constants ��, ��, and �� are computed can be
found elsewhere [2].

Nearest Neighbor Algorithm

�������� � ���� ����:
1: �� � ���� ���, set �	������ 
 and ��	�� �����.
2: Do a depth-first search in the TPR-tree, starting from the
root. For each visited node:
2.1: If it is a non-leaf node, order all rectangles � in the

node according to the metric � ��� �� �
� ��

��
����� ����.

The entries corresponding to rectangles with smaller
� ��� �� are visited first. For each �:
2.1.1: If �� � ���� ��������� �� � ��	������, prune rectan-
gle �.
2.1.2: Else, go deeper into the node corresponding to �.
2.2: If it is a leaf node, for each 
 contained in it, such that

 �� �:
2.2.1: If �� � ���� �������
� �� � ��	�� ����, skip 
.
2.2.2: If �� � � �� � � � ���� �������
� �� � ��	������,
set �� � � � ��	����� � �
�� ��	����� � ���
� ���.
If �� � � �� � � � ���� �������
� �� � ��	������, set
�� � � � ��	������ �	����� � �
��.

The algorithm maintains a list of intervals �� as men-
tioned in Section 2.1. Initially the list contains a single
interval ���� ���, which is subdivided as the algorithm pro-
gresses. Each interval �� in the list has associated with it (i)
a point 
� , and possibly more points with the same distance
from � as 
� , that is the nearest neighbor of � during this
interval among the points visited so far and (ii) the squared
distance ���
� � �� of point 
� to the query point expressed
by the three parameters �, �, and �. In the description of the
algorithm, we represent this list by two functions. For each
� � ���� ���, function�	����� denotes the points that are the
closest to � at time � (typically, there will only be one such
point), and ��	����� indicates the distance between � and
�	����� at time �.

Steps 2.1.1, 2.2.1, and 2.2.2 of the algorithm involve
scanning through a list (or two) of time intervals and solv-
ing quadratic inequalities for each interval. In step 2.2.2,
new intervals are introduced in the answer list. After the
traversal of the tree, for each �� in the answer list, �� �
������ � �	������.

The idea behind metric � in step 2.1 is to visit first parts
of the tree that are on average the closest to the query point
�. The rectangle is pruned if there is no chance that it will
contain a point that at some time during the query interval is
closer to the query point � than the currently known closest
point to � at that time.

3.4 Algorithm for Finding Reverse Nearest Neigh-
bors

In this section, we describe algorithm ������� that
computes the reverse nearest neighbors for a continuously
moving point in the plane. The notation is the same as
in the previous section. The algorithm produces a list
���� � ��
� � ����, where 
� is the reverse nearest neigh-
bor of � during time interval �� . Note that the format of
���� differs from the format of the answer to the ���
query, as defined in Section 2.1, where intervals � � do not
overlap and have sets of points associated with them. To
simplify the description of the algorithm, we use this new
format. Having ���� , it is quite straightforward to trans-
form it into the format described in Section 2.1 by sorting
end points of time intervals in ���� , and performing a
“time sweep” to collect points for each of the formed time
intervals.

To reduce the disk I/O incurred by the algorithm, all the
six sets �� are found in a single traversal of the index. Note
that if, at some time, there is more than one nearest neighbor
in some ��, those nearest neighbors are nearer to each other
than to the query point, meaning that � � will hold no RNN
points for that time. We thus assume in the following that, in
sets ��, each interval ��� is associated with a single nearest
neighbor point, ���� .



Reverse Nearest Neighbor Algorithm

��������� � ���� ����:
1: For each of the six regions ��, find a corresponding set
of nearest neighbors�� by calling �������� ����� ���� for
region �� only. A version of algorithm ������ is used
were step 2.2.2 is modified to consider only time intervals
when 
 is inside ��.
2: Set ���� � 
.
3: For each �� and for each ����� ���� � � ��, if ����� � �
	 (and ���� � ����), do:
3.1: Call ����������� ���� � to check when during
time interval ��� , � is the NN point of ���� . The al-
gorithm ������ is modified by using �	�����

��� �
�� ��	�����

��� � �����
�� � �� in place of �	�����

��� �

� ��	�����

��� � � in step 1. In addition, an interval
� � � ��� is excluded from the list of time intervals and is
not considered any longer as soon as a point 
 is found such
that �� � � � ������

�
� �� � �����
�� � ���.

