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Abstract

With the continued proliferation of wireless networks, e.g., based on such evolving standards as WAP
and Bluetooth, visionaries predict that the Internet will soon extend to billions of wireless devices,
or objects. A substantial fraction of these will offer their changing positions to the (location-based)
services, they either use or support. As a result, software technologies that enable the management of
the positions of objects capable of continuous movement are in increasingly high demand. This paper
assumes what we consider a realistic Internet-service scenario where objects that have not reported their
position within a specified duration of time are expected to no longer be interested in, or of interest to,
the service. In this scenario, the possibility of substantial quantities of “expiring” objects introduces a
new kind of implicit update, which contributes to rendering the database highly dynamic. The paper
presents an R-tree based technique for the indexing of the current positions of such objects. Extensive
performance experiments explore the properties of the types of bounding regions that are candidates for
being used in the internal entries of the index, and they show that, when compared to the approach where
the objects are not assumed to expire, the new indexing technique can improve the search performance
by as much as a factor of two or more without sacrificing update performance.

1 Introduction

We are currently experiencing rapid developments in technology areas, such as wireless technology, minia-
turization of electronics, and ergonomics. This development promises widespread use of mobile personal
information appliances, most of which will be on-line, i.e., on the Internet. Industry analysts uniformly
predict that wireless, mobile Internet terminals will outnumber the desktop computers in the Internet.

This proliferation of devices offers companies the opportunity to provide a diverse range of e-services.
Successful services are expected to be relevant, unobtrusive, personalized, and context aware; and it is
essential for many services, termed location-based services, that they be sensitive to the user’s changing
location. Location awareness is made possible by a combination of political developments, e.g., the de-
scrambling of the GPS signals and the US E911 mandate, and the continued advances in both infrastructure-
based and handset-based positioning technologies.

The area of location-based games offers good examples of services where there is a need to track the
positions of the mobile users. In the recent released BotFighters game, by Swedish company It’s Alive,
players get points for finding and “shooting”other players via their mobile phones (using SMS messages
or using WAP). Only players close by can be shot. To enable the game, players can request the positions
of other nearby players. In such mixed-reality games, the real physical world becomes the backdrop of
the game, instead of the world created on the limited displays of wireless devices [8]. These games are
expected to generate very large revenues in the years to come. Datamonitor, a market research company,
estimates that 200 million mobile phone users in western Europe and the United States will play Web games
via handsets, generating $6 billion in revenues [19]. To track and coordinate large numbers of continuously
moving objects, their positions are stored in databases.

Continuous movement poses new challenges to database technology. The conventional assumption is
that data remains constant unless it is explicitly modified. Capturing continuous movement accurately with
this assumption requires very frequent updates. To reduce the number of updates required, functions of time
that express the objects’ positions may be stored instead of simply the static positions [23]. Then updates
are necessary only when the parameters of the functions change “significantly.” We use one linear function
per object, with the parameters of a function being the position and velocity vector of the object at the time
the function is reported.

Independently of how object positions are represented, the accuracy of the positions and, thus, their
utility for providing a location-based service decreases as time passes, so when an object has not reported
its position for a certain period of time, the recorded position is likely to be of little use. Consequently, it
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is natural to associate expiration times with positions so that these can be disregarded. The system, then,
should automatically remove such “expired” information.

To provide fast answers to queries that locate the mobile objects in a certain area, an index on object
positions must be maintained. No previous work on the indexing of the positions of continuously moving
objects (discussed in Section 2.2) has addressed the issue of “expiring” information. This paper proposes the
R 1+243 -tree, an R 5 -tree [5] based access method that builds on the ideas of the TPR-tree [21]. The R 1+243 -tree
indexes the current and anticipated future positions of moving point objects, assuming that their positions
expire after specified time periods.

To take advantage of information being valid only for a limited time, the proposed index uses a new
type of bounding region. We show that the choice of bounding regions is non-trivial, and we experimentally
compare a number of possible alternatives. In addition, we propose a modification of the R 5 -tree insertion
and deletion algorithms that, during the regular index update operations, lazily removes expired information
from the index. We provide also a mechanism by which the R 1+243 -tree algorithms automatically tune
themselves to match an important characteristic of the workloads they are subjected to—the average update
rate. Finally we provide experimental comparison of the new index with the existing index, the TPR-tree,
which assumes non-expiring information.

The next section presents the problem addressed by the paper and covers related research. As a precursor
to presenting the new index, Section 3 explores issues related to the use of existing moving-object indexes,
e.g., the TPR-tree, for the indexing of data with expiration times. In Section 4, this is followed by a
description of the bounding regions and algorithms employed by the new index. It is assumed that the
reader has some familiarity with the R 5 -tree. Section 5 reports on performance experiments, and Section 6
summarizes and offers research directions.

2 Problem Statement and Related Work

We describe in turn the data being indexed, the queries being supported, and related work.

2.1 Problem Statement

An object’s position at time 6 is given by 78:9 6�;=< 9>8@?A9 6�;&B 8DC09 6�;&B�E�E�EAB 84F�9 6G;�; , where it is assumed that the
times 6 are not before the current time. We model this position as a linear function of time, which is
specified by two parameters. The first is a position for the object at some specified time 6IHKJML , 78�9 6&HKJ.L,; , termed
the reference position. The second parameter is a velocity vector for the object, 7N < 9>N!? B N�C B�E�E�E�B N F ; .
Thus, 78�9 6G;
<O78�9 6 HKJML ;@PQ7NR9 6TS#6 HKJML ; . Although the times ( 6�U�VXW ) when different objects were most recently
sampled may differ, it is convenient for the indexing purposes to have the reference position for all objects
be associated with a single reference time, 6�HKJML . Such a reference position can always be computed knowing
the velocity vector 7N observed at 6GU�VXW and the position 78�9 6GUYVXWZ; observed at 6�UYVXW .

Modeling object positions as functions of time not only enables us to make tentative near-future predic-
tions, but, more importantly, alleviates the problem of the frequent updates that would otherwise be required
to approximate continuous movement in a traditional setting where only positions are stored. In our setting,
objects may report their parameter values when their actual positions deviate from what they have previ-
ously reported by some threshold. The choice of update frequency then depends on the type of movement,
the desired accuracy, and the technical limitations [24, 16]. For example, a mobile yellow pages service is
likely to be much less sensitive than a traffic monitoring system to imprecise positions.

An object’s reference position and velocity vector describe its predicted movement from now and indef-
initely far into the future. In the applications we consider, such far-reaching predictions are not possible. An
object does not usually move for a long period of time within a useful threshold of its predicted movement.
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Rather, if such an object does not report the new, up-to-date position and velocity, after some time, its old
positional information becomes too imprecise to be useful—we say that it expires.

To avoid reporting such expired objects in response to queries, we associate an expiration time, 6 J\[\] ,
with each object and call them expiring objects. If unknown, the expiration time can be set to infinity,
although, it in most cases should be easy to find a finite upper bound. Upper bounds can be dictated by
a number of application specific factors. For example, moving objects may be forced to make changes in
their movement due to an underlying infrastructure such as a road network, or objects may move according
to some predetermined routes and schedules, as in a public transportation system [6]. Finally, trivial upper
bounds on the expiration times can be derived from the finite extents of the space where the objects move.

Figure 1 exemplifies how predicted trajectories of moving objects are recorded and updated. For sim-
plicity, one-dimensional moving objects, such as cars on a road, are shown. The positions of objects are
plotted on the y-axis, and time is on the x-axis. The current time is assumed to be ^ , and the part of the pic-
ture to the left of the current-time line shows the past evolution of the data set, where insertions, deletions,
and updates are represented by vertical bars and expiration times are represented by arrows. For indexing
purposes, the data set at any time point consists of a set of finite line segments in ( 8 B�6 )-space.

