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Abstract

With the proliferation of wireless communications and the rapid advances in technologies for track-
ing the positions of continuously moving objects, algorithms for efficiently answering queries about
large numbers of moving objects increasingly are needed. One such query is the reverse nearest neigh-
bor (RNN) query that returns the objects that have a query object as their closest object. While algorithms
have been proposed that compute RNN queries for non-moving objects, there have been no proposals for
answering RNN queries for continuously moving objects. Another such query is the nearest neighbor
(NN) query, which has been studied extensively and in many contexts. Like the RNN query, the NN
query has not been explored for moving query and data points. This paper proposes an algorithm for
answering RNN queries for continuously moving points in the plane. As a part of the solution to this
problem and as a separate contribution, an algorithm for answering NN queries for continuously moving
points is also proposed. The results of performance experiments are reported.

1 Introduction

We are currently experiencing rapid developments in key technology areas that combine to promise wide-
spread use of mobile, personal information appliances, most of which will be on-line, i.e., on the Internet.
Industry analysts uniformly predict that wireless, mobile Internet terminals will outnumber the desktop
computers on the Internet.

This proliferation of devices offers companies the opportunity to provide a diverse range of e-services,
many of which will exploit knowledge of the user’s changing location. Location awareness is enabled by a
combination of political developments, e.g., the de-scrambling of the GPS signals and the US E911 mandate,
and the continued advances in both infrastructure-based and handset-based positioning technologies.

The area of location-based games offers good examples of services where the positions of the mobile
users play a central role. In the recent released BotFighters game, by Swedish company It’s Alive, players
get points for finding and “shooting”other players via their mobile phones. Only players close by can be
shot. In such mixed-reality games, the real physical world becomes the backdrop of the game, instead of
the world created on the limited displays of wireless devices [5].

To track and coordinate large numbers of continuously moving objects, their positions are stored in
databases. This results in new challenges to database technology. The conventional assumption, that data
remains constant unless it is explicitly modified, no longer holds. Either very frequent updates are needed
or the database will be very outdated. To reduce the amount of updates needed, moving point objects have
been modeled as functions of time rather than as simply static positions [26]. Then updates are necessary
only when the parameters of the functions change “significantly.”

We consider the computation of nearest neighbor (NN) and reverse nearest neighbor (RNN) queries in
this setting. In the NN problem, which has been investigated extensively in other settings, the objects in the
database that are nearer to a given query object than any other objects in the database have to be found. In
the RNN problem, which is new and largely unexplored, objects that have the query object as their nearest
neighbor have to be found. In the example in Figure 1, the RNN query for point 1 returns points 2 and 5.
Points 3 and 4 are not returned because they have each other as their nearest neighbors. Note that even
though point 2 is not a nearest neighbor of point 1, point 2 is the reverse nearest neighbor of point 1 because
point 1 is the closest to point 2.

A straightforward solution for computing reverse nearest neighbor (RNN) queries is to check for each
point whether it has a given query point as its nearest neighbor. However, this approach is unacceptable
when the number of points is large.

The situation is complicated further when the query and data points are moving rather than static and we
want to know the reverse nearest neighbors during some time interval. For example, if points are moving
as depicted in Figure 2, then after some time, point 4 becomes a reverse nearest neighbor of point 1, and
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Figure 1: Static Points
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Figure 2: Moving Points

point 3 becomes a nearest neighbor of point 5, meaning that point 5 is no longer a reverse nearest neighbor
of point 1.

Reverse nearest neighbors can be useful in applications where moving objects agree to provide some
kind of service to each other. Whenever a service is needed an object requests it from its nearest neighbor.
An object then may need to know how many objects it is supposed to serve in the near future and where
those objects are. The examples of moving objects could be solders in a battlefield, tourists in dangerous
environments, or mobile communication devices in wireless ad-hoc networks.

In the mixed-reality game like the one mentioned at the beginning of the section, players may be “shoot-
ing” their nearest neighbors. Then a player may be interested to know who are her reverse nearest neighbors
in order to dodge their fire.

There are proposed solutions for efficiently answering reverse nearest neighbor queries for non-moving
points [12, 23, 25], but we are not aware of any algorithms for moving points. While much work has been
conducted on algorithms for nearest neighbor queries, we are aware of only one work that has explored
algorithms for a moving query point and static data points [22] and of no solutions for moving data and
query points in two or higher dimensional space.

This paper proposes an algorithm that efficiently computes RNN queries for a query point during a
specified time interval assuming the query and data points are continuously moving in the plane. As a
solution to a subproblem, an algorithm for answering NN queries for continuously moving points is also
proposed.

In the next section, the problem that this paper addresses is defined and related work is covered in further
detail. In Section 3 our algorithms are presented. In Section 4 the results of the experiments are given, and
Section 5 offers a summary and directions for future research.

2 Problem Statement and Related Work

We first describe the data and queries that are considered in this paper. Then we survey the existing solutions
to the most related problems.

2.1 Problem Statement

We consider two-dimensional space and model the positions of two-dimensional moving points as linear
functions of time. That is, if at time 1%2 the coordinates of a point are 35476�8�9 and its velocity vector is:;=< 3 ;?> 6 ;A@ 9 , then it is assumed that at any time 1CBD1 2 the coordinates of the point will be 354FEG351IH
1 2 9 ;?> 6�8�EJ351KHL1 2 9 ;?@ 9 , unless a new (position, velocity) pair for the point is reported.

With this assumption, the nearest neighbor (NN) and reverse nearest neighbor (RNN) query problems
for continuously moving points in the plane can be formulated as follows.
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Assume (1) a set M of moving points, where each point is specified by its coordinates 354N6�8O9 and its
velocity vector 3 ;0> 6 ;?@ 9 at some specific time; (2) a query point PRQSM ; and (3) a query time interval T 1�UOV�1�W�X ,
where 1 U B=Y(Z\[&]^]`_ba�c , and Y(Z\[&]^]d_\a�c is the time when the query is issued.

The NN query returns the set e,fhg$gji�6�k�lnm%o , and the RNN query returns the set e,fhpIgqgri�6�k�lnm%o . These
sets satisfy the conditions s l k�l < T 1 U V�1 W X and tvu<xwzy k!{!|}k�l <�~ . In addition, each point in g$gji is
a nearest neighbor to P during all of time interval k!l , and p�gqg�i is the set of the reverse nearest neighbors
to P during all of time interval k�l . That is, � w ����Q�gqg�ir���FQ�M���e���o�3(��3(P+6(�!9�����3(P,6���9�9 and � w ����Q
pIg$g i ���RQSMv��e��7o�3(��3(P+6(�!9I����3��N6��09�9 during all of k l , where ��3��7��6(����9 is the Euclidean distance between
points � � and � � .

