
Pre-Aggregation for Irregular OLAP Hierarchies
with the TreeScape System

Torben Bach Pedersen Christian S. Jensen

Department of Computer Science
Aalborg University�

tbp,csj � @cs.auc.dk

Curtis E. Dyreson

Department of Computer Science
Washington State University
dyreson@eecs.wsu.edu

Abstract

We present the TreeScape system which, un-
like any other system known to the authors, en-
ables the reuse of pre-computed aggregate query
results involving the kinds of irregular dimen-
sion hierarchies that occur frequently in practice.
The system establishes a foundation for obtain-
ing high-performance query processing while pre-
computing only few aggregates. It is demonstrated
how this reuse of aggregates is enabled through di-
mension transformations that occur transparently
to the user.

1 Introduction
In order to improve query performance, modern On-
Line Analytical Processing (OLAP) systems use a tech-
nique known as practical pre-aggregation, where combi-
nations of aggregate queries are materialized selectively
and re-used when computing other aggregates; full pre-
aggregation, where all combinations of aggregates are ma-
terialized, is infeasible, as it typically causes a blowup in
storage requirements of 200–500 times the size of the raw
data [3, 6]. Normally, practical pre-aggregation requires
the dimension hierarchies to be regular, i.e., to be balanced
trees, but this is often not the case in real-world systems.

The TreeScape system presented here enables practi-
cal pre-aggregation even for irregular hierarchies, based on
techniques described previously by the authors [4]. We
show how to achieve practical pre-aggregation through
transformations of the dimensions and how the transforma-
tions can be accomplished transparently to the user. The
system enables the achievement of fast query response time
while saving huge amounts of storage compared to current
OLAP systems and techniques.

The prototype implementation of TreeScape demon-
strates that these benefits may be achieved with standard
technology. While this demonstration uses a particular
RDBMS, it’s ODBC driver, and particular relational OLAP

tool, TreeScape is not dependent on any specific products � ,
making the solution flexible and generally applicable.

2 Normalizing Hierarchies
We use a small case study concerning patients and their di-
agnoses for illustrating the workings of the system. Diag-
noses have three different levels of precision, depending on
how accurate a patient’s condition can be described. The
most precise diagnoses are low-level diagnoses, which are
grouped into diagnosis families, which, in turn, are grouped
into diagnosis groups. The example data consists of 9 di-
agnoses and their hierarchical relationships, along with pa-
tient counts. The data can be seen in Table 1 and to the left
in Figure 1.

5 6

4,9 4,10

4 9 10

11,12

12 11

L14

14

14

13

13

5 6

4 9 10

12 11

14

13

T T

Figure 1: Dimension Transformations

The hierarchy is irregular. It is unbalanced because the
diagnosis “Lung cancer” (14) has no low-level diagnoses
associated with it and non-strict because, e.g., diagnosis 4
(“Diabetes during pregnancy”) has several parents.

With this data, problems occur when pre-aggregated
data at lower levels is used to compute new values at higher
levels. For example, if we pre-aggregate the counts of pa-
tients at the low-level diagnosis level and want to aggre-
gate to the diagnosis family level, we cannot deduce what
the value should be for “Lung Cancer” (14). If we pre-
aggregate at the diagnosis family level, patients with diag-�

The solution assumes that an ODBC interface is available for the
RDBMS, a requirement met by all major commercial RDBMSs.

©2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by
other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In
most cases, these works may not be reposted without the explicit permission of the copyright holder.

ID Text Type
4 Diabetes during pregnancy Family
5 Insulin dependent diabetes during pregnancy Low-Level
6 Non insulin dependent diabetes during pregnancy Low-Level
9 Insulin dependent diabetes Family

10 Non insulin dependent diabetes Family
11 Diabetes Group
12 Pregnancy related Group
13 Cancer Group
14 Lung cancer Family

Diagnosis

ParentID ChildID
4 5
4 6
9 5

10 6
11 9
11 10
12 4
13 14

Grouping

DiagID Count
5 1

Patient

Table 1: Case Study Tables

noses 5 or 6 will be counted for both of the diagnoses 4 and
9, and 4 and 10, respectively, leading to wrong results when
we aggregate to the diagnosis group level.