The figure illustrates that many
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Figure 1: Example One-Dimensional Data Set and Queries

objects are updated before they ex-
pire, while some expire before be-
ing updated. For example, object _a`
was updated at time b —before its
expiration time ( c ). But then no up-
date occurred prior to its new expi-
ration time ( d ). The latter may be
more common in applications with
unreliable or intermittent connectiv-
ity. For example, mobile telephones
that are turned off may not be guar-
anteed to report to the system. In
these cases, only expiration times guar-
antee that objects are removed from
the data set.

The figure also exemplifies the
types of queries that we aim to sup-
port. These queries retrieve all ob-
jects with predicted positions within
specified regions at specified times. We distinguish between three kinds, based on the space-time regions
they specify. In the sequel, a e -dimensional rectangle f is specified by its e projections g hji ? BGhak ?Il B�E�E�EAg h+iF BGhakF l ,h imon h km , onto the coordinate axes. Let f , f ? , and f C be three e -dimensional rectangles and 6 , 6 i , and 6 k
( 6 i�p 6 k ) be three times that do not precede the current time.

Type 1 timeslice query: qr< 9 fsB�6�; specifies a hyper-rectangle f located at time point 6 .
Type 2 window query: qt< 9 fsB�6 i B�6 k ; specifies a hyper-rectangle f that covers the interval g 6 i B�6 k l . Stated

differently, this query retrieves points with trajectories in ( 78 , 6 )-space crossing the ( eDPu` )-dimensional
hyper-rectangle ( g h i ? BGh k ? l , g h iC BGh kC l , . . . , g h iF BGh kF0l , g 6 i B�6 k l ).

Type 3 moving query: qv< 9 f ? BGf C B�6�iwB�6�k+; specifies the ( e�Px` )-dimensional trapezoid obtained by con-
necting f ? at time 6 i to f C at time 6 k .

The second type of query generalizes the first, and is itself a special case of the third type. The types of
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queries are exemplified in Figure 1, where q=` is a timeslice query, q�b is a window query, and q�c is a
moving query.

Notice that queries are positioned on the time axis according to the times 6 , 6�i , and 6�k specified in the
queries, not according to the time they were issued. The greater the distance between these times and the
query issue time, the more tentative the answer of the query is because objects update their parameters as
time goes. For example, the answer to query qy` would have been _a` , if it were issued before time b , and
no object would have qualified for this query if it were issued later because _a` was updated at time b .

This example illustrates that queries far in the future are likely to be of little value, because the positions
as predicted at the query time become less and less accurate as queries move into the future and because
updates may occur. (The usage of expiration times will eliminate many “wrong” objects from the answers
to such queries.) We expect applications to issue queries that are concentrated in some limited time window
extending from the current time. The more frequently the parameters of the objects are updated, the shorter
this window is likely to be.

We introduce a problem parameter, querying window length (W), which represents an expected upper
bound on how far queries “look” into the future. Thus, zK{&{ 9 q|; n 6 n zK{&{ 9 q|;}P W, for Type 1 queries, andz~{%{ 9 q|; n 6 i n 6 k n zK{&{ 9 q|;�P W for queries of Types 2 and 3, where z~{%{ 9 q|; is the query issue time. The
querying window is one of the important problem parameters used by our proposed index algorithms.

2.2 Previous Work

We consider first approaches that involve the partitioning the space into which the objects are embedded,
then consider R-tree based approaches.

2.2.1 Approaches Based on Data Space Partitioning

Early work on the considered indexing problem has concentrated mostly on points moving in one-dimensional
space.

Tayeb et al. [22] use PMR-Quadtrees [20] for indexing the future trajectories of one-dimensional moving
points as line segments in 9>8 B�6G; -space (cf. Figure 1). The segments span the time interval that starts at the
index construction time and extends some fixed number of time units into the future, which leads to a tree
that has to be rebuilt periodically. This approach introduces substantial data replication in the index—a line
segment is usually stored in several nodes.

Kollios et al. [13] employ the so-called dual data transformation where a line 8 < 8�9 6 HKJML ;:P N!9 6�S6&HKJ.L0; is transformed to the point ( 8�9 6�HKJML�;&B N ), enabling the use of regular spatial indices. It is argued that
indices based on Kd-trees are well suited for this problem because these best accommodate the shapes of
the (transformed) queries on the data. Kollios et al. suggest, but do not investigate in any detail, how this
approach may be extended to two and higher dimensions. Kollios et al. also propose two other methods that
achieve better query performance at the cost of data replication. These methods do not seem to apply to
more than one dimension.

Basch et al. [4] propose so-called kinetic main-memory data structures for mobile objects. The idea is
that even though the objects move continuously, the relevant combinatorial structure changes only at certain
discrete times, e.g., when two points pass each other. Thus, future events are scheduled that update a data
structure at these times so that necessary invariants of the structure hold. Agarwal et al. [1] apply these ideas
to external range trees [3], obtaining a data structure can answer a Type 2 query in optimal � 9(��������� P����I�=;
I/Os using only slightly more than a linear number of disk blocks (here � is the disk block size, � is the
number of objects, and � is the size of the query result). This result holds only when queries arrive in
chronological order—once a kinetic event has changed the data structure, no queries can refer to time points
before the event. Agarwal et al. address non-chronological queries using partial persistence techniques
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and also show how to combine kinetic range trees with partition trees to achieve a trade-off between the
number of kinetic events and query performance. Although achieving good asymptotic bounds that are very
important from a theoretical point of view, the practical utility of the structures remain in question.

2.2.2 Approaches Based on Time-Parameterized Bounding Rectangles

As the technique proposed in this paper builds on the basic ideas of the TPR-tree, we review briefly the
main ideas of the TPR-tree and other related access methods.

The TPR-tree is based on the R 5 -tree and indexes points that move in one, two, or three dimensions. It
employs the basic structure and algorithms of the R 5 -tree, but the indexed points as well as the bounding
rectangles in non-leaf entries are augmented with velocity vectors. This way, bounding rectangles are time-
parameterized—they can be computed for different time points. The velocities of the edges of bounding
rectangles are chosen so that the enclosed moving objects remain inside the rectangles at all times in the
future. Figure 2 demonstrates this. Here, three one-dimensional moving points are shown together with their
one-dimensional bounding rectangle (i.e., a bounding interval). The figure shows that answering window
or moving queries in the TPR-tree involves the checking for intersection between two 9 e
P�`�; -dimensional
trapezoids—a query and a bounding rectangle.

In addition to the usage of the time param-
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Figure 2: A Bounding Interval and a Query in the TPR-tree

eterized bounding rectangles, the TPR-tree dif-
fers from the R 5 -tree in how its insertion algo-
rithms group points into nodes. The R 5 -tree
uses the heuristics of minimized area, overlap,
and margin of bounding rectangles to assign
points to the nodes of a tree. To take into ac-
count the temporal evolution of these heuris-
tics, they are replaced by their integrals over
time in the TPR-tree. The area of the shaded
region in Figure 2 shows the time integral of
the length of the bounding interval. This use
of integrals in the algorithms allows the index
to systematically take the objects’ velocities
as well as their current positions into account
when grouping them.

The bounding interval in Figure 2 is min-
imum only at the current time (CT). At later
times, it is larger than the true minimum bound-
ing interval. It is possible to record a true minimum bounding interval by storing all future events when the
true minimum bounding interval changes ( � ? , � C , and ��� in the figure), but this is impractical because the
number of such events in the worst case is equal to the number of objects enclosed by the bounding interval.
Agarwal et al. [2] show how to reduce the number of events to a constant depending on � by allowing the
bounding interval at all times to have a length no larger than 9 `�P��Z; of the length of the minimum bounding
interval.