The requirement that the query point P belongs to data set M is natural for RNN queries—the points
from M are “looking” for their neighbors among the other points in M . Nevertheless, none of the solutions
presented in this paper rely inherently on this assumption. Thus, P could as well be a point not belonging to
M .

Observe that the query answer is temporal, i.e., the future time interval T 1�UOV�1�W�X is divided into disjoint
intervals k/l during which different answer sets ( gqgri , pIgqg�i ) are valid. Some of these answers may become
invalidated if some of the points in the database are updated before 1�W . The straightforward solution would
call for recomputing the answer each time the database is updated. In this paper, we present a more efficient
algorithm that maintains the answer to a query when updates to the data set are performed. According to
the terminology introduced by Sistla et al. [20], we use the term persistent for queries with answer sets that
are maintained under updates.

In practice, it may be useful to change the query time interval in step with the continuously changing
current time, i.e., it may be useful to have T 1 U V�1 W X < T����?��6����?��E��RX , where ���?� is the continuously
changing current time. The answer to such a query should be maintained both because of the updates and
because of the continuously changing query time interval. In particular, we investigate how to support
continuous (and persistent) current-time queries ( � <�� ).

2.2 Related Work

The reverse nearest neighbor queries are intimately related to nearest neighbor queries. In this section, we
first overview the existing proposals for answering nearest neighbor queries, for both stationary and moving
points. Then, we discuss the proposals related to reverse nearest neighbor queries.

2.2.1 Nearest Neighbor Queries

A number of methods were proposed for efficient processing of nearest neighbor queries for stationary
points. The majority of the methods use index structures. Some proposals rely on index structures built
specifically for nearest neighbor queries. For example, Berchtold et al. [3] propose a method based on
Voronoi cells [15]. Branch-and-bound methods also have been proposed that work on index structures
originally designed for range queries. Perhaps the most influential in this category is an algorithm for
finding the � nearest neighbors proposed by Roussopoulos et al. [16]. In this solution, an R-tree [6] indexes
the points, and traversal of the tree is ordered and pruned based on a number of heuristics. Cheung and
Fu [4] simplified this algorithm without reducing its efficiency. Other branch-and-bound methods modify
the index structures to better suit the nearest neighbor problem [10, 24].

Next, a number of incremental algorithms for similarity ranking have been proposed that can efficiently
compute the 3^�rE���9 -st nearest neighbor, after the � nearest neighbors are returned. Hjaltason and Samet [9]
propose an incremental nearest neighbor algorithm, which uses a priority queue of the objects to be visited
in an R   -tree [2]. A very similar algorithm was been proposed by Henrich [8], which employed two priority
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queues. For high-dimensional data, multi-step nearest neighbor query processing techniques are usually
used [13, 19].

Kollios et al. [11] propose an elegant solution for answering nearest neighbor queries for moving objects
in one-dimensional space. Their algorithm uses a duality transformation, where the future trajectory of a
moving point 4¡351¢9 < 4 2 E ;?> 1 is transformed into a point 354 2 6 ;?> 9 in a so-called dual space. The solution
is generalized to the “1.5-dimensional” case where the objects are moving in the plane, but with their
movements being restricted to a number of line segments (e.g., corresponding to a road network). However,
a query with a time interval predicate returns the single object that gets the closest to the query object during
the specified time interval. It does not return the nearest neighbors for each time point during that time
interval (cf. the problem formulation in Section 2.1). Moreover, this solution cannot be straightforwardly
extended to the two-dimensional case, where the trajectories of the points become lines in three-dimensional
space.

Related to the problem of nearest neighbor queries is the work of Albers et al. [1] who investigate
Voronoi diagrams of continuously moving points. While such a diagram changes continuously as points
move, its topological structure changes only when certain discrete events occur. The authors show a non-
trivial upper bound of the number of such events. They also provide an algorithm to maintain such contin-
uously changing Voronoi diagrams.

Most recently, Song and Roussopoulos [22] have proposed a solution for finding the � nearest neighbors
for a moving query point. However, the data points are assumed to be static. In addition, in contrast to our
approach, time is not assumed to be continuous—periodical sampling technique is used instead. The time
period is divided by £�E¤� timestamps into £ intervals of equal length. When computing the result set
for some sample, the algorithm tries to reuse the information contained in the result sets of the previous
samples.

2.2.2 Reverse Nearest Neighbor Queries

To our knowledge, three solutions exist for answering RNN queries for non-moving points in two and higher
dimensional spaces. Stanoi et al. [23] present a solution for answering RNN queries in two-dimensional
space. Their algorithm is based on the following observations [21]. Let the space around the query point
P be divided into six equal regions M�{�3����Jtq�¦¥09 by straight lines intersecting at P , as shown in Figure 3.
Then, there exists at most six RNN points for P , and they are distributed as follows.

1. There exists at most two RNN points in each region MN{ .
2. If there exists exactly two RNN points in a region MN{ , then each point must be on one of the space-

dividing lines through P delimiting M�{ .
The same kind of observation leads to the following property. Let � be a NN point of P in M§{ . If � is not

on one of the space-dividing lines, either P is the NN point of � (and then � is the RNN point of P ), or P has
no RNN point in M { . Stanoi et al. prove this property [23].

These observations enable a reduction of the RNN problem to the NN problem. For each region M§{ , a
candidate set of one or two NN points of P in that region is found. (A set with more than two NN points
is not a candidate set.) Then for each of those points, it is checked whether P is the nearest neighbor of
that point. The answer to the p�gqg�3�¨09 query consists of those candidate points that have P as their nearest
neighbor.

In another solution for answering RNN queries, Korn and Muthukrishnan [12] use two R-trees for the
querying, insertion, and deletion of points. In the RNN-tree, the minimum bounding rectangles of circles
having a point as their center and the distance to the nearest neighbor of that point as their radius are
stored. The NN-tree is simply an R*-tree where the data points are stored. Yang and Lin [25] improve the
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Figure 3: Division of the Space Around Query Point P

solution of Korn and Muthukrishnan by introducing the Rdnn-tree, which makes possible to answer both
RNN queries and NN queries using a single tree. Structurally, the Rdnn-tree is an R   -tree where each leaf
entry is augmented with the distance to its nearest neighbor ( ©���� ) and where a non-leaf entry stores the
maximum of its children’s ©?��� ’s.

