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Multidimensional
Database 
Technology

T
he relational data model, which was intro-

duced by E.F. Codd in 1970 and earned him

the Turing award a decade later, served as the

foundation of today’s multibillion dollar

database industry. During the past decade,

the multidimensional data model emerged for use

when the objective is to analyze data rather than to

perform online transactions. Multidimensional data-

base technology is a key factor in the interactive analy-

sis of large amounts of data for decision-making

purposes. In contrast to previous technologies, these

databases view data as multidimensional cubes that

are particularly well suited for data analysis. 

Multidimensional models categorize data either as

facts with associated numerical measures or as textual

dimensions that characterize the facts. In the case of a

retail business, a purchase would be a fact and the pur-

chase amount and price would be measures; the type

of product being bought and the purchase time and

location would be dimensions. Queries aggregate mea-

sure values over a range of dimension values to provide

results such as total sales per month of a given prod-

uct. Multidimensional data models have three impor-

tant application areas within data analysis. 

• Data warehouses are large repositories that inte-

grate data from several sources in an enterprise

for analysis. 

• Online analytical processing (OLAP) systems pro-

vide fast answers for queries that aggregate large

amounts of detail data to find overall trends.

• Data-mining applications seek to discover knowl-

edge by searching semiautomatically for previ-

ously unknown patterns and relationships in mul-

tidimensional databases. 

Academic researchers have proposed formal math-

ematical models of multidimensional databases, while

industry has implicitly specified proposals via the con-

crete software tools that implement them.1,2 The

“Multidimensional Database History” sidebar de-

scribes the evolution of the multidimensional data

model and how it has benefited from the use of seman-

tic as well as scientific and statistical data models. 

SPREADSHEETS AND RELATIONS
A spreadsheet such as that shown in Table 1 is a use-

ful tool for analyzing sales data such as product sold,

number of purchases, and city of sale. A pivot table is

a two-dimensional spreadsheet with associated subto-

tals and totals that supports viewing more complex

data by nesting several dimensions on the x- or y-axis

and displaying data on multiple pages. Pivot tables

generally support interactively selecting data subsets

and changing the displayed level of detail. 

Spreadsheets are an inadequate tool for managing

and storing multidimensional data because they tie data

storage too tightly to the presentation—they do not

separate the structural information from the desired

views of the information. Thus, adding a third dimen-

sion such as time or grouping the data into higher-level

product types requires a considerably more complex

setup. The obvious solution is to use a separate spread-

sheet for each dimension, but this will work only to a

limited extent because analyzing the additional values

of the extra dimension quickly becomes unwieldy. 

Multidimensional databases model data as either facts, dimensions, or
numerical measures for use in the interactive analysis of large amounts 
of data for decision-making purposes. 
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Using a Structured Query Language database man-

agement system offers considerable flexibility in struc-

turing data. However, formulating many desirable

computations such as cumulative aggregates (sales in

year to date), combining totals and subtotals, or deter-

mining rankings such as the top 10 selling products is

difficult if not impossible in standard SQL. Also, trans-

posing rows and columns requires manually specify-

ing and combining multiple views. Although SQL

extensions such as the data cube operator3 and query

windows4 will remedy some of these problems, the

SQL-based relational model does not handle hierar-

chical dimensions satisfactorily.

Spreadsheets and relational databases provide ade-

quate support for a small volume of data that has only

a few nonhierarchical dimensions, but they do not

fully support the requirements for advanced data

analysis. The only robust solution is to use database

technology that offers inherent support for the full

range of multidimensional data modeling.

CUBES
Multidimensional databases view data as cubes that

generalize spreadsheets to any number of dimensions.

In addition, cubes support hierarchies in dimensions

and formulas without duplicating their definitions. A

collection of related cubes comprises a multidimen-

sional database or data warehouse.

Because dimensions in a cube are first-class, built-

in concepts with associated domains, cubes can easily

manage the addition of new dimension values.

Although the term implies three dimensions, a cube

can theoretically have any number of dimensions; in

fact, most real-world cubes have four to 12 dimen-

sions.3,9 Current tools often experience performance

problems when a so-called hypercube contains more

than 10 to 15 dimensions.

Combinations of dimension values define a cube’s

cells. Depending on the specific application, the cells

in a cube range from sparse to dense. Cubes tend to

become sparser as dimensionality increases and as the

dimension values’ granularities become finer. 