Based on these ideas, Pocopiuc et al. [18] propose the STAR-tree index for moving objects. In contrast
to the TPR-tree, the STAR-tree groups points according to their current locations. This may result in points
moving with very different speeds being included in the same rectangle. To avoid such bounding rectangles
growing too much, special events are scheduled to regroup the points. The STAR-tree is most suited for
workloads with very infrequent updates.

Revesz et al. [6] present a data model for spatiotemporal data based on parameteric rectangles that
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closely resemble the bounding rectangles inside the TPR-tree. The spatiotemporal evolution of an object
with extent is described by a number of parametric rectangles, each associated with a specific validity time
interval.

Cai and Ravesz have recently proposed a Parametric R-tree [7] that is quite similar to the TPR-tree. The
main difference is that they index the past evolution of objects with extent, meaning that they know at index
construction time the entire evolution of the objects. This is a different and, in some ways, simpler problem
than the one addressed here. Indexing of the past trajectories of moving points represented as polylines
(connected line segments) in ( 78 , 6 )-space is also the theme of papers by Pfoser et al. [17] and Kollios et
al. [14].

3 Indexing Expiring Objects With the TPR-Tree

The TPR-tree presented in the previous section indexes the future trajectories of moving objects as infinite
lines. The future trajectories of expiring objects may also be indexed with the TPR-tree, by replacing the
finite line segments of the expiring objects with corresponding infinite lines.

This setup introduces two issues that must be addressed. First, objects that have expired by the times
specified in a query may introduce false drops in query answers, leading to overly large intermediate results
from the index that must be filtered to produce the correct answer. Second, it may be desirable to have
automatic means of deleting expired objects, which clutter the index.

One way of eliminating expired entries is to schedule deletions. To accomplish this, a secondary data
structure is required that maintains the resulting queue of scheduled deletions. This structure must support
operations not only for checking and removing the top element of the queue and inserting the new element,
but also for efficiently deleting or updating any of the scheduled deletion events in the queue. This latter
functionality is necessary because objects may be deleted or updated before they expire.

Such a structure does not generally fit in main memory, as its size is on the order of the size of the
primary index structure. A B-tree on the composite key of the expiration time and the object id could be
used. The topmost element of the queue can be found easily in the leftmost leaf page of the tree, and the
insertion, deletion, and update operations can be performed efficiently.

In such a setting, the amortized cost of introducing one expiring object consists of four terms. First,
the object has to be inserted into the TPR-tree. Next, the scheduled deletion event has to be inserted into
the B-tree. Finally, when processing the scheduled deletion event, the event has to be removed from the
B-tree, and the scheduled deletion has to be performed in the TPR-tree. In Section 5, where we describe
our performance experiments, we show that this approach can be competitive with the R 1+243 -tree only if the
B-tree costs are ignored.

It should be also mentioned that unless queries arrive in chronological order, the scheduling of deletions
does not allow to avoid the filtering step in answering future queries. Objects that expire after the current
time, but before the query time, are reported as false drops and must be filtered.

4 Structure and Algorithms

This section presents the structure and algorithms of the R 1+243 -tree. First, we explore possibilities for
computing time-parameterized bounding rectangles by maximally exploiting expiration times. Next, we
investigate how the different types of bounding rectangles can be used to guide the grouping of entries in
the tree, and how this grouping is automatically adjusted depending on a specific update rate and querying
window length. Finally, we describe the modified insertion and deletion algorithms that ensure the efficient
disposal of expired entries.
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In the following, when only one-dimensional moving points or bounding intervals are mentioned, it
is assumed that the extension to higher dimensions is trivially done by applying the same procedure or
definition to each of the dimensions, or by exchanging the length of the interval with the area, volume, or
hyper-volume. Also, we use the term rectangle for any e -dimensional hyper-rectangle.

4.1 Index Structure and Time Parameterized Bounding Rectangles

The R 1+2D3 -tree is a balanced, multi-way tree with the structure of an R-tree. Entries in leaf nodes are pairs
of the position of a moving point and a pointer to the moving point, and entries in internal nodes are pairs
of a pointer to a subtree and a (time-parameterized) region that bounds the positions of all moving points or
other bounding regions in that subtree.

4.1.1 Representation of Points and Bounding Rectangles in the Index

As suggested in Section 2, the position of a moving point is represented by a reference position, a cor-
responding velocity vector, and an expiration time— 9>8 B N B�6 J\[X] ; in the one-dimensional case, where 8 <8R9 6 HKJML ; . We let 6 HKJML be equal to the index creation time, 6%� .

To bound a group of e -dimensional moving points, e -dimensional rectangles are used that are also time-
parameterized and that enclose all enclosed points or rectangles at all times not earlier than the current
time.

A tradeoff exists between how tightly a bounding rectangle bounds the enclosed moving points or rect-
angles across time and the storage needed to capture the bounding rectangle. It would be ideal to employ
time-parameterized bounding rectangles that are always minimum, but, as noted in Section 2.2, doing so
deteriorates in the general case to enumerating all the enclosed moving points or rectangles. Consider Fig-
ure 3. Here, four one-dimensional moving points are bounded with an always minimum bounding interval,
which bounds the positions of points tightly at all future time points. Each of the four points defines the
upper or lower bound at some time in the evolution of the bounding interval.

To achieve a compact description of the enclosed entries, we use a single linear function as the bound
(upper or lower) of the bounding interval. Following the representation of moving points, we let 6 H~J.L <�6��
and capture a one-dimensional time-parameterized bounding interval g 8 i 9 6�;&B 8 k 9 6�; l <�g 8 i 9 6 � ;�P N i 9 6�S6���;&B 8 k 9 6���;jP N k 9 6�S�6���; l for 6 p 6 k J\[\] as 9>8 i B 8 k B N i B N k B�6 k J\[\] ; . Here 6 J\[X] <��=�I�a�Y��_I��E�6 J([X]w  , where ¡ ranges
over the moving points or bounding intervals to be enclosed.

Note that we could as well choose not to record 6 J\[\] for bounding rectangles, reducing the size of
internal index entries. Even in this case, a “natural,” finite 6 J([X] can be derived for bounding rectangles that
shrink in some dimension, i.e., N i�£¢ N k� , for some ¡ . For such a rectangle, 6 J\[\] should be set to the time when
its area becomes zero. In performance experiments, we investigate whether it pays off to record expiration
times in internal index entries. In the following, we assume that bounding rectangles have expiration times
even though some of them may be infinite.

There are a number of possible ways to compute 8 i , 8 k , N i , and N k . One goal is to choose these param-
eters so as to minimize the integral of the interval’s length from the time of bounding interval computation,6&¤ ]Z¥ , to 6&¤ ]Z¥ Pr¦ , where ¦x<§�=¨K©D� H B�6 J\[\] Sª6&¤ ]Z¥   and H approximates how far into the future queries
are most likely to access the computed bounding rectangle. We discuss how the value of H is estimated in
Section 4.2.