None of the above-mentioned methods handle continuously moving points. In the next section, before
presenting our method, we discuss the extendibility of these methods to support continuously moving points.

3 Algorithms

This section first briefly describes the main ideas of the TPR-tree [18], which is used to index continuously
moving points. Then, we briefly discuss the suitability of the methods described in Section 2.2.2 as the basis
for our solution. The algorithms for answering the NN and RNN queries using the TPR-tree are presented
next, followed by a simple example of a query. The second half of the section describes the algorithms
that maintain the answer sets of queries under insertions and deletions. Finally, the strategy for efficiently
performing the continuous current time query is covered.

3.1 TPR-tree

We use the TPR-tree (Time Parameterized R-tree) [18], as an underlying index structure. The TPR-tree
indexes continuously moving points in one, two, or three dimensions. It employs the basic structure of the
R   -tree [2], but both the indexed points and the bounding rectangles are augmented with velocity vectors.
This way, bounding rectangles are time parameterized—they can be computed for different time points. The
velocities of the edges of bounding rectangles are chosen so that the enclosed moving objects, be they points
or other rectangles, remain inside the bounding rectangles at all times in the future. More specifically, if a
number of points ��{ are bounded at time 1 , the spatial and velocity extents of a bounding rectangle along the
4 axis is computed as follows:

4 U 351�9 <�ª�«­¬ {\e��/{�®�4¡351¢9%o0V 4 W 351�9 <�ª�¯A° {be��/{�®�4K351�9%o0V; U> <�ª�«d¬ {\e��/{�® ;?> o0V ; W> <�ª�¯A° {\e��/{\® ;?> o0®
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Figure 4: An Example of the Time-Parameterized Bounding Rectangle

Figure 4 shows an example of the evolution of a bounding rectangle in the TPR-tree computed at 1 <J� .
Note that, in contrast to R-trees, bounding rectangles in the TPR-tree are not minimum at all times. In most
cases, they are minimum only at the time when they are computed. Other than that, the TPR-tree can be
interpreted as an R-tree for any specific time, 1 . This suggests that the algorithms that are based on the
R-tree should be easily “portable” to the TPR-tree.

3.2 Preliminaries

Our RNN algorithm is based on the proposal of Stanoi et al. [23], described in Section 2.2.2. This algorithm
uses the R-tree and does not require any specialized index structures. The other two proposals mentioned in
Section 2.2.2 store, in one form or another, information about the nearest neighbor(s) of each point. With
moving points, such information changes as time passes, even if no updates of objects occur. By not storing
such information in the index, we avoid the overhead of its maintenance.

The sketch of the algorithm is analogous to the one described in Section 2.2.2. If the regions M±{ are
specified in such a way that each region M�{ includes one line bounding M�{ , and does not include the other,
then at any time point, each M { has at most one RNN point of P . So, our RNN algorithm first uses the
NN algorithm to find the NN point in each M�{ . For each of these candidate points, the algorithm assigns a
validity time interval, which is part of the query time interval. Then, the NN algorithm is used again, this
time unconstrained by the regions M7{ , to check when, during each of these intervals, the candidate points
have the query point as their nearest neighbor.

3.3 Algorithm for Finding Nearest Neighbors

Our algorithm for finding the nearest neighbors for continuously moving points in the plane is based on
the algorithm proposed by Roussopoulos et al. [16]. That algorithm traverses the tree in depth-first order.
Two metrics are used to direct and prune the search. The order in which the children of a node are visited is
determined using the function ²R³5��©?³`´µY�3(P+6¢¶�9 , which computes the minimum distance between the bounding
rectangle ¶ of a child node and the query point P . Another function, ²�³5��²�·�¸,©?³d´�Y�3(P+6¢¶�9 , which gives an
upper bound of the smallest distance from P to points in R, assists in pruning the search.

Cheung and Fu [4] prove that, given the ²�³5��©?³`´µY -based ordering of the tree traversal, the pruning ob-
tained by Roussopoulos et al. can be achieved without use of ²R³`�/²¹·�¸�©?³`´µY . Their argument does not seem
to be straightforwardly extendible to our algorithm, where ²R³5��©?³`´µY is extended to take into account tem-
poral evolution. Nevertheless, because the ²�³5��²�·�¸,©?³d´�Y function is based on the assumption that bounding
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rectangles are always minimum [16], which is not the case in the TPR-tree (cf. Figure 4), we cannot adapt
this function to our need.

In describing our algorithm, the following notation is used. The function ©Oº03d»¡6�Y¢9 denotes the square of
the Euclidean distance between query point P and point � at time 1 . Similarly, function ©�º�3hp¼6�Y¢9 indicates
the square of the distance between the query point P and the point on rectangle ¶ that is the closest to point
P at time 1 .

Because the movements of points are described by linear functions, for any time interval T 1 U V�1 W X ,
© º 3d»¡6�Y¢9 <¾½ 1 � E�¿&1±E�À , where 1CQÁT 1 U V�1 W X and ½ , ¿ , and À are constants dependent upon the positions
and velocity vectors of � and P . Similarly, any time interval T 1�U�V�1�W0X can be subdivided into a finite number
of non-intersecting intervals k�l so that ©�º�3hp¼6�Y¢9 <Â½,Ã 1 � EÄ¿ Ã 1§E�À Ã , where 1¼Q#k�l and ½+Ã , ¿ Ã , and À Ã are
constants dependent upon the positions and velocity vectors of ¶ and P . Function ©�º?3hp¼6�Y¢9 is zero for times
when P is inside ¶ . The details of how the interval is subdivided and how the constants ½!Ã , ¿ Ã , and À Ã are
computed can be found in Appendix A.