Figure 1 shows a cube capturing the sales for the

two Danish cities in Table 1 with the additional

dimension of time. The corresponding cells store the

number of sales. The example has a fact—a nonempty

cell that contains a number of associated numerical

measures—for each combination of time, product,

and city where at least one sale was made. The cells

store numerical values associated with a fact—in this

case, the number of sales is the only measure.

Generally, a cube supports viewing only two or three

dimensions simultaneously, but it can show up to four

low-cardinality dimensions by nesting one dimension

within another on the axes. Thus, cube dimensional-

ity is reduced at query time by projecting it down to
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Table 1. Sample sales spreadsheet.

Number of purchases
Product Aalborg Copenhagen Los Angeles New York City
Milk 123 555 145 5,001 
Bread 102 260 54 2,010  
Jeans 20 89 32 345
Light bulbs 22 213 32 9,450

2000 2001

123 127

57 45

56 67

211

Copenhagen

Aalborg

Bread

Milk

Figure 1. Sample cube capturing sales data. Data cubes support viewing of up to four
low-cardinality dimensions simultaneously. In this case, the cube generalizes the
spreadsheet from Table 1 to three dimensions.

Multidimensional Database History
Multidimensional databases do not have their origin in database tech-

nology but stem from multidimensional matrix algebra, which has been

used for manual data analysis since the late 19th century. 

During the late 1960s, IRI Software and Comshare independently

began developing what later became multidimensional database sys-

tems. IRI Express, a popular tool for marketing analysis in the late 1970s

and early 1980s, became a market-leading online analytical processing

tool and was acquired by Oracle. Concurrently, the Comshare system

developed into System W, which saw heavy use for financial planning,

analysis, and reporting during the 1980s.

In 1991, Arbor Software, now Hyperion Solutions, was formed with

the specific purpose of creating a multiuser, multidimensional database

server, which resulted in the Essbase system. Arbor later licensed a basic

version of Essbase to IBM for integration into DB2. 

In 1993, E.F. Codd coined the term OLAP.1 Another significant devel-

opment in the early 1990s was the advent of large data warehouses,

which are typically based on relational star or snowflake schemas, an

approach that uses relational database technology to implement multi-

dimensional databases. 

In 1998, Microsoft shipped its MS OLAP Server, the first multidi-

mensional system aimed at the mass market, and now multidimensional

systems are becoming commodity products, shipped at no extra cost

together with leading relational database systems.

Reference
1. E.F. Codd, S.B. Codd, and C.T. Salley, “Providing OLAP (On-Line Analyt-

ical Processing) to User-Analysts: An IT Mandate,” http://www.hyperion.

com/solutions/whitepapers.cfm (current Nov. 2001). 
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2D or 3D by aggregating the measure values in the pro-

jected-out dimensions, resulting in higher-level mea-

sure values for the desired data view. For example, to

view sales by city and time we aggregate over the entire

product dimension for each combination of city and

time. Thus, in Figure 1, adding 127 and 211 yields the

total sales for Copenhagen in 2001.

DIMENSIONS
Dimensions are an essential and distinguishing con-

cept in multidimensional databases. An important

goal of multidimensional modeling is to use dimen-

sions to provide as much context as possible for facts.5

In contrast to relational databases, controlled redun-

dancy is generally considered appropriate in multidi-

mensional databases if it increases the data’s in-

formation value. Because multidimensional cube data

is often derived from other sources—for example, a

transactional relational system—rather than being

“born” in the multidimensional cube, the redundancy

problems related to updates can be managed more

readily.5 There is usually no redundancy in the facts,

only in the dimensions.

Dimensions are used for selecting and aggregating

data at the desired level of detail. A dimension is orga-

nized into a containment-like hierarchy composed of

numerous levels, each representing a level of detail

required by the desired analyses. Each instance of the

dimension, or dimension value, belongs to a particu-

lar level. 

It is sometimes advantageous for multidimensional

models to define multiple hierarchies for a dimen-

sion—for example, the model can define time as both

fiscal year and calendar year. Multiple hierarchies

share one or more common lowest levels—for exam-

ple, day and month—and the model groups them into

multiple levels higher up—fiscal quarter and calendar

quarter—to allow easy reference to several ways of

grouping. To avoid duplicating definitions, the cube

or multidimensional database metadata defines the

dimension hierarchy. 