Minimizing this integral is equivalent to minimizing the area (or the part of it between 6 ¤ ]Z¥ and 6 ¤ ]&¥DP«¦ )
of a trapezoid that bounds the trajectories of the enclosed points or intervals and that has bases orthogonal
to the time axis. The shaded region in Figure 2 exemplifies such a trapezoid. In the following, the term
“bounding trapezoid” is used to refer to this kind of a trapezoid.
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4.1.2 Simple Time-Parameterized Bounding Rectangles

If all entries are infinite, the only reasonable choice—if the interval is described by the above four parameters—
is what we term conservative bounding rectangles, which are minimum at the point of their computation, but
possibly (and most likely!) not at later times. To ensure that a conservative bounding interval is bounding
for all future times, the lower bound of the interval is set to move with the minimum speed of the enclosed
points, while the upper bound is set to move with the maximum speed of the enclosed points (speeds are
negative or positive, depending on the direction). This is a very simple construction that is independent of
H.

o2

o3

o1

o4

x

tt0

Figure 3: Conservative (Bold), Always Minimum
(Dashed), and Static (Dotted) Bounding Intervals

o5

o4o3

o1

t
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t0 updt

Figure 4: Update-Minimum Interval (Bold) and
the Same Interval Recomputed after Insertion of_�d (Dashed)

Figure 3 illustrates a conservative bounding interval. This interval bounds the four points tightly at6�� , but to keep all points enclosed at all future times (assuming that objects have infinite trajectories), the
upper bound of the interval moves at the speed of object _a` , while the lower bound of the interval moves
at the speed of object _�c . Although the figure illustrates the concept, it should be noted that the TPR-tree
algorithms most likely would not place _a` and _�c in the same node as _¬b and _A .

The straightforward bounding interval for finite entries has both N i and N k equal to zero and is termed a
static bounding interval. Figure 3 illustrates such a bounding interval. In addition to being simple, the main
advantage of this type of interval is that by not storing N i and N k in the internal index entries, we increase
the fan-out of internal tree nodes by almost a factor of two.

The last obvious and simple way of taking advantage of the expiration times is to use improved con-
servative bounding intervals, where the speed of the upper bound is reduced as much as possible and,
analogously, the speed of the lower bound is increased as much as possible. We term such bounding in-
tervals update-minimum intervals because, like conservative intervals, they are minimum at the time of the
last update. Figure 4 shows how the speeds of the bounds are reduced or increased. Here, the speed of the
upper bound of the bounding interval is not set to the speed of the fastest object ( _a` ), but to some smaller
speed that is enough to contain _a` , knowing its expiration time. Notice that because the resulting bounding
interval is relatively “nice” (it barely grows), the tree algorithms are very likely to group the four given
objects in a single node. However, if the bounding interval is recomputed at some later time ( 6 ¤ ]Z¥ ), e.g.,
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because of the insertion of a new object ( _�d ), the interval-length integral is increased unnecessarily. How
often this will happen and how it will effect the performance of the index is investigated in performance
experiments.

4.1.3 One-Dimensional Optimal Time-Parameterized Bounding Rectangles

As mentioned earlier, the goal is to minimize the area of a trapezoid that is bounding and extends from6s<®6 ¤ ]&¥ to 6s<®6 ¤ ]Z¥ Px¦ . To find such a minimum bounding trapezoid, it suffices to consider only the
endpoints of trajectories. When we are to bound moving points, each trajectory has one endpoint, and when
we are to bound time-parameterized intervals, each trajectory has two endpoints— 8 i 9 6 J\[\] ; and 8 k 9 6 J\[\] ; .
In the following, we denote this set of points by ¯ . To capture the positions of points or intervals at 6¬¤ ]&¥ , the
minimum and maximum of these positions at 6 ¤ ]&¥ are included in ¯ . Figure 5 shows these points— 8@°R±³² <
�=¨�©a����_I��E 8 i 9 6&¤ ]&¥ ;   and 8}°R´ [ <µ�=�I�a�¶��_I��E 8 k 9 6%¤ ]&¥ ;   , where _I�YE 8 i 9 6%¤ ]&¥ ;·<µ_I�YE 8 k 9 6%¤ ]&¥ ;¸<�_I��E 8R9 6&¤ ]Z¥ ; when
points, not intervals, are being bounded. As noted by Cai and Revesz [7], the following lemma holds.

Lemma 4.1 The lower and the upper bounds of a bounding trapezoid of ¯ with minimum area between
times 6 ¤ ]Z¥ and 6 ¤ ]Z¥ P¹¦ are the lines containing the edges of the convex hull of ¯ that intersect the median
line 6�<º6&¤ ]&¥ P¹¦4�¬b .
Here, the lower and upper bounds of the trapezoid are the lines described by the trajectories of the lower
and the upper bound of the corresponding time-parameterized interval.

To understand why this lemma holds, con-
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Figure 5: A Convex Hull and an Optimal Bounding Inter-
val

sider the upper bound of the trapezoid. It is
trivial that this bound should contain at least
one vertex of the upper chain of the convex
hull of ¯ . Suppose it contains only vertices
of the hull to the left of the median line, and
let » be the rightmost of these (cf. Figure 5).
Then we can reduce the area of the trapezoid
by replacing this upper bound ( ¼�½ ) with a line¼ that has a smaller slope and contains the
edge of the convex hull with » as its left point.
Figure 5 illustrates why the area is reduced.
The shaded triangle to the right of » shows the
area that was eliminated, which is larger than
the area of the shaded triangle to the left of »
that shows the area that was gained. This is
true for any » to the left of the median line.
We can continue this process until the upper
bound contains vertices both to the left of the
median line and to the right of it. Similar argument can be made when we start with an upper bound that
contains only points to the right of the median line and when the lower bound is considered.

It should be noted that if the median line contains one of the vertices of the convex hull, the median line
can be said to cross either the hull’s edge to the right of the vertex or to the left of it; either interpretation
produces a minimum trapezoid with the same area.

Any of a number of convex-hull computation algorithms (e.g., a Graham scan [9]) can be used to find
the convex hull of ¯ in � 9G¾ ¯ ¾Y�M���
¾ ¯ ¾ ; time. However, observe that we need to find only the edges of
the convex hull that intersect the median line. This can be formulated as a linear programming problem.
Inspired by linear programming algorithms, Kirkpatrick and Seidel [12] provide a linear algorithm to find
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such edges, which they call “bridges.” Nevertheless, compared to the Graham scan, the algorithm is quite
complex, and its implementation using finite precision floating point arithmetics is complicated. Therefore
our implementation uses a bridge-finding algorithm based on the Graham scan.

4.1.4 Multi-Dimensional Time-Parameterized Bounding Rectangles

The more general problem of finding a minimum Time-Parameterized Bounding Rectangles (TPBR) in
multiple dimensions is much harder. It is a non-convex, non-linear mathematics programming problem. We
desire simple algorithm that produces “satisfactory” results. One approach is to compute the parameters
of the bounding rectangle independently in each dimension [7]. For the ¡ -th dimension, the bridge-finding
algorithm could be applied to the projections of the trajectories into the ( 8 ��B�6 )-plane.

It is very easy to improve such a straight-
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Figure 6: Finding a Median Line for the Second Dimension
(Top), When the First Dimension is Computed (Bottom)

forward algorithm without adding complexity.
The idea is to introduce dependencies among
the dimensions. Specifically, when consider-
ing the ¡ -th dimension, the already computed
dimensions can be taken into account by ad-
justing the position of the median line in the
bridge-finding algorithm. Note that in the proof
of Lemma 4.1, we relied on the fact that a
shaded triangle to the left of any point » that is
to the left of the median has a smaller area that
the triangle to the right of » (cf. Figure 5). If» lies on the median line, both triangles have
the same are. In multiple dimensions, not sim-
ple areas, but time integrals of hyper-volumes
have to be compared.

To understand the issue, consider an ex-
ample (illustrated in Figure 6). In the first di-
mension 8 ? , the computed bounding interval
grows from left to right, i.e., with increasing
time. Then a unit of bounding interval length
in the second dimension 8 C has less weight
at smaller times than at later times. Thus, the
median line should be shifted to the right when
computing its bounding interval.