The algorithm maintains a list of intervals k!l as mentioned in Section 2.1. Initially the list contains
a single interval T 1 U V�1 W X , which is subdivided as the algorithm progresses. Each interval kÅl in the list has
associated with it (i) a point ��l , and possibly more points with the same distance from P as ��l , that is
the nearest neighbor of P during this interval among the points visited so far and (ii) the squared distance
©?º�3d»Ai06�Y¢9 of point �Æl to the query point expressed by the three parameters ½ , ¿ , and À . In the description of
the algorithm, we represent this list by two functions. For each 1�QÄT 1 U V�1 W X , function ²R³5�/º03�Y�9 denotes the
points that are the closest to P at time 1 (typically, there will only be one such point), and ©?²R³`� º 3�Y¢9 indicates
the distance between P and ²R³`��º?3�Y¢9 at time 1 .
Ç�È(ÉNÊNËSË 3�¨+6�T 1�U�V�1�W?X59 :
1 ��1�Q�T 1 U V�1 W X , set ²�³5�/º?3�Y¢9±Ì ~ and ©�²�³5�/º?3�Y¢9±ÌÎÍ .
2 Do a depth-first search in the TPR-tree, starting from the root. For each visited node:

2.1 If it is a non-leaf node, order all rectangles ¶ in the node according to the metric
Ï 3hp¼6�¨09 < Ð 1�W

1 U ©?º�3hp¼6�Y�9��01 . The entries corresponding to rectangles with smaller
Ï 3hp¼6�¨09 are visited first. For each ¶ :

2.1.1 If ��1jQ�T 1 U V�1 W X\3�©?º03hp¼6�Y�9ÒÑ�©?²R³`�/º?3�Y¢9¢9 , prune rectangle ¶ .
2.1.2 Else, go deeper into the node corresponding to ¶ .

2.2 If it is a leaf node, for each � contained in it, such that �#u< P :
2.2.1 If ��1jQ�T 1 U V�1 W X\3�©?º03d»¡6�Y¢9rÑ�©?²R³5��º03�Y¢9�9 , skip � .
2.2.2 If ��1�QLkqÓ56�kqÓKÔÂT 1�U�V�1�W�XÕ3�©?º�3d»¡6�Y¢9
ÖÁ©?²R³`��º03�Y¢9�9 , set ��1�Q�kqÓ/3Õ²�³5��º03�Y¢9IÌ

e���o06�©?²R³5��º03�Y¢9±Ì×©?º�3d»¡6�Y¢9¢9 .
If ��1�QLk Ó 6�k Ó ÔÂT 1 U V�1 W XÕ3�© º 3d»¡6�Y¢9 < ©?²R³`� º 3�Y¢9�9 , set ��1�Q�k Ó 3Õ²�³5� º 3�Y¢9IÌ
²R³`��º�3�Y¢9�ØSe���oA9 .

Figure 5: Algorithm Computing Nearest Neighbors for Moving Objects in the Plane

Steps 2.1.1, 2.2.1, and 2.2.2 of the algorithm involve scanning through a list (or two) of time intervals
and solving quadratic inequalities for each interval. In step 2.2.2, new intervals are introduced in the answer
list. After the traversal of the tree, for each k!l in the answer list, ��1jQÙk�l�3hg$g±i < ²�³5��º�3�Y¢9�9 .

The idea behind metric Ú in step 2.1 is to visit first parts of the tree that are on average the closest to
the query point P . The rectangle is pruned if there is no chance that it will contain a point that at some time
during the query interval is closer to the query point P than the currently known closest point to P at that
time.
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3.4 Algorithm for Finding Reverse Nearest Neighbors

In this section, we describe algorithm
Ç�È(ÉNÊNÛÜËFË

that computes the reverse nearest neighbors for a con-
tinuously moving point in the plane. The notation is the same as in the previous section. The algorithm,
shown in Figure 6, produces a list Ý7pIg$g < e,f�� l 6�k l m%o , where � l is the reverse nearest neighbor of P during
time interval k/l . Note that the format of Ý7pIg$g differs from the format of the answer to the p�gqg query,
as defined in Section 2.1, where intervals k�l do not overlap and have sets of points associated with them.
To simplify the description of algorithms we use this format in the rest of the paper. Having Ý7p�gqg , it is
quite straightforward to transform it into the format described in Section 2.1 by sorting end points of time
intervals in ÝNpIgqg , and performing a “time sweep” to collect points for each of the formed time intervals.

Ç�È(ÉNÊNÛÜËFË 3�¨+6�T 1�U�V�1�W0X59 :
1 For each of the six regions M�{ , find a corresponding set of nearest neighbors Þ�{ by callingÇ�È(ÉNÊNËSË 3�¨+6dT 1�UOV�1�W�X59 for region M!{ only. A version of algorithm

Ç�È(ÉNÊNËSË
is used were step

2.2.2 is modified to consider only time intervals when � is inside M¡{ .
2 Set ÝNpIg$gßÌ ~ .
3 For each Þ${ and for each fhgqg�à i?6,á7à inmjQ}Þ${ , if â ãzã¼{�l+â < � (and £Å£�{�l�QFãSã¼{äl ), do:

3.1 Call
Ç�È(É7Ê¡ËFË 3Õ��� à i 6Õá à i 9 to check when during time interval á à i , P is the NN point of

���Oà i . The algorithm
Ç�È(ÉNÊNËSË

is modified by using ²R³5��a�aµå æ?3�Y�9
ÌçP+6I©?²R³5�Oa�aµå æ�3�Y¢9
Ì
©Aa�aµå æ�3�¨+6�Y¢9 in place of ²R³5��a�aµå æ�3�Y¢9¹Ì ~ 6�©?²R³`�Oa�aµå æ�3�Y¢9RÌ Í in step 1. In addition, an
interval kqÓjÔèá7à i is excluded from the list of time intervals and is not considered any
longer as soon as a point � is found such that ��1jQCk Ó 3�©Aa�aµå æ�3d»¡6�Y¢9rÖ¦©Aa�aµå æ�3�¨+6�Y¢9¢9 .

3.2 If
Ç�È(É7Ê¡ËFË 3Õ��� à i 6\á à i 9 returns a non-empty answer, i.e., é�k Ó Ôêá à i , such that P is an

NN point of ���/à i during time interval k$Ó , add fÕ�/�Oà i�6�k�Ó­m to Ý7pIg$g .

Figure 6: Algorithm Computing Reverse Nearest Neighbors for Moving Objects in the Plane

To reduce the disk I/O incurred by the algorithm, all the six sets Þ�{ are found in a single traversal of
the index. Note that if, at some time, there is more than one nearest neighbor in some M§{ , those nearest
neighbors are nearer to each other than to the query point, meaning that MK{ will hold no RNN points for that
time. We thus assume in the following that, in sets Þ¼{ , each interval kÅ{äl is associated with a single nearest
neighbor point, £Å£7{�l .

All the RNN candidates ���/à i are also verified in one traversal. To make this possible, we useë {5ì l ÚÂ3(¶R6���� à i 9 as the metric for ordering the search in step 2.1 of
Ç�È(É7Ê¡ËFË

. In addition, a point or
a rectangle is pruned only if it can be pruned for each of the query points ����à i .