Our solution to the problems with reusing aggregates
is to render the hierarchies well-behaved by normalizing
them. Informally, the normalization process introduces new
placeholder values where the hierarchy is unbalanced, and
introduces fused values that represent sets of parent values
when child values have multiple parents. The result of nor-
malizing the hierarchy in our example is given to the right
in Figure 1. For example, value “L14” representing “Lung
Cancer” at the low-level diagnosis level, and value “4,9”
representing the set of diagnoses

���������
are introduced by

the normalization. In the figure, all values and links in bold-
face have been added by the normalization process, which
is described in detail elsewhere [4].

The normalized hierarchy supports practical pre-
aggregation. For example, it is possible to store counts
of patients at the low-level diagnosis level, and then re-use
these to compute the counts for diagnosis families and diag-
nosis groups. With the example data (one patient with diag-
nosis 5), this will only require the storage of the one value
versus six values being required for full pre-aggregation
(one value for low-level diagnosis 	 , two values for diag-
nosis families

�
and

�
, two values for diagnosis groups
�

and
� , and one value for � , which represents the total for
all diagnoses).

The example is somewhat indicative of the storage sav-
ings achieved within a single dimension. When several
dimensions are combined, the total space saved (with re-
spect to full pre-aggregation) grows quickly with the num-
ber of dimensions. The savings occur because of multidi-
mensional sparseness [3, 6], the phenomenon of the mul-
tidimensional space being very sparse for the lower levels
in the dimensions, while quickly becoming more dense at
higher levels. A study of the benefits of normalization are
presented in Section 4.

3 System Architecture
While the hierarchy transformations enable practical pre-
aggregation, they also have the undesired side-effect of in-
troducing new values into the hierarchies that are of little
meaning to the users. Thus, the transformations should

remain invisible to the users. This is achieved by work-
ing with two versions of each user-specified hierarchy and
by using a query rewrite mechanism, as described in detail
elsewhere [4, 5]. The overall system architecture is seen in
Figure 2.

ROLAP Client Tool

ROLAP DB
(Oracle)

Query-Transforming
ODBC Driver (QTOD)

Generic SQL

Generic
Transformed SQL

DBMS Specific
ODBC Driver

DBMS Specific
Transformed SQL

Figure 2: System Architecture

The ROLAP client tool, in this case the ROLAP tool
Synchrony, which originates from Kimball’s Startracker
tool [1], makes SQL requests to the ROLAP DBMS, in
this case the Oracle8 RDBMS, using the ODBC standard.
We have implemented a special, query-transforming ODBC
driver (QTOD) that, based on case-specific metadata, trans-
forms the SQL requests into requests that hide the trans-
formations from the users, returning the query results that
users would expect based on the original hierarchies. A
transformed request is submitted to the OLAP DB using a
DBMS-specific ODBC driver. The QTOD component is
common to all DBMSs, so Oracle8 may be replaced by
another DBMS, such as IBM DB2, Informix, or MS SQL
Server. Another ROLAP tool may also be used, making the
solution quite general and flexible.

The prototype is based on an RDBMS (Oracle8) since
RDBMSs are the most commonly used platform for Data
Warehouse and OLAP applications. Additionally, the ma-
jor RDBMSs now, like dedicated multidimensional DBM-

Dim. 1 2 3 4
No P-A 1.0 1.0 1.0 1.0
TP P-A 1.0 1.0 1.1 1.8
Full P-A 3.5 7.3 17.0 41.2
Total Data Size in Multiples of the Base Data Size

Dim. 1 2 3 4
No P-A 6.5 KB 10 MB 17 GB 25 TB
TP P-A 6.5 KB 10 MB 19 GB 48 TB
Full P-A 22 KB 75 MB 279 GB 1.1 PB

Absolute Data Size

1 2 3 4
No P-A 207

� � ���
���� � � � �
��
	
 � � �
����
TP P-A 2.6 5.3 8.4 9.8
Full P-A 1 1 1 1
Average-Case Performance in Multiples of Optimal

1 2 3 4
No P-A 2.1 secs 11 hours 103 days 57 years
TP P-A 26 ms 53 ms 84 ms 98 ms
Full P-A 10 ms 10 ms 10 ms 10 ms

Absolute Average-Case Performance in Time Units

Table 2: Comparison of The Three Alternatives

Ses (MDDBs), use pre-aggregated data for faster query re-
sponses [7]. However, the approach could also be imple-
mented using multidimensional technology, e.g., the Mi-
crosoft OLE DB for OLAP technology [2].