In the following assume, without loss of generality, that 6 ¤ ]&¥ <À¿ . Suppose � dimensions are already
computed and we want to find a median line for the computation of the 9 �ÁP�`�; -st dimension. Let h � <8 k� S 8 i� and Â � < N k� S N i� , ` n ¡ n � , be the spatial and velocity extents of the bounding rectangle. Then,
considering only the computed dimensions, the hyper-volume at time 6 is Ã�Ä��Å ? 9 h � P#Â � 6�;�<rÆ�Ä��Å!��Ç 9 ¡Y;�6 � ,
where Ç 9 ¡Y; is the sum of the coefficients at the ¡ -th power of 6 in the above polynomial.

Lemma 4.2 If the parameters of a TPBR in the first � dimensions are computed and fixed, the optimal
parameters of a TPBR in the 9 �|P�`�; -st dimension can be computed using the median line 6È<ºÉ , where

É®< Æ Ä��Å!�·Ê�ËÍÌaÎ��Ï C Ç 9 ¡�;
Æ�Ä��Å!� Ê Ë��Ï ? Ç 9 ¡�; E
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PROOF: As mentioned earlier, the median line has the property that, for any point contained in it, the
hyper-volume integral corresponding to its left “shaded triangle” is equal to the integral corresponding to its
right “shaded triangle” (cf. Figure 6). The left integral is Ð�Ñ!<tÒRÓ� 9>Ô ��©¸ÕÖS Ô ��©$×R; 9 ÉØS�6G; Æ Ä��Å!�jÇ 9 ¡Y;�6 � e�6 .
The right integral is Ð�Ù«< Ò ÊÓ 9>Ô ��©¸Õ#S Ô ��©Ú×@; 9 6·S¹ÉÛ; Æ�Ä��Å!� Ç 9 ¡�;�6 � e06 . It is not difficult to see that Ð�Ùu<
Ð�Ñ+P 9>Ô ��©¸ÕÖS Ô ��©T×@; 9 Æ Ä��Å!� Ê�ËÍÌaÎ��Ï C Ç 9 ¡Y;�S�ÉtÆ Ä��Å!� Ê�Ë��Ï ? Ç 9 ¡Y;�; . Solving the equation Ð�Ñ�<rÐ�Ù for É proves the
lemma. Ü

As an example, if �=<�b , É®<�¦ 9 c¬h ? P¹bIÂ ? ¦4;�� 9 ^¬h ? PÝcIÂ ? ¦D; .
Using this lemma, our algorithm for computing a multi-dimensional TPBR visits dimensions one by

one until TPBR parameters in all the dimensions have been computed. The order in which dimensions
are visited may influence the resulting TPBR. We choose a random order, so that no dimension is given
preference. This algorithm, combined with a linear bridge-finding algorithm, has an expected-case running
time of � 9 e ¾ ¯ ¾ ; , where e is the number of dimensions. We term the bounding rectangles produced by this
algorithm near-optimal.

To measure the loss in performance caused by using near-optimal TPBRs, we implemented an algorithm
that computes optimal multi-dimensional TPBRs. The idea is to compute convex hulls in each of the ( 8 ��B�6 )-
planes. Then, by using sweeping median lines in each of the first e·S�` dimensions, we consider all possible
combinations of choices of bridge-edges in these dimensions. Finally, for each of the combinations, using
Lemma 4.2, we compute É for the e -th dimension and find the bridge-edges in this dimension using binary
search on the edges of the convex hull in this dimension. The worst-case running time of this algorithm is� 9G¾ ¯ ¾ F�Þ ? �M����¾ ¯ ¾ ; .

Although we do not discuss this in detail, the presented algorithms can be easily generalized to handling
the case when some of the bounded points or rectangles have infinite expiration times.

Section 5 investigates the differences in performance resulting from using static, update-minimum, near-
optimal, or optimal TPBRs.

4.1.5 Using TPBRs when Querying

When answering a query in the R 1,2D3 -tree, we need to be able to check whether the trapezoid formed by
the query intersects the trapezoid formed by a TPBR. The same algorithm as in TPR-tree can be used [21],
the only modification being that intersection should be checked between 6 i <µ6 iß and 6 k <Q�=¨�© 9 6 kß B�6 J\[\] ; ,
where g 6Giß B�6�kß l is the time interval specified in the query.

4.2 Heuristics for Tree Organization

We proceed to describe the heuristics that determine how to group moving objects and their TPBRs into
nodes so that the tree most efficiently supports queries when assuming a querying window length, W.

4.2.1 Integrated R 5 -Tree Heuristics

Intuitively, when the index is under continuous change due to time parameterization, the decision of where
to place an object’s updated, time-varying position should take into account the evolution of the relevant
parts of the index from the current time to the next update of the same object or to the time the object expires.
Thus, the average duration ( àjá ) between the two successive updates of an object is an important problem
parameter, which is directly related to the frequency of index updates. Similar considerations apply to node
splits. On average, a split-generated distribution of entries will not persist longer than àjá time units, upon
which most of the entries of both nodes have been updated.
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Although the decisions about an entry’s placement will affect queries only for àjá time units, some
queries may be future queries that look as far as W time units into the future. Thus, the total length of the
time duration when queries will “see” the current insertion is H <Øàjá$P W. We term this the time horizon.

It should be noted that the above considerations about a single object cannot be stated strictly because,
in addition to the continuous change due to time-parameterization, the index is constantly changing due to
the updates of other objects. Nevertheless, performance experiments with the TPR-tree demonstrate that
insertion algorithms using the time horizon H <Øàjá�P W consistently show good query performance.

The insertion algorithms of the R 5 -tree, which we extend to moving points, aim to minimize objective
functions such as the areas of the bounding rectangles, their margins (perimeters), and the overlap among
the bounding rectangles. In our context, these functions are time dependent, and we should consider their
evolution in the interval g 6 ¤ ]Z¥ B�6 ¤ ]&¥ P Hl . Specifically, given an objective function â�Ù 9 6�; of a bounding
rectangle ã , we replace it with the following integral in the insertion algorithms.

ä#å~æ>çXè ÏDéÈê�ë�ì�í�î Ù�ï å\ð.ñ ç�ò
å~æ>çXè âTÙ 9 6�;Ye�6 (1)

If â Ù 9 6�; is area, the integral computes the area (volume) of the trapezoid that represents part of the tra-
jectory of a bounding rectangle in ( 78 B�6 )-space (see Figure 2). Note, that for objective functions de-
pending on the two bounding rectangles, say ã ? and ã C , the upper integration bound becomes 6 ¤ ]Z¥�P�=¨�©D�IóoB�ã ? E�6 J([X] B�ã C E�6 J([X]a  . The computation of such integrals is described in more detail in [21].

4.2.2 Bounding Rectangles and Grouping of Entries

While the replacement of the objective functions of area, distance, margin, and overlap of bounding rect-
angles with the corresponding integrals represents a natural and simple adoption of the R 5 -tree algorithms,
additional issues may need to be addressed.

One of them is what we term the non-associativity of TPBR computation. In the R-trees, with the
Hilbert R-tree [11] as a notable exception, the bounding rectangles are used for two purposes—pruning
search (in queries) and guiding insertion decisions. Suppose that the insertion algorithm has reached a node
that is a parent to leaf nodes and it must be decided which of the child nodes should receive a new entry. The
R 5 -tree chooses a child node using the ChooseSubtree algorithm, which asks a “what if” question for each
child node. Specifically, for each child node, the algorithm computes the area of the overlap between the
sibling bounding rectangles and the existing “old” bounding rectangle, and then compares it with the area
of overlap between the “new” bounding rectangle, obtained by extending the existing bounding rectangle
to include the new entry, and the sibling rectangles. In the R 5 -tree, the “new” bounding rectangle is exactly
equal to the bounding rectangle that the node would have if the new entry were inserted into it and the
bounding rectangle were computed by looking at all its entries, including the new one. We use the term
associativity for this property of bounding rectangle computation.