Thus, the index is traversed twice in total.
When analyzing the I/O complexity of

Ç�È(É7Ê¡ÛÜËFË
, we observe that in the worst case, all nodes of

the tree are visited to find the nearest neighbors using
Ç�È(ÉNÊNËSË

, which is performed twice. As noted by
Hjaltason and Samet [9], this is even the case for static points ( 1 U < 1 W ), where the size of the result set is
constant. For points with linear movement, the worst case size of the result set of the NN query is í�3(ãL9
(where ã is the database size). The size of the result set of

Ç�È(É7Ê¡ËFË
is important because if the combined

size of the sets Þ�{ is too large, the Þ
{ will not fit in main memory. In our performance studies in Section 4,
we investigate the observed average number of I/Os and the average sizes of result sets.

3.5 Query Example

To illustrate how an RNN query is performed, Figure 7 depicts 11 points, with point 1 being the query point.
The velocity of point 1 has been subtracted from the velocities of all the points, and the positions of the
points are shown at time 1 <=� . The lowest-level bounding rectangles of the index on the points, ¶ � to ¶�î ,
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are shown. Each node in the TPR-tree has from 2 to 3 entries. As examples, some distances from point 1
are shown: �,ï+ð�3(ñ¡ò?6�1�9 is the distance between point � and point ó , �Oï+ð�3(¶ � 6�1¢9 is the distance between point
1 and rectangle 1, �+ï ð 3(¶ � 6�1�9 is the distance between point � and rectangle ô .
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Figure 7: Example Query
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Figure 8: Simplified Example Query

If the RNN query for the time interval T � V%ônX is issued, ©?²R³`�¡ï+ð�351¢9 for region M � is set to �+ï+ð�3(ñ¡õ?6�1¢9 after
visiting rectangle 2, and because � ï+ð 3(¶qö?6�1¢9rÑ�� ï+ð 3(ñ õ 6�1¢9 for all 1rQ÷T � V%ônX , rectangle ¶
ö is pruned.

With the purpose of taking a closer look at the RNN query is performed in regions M � and M!õ , Figure 8
shows the positions of the points in regions M � and MÅõ at time points 1 <�� , 1 < � , and 1 < ô . Point 7 crosses
the line delimiting regions M � and M!õ at time 1 < �?®ùø .

After the first tree-traversal, the NN points in region M � are Þ � < e,f(ñ ö 6�T � V��?®ùønX5m&6§f(ñKúA6�T.�?®ùø+V%ônX5m%o , and
in region MÅõ , they are Þ
õ < e,f(ñ¡úA6�T � V��?®ùønX5m&6�f(ñ¡ò+6�T.�?®ùø+V%ônX5m%o . However, the list of RNN points LRNN, which
is constructed during the second traversal of the TPR-tree while verifying candidate points 4, 7, and 8, is
only e,f(ñ ú 6�T � V��?®ùønX5m&6�f(ñ ú 6�T.�?®ùø+V%ônX5m%o . This is because during time interval T � V��?®ùønX , point 10, but not point 1, is
the closest to point 4, and, similarly, during time interval T.�?®ùø+V%ônX , point 7, but not point 1, is the closest to
point 8.

3.6 Updating the Answer of the RNN Algorithm

In this section, we present algorithms that make RNN queries persistent. The algorithms incrementally
update the answer set of an RNN query when a point is inserted into or deleted from the database without
re-calculating the answer set from scratch.
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3.6.1 Insertion of a Point

The algorithm for updating the answer to a query when a new point is inserted consists of two parts. First,
we have to check whether the newly inserted point becomes an RNN point of P . Then, we have to check
whether the new point invalidates some of the existing RNN points, which occurs if the new point is closer
to these points than is P .

Suppose that point � is inserted at time 1¢{.û?ü\ýbþ�ÿ , where 1�����þ�þ�ý\ûnÿÒ�J1Õ{.û?ü\ýbþ�ÿI��1 W . Recall that the query is
assumed to be issued at time 1�����þ�þ�ýbûAÿ and that the query interval ends at 1&W .

The algorithm is shown in Figure 9. In step 2 of the algorithm, for each region, the algorithm checks� É��	��

� 3�¨+6�T 1 U V�1 W Xh6KÝ7pIg$g�6!»K6�Y àùa��^_\]^c 9 :
1 Set 1 2 Ì ªv¯A° e�Y5à�a��^_b]^c�6�1�UOo .
2 Let k!{KÔ�T 1 2 V�1 W X be the time interval when � is in region M�{ . For each t such that k�{ru<=~ , do:

For each fÕ����à i�6,á7à inmjQ}Þ${ , such that áNà i�| k!{ju<=~ , do:
Let k Ó < á7à iÆ|jk!{ . Let á Ó Ó Ô k Ó be the time interval during which ��3(P,6(�Å9ÒÖ���3(P,6��/��à in9 . If á Ó Ó u<�~ :

2.1 Add f��76,á Ó Ó m to Þ { . Check for inclusion of f��76,á Ó Ó m into ÝNpIg$g , as described in step 3
of
Ç�È(ÉNÊNÛÜËFË

.
2.2 Change fÕ�/� à i 6,á à i m to fÕ��� à i 6,á à i �Fá Ó Ó m . If é �k Ô×á à i such that fÕ��� à i 6 �k�m}Q ÝNpIgqg ,

change fÕ����à i06 �k�m to fÕ����à i�6 �k �várÓ Ó m .
3 For each f����^6�k��5mrQSÝ7p�gqg such that ���±u< � , do:

Let k Ó Ô k���| T 1�2nV�1 W X be the time interval during which ��3����h6(�!9¹Ö¤��3����^6¢P09 . If k Ó u<ß~ , change
f����^6�k��5m to f����^6�k��+��k Ó m .

Figure 9: Incremental Maintenance of Query Answers During Insertions of Data Points

if point � becomes an NN point of P in that region. If it does, the corresponding Þ�{ list is updated and it is
checked for the inclusion of � into ÝNpIg$g and for the deletion of the earlier NN point of P in that region
from ÝNpIgqg . In step 3, those points that have � as their new NN point at some time during T 1 2 V�1�W�X are
deleted from Ý7pIg$g for the corresponding time intervals.

Observe that the lists of nearest neighbors Þ�{ are used and updated in this algorithm. Thus, if persistent
queries have to be efficiently supported, these lists must be retained after the completion of algorithmÇ�È(ÉNÊNÛÜËFË

. In addition, the squared-distance functions (expressed by the three parameters described in
Section 3.3) associated with each of the elements in Þ¼{ and ÝNpIgqg must be retained.