3.2: If ����������� ���� � returns a non-empty answer,
i.e., � � � � ��� , such that � is an NN point of ���� during
time interval � �, add ����� � � �� to ���� .

All the RNN candidates ���� are also verified in one
traversal. To make this possible, we use

�
��� �������� �

as the metric for ordering the search in step 2.1 of
������. In addition, a point or a rectangle is pruned only
if it can be pruned for each of the query points �� �� .

Thus, the index is traversed twice in total.
When analyzing the I/O complexity of �������, we

observe that in the worst case, all nodes of the tree are vis-
ited to find the nearest neighbors using ������, which is
performed twice. As noted by Hjaltason and Samet [9], this
is even the case for static points (�� � ��), where the size
of the result set is constant. For points with linear move-
ment, the worst case size of the result set of the NN query is
���� (where � is the database size). The size of the result
set of ������ is important because if the combined size
of the sets �� is too large, the �� will not fit in main mem-
ory. In our performance studies in Section 4, we investigate
the observed average number of I/Os and the average sizes
of result sets.

3.5 Query Example

To illustrate how an RNN query is performed, Figure 4
depicts 11 points, with point 1 being the query point. The
velocity of point 1 has been subtracted from the velocities
of all the points, and the positions of the points are shown
at time � � �. The lowest-level bounding rectangles of the
index on the points, �� to ��, are shown. Each node in
the TPR-tree has from 2 to 3 entries. As examples, some

distances from point 1 are shown: ������� �� is the distance
between point 	 and point �, ������� �� is the distance be-
tween point 1 and rectangle 1, and ������� �� is the distance
between point 	 and rectangle �.

If the RNN query for the time interval ��� �� is issued,
��	������ for region �� is set to ������� �� after visiting
rectangle 2, and because ������� �� � ������� �� for all
� � ��� ��, rectangle �� is pruned.

With the purpose of taking a closer look at how the RNN
query is performed in regions�� and ��, Figure 5 shows the
positions of the points in regions �� and �� at time points
� � �, � � 	, and � � �. Point 7 crosses the line delimiting
regions �� and �� at time � � 	��.

After the first tree-traversal, the NN points in region ��

are �� � ����� ��� 	����� ���� �	��� ����, and in region ��,
they are �� � ����� ��� 	����� ���� �	��� ����. However, the
list of RNN points LRNN, which is constructed during the
second traversal of the TPR-tree while verifying candidate
points 4, 7, and 8, is only ����� ��� 	����� ���� �	��� ����.
This is because during time interval ��� 	���, point 10, but
not point 1, is the closest to point 4, and, similarly, during
time interval �	��� ��, point 7, but not point 1, is the closest
to point 8.

4 Performance Experiments

The experimental setting for the performance experi-
ments is described initially. Then follows an account for
results of experiments that aim to elicit pertinent properties
of the proposed algorithms.

4.1 Experimental Setting

The algorithms presented in this paper were imple-
mented in C++, using a TPR-tree implementation based on
GiST [7]. Specifically, the TPR-tree implementation with
self-tuning time horizon was used [17]. We investigate the
performance of algorithms in terms of the number of I/O
operations they perform. The disk page size (and the size
of a TPR-tree node) is set to 4k bytes, which results in 204
entries per leaf node in trees. An LRU page buffer of 50
pages is used [14], with the root of a tree always pinned in
the buffer. The nodes changed during an index operation are
marked as “dirty” in the buffer and are written to disk at the
end of the operation or when they otherwise have to be re-
moved from the buffer. In addition to the LRU page buffer,
we use a main-memory resident storage area for recording
the temporary answer sets of the first tree-traversals of RNN
queries (the �� lists).