The TPBRs of the same entries computed at different times may be different. Thus, the TPBR computa-
tion is non-associative, if computations of the “old” and “new” TPBRs are performed at different times. In
addition, for optimal or near-optimal TPBRs, the computation is non-associative even if the computations
are performed simultaneously. This is illustrated in Figure 7. Here, four objects _ ? B�E�E�E�BG_Iô are bounded with
old TPBR. The ChooseSubtree algorithm has to determine how the TPBR would look if a new object were
added. The figure shows that the TPBR computed by ChooseSubtree based on old TBPR and new object is
different from the TPBR that would be obtained if the new entry were actually added, i.e.,õ�öø÷�ù 9 õ�ö�÷:ù 9 _ ? BG_ C BG_¬�¬BG_AôA;&B�ú!û�üªý�þ\ÿ�û�� � ;��< õ�ö�÷�ù 9 _ ? BG_ C BG_¬�¬BG_Iô�B�úDû�ü ý�þ\ÿ�û�� � ; .

This non-associativity means that insertion heuristics work with inaccurate information. Thus, even
if an optimal TPBR means the best TPBR for a given set of entries, the same TPBR, used for insertion
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decisions may in the long term lead to worse groupings of entries than when using other types of bounding
rectangles. That is why our performance experiments consider the range of possible types of bounding
rectangles described in Section 4.1.

Intuitively the inaccuracy introduced by non-
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Figure 7: Non-Associativity of the TPBR Computation

associativity of the TPBR computation is greater
when objects with significantly different ve-
locities are grouped together. For example, in
Figure 7, object _ C is the main cause of the
difference between the differently computed
TPBRs. The grouping of entries with differ-
ent velocities also leads to update-minimum
bounding rectangles that deteriorate, as shown
in Figure 4. In addition, a node of entries with
significantly different velocities is more diffi-
cult to split.

A simple way to avoid grouping entries
with very different velocities together is to con-
sider all entries (representing both objects and
bounding rectangles) as being infinite when
making insertion decisions. Performance ex-

periments in Section 5 investigates the effect of this on query performance.
Not considering the differences of the types of TPBRs used, the ChooseSubtree, Split, and RemoveTop1

algorithms of the R 1,2D3 -tree are the same as those of the TPR-tree. The only difference is that the Choos-
eSubtree does not use overlap enlargement as a heuristic [5]. This simplifies the algorithm, making it linear
instead of quadratic. Our performance experiments with different types of TPBRs show that using overlap
enlargement as heuristics in the ChooseSubtree of the R 1,2D3 -tree does not improve query performance.

4.2.3 Dynamic Maintenance of the Time Horizon

As discussed in Section 4.2.1, the decisions made in insertion algorithms depend on the time horizon H,
which, in turn, depends on the average update interval length ( àjá ) and the average querying window length
(W). To obtain a versatile and robust index, the values of these parameters should be maintained automati-
cally by tracking the operations on the index.

To maintain an approximate value of à�á , the R 1,2D3 -tree tracks the current number of entries ( � ) in the
leaf level of the tree. It is increased every time a new leaf entry is inserted and decreased when a leaf-entry
is deleted or discarded due to expiration. In addition, every � insertions, a special timer is reset to measure
the time duration ( �s6 ) it took to receive the last � insertions. Here, � is the number of entries in a node.
Parameter àjá is also updated every � insertions. It is set to be 9 �y6�� � ;�� . One could also choose other
periodic policies for updating àjá , but, at least initially, it should not be done less frequently than every �
insertions, so that, when H is used for the first time (in the first split of the root), the initial estimate of à�á
is available.

The above à�á is used for making decisions in the insertion algorithm. When computing optimal and
near-optimal TPBRs, a value that is smaller than the computed àjá should be used because the TPBR can
be recomputed any time one of the enclosed objects is updated. Thus, in addition to ��<��u� , the number
of leaf-entries, the R 1+243 -tree maintains the number of entries at each level of the tree ( ��� ). Then, àjá,� , the
average time between two recomputations of a bounding rectangle that bounds a node of level ¡+S ` , is equal

1RemoveTop is used in connection with forced reinsert [5].
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to àjá � Þ ? � 9 � � Þ ? �	� � ; , where � � Þ ? �	� � is the average number of entries in a node at level ¡}S ` .
To compute the H parameter, the query window length W is needed. One could track queries to estimate

W, but this approach has the disadvantage that an index may not be queried for long periods of time, leaving
W outdated. We employ a different approach. In realistic scenarios, W is intimately related to àjá . It makes
little sense to ask queries that reach much further into the future than àjá because the results of such queries
will most probably be grossly invalidated by future updates. Thus, we choose W <�×�
Iàjá , where ¿ p × p `
in most realistic scenarios.

4.3 Removal of Expired Entries

To contend with expiring entries in both the leaf level and in internal nodes of a tree, the insertion and
deletion algorithms must be adjusted further.

First, the expired entries should be discarded from the tree at one time or the another. Second, a node
may be noticed to be underfull, counting only non-expired entries, termed live, not only after removing an
entry from a node during a deletion operation, but at any stage in both deletion and insertion algorithms.

To address this, a range of strategies can be adopted, ranging from very eager strategies, where expired
entries are deleted by scheduled deletions as soon as they expire, to lazy strategies, where expired entries
are allowed to stay in the index. We adopt a lazy strategy for the removal of expired index entries. Only live
entries are considered during search, insertion, and deletion operations, but expired entries are physically
removed from a node only when the contents of the node is modified and the node is written to disk. In
addition, when an expired entry in an internal node is discarded, either when writing the node to the disk or
deallocating it, the whole subtree rooted at this entry has to be deallocated.

To handle consistently the events of nodes becoming underfull (and overfull), the algorithms for inser-
tion or deletion are modified to become very similar. First, as in the regular R 5 -tree, the leaf node is found
where a new entry has to be inserted or the existing one deleted. From here, both algorithms proceed in the
same way by calling the function �������������������� 9�� û�����; , below, for the leaf node that was changed.

���! " $#&%('	)* $#&#,+.-0/�1.2,3
:

CT1 Initialize a list of orphaned entries, orphans, to be empty. The level of the tree from which the entry was
removed is recorded with each entry in orphans.

CT2 Call 4$576!8 1(9;:�<>=? "�A@*��BAC;'D#&EF@G+H-0/�1I2�J 4(576;8 1(9;:(3 .
CT3 While orphans is not empty

CT3.1 Remove an entry with the highest level from orphans and insert it into a node at the appropriate
tree level (in the same way as a data entry is inserted at leaf level), or if the root node of the tree
is empty, insert it into the root node. Let node be the node where the entry was inserted.

CT3.2 Call 4$576!8 1$9!:�<K=? $�A@*�AB�C�'	#�E@G+.9 4DL /�J 4(576;8 1(9;:$3 .
CT4 If the root node was modified and has only one entry, reduce the number of tree levels by declaring the child

of it a new root.

The exotic case of the root becoming empty in CT3.1 may occur if all but one entry in the root expire and
the single live entry is removed from the root by function MN���POQ��RPST���AUVO . This function checks for both
the node being underfull or overfull (counting only live entries) and propagates the necessary changes up
the tree.
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=? $�!@W�AB�C�'D#&E@X+.9 4	L /�J 4$576!8 1$9!:"3 :
PU1 If node is overfull, then, as in R Y -tree, either move a number of its live entries to orphans for later reinsertion

(if that was not yet performed at this level), or split node.
PU2 If node is underfull, then move all its live entries to orphans and deallocate the node.
PU3 Remove the entry from node’s parent, parent, if the node was deallocated; install a new entry in parent, if

the node was split (a new root is created if the root was split). Otherwise, update the bounding rectangle in
the parent’s entry that points to the node, if necessary.