The described algorithm involves one index traversal in step 2.1, although this traversal should occur
only rarely. It is performed only when the inserted point is closer to P than the current nearest neighbors
at some time during T 1 2 V�1 W X . We investigate the amortized cost of the algorithm in our performance experi-
ments.

3.6.2 Deletion of a Point

Maintaining the answer set Ý7pIg$g of a query when a point � is deleted involves three computations. First,
if � was in the answer set, it should be removed. Second, to correctly maintain the lists Þ¹{ of nearest
neighbors, these must be searched for � , which is removed if found. For the time intervals during which
� was a nearest neighbor, new NN points should be found and checked for inclusion into ÝNpIgqg . Third,
those RNN candidates from the lists Þ�{ that are not included in ÝNpIg$g (or are included with reduced time
intervals) should be rechecked by the algorithm; this is because some of them may have not been included
into ÝNpIg$g due to � being their nearest neighbor (with P possibly being their second-nearest neighbor).

We use Ý7pIg$g to denote the list of the above-mentioned candidate points with associated time intervals
during which they are not reverse nearest neighbors. More formally, Ý7pIg$g < e,f����b6�k��`m¡â%éIt¢6 w 3�fÕ�/�Oà i�6,á7à inmrQ
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Þ {�� ��� < ��� à i�� k����¾á à i 9 ��� éCf�� Ã 6�k Ã m�Q�Ý7pIg$g 3���� < � Ã � k��O|}k Ã u<¤~ 9 � ���$u< ��o . If the
lists ÝNpIgqg and Þ�{ are sorted on the start time and point ID, list Ý7pIg$g can be computed by scanning and
comparing ÝNpIg$g with all six Þ
{ in parallel.

Suppose data point � (i.e., �=u< P ) is deleted at time Y�� _�� _bc _ ( Y(Z\[&]^]d_\a�c
�ÂY � _!� _bc _ �x1�W ). The algorithm is
given in Figure 10." �$#%���&� 3�¨+6�T 1 U V�1 W Xh6¡ÝNpIgqgL6!»¡6�Y � _!� _\c._ 9 :

1 Set 1 2 Ì ªv¯A° e�Y � _!� _bc _ 6�1�U�o .
2 Let k!{§Ô�T 1 2 6�1 W X be the time interval when � was supposed to be in region MN{ . For each t such that

k!{ju<J~ , do:
For each fÕ����à i�6,á7à inmjQ}Þ${ such that ����à i < � , do:

2.1 Remove fÕ��� à i 6,á à i m from Þ { .
2.2 Call

ÇqÈ5ÉNÊ¡ËFË 3�¨+6,áNà in9 for the region M!{ . Add the returned points with their correspond-
ing time intervals to Þ
{ . Check for the inclusion of these new pairs into ÝNpIg$g , as
described in step 3.1 of

Ç�È(ÉNÊNÛÜËFË
.

3 For each f����^6�k��5mrQ Ý7p�gqg do:
Let k Ó Ô�k��/| T 1 2 V�1 W X be the time interval during which inequality ��3��'�h6(�Å9RÖG��3����h6¢P09 holds. If
k�ÓKu<J~ , check for the inclusion of f����^6�k�Ó­m into Ý7p�gqg , as described in step 3.1 of

ÇqÈ5ÉNÊ¡Û ËSË
.

4 For each f����^6�k��5mrQSÝ7p�gqg , such that ��� < � and k��,| T 1 2 V�1 W X�u<J~ , do:
Change k'� to k�Ó < k��,�
T 1 2 V�1�W0X . If kqÓ <J~ , remove f����^6�k��(m from Ý7pIg$g .

Figure 10: Incremental Maintenance of Query Answers During Deletions of Data Points

In step 2 of the algorithm, for each region M7{ , � is removed from the list of the nearest neighbors of P in
that region for the time period when � is no longer in the set of data points. Also, for each entry removed,
new NN points of P are found in that region during the time interval when � was the nearest neighbor of P
in that region. These new NN points are checked for inclusion into Ý7pIg$g . In step 3, the points that had �
as their nearest neighbor, and P as their second nearest neighbor, are included into ÝNpIg$g . In step 4, � is
removed from ÝNpIg$g .

In contrast to algorithm
� É��	��

�

, algorithm
" �(#)���&�

requires two index traversals in the worst case.
Observe that checking candidate reverse neighbors in steps 2.2 and 3 can be combined into one tree traversal.
The other traversal is performed in

Ç�È(É7Ê¡ËFË
in step 2.2. As in algorithm

� É��	�(
&�
, the traversals should be

quite rare.

3.7 Continuous Queries

As stated in Section 2.1, continuous queries are queries with time intervals that advance in step with the
continuously progressing current time. In this section, we discuss how to support continuous current-time
queries, i.e., those that have 1 U < 1 W < ���?� .

A continuous current time query issued at time 1�à*�)�([�_ can be supported by computing a persistent query
P	� with time interval T 1 à+� �([�_ V�1 à+� �([µ_ E-,dX . The start and end times of the time intervals in the answer to this
query are the times of scheduled events that update the answer to the continuous query. These event times
change as the answer to P.� is maintained under updates. At 1�à+� �([µ_IE/, , a new persistent query with time
interval of length , is computed.

The choice of the optimal , value involves a trade-off between the cost of the computation of P�� and the
cost of maintaining its result. On the one hand, it involves a substantial I/O cost to compute even a query
with , <J� , so we want to avoid frequent recomputations of queries with small , . On the other hand, although
computing one or a few queries with large , is cost effective in itself, we must also take into account the
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cost of maintaining the larger answer set of P0� , which generates substantial additional I/O on each update.
So, using queries with large , is also not likely to be efficient.

Suppose ã is the number of moving points and 1 is the average time duration between two updates of
a point. Suppose also that we want to maintain the answer to a continuous query from the current time and
for a large period of time 2 into the future. Then we want to find a value of , that minimizes function 3v3 ,h9 ,
defined next, that denotes the total cost of maintaining the continuous query.3�3 ,h9 < 2 , 465

3 ,^97E ,1 ã�ÚÁ3 ,h987
Here,

5
3 ,^9 is the cost of computing the persistent query P0� with time interval of length , and ÚÂ3 ,h9 is the

amortized cost of a single update (a deletion followed by an insertion) that is required to maintain the answer
to P	� . Suppose that both

5
3 ,h9 and ÚÁ3 ,h9 are linear functions. (We verify this hypothesis in our performance

experiments.) Then,3�3 ,h9 < 2 , 4 5
2 E

5:9 ,�E ,1 ã 3^Ú 2 E Ú 9 ,h9 7 < 2 , 5
2 E;2 5:9

E;2 ã 1 Ú 2 E<2 ã 1 Ú 9 ,Õ®
To minimize 3�3 ,h9 , we differentiate 3 and solve 3¼Ó^3 ,h9 <�� .