Figure 2 shows the schema and instances of a sam-

ple location dimension for the sales data in Table 1. Of

the location dimension’s three levels, City is the lowest.

City-level values are grouped into country-level val-

ues—for example, Aalborg and Copenhagen are in

Denmark. The T level represents all of a dimension.

In some multidimensional models, a level has a

number of associated properties that hold simple, non-

hierarchical information. For example, the package

size can be a level property in the product dimension.

A package-size dimension could also capture this

information. Using the level property does not increase

the cube’s dimensionality.

Unlike the linear spaces used in matrix algebra, mul-

tidimensional models typically do not include order-

ing or distance metrics for the dimension values.

Rather, the only ordering is that higher-level values

contain lower-level values. However, for some dimen-

sions such as time, an ordering of the dimension val-

ues is used to calculate cumulative information such

as total sales to date. Most models require dimension

hierarchies to form balanced trees—the hierarchy

must have uniform height everywhere and each non-

top value has precisely one parent. 

FACTS
Facts represent the subject—the interesting pattern

or event in the enterprise that must be analyzed to

understand its behavior. In most multidimensional

data models, facts are implicitly defined by their com-

bination of dimension values; a fact exists only if there

is a nonempty cell for a particular combination of val-

ues. However, some models treat facts as first-class

objects with a separate identity. Most multidimen-

sional models also require mapping each fact to one

value at the lowest level in each dimension, but some

models relax this mapping requirement.1

Each fact has a certain granularity determined by

the levels from which its combination of dimension

values is drawn—for example, the fact granularity of

the cube in Figure 1 is year by product by city.

Granularities consisting of higher- or lower-level

dimension values than a given granularity—such as

year by type by city and day by product by city—are

coarser or finer, respectively.

Data warehouses commonly include three types of

facts:5

• Events, at least at the finest granularity, typically

model real-world events, with one fact repre-

senting the same instance of an underlying phe-

nomenon. Examples include sales, clicks on a

Web page, or movement of goods in and out of

a warehouse. 

• Snapshots model an entity’s state at a given point

in time, such as store and warehouse inventory

T

USA

New York

Denmark

Aalborg CopenhagenLos Angeles

T

Country

City

Location

Figure 2. Sample schema and instances of the location
dimension. Every dimension value is part of the T value.



levels and the number of Web site users. The same

instance of the underlying real-world phenome-

non—such as a specific can of beans on a shelf—

may occur in several facts at different time points. 

• Cumulative snapshots handle information about

activity up to a certain point in time. For exam-

ple, the total sales up to and including the cur-

rent month this year can be easily compared to

the figure for the corresponding month last year.

Because they support complementary classes of analy-

ses, a given data warehouse often contains all three

types of facts. Indeed, the same base data—for exam-

ple, the movement of goods in a warehouse—can be

included in three different types of cubes: warehouse

flow, inventory, and flow in year to date.

MEASURES
A measure consists of two components:

• a fact’s numerical property, such as the sales price

or profit; and 

• a formula, usually a simple aggregation function

such as sum, that can combine several measure

values into one. 

In a multidimensional database, measures generally

represent the properties of the fact that the user wants

to optimize. Measures then take on different values

for various combinations of dimension values. The

property and formula are chosen to provide a mean-

ingful value for all combinations of aggregation levels.

Because the metadata defines the formula, the data is

not replicated as in a spreadsheet. Most multidimen-

sional data models have measures, but some rely on

using dimension values to make computations at the

expense of user friendliness.1

Three classes of measures behave quite differently

in computations:

• Additive measures can be meaningfully combined

along any dimension. For example, it makes

sense to add total sales for the product, location,

and time because this causes no overlap among

the real-world phenomena that generated the

individual values. 

• Semi-additive measures cannot be combined along

one or more dimensions. For example, summing

inventory across products and warehouses is

meaningful, but summing inventory levels across

time does not make sense because the same phys-

ical phenomenon could be counted several times.

• Nonadditive measures cannot be combined along

any dimension, usually because the chosen for-

mula prevents combining lower-level averages

into higher-level averages. 

Additive and nonadditive measures can occur

for any kind of fact, while semi-additive mea-

sures generally occur for snapshot or cumula-

tive snapshot facts.

QUERYING
A multidimensional database naturally lends

itself to certain types of queries:

• Slice-and-dice queries make selections to

reduce a cube. For example, we can slice

the cube in Figure 1 by considering only

those cells that concern bread, then further

reduce this slice by considering only the cells for

the year 2000. Selecting a single dimension value

reduces the cube’s dimensionality, but more gen-

eral selections are also possible.