PU4 If node is not the root, call 4$576!8 1$9!:?<K=? $�A@*��BAC�'	#&EF@G+ 6 1 5 /Z9A[\J 4(576;8 1$9;:$3 . Return orphans.

The presented algorithm ensures that all nodes modified by the algorithm have the right number of live
entries. All other nodes, even if read by the algorithm, may be underfull.

It should be noted that the deletion algorithm in the R 1,2D3 -tree uses a regular search procedure to find a
leaf entry to be deleted. This procedure does not “see” expired entries. Consequently, if a delete operation
is performed on an expired entry, the operation fails. This could be changed to allow the deletion algorithm
to see the expired entries, but, as performance experiments show, this is unnecessary. The lazy strategy of
purging expired entries as described above is able to maintain a very low percentage of expired entries in
the index.

Figure 8 illustrates the workings of the algorithm. Here, an insertion of a new entry purges expired
entries in part of the tree, and shrinks the tree in the process. The example assumes a maximum of 5 and a
minimum of 3 entries in a node. In the first step, the entry X/20 is directed to leaf node C. As G and H in
C have expired (the current time is 5), C is underfull and is discarded, while its live entries are temporarily
stored in ý&].^P_��¬úw{ . After removing C’s entry from B, we notice that B is underfull. Again, B is discarded,

E/3D/12
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B/-A/10
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Figure 8: Purging of Expired Entries Triggered by an Insertion (Expiration Times Are Shown After Slashes)

and its live entries are posted to ý�]I^P_,�¬úw{ , now at the list of level 1. In addition, when discarding B’s expired
entry E, we take care to deallocate the whole subtree rooted at E, which in this case happens to be a single
leaf node. It is also worth noting that after this step, if A had expired, the algorithm would run into the
situation of an empty root (CT3.1) when a new root is created from entries in ý�]I^P_,�¬úw{ . In the last two
steps, entries from ý&].^P_��¬úw{ are inserted one by one, starting with the higher-level entries. Finally, the tree
is shrunk by discarding the single entry root.

Except for always checking for underfull or overfull nodes, the presented algorithm does not differ
substantially from the R 5 -tree insertion and deletion algorithms. It should be noted, though, that in the new
algorithm, the number of entries in the list orphans in the worst case is bounded only by the number of
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entries in the whole tree, meaning that the list may not fit in main memory. For example, this could happen
after a long period during which the system, for some reason, did not receive any updates. A natural solution
to this problem is to fix the maximum size of orphans and stop handling underfull nodes in step PU2 when
orphans is almost full. Limiting the size of orphans also limits the cost of any single update operation.

5 Performance Experiments

This section reports on performance experiments with the R 1,2D3 -tree. The generation of two-dimensional
moving point data and the settings for the experiments are described first, followed by the presentation of
the results of the experiments.

5.1 Experimental Setup and Workload Generation

The R 1+2D3 -tree was implemented in C++ using, as the basis, an adapted GiST [10] class library implementa-
tion. The page size (and tree node size) is set to 4k bytes, which results in 170 entries in a full leaf node and
102 entries in a full non-leaf node. A page buffer of 200k bytes, i.e., 50 pages, is used [15], where the root
of a tree is pinned and the least-recently-used page replacement policy is employed. Nodes modified during
an index operation are marked as “dirty” in the buffer and are written to disk at the end of the operation or
when they otherwise have to be removed from the buffer.

The performance studies are based on artificially generated workloads that intermix queries and update
operations, thus simulating index usage across a period of time. Initially, the index is empty and is popu-
lated gradually, with entries being added when simulated objects send their first positions. After the initial
insertion of an object into the index, each subsequent update consists of the deletion of the old positional
information, followed immediately by the insertion of the new. We proceed to describe how the updates
and the queries are generated.

Because it is unrealistic to expect uniformly distributed positions and velocities for moving objects, we
attempt to generate more realistic (and skewed) two-dimensional data by simulating a scenario where the
objects, e.g., cars, move in a network of routes, e.g., roads, connecting a number of destinations, e.g., cities
or intersections. Twenty destinations are distributed uniformly in the space with dimensions `�¿�¿�¿a` `�¿�¿�¿
kilometers. The destinations serve as the vertices in a fully connected graph of 380 one-way routes. When
a new object is introduced, it is placed at a random position on a random route. The object is assigned with
equal probability to one of three groups of objects with maximum speeds of ¿aE0b¬d , `¬E³d , and c km � min ( �d ,c ¿ , and `(d¬¿ km � h). During the first sixth of a route, objects accelerate from zero speed to their maximum
speeds; during the middle two thirds, they travel at their maximum speeds; and during the last one sixth of a
route, they decelerate. When an object reaches its destination, a new destination is assigned to it at random.

The workload generation algorithm distributes the updates of an object’s movement so that updates are
performed during the acceleration and deceleration stretches of a route. The number of updates is chosen
so that the total average time interval between two subsequent updates is approximately equal to a given
parameter àjá , which is fixed at ^¬¿ in most experiments.

In addition to using the above-described data, some experiments also use workloads with uniform data.
In these workloads, the initial coordinates of a newly introduced object are chosen randomly. The direc-
tions of the velocity vectors are assigned randomly as well, both initially and on each update. The speeds
(lengths of velocity vectors) are uniformly distributed between 0 and 3 km � min. The time interval between
successive updates is uniformly distributed between 0 and bRà�á .

Two different approaches are used for generating expiration times. In one set of the experiments, the
expiration time of an object is set to be equal to the time of the update plus the expiration period ExpT that
is common to all objects. Most experiments use bRàjá for ExpT. In the other approach, expiration times are
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dependent on the speeds of the objects. The positional information of fast objects becomes imprecise sooner
than the positional information of slow objects. Consequently, fast objects should expire sooner. To achieve
this, we introduce the concept of expiration distance. On an update, an object with speed N is assigned the
expiration time 6 ¤ ]&¥TPfehg	^Ti«� N , where ExpD is varied in the experiments.

Depending on how expiration times are generated, a large portion of objects may expire and be removed
from the index before they are updated. This means that the number of objects in the index is smaller than
the number of objects participating in the simulated scenario. Based on the assumption that the time interval
between successive updates is uniformly distributed between 0 and bRàjá , the workload generation algorithm,
if necessary, increases the number of objects participating in the scenario so that the average number of leaf
entries is around 100,000.

As mentioned in Section 2.1, there may be application scenarios where objects that stop reporting their
positions are not guaranteed to notify the system and be deleted from the index. Our workload generation
algorithm simulates this scenario by randomly “turning off” objects. To maintain a constant number of
objects, a new object is introduced for each turned off object. A workload generation parameter NewOb
specifies the fraction of objects initially participating in the simulated scenario that are replaced by new
objects during the course of the workload.

All workloads contain one million insertion operations. In addition to insertions and deletions, work-
loads include one query for each 100 insertions (10,000 in total). Timeslice, window, and moving queries
are generated with probabilities ¿aE³^ , ¿aE³b , and ¿aE³b . The temporal parts of queries are generated randomly in
an interval of length W < à�áa�¬b and starting at the current time. Thus, the × parameter mentioned at the
end of Section 4.2.3 is set to ¿aE³d . Only for workloads with ehg	^ õ <Àc¬¿ , the setting of W < `�d was used.
The spatial part of each query is a square occupying ¿aE³b�d % of the space. The spatial parts of timeslice and
window queries have random locations. For moving queries, the center of a query follows the trajectory of
one of the points currently in the index.