3 Ó 3 ,^9 < 2 4 ãzÚ 9
1 H

5
2, � 7 <�� y , < 5

2 1
Ú

9
ã

Observe that

5
2 is the cost of computing P
� , when , <J� . The result obtained is quite intuitive. Ratio 1>=µã

is the average time between two updates. The larger it is (the smaller the frequency of updates), the cheaper
the maintenance of the query result is and the larger , can be. Also, the larger the base cost (

5
2 ) involved

in computing P
� is, the less frequently we want to compute P0� —making a larger , is desirable. Finally, the
faster the cost of maintaining P.� grows with the growing , , the smaller , we want.

Parameters

5
2 and Ú

9
are dependent on ã and other specifics of the data set, and approximate values

for them could be maintained automatically by the query processor. This could be done by monitoring the
performance of queries issued by users or by periodically performing a predefined suite of sample queries.
Similarly, the value of 1 could be maintained automatically by monitoring the frequency of updates.

The presented cost model should be applicable to both nearest neighbor and reverse nearest neighbor
continuous current-time queries. Our performance experiments, described in the next section (in Section 4.4,
in particular), investigate and verify the applicability of this cost model.

4 Performance Experiments

In this section, we describe performance experiments with the RNN queries. First, the setup of experiments
is described, then the results are presented.

4.1 Experimental Setting

The algorithms presented in this paper were implemented in C++, using a TPR-tree implementation based
on GiST [7]. Specifically, the TPR-tree implementation with self-tuning time horizon was used [17]. We
investigate the performance of algorithms in terms of the number of I/O operations they perform. The disk
page size (and the size of a TPR-tree node) is set to 4k bytes, which results in 204 entries per leaf node in
trees. An LRU page buffer of 50 pages is used [14], with the root of a tree always pinned in the buffer. The
nodes changed during an index operation are marked as “dirty” in the buffer and are written to disk at the
end of the operation or when they otherwise have to be removed from the buffer.
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In addition to the LRU page buffer, we use a main-memory resident storage area that accommodates
20,000 entries, each of entry consisting of a moving point, a time interval, and a distance function expressed
by three parameter values (cf. Section 3.3). This storage is used to record the answer sets and intermediary
answer sets (the Þ�{ lists) of persistent queries.

The performance studies are based on synthetically generated workloads that intermix update operations
and queries. To generate the workloads, we simulate ã objects moving in a region of space with dimensions
1000 ? 1000 kilometers. Whenever an object reports its movement, the old information pertaining to the
object is deleted from the index (assuming this is not the first reported movement from this object), and the
new information is inserted into the index.

Two types of workloads were used in the experiments. In most of the experiments, we use uniform
workloads, where positions of points and their velocities are distributed uniformly. The speeds of objects
vary from 0 to 3 kilometers per time unit (minute). In other experiments, more realistic workloads are used,
where objects move in a network of two-way routes, interconnecting a number of destinations uniformly
distributed in the plane. Points start at random positions on routes and are assigned with equal probability
to one of three groups of points with maximum speeds of 0.75, 1.5, and 3 km/min. Whenever an object
reaches one of destinations, it chooses the next target destination at random. The network-based workload
generation used in these experiments is described in more detail elsewhere [18].

In both types of workloads, the average interval between two successive updates of an object is equal
to 60 time units. Unless noted otherwise, the number of points is 100,000. Workloads are run for 120 time
units to populate the index. Then, queries are introduced, intermixed with additional updates. Each query
corresponds to a randomly selected point from the currently active data set. Our performance graphs report
average numbers of I/O operations per query.

4.2 Properties of the Nearest Neighbor and Reverse Nearest Neighbor Algorithms

In the first round of the experiments, a variety of the properties of the algorithms computing nearest and
reverse nearest neighbors are explored.

Figure 11 shows the average number of I/O operations per query when varying the number of points in
the database. In this experiment, after the initial phase of 120 time units, the workloads are run for additional
10 time units. During this period, 500 queries are issued. For each query, its time interval starts at the time
of issue, and the length of the interval varies from 0 to 30 time units.

The number of I/O operations increases almost linearly with the number of data points. Figure 12 shows
that the size of an average result increases similarly.

It is interesting to observe that the second traversal of the tree, in which the candidates produced by the
first traversal are verified, is more expensive than the first traversal, in which these candidates are found.
The main reason for this behavior is that while there is only one query point during the first traversal, during
the second traversal, there is a number of RNN candidates (from the different regions M§{ and during different
parts of the query interval) that serve as NN query points. This argument alone would perhaps lead us to
expect a larger difference between the costs of the two traversals.

The relatively small difference between the two traversals occurs because during the first traversal,
there is no initial upper bound for the distance between the query point P and the RNN candidate point, i.e.,
©?²R³5��º03�Y�9 is initially set to Í in the

Ç�È(ÉNÊNËSË
algorithm. The second traversal only needs to determine

whether the point P is an NN point to the candidate points; and for each candidate point, there is an ini-
tial upper bound for ©�²�³5�/a�aµå æ�3�Y�9 , namely the distance between the point P and that candidate point, ����à i .
Further, since ��� à i is the NN point to P in some region M { at some time, the distance between P and �/� à i
is typically small. This enables a more aggressive pruning of tree nodes during the second traversal of the
TPR-tree.
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Figure 12: Average Selectivity of Queries for Vary-
ing Number of Points

To learn whether the nearest neighbor (and reverse nearest neighbor) algorithm could possibly be sig-
nificantly improved by changing the tree traversal order or by somehow improving the pruning, we explored
how many of the visited bounding rectangles actually contained the query point at some time point during
the corresponding query time interval. If several queries were performed in one tree traversal, we looked if
the bounding rectangle contained any of the query points. Tree nodes corresponding to such bounding rect-
angles must necessarily be visited by any NN algorithm to produce a correct answer. Thus, given a specific
TPR-tree, the number of such bounding rectangles gives the lower performance bound for a corresponding
nearest neighbor query.

In experiments with 100,000 points, during the first traversal, a total of 32 I/Os out of the average of 75
I/Os corresponded to “necessary” bounding rectangles. For the second traversal, the numbers were 39 I/Os
out of 83 I/Os. This shows, that under the most optimistic assumptions, the algorithm can be improved by
no more than approximately a factor of two.