The performance studies are based on synthetically
generated workloads that intermix update operations and
queries. To generate the workloads, we simulate � objects
moving in a region of space with dimensions 1000 � 1000
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kilometers. Whenever an object reports its movement, the
old information pertaining to the object is deleted from the
index (assuming this is not the first reported movement from
this object), and the new information is inserted into the in-
dex.

Two types of workloads were used in the experiments. In
most of the experiments, we use uniform workloads, where
positions of points and their velocities are distributed uni-
formly. The speeds of objects vary from 0 to 3 kilometers
per time unit (minute). In other experiments, more realis-
tic workloads are used, where objects move in a network of
two-way routes, interconnecting a number of destinations
uniformly distributed in the plane. Points start at random
positions on routes and are assigned with equal probability
to one of three groups of points with maximum speeds of
0.75, 1.5, and 3 km/min. Whenever an object reaches one of
the destinations, it chooses the next target destination at ran-
dom. The network-based workload generation used in these
experiments is described in more detail elsewhere [18].

In both types of workloads, the average interval between
two successive updates of an object is equal to 60 time units.
Unless noted otherwise, the number of points is 100,000.
Workloads are run for 120 time units to populate the index.
Then, queries are introduced, intermixed with additional
updates. Each query corresponds to a randomly selected

point from the currently active data set. Our performance
graphs report average numbers of I/O operations per query.

4.2 Properties of the Nearest Neighbor and Re-
verse Nearest Neighbor Algorithms

In the first round of the experiments, a variety of the
properties of the algorithms computing nearest and reverse
nearest neighbors are explored.

Figure 6 shows the average number of I/O operations per
query when varying the number of points in the database. In
this experiment, after the initial phase of 120 time units, the
workloads are run for an additional 10 time units. During
this period, 500 queries are issued. For each query, its time
interval starts at the time of issue, and the length of the in-
terval varies from 0 to 30 time units.

The number of I/O operations increases almost linearly
with the number of data points. Figure 7 shows that the size
of an average result increases similarly.

It is interesting to observe that the second traversal of the
tree, in which the candidates produced by the first traver-
sal are verified, is more expensive than the first traversal,
in which these candidates are found. The main reason for
this behavior is that while there is only one query point dur-
ing the first traversal, during the second traversal, there is
a number of RNN candidates (from the different regions � �
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and during different parts of the query interval) that serve as
NN query points. This argument alone would perhaps lead
us to expect a larger difference between the costs of the two
traversals.

The relatively small difference between the two traver-
sals occurs because during the first traversal, there is no ini-
tial upper bound for the distance between the query point
� and the RNN candidate point, i.e., ��	����� is initially
set to � in the ������ algorithm. The second traversal
only needs to determine whether the point � is an NN point
to the candidate points; and for each candidate point, there
is an initial upper bound for ��	�����

���, namely the dis-
tance between the point � and that candidate point, �� �� .
Further, since ���� is the NN point to � in some region ��

at some time, the distance between � and ���� is typically
small. This enables a more aggressive pruning of tree nodes
during the second traversal of the TPR-tree.

To learn whether the nearest neighbor (and reverse near-
est neighbor) algorithm could possibly be significantly im-
proved by changing the tree traversal order or by some-
how improving the pruning, we explored how many of the
visited bounding rectangles actually contained the query
point at some time point during the corresponding query
time interval. If several queries were performed in one tree
traversal, we observed whether the bounding rectangle con-
tained any of the query points. Tree nodes corresponding
to such bounding rectangles must necessarily be visited by
any NN algorithm to produce a correct answer. Thus, given
a specific TPR-tree, the number of such bounding rectan-
gles gives the lower performance bound for a corresponding
nearest neighbor query.

In experiments with 100,000 points, during the first
traversal, a total of 32 I/Os out of the average of 75 I/Os
corresponded to “necessary” bounding rectangles. For the
second traversal, the numbers were 39 I/Os out of 83 I/Os.