• Drill-down and roll-up queries are inverse

operations that use dimension hierarchies and

measures to perform aggregations. Rolling up

to its top value corresponds with omitting the

dimension. For example, rolling from City to

Country in Figure 2 aggregates the values for

Aalborg and Copenhagen into a single value—

Denmark. 

• Drill-across queries combine cubes that share one

or more dimensions. In relational algebraic

terms, this operation performs a join. 

• Ranking or top n/bottom n queries6 can return

only those cells that appear at the top or bottom

of the specified order—for example, the 10 best-

selling products in Copenhagen in 2000. 

• Rotating a cube allows users to see the data

grouped by other dimensions.

Drill-down and roll-up queries can be combined with

slice-and-dice queries.

IMPLEMENTATION
Multidimensional database implementations take

two basic forms:

• Multidimensional online analytical processing

stores data on disks in specialized multidimen-

sional structures. MOLAP systems typically

include provisions for handling sparse arrays and

apply advanced indexing and hashing to locate

the data when performing queries.6

• Relational OLAP (ROLAP) systems3 use rela-

tional database technology for storing data, and

they also employ specialized index structures,

such as bit-mapped indices, to achieve good

query performance.

MOLAP systems generally provide more space-effi-

cient storage as well as faster query response times.
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The “Achieving Fast Query Response Time” sidebar

outlines some of the techniques used to accomplish

this. ROLAP systems typically scale better in the num-

ber of facts they can store (although some MOLAP

tools are now becoming just as scalable), are more

flexible with respect to cube redefinitions, and pro-

vide better support for frequent updates. The virtues

of the two approaches are combined in the hybrid

OLAP approach, which uses MOLAP technology to

store higher-level summary data and ROLAP systems

to store the detail data.

ROLAP implementations typically employ star or

snowflake schemas,5 both of which store data in fact

tables and dimension tables. A fact table holds one

row for each fact in the cube. It has a column for each

measure, containing the measure value for the partic-

ular fact, as well as a column for each dimension that

contains a foreign key referencing a dimension table

for the particular dimension.

Star and snowflake schemas differ in how they han-

dle dimensions, and choosing between them largely

depends on the desired properties of the system being

developed. As Figure 3 shows, a star schema has one

table for each dimension. The dimension table con-

tains a key column, one column for each dimension

level containing textual descriptions of that level’s val-

ues, and one column for each level property in the

dimension. 

The star schema’s fact table holds the sales price for

one particular sale and its related dimension values.

It has a foreign key column for each of the three

dimensions: product, location, and time. The dimen-

sion tables have corresponding key columns and one

column for each dimension level—for example,

LocID, City, and Country. No column is necessary for

the T level, which will always hold the same value. The

dimension table’s key column is typically a dummy

integer key without any semantics. This prevents mis-

use of keys, offers better storage use, and provides

more support for dimension updates than informa-

tion-bearing keys from the source systems.5

Redundancy will occur in higher-level data. For

example, because May 2001 has 31 day values, the

year value “2001” will be repeated 30 times. Because

dimensions typically only take up one to five percent

of a cube’s total required storage, however, redun-

dancy is not a storage problem. Also, the central han-

dling of dimension updates ensures consistency. Thus,

using denormalized dimension tables, which support

a simpler formulation of better-performing queries, is

often beneficial.

Snowflake schemas contain one table for each

dimension level to avoid redundancy, which may be

advantageous in some situations. The dimension

tables each contain a key, a column holding textual

descriptions of the level values, and possibly columns

for level properties. Tables for lower levels also con-

tain a foreign key to the containing level. For exam-

ple, the day table in Figure 4 contains an integer key,

the date, and a foreign key to the month table.

COMPLEX MULTIDIMENSIONAL DATA
Traditional multidimensional data models and

implementation techniques assume that

• all facts map directly to the lowest-level dimen-

sion values and only to one value in each dimen-

sion, and

• dimension hierarchies are balanced trees. 

When these assumptions fail, however, standard mod-

els and systems do not adequately support the desired

applications. Complex multidimensional data is espe-

cially problematic because it is not summarizable—

higher-level aggregate results cannot be derived from

lower-level aggregate results. Queries on lower-level

results will provide the wrong results or precomput-

ing, storing, and subsequently reusing lower-level

results to compute higher-level results is no longer pos-

sible. Aggregates must instead be calculated directly

from base data, which considerably increases com-

putational costs.