Figure 12 plots the average number of entries in the result sets of queries after the first traversal of the
tree, which finds nearest neighbors, and after the second traversal, which finds reverse nearest neighbors.
Note that a single point in the answer set may have more than one time interval associated with it. The
graphs show that on average, only one out of five candidate RNN points is found to be a real RNN point.
The maximum observed answer sets in these experiments were almost five times as large as the average
answer sets.

Figure 13 shows the average number of I/O operations per query when the number of destinations in the
simulated network of routes is varied. “Uniform” indicates the case when the points and their velocities are
distributed uniformly, which, intuitively, corresponds to a very large number of destinations. Each workload
contained 500 queries, generated in the same way as for the previous experiment.

The number of I/O operations tends to increase with the number of destinations, i.e., as the workloads
get more “uniform.” The results are consistent with, although not as pronounced, as those reported for
range queries on the TPR-tree [18]. Observe that while the performance of the second traversal shows the
above-mentioned trend, data skew seems to not affect the performance of the first traversal. A possible
explanation is that when moving points are concentrated on a small number of routes, the good quality of
the TPR-tree is offset by the fact that there can be regions M¡{ that have no points inside of them, but contain
parts of bounding rectangles. In such cases, ©?²R³5�!º03�Y¢9 in

Ç�È(É7Ê¡ËFË
always remains Í and those bounding
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rectangles cannot be pruned.
Figure 14 shows the average number of I/O operations per query for varying query interval lengths.

The graphs report results extracted from the experiment to be described in Section 4.3. The number of I/O
operations increases approximately linearly with the query interval length. The experiment also showed that
the number of results returned increases linearly.

4.3 Persistent Queries

To investigate the cost of maintaining persistent queries, we performed an experiment with varying query
interval lengths. After the initial 120 time units of update operations, 120 queries were issued—20 queries
each of length � � t , t < �?6�®�®�®�6%¥ . Then the workload was run for another 60 time units while maintaining
the result sets of the queries. Figure 15 shows the average amortized cost per single insertion or deletion of
maintaining one query result set.

The graph demonstrates that maintaining query results under insertions incurs very little amortized I/O.
As mentioned at the end of Section 3.6.1, this is because traversals of the tree in algorithm

� É��	�(
&�
are quite

rare. Interestingly, deletions are much more costly. The algorithm
" �(#)���&�

involves two tree traversals—
one to find new candidate RNN points, if one was deleted, and another to check whether some of the RNN
candidates become real RNN points. The experiments show that the second traversal is responsible for more
than 98% of the deletion cost. A main reason for this behavior may be that the probability that some RNN
candidate is deleted is lower than the probability that a point is deleted that at some time during the query
interval gets close to some RNN candidate. The latter condition requires rechecking of such RNN candidates
(step 3 of

" �$#)�@�
�
).

Figure 15 also shows that the amortized cost per update operation increases linearly with the length of
the maintained query interval. This is as could be expected.

4.4 Continuous Queries

Section 3.7 describes a cost model for choosing the optimum query recomputation interval length , when
maintaining a continuous current-time query. To empirically understand the effect of different , values, we
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performed a series of experiments where we varied the length of the query recomputation interval. For each, value used, ten queries were maintained.
Figure 16 shows the amortized cost per single update operation (insertion or deletion) while maintaining

one continuous query. The best , for the dataset of 100,000 points seems to be approximately 4. For the set
with 500,000 points, the best , value is approximately 3.

To compare these results with the cost model presented in Section 3.7, we estimated the values of
parameters

5
2 and Ú

9
from the other performance experiments (Figures 14 and 15):

5
2BAç��� � and

Ú
9 A � ® � ô . According to our workload generation parameters, 1 < ¥ � . This gives ,'A��?®ùó , which is quite

close to the empirically observed , value, thus indicating that the mathematical cost model is practical.

5 Summary and Future Work

Rapidly advancing technologies make possible to track the positions of large numbers of continuously
moving objects. Because of this the efficient algorithms for answering various queries about continuously
moving objects are needed. Algorithms have been suggested for answering RNN and NN queries for non-
moving objects, but there were no proposed solutions for efficiently answering these queries when large
numbers of objects are moving continuously. In this paper, we have proposed an algorithm for answering
RNN queries for large numbers of continuously moving points in the plane. As a solution to a subproblem,
an algorithm for answering NN queries for continuously moving points in the plane has been proposed.
It was shown how to support persistent and continuous queries efficiently. Answers to such queries are
incrementally maintained while the database is updated. Experimental study was performed revealing a
number of interesting properties of the proposed algorithms.

As an indexing structure for continuously moving points, the TPR-tree has been used. This means
that the same index structure can be used for range queries, nearest neighbor queries, and reverse nearest
neighbor queries.

The presented RNN query algorithm is suitable for a monochromatic case [12] only—all the points
are assumed to be of the same category. In a bichromatic case there are two kinds of points (that could
correspond to clients and servers or tourists and rescue workers) and RNN query asks for the points that
belong to the opposite category than the query point and have the query point as the closest from all the

16



points that are in the same category as the query point. The approach of dividing the plane into six regions
does not suit anymore for the bichromatic case, because a point can have more than six RNN points. An
interesting future research direction could be to develop an algorithm for efficiently answering RNN queries
for continuously moving bichromatic points.

Sometimes it is important to know not only the objects that have the query object as their nearest
neighbor (a simple RNN query) but also the objects that have the query object as their second nearest, third
nearest neighbor (second, third order RNN query), etc. Processing of higher order RNN queries could be
another possible extension of the proposed algorithm.

In reality, the objects most often move along some underlying route structure, for example, cars in a road
network. Even if objects move freely, another type of infrastructure could exist that prohibits movement in
some areas, such as lakes or mountains. How to handle the complexities arising from the non-Euclidean
distance functions inherent to such environments is an interesting research direction.
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A Distance Computation for Moving Points and Time-Parameterized Rect-
angles

First, we provide the formula for the the squared distance �6C�3��76�1¢9 between two � -dimensional moving points
P < 354 � 6�4 � 6�®�®�®n6�4�D�6 ; � 6 ; � 6�®�®�®�6 ; Dn9 and � < 358 � 6�8 � 6�®�®�®�6�8ED06GF � 6GF � 6�®�®�®�6GFHDn9 . Here, the 4�{ and 8�{ , when
not used as functions, are coordinates at time 1 <�� .

�@C?3��76�1¢9 < DI
{KJ � 