The workload generation parameters that are varied in the experiments are given in Table 1. Standard
values, used if a parameter is not varied in an experiment, are given in bold-face.

Parameter Description Values Used

ExpT Expiration duration (time interval until expiration) 30, 60, 120, 180, 240
ExpD Expiration distance (distance traveled until expiration) 45, 90, 180, 270, 360

NewOb Fraction of new objects 0, 0.5, 1, 1.5, 2
UI Update interval length 30, 60, 90, 120

Table 1: Workload Parameters

5.2 Experiments with Near-Optimal Time Parameterized Bounding Rectangles

As mentioned in Section 4.2.2, the ChooseSubtree algorithm may need slight modifications when com-
bined with near-optimal TPBRs. In addition, not recording expiration times in TPBRs (as suggested in
Section 4.1.1) may be beneficial. To investigate these issues, we compared four flavors of the R 1+243 -tree
algorithms. Two use the regular ChooseSubtree algorithm, and the other two use the modified ChooseSub-
tree algorithm that assumes (only for decision-making purposes) the entry being inserted and the entries of
the tree to have infinite expiration times. The latter should result in a more pronounced grouping of objects
according to their velocities. For either choice of the ChooseSubtree algorithm, both options—recording
TPBR expiration times and not recording them—are explored (expiration times for data entries are always
recorded).

Figures 9 and 10 show the average numbers of I/O operations per query for workloads with varying
ExpT and àjá parameters. The graphs, as well as the results of a number of other experiments, demonstrate
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Figure 9: Search Performance For Varying ExpT
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Figure 10: Search Performance For Varying UI

that, if TPBR expiration times are recorded, ChooseSubtree has to be modified to consider all entries as
infinite (cf. the top two lines in Figure 10). Nevertheless, in most cases, the best results are produced when
the normal ChooseSubtree algorithm is combined with TPBRs without expiration times. Other types of
bounding rectangles also lead to better search performance when their expiration times are not recorded.

5.3 Comparing Different Time Parameterized Bounding Rectangles

A set of experiments with varying workloads was performed in order to compare the relative performance
of near-optimal, optimal, static, and update-minimum bounding rectangles. For update-minimum bound-
ing rectangles, both versions of the ChooseSubtree algorithm, discussed in the previous subsection, were
explored. The version of the ChooseSubtree algorithm that ignores expiration times should avoid grouping
regions in a way that causes update-minimum bounding rectangles to degrade later (illustrated in Figure 4).

Figure 11 shows the average number of I/O operations for uniform workloads, when ExpT is varied,
and Figure 12 shows the result of experiments with workloads with speed-dependent expiration times.

The graphs demonstrate that, in most cases, near-optimal bounding rectangles perform best, and we use
them in the experiments reported in the next subsection. Usage of the optimal bounding rectangles does
not improve query performance. Most interestingly, update-minimum bounding rectangles are almost as
good as near-optimal ones. Observe though that, in Figure 11, update-minimum TPBRs give better results
when combined with the normal ChooseSubtree algorithm; and in Figure 12, update-minimum bounding
rectangles are better when combined with the ChooseSubtree algorithm that ignores expiration times. This
can be explained by observing that the situations similar to the one shown in Figure 4 are much more
common in workloads where expiration times are dependent on the speeds. In these workloads, fast objects,
such as _a` and _�c in Figure 4, expire sooner than slow objects.

For the same reasons, static TPBRs perform quite well for workloads with speed-dependent expiration
times. Static TPBRs can effectively bound the trajectories of objects only if the trajectories with long
expiration times have speeds close to zero, i.e., such trajectories are parallel to time axis (cf. Figure 3). This
is exactly the case for workloads with speed-dependent expiration times.
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5.4 Comparing the R 1+243 -Tree with Alternative Approaches

To evaluate the R 1,2D3 -tree, we compared it with the TPR-tree and the TPR-tree with an associated B-tree for
storing scheduled deletions as described in Section 3. To evaluate the difference between the lazy approach
to purging expired entries and the approach where deletions are scheduled, we consider also the R 1+243 -tree
with scheduled deletions.

Figures 13 and 14 show the search performance for workloads with varying ExpD and NewOb. The
graphs demonstrate that if expiration durations are not too large, the R 1+243 -tree outperforms the TPR-tree
by almost a factor of two even for workloads with no new objects being introduced. Naturally, when the
number of “turned off” objects increases, the performance of the TPR-tree drops significantly because the
size of the index increases (see Figure 15).

The performance of the R 1,2D3 -tree is only slightly worse than that of the approaches that employ sched-
uled deletions (which, as we shall see shortly, have excessive update costs). Most of the difference can be
attributed to the better organized index that results from more updates when scheduled deletions are added
to regular update operations. As Figure 15 shows, the difference in sizes between the R 1+243 -tree and the
R 1+243 -tree with scheduled deletions is negligible. This means that at any moment, the frequency of updates
is high enough for the algorithms described in Section 4.3 to remove most of the expired entries.

Figure 14 also shows that the difference between search performances of the TPR-tree with scheduled
deletions and the R 1,2D3 -tree with scheduled deletions is very small. Note that the R 1,2D3 -tree is penalized in
this setting by unnecessarily recording expiration times. This is illustrated by the size differences of the two
indices (see Figure 15). Nevertheless, the above-mentioned small difference demonstrates that most of the
performance gain of the R 1,2D3 -tree when compared to the TPR-tree is achieved by the regrouping of entries
that occurs due to the lazy removal of expired entries.

Figure 16 shows that automatic removal of expired entries does not result in bad update performance.
Here the average number of I/O operations per single insertion or deletion operation is shown. Note that
the provided graphs do not include the costs associated with B-trees for the approaches with scheduled
deletions. Adding these costs to the performance numbers of the TPR-tree with scheduled deletions would
almost double them and, thus, make the update performance of this approach much worse than the update
performance of the R 1+243 -tree.
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6 Conclusions and Future Work

Motivated by the emerging mobile Internet and location-based services, which may benefit from the ability
to track large numbers of on-line mobile objects, this paper proposes an R*-tree-based index for the current
and anticipated future positions of moving point objects.

The proposed R 1,2D3 -tree captures the future trajectories of moving points as linear functions of time.
To address the issue that, in many applications, the positional information is expected to be irrelevant and
outdated soon after it is recorded, the R 1,2D3 -tree stores expiration times in leaf entries of the index.

We provide insertion and deletion algorithms for the index that support expiration times. The algorithms
implement a lazy technique for removing expired entries from the index. Performance experiments show
that, for realistically dynamic index workloads, the algorithms are able to eliminate all but a very small
fraction of the expired entries. By removing expired entries and, in the process, recomputing bounding
rectangles and handling the resulting underfull nodes, the R 1,2D3 -tree algorithms reorganize the index to
improve query performance. In addition, the removal of expired entries does not result in high update costs.

The R 1+243 -tree borrows the idea of time-parameterized bounding rectangles from the TPR-tree, but to
take advantage of expiration times, we have investigated a number of different ways of computing such
rectangles. Performance experiments show that choosing the right bounding rectangles and corresponding
algorithms for grouping entries is not trivial and is dependent on the characteristics of the workloads. The
so-called near-optimal time-parameterized bounding rectangles exhibited overall good query performance.

The long-term effect that different types of bounding shapes have on the grouping of finite line segments
deserves a more detailed study (see Section 4.2.2). A possible approach would involve separating the
information that guides the grouping decisions from the information that guides search. Such studies may
be also useful in connection with the indexing of the histories of moving points.
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