Summarizability requires distributive aggregate

functions and strict, onto, and covering dimension

hierarchy values.1,7 Informally, a dimension hierarchy

is strict if no dimension value has more than one direct

Achieving Fast Query Response Time
The most essential performance-enhancing techniques in multidi-

mensional databases are precomputation and its more specialized

cousin, preaggregation, which enable response times to queries involv-

ing potentially huge amounts of data to be fast enough to allow inter-

active data analysis. 

Computing and storing, or materializing, a product’s total sales by

country and month is one application of preaggregation. This enables

fast answers to queries that ask for the total sales—for example, by

month alone, by country alone, or by quarter and country in combina-

tion. These answers can be derived entirely from the precomputed results

without needing to access bulks of data in the data warehouse.

The latest versions of commercial relational database products, as

well as dedicated multidimensional systems, offer query optimization

based on precomputed aggregates and automatic maintenance of stored

aggregates during updating of base data.1

Full preaggregation—materializing all combinations of aggregates—

is infeasible because it takes too much storage and initial computation

time. Instead, modern OLAP systems adopt the practical preaggrega-

tion approach of materializing only select combinations of aggregates

and then reusing these to efficiently compute other aggregates.2 Reusing

aggregates requires a well-behaved multidimensional data structure.

References
1. R. Winter, “Databases: Back in the OLAP Game,” Intelligent Enterprise

Magazine, vol. 1, no. 4, 1998, pp. 60-64.

2. E. Thomsen, G. Spofford, and D. Chase, Microsoft OLAP Solutions, John

Wiley & Sons, New York, 1999.



parent, onto if the hierarchy is balanced, and covering

if no containment path skips a level. Intuitively, this

means that dimension hierarchies must be balanced

trees. As Figure 5 shows, in the case of irregular

dimensions, some lower-level values will be either dou-

ble-counted or not counted when reusing intermedi-

ate query results. 

Irregular dimension hierarchies occur in many con-

texts, including organization hierarchies,8 medical

diagnosis hierarchies,9 and concept hierarchies for

Web portals such as Yahoo! (http://www.yahoo.com).

One solution is to normalize irregular hierarchies, a

process that pads non-onto and noncovering hierar-

chies with dummy dimension values to make them

onto and covering, and fuses sets of parents to remedy

the problems with nonstrict hierarchies. This trans-

formation can be accomplished transparently to the

user.10

M ultidimensional database technology has

come a long way since its inception more than

30 years ago. It has recently begun to reach

the mass market, with major vendors now delivering

multidimensional engines along with their relational

database offerings, often at no extra cost. Multi-

dimensional technology has also made significant

gains in scalability and maturity. 

Several exiting trends lie ahead. Data that must

be analyzed is becoming increasingly distributed—

for example, it is often desirable to perform analy-

ses using Extensible Markup Language data from

certain Web sites. The increasing distribution of data

in turn calls for techniques that easily integrate new

data into multidimensional databases, thus easing

the daunting task of building an integrated data

warehouse. Examples include the automatic gener-

ation of dimensions and cubes from new data

sources and methods for easy, on-the-fly data cleans-

ing. 

Multidimensional database technology is also

being applied to new types of data that current tech-

nology often cannot adequately analyze. For exam-

ple, classic techniques such as preaggregation cannot

ensure fast query response times when data—such as

from sensors or moving objects such as Global-

Positioning-System-equipped vehicles—is continu-

ously changing.

Finally, multidimensional database technology will

increasingly be applied where analysis results are fed

directly into other systems, thereby eliminating

humans from the loop. When coupled with the need

for continuous updates, this context poses stringent

performance requirements not met by current tech-

nology. ✸
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Figure 3. Star schema for sample sales cube. Information from all levels in a dimen-
sion is stored in one dimension table—for example, product names and product types
are both stored in the Product dimension table.
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Figure 4. Snowflake schema for sample sales cube. Information from different levels in
a dimension is stored in different dimension tables—for example, product names and
product types are stored in the Product and Type dimension tables, respectively.
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Figure 5. Irregular dimensions. The location hierarchy to the left is noncovering
because Denmark has no states. The hierarchy is also nonstrict as Finance and Logis-
tics share the TestCenter. 
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