This shows, that under the most optimistic assumptions, the
algorithm can be improved by no more than approximately
a factor of two.

Figure 7 plots the average number of entries in the result
sets of queries after the first traversal of the tree, which finds
nearest neighbors, and after the second traversal, which
finds reverse nearest neighbors. Note that a single point in
the answer set may have more than one time interval asso-
ciated with it. The graphs show that on average, only one
out of five candidate RNN points is found to be a real RNN
point. To investigate how much memory is needed for stor-
ing candidate RNN points (the �� lists), we also recorded
the maximum size of the answer sets in our experiments. It
was no more than five times the average sizes reported in
Figure 7 (i.e., at most ca. 100k bytes).

Figure 8 shows the average number of I/O operations
per query when the number of destinations in the simu-
lated network of routes is varied. “Uniform” indicates the
case when the points and their velocities are distributed uni-
formly, which, intuitively, corresponds to a very large num-
ber of destinations. Each workload contained 500 queries,
generated in the same way as for the previous experiment.

The number of I/O operations tends to increase with the
number of destinations, i.e., as the workloads get more “uni-
form.” The results are consistent with, although not as pro-
nounced as, those reported for range queries on the TPR-
tree [18]. Observe that while the performance of the sec-
ond traversal shows the above-mentioned trend, data skew
seems to not affect the performance of the first traversal. A
possible explanation is that when moving points are con-
centrated on a small number of routes, the good quality of
the TPR-tree is offset by the fact that there can be regions
�� that have no points inside of them, but contain parts of
bounding rectangles. In such cases, ��	����� in ������
always remains� and those bounding rectangles cannot be
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pruned.
Figure 9 shows the average number of I/O operations per

query for varying query interval lengths. The number of I/O
operations increases approximately linearly with the query
interval length. The experiment also showed that the num-
ber of results returned increases linearly.

5 Summary and Future Work

Rapidly advancing technologies make it possible to track
the positions of large numbers of continuously moving ob-
jects. Because of this, efficient algorithms for answer-
ing various queries about continuously moving objects are
needed. Algorithms have previously been suggested for an-
swering RNN and NN queries for non-moving objects, but
no solutions have been proposed for efficiently answering
these queries when large numbers of objects are moving
continuously. In this paper, we have proposed an algorithm
for answering RNN queries for large numbers of continu-
ously moving points in the plane. As a solution to a sub-
problem, an algorithm for answering NN queries for contin-
uously moving points in the plane has been proposed. An
experimental study was performed that revealed a number
of interesting properties of the proposed algorithms.

As the indexing structure for continuously moving
points, the TPR-tree [18] has been used. This means that the
same index structure can be used for range queries, nearest
neighbor queries, and reverse nearest neighbor queries.

The presented RNN query algorithm is suitable for the
monochromatic case [12] only—all the points are assumed
to be of the same category. In the bichromatic case, there
are two kinds of points (i.e., “clients” and “servers,” corre-
sponding to tourists and rescue workers), and an RNN query
asks for points that belong to the opposite category than the

query point and have the query point as the closest from all
the points that are in the same category as the query point.
The approach of dividing the plane into six regions does not
work for the bichromatic case—a point can have more than
six RNN points. An interesting future research direction
is to develop an algorithm for efficiently answering RNN
queries for continuously moving bichromatic points.

Sometimes it is important to know not only the objects
that have the query object as their nearest neighbor (a simple
RNN query) but also the objects that have the query object
as their second nearest, third nearest neighbor (second, third
order RNN query), etc. Processing of higher order RNN
queries could be another possible extension of the proposed
algorithm.

In reality, the objects most often move along some under-
lying route structure, for example, cars in a road network.
Even if objects move freely, another type of infrastructure
could exist that prohibits movement in some areas, such as
lakes or mountains. How to handle the complexities arising
from the non-Euclidean distance functions inherent to such
environments is an interesting research direction.
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