The transformation algorithms are implemented in Ora-
cle’s PL/SQL programming language. The transformations
are relatively fast, taking at most a few minutes, even for
large dimensions. Once the dimension hierarchies have
been transformed, the QTOD transforms queries and re-
sults between the original and transformed hierarchies. The
QTOD is a thin layer and adds very little overhead to
queries. It is implemented using the GNU Flex++/Bison++
scanner/parser generators and the MS Visual C++ compiler.

4 Experimental Results
Next, we compare our technique, Transformed Practical
Pre-Aggregation (TP P-A), to the two alternatives, namely
no pre-aggregation (No P-A), which gives very long query
response times, and full pre-aggregation (Full P-A), which
requires unrealistically large amounts of storage for pre-
aggregated data. We assume that an answer can be fetched
using 1 I/O in the optimal case, and that 1 I/O takes 10 ms
to perform.

The comparison has been done analytically using a com-
bination of real and synthetic data. The dimension data is
based on the British “Read Codes” diagnosis classification.
The initial dimension hierarchy has 22570 values (diag-
noses), while the transformed hierarchy has 51695 nodes,
both have eight levels. The calculation of storage use is
based on the assumption that the fact data has 10% den-
sity per dimension, i.e., � �
 density for two dimensions,
� ���
 density for three dimensions, etc., which corresponds

to real-world cases where the multidimensional space gets
very sparse when the number of dimensions increases. For
the TP P-A technique, materialized aggregates where cho-
sen so that the average-case performance was at most ten
times worse than the optimal performance obtained with
full pre-aggregation. The results of comparing the three al-
ternatives for 1–4 dimensions are seen in Table 2.

We see that the benefit of our technique increases dra-
matically with the number of dimensions. For four dimen-
sions, the average response time with no pre-aggregation
is 57 years, which clearly makes this alternative unusable.
Even with a speed increase of a factor of 1000 due to the
use of parallel and sequential I/O, the average response time
is still 20 days. Full pre-aggregation, on the other hand, re-
quires storage that is 41 times the size of the base data. This
is equal to 1.1 petabytes for four dimensions, which is far
beyond the capacity of current disk systems. We note that
the problems with these techniques will only get worse for
more dimensions. In comparison, our technique achieves
an average response time of 98 ms using only 80% more
storage than the base data, making it very attractive.

5 Demonstration
Based on the case study described above, the demonstra-
tion initially shows snapshots that illustrate the hierarchy
normalization process. Next, query processing is demon-
strated, including a description of how the queries are trans-
formed to hide the hierarchy transformations from the user,
as well as the evaluation of the queries on concrete data.
Finally, the demonstration compares the query execution
times for the queries and the amount of storage required
for pre-aggregated data with the two alternatives to our
approach. Supporting material in the form of slides and
posters are used in the demonstration.

References
[1] R. Kimball. The Data Warehouse Toolkit. Wiley Com-

puter Publishing, 1996.
[2] Microsoft Corporation. OLE DB for OLAP Version 1.0

Specification. Microsoft Technical Document, 1998.
[3] The OLAP Report. Database Explosion. www.-

olapreport.com/DatabaseExplosion.htm � . Current as
of August 29, 2000.

[4] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson. Ex-
tending Practical Pre-Aggregation in On-Line Analyti-
cal Processing. In Proc. of VLDB, pp. 663–674, 1999.

[5] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson. The
TreeScape System: Re-Use of Pre-Computed Aggre-
gates over Irregular OLAP Hierarchies. In Proc. of
VLDB, 2000 (demo track).

[6] A. Shukla et al. Storage Estimation for Multidimen-
sional Aggregates in the Presence of Hierarchies. In
Proc. VLDB, pp. 522–531, 1996.

[7] R. Winter. Databases: Back in the OLAP game. Intel-
ligent Enterprise Magazine, 1(4):60–64, 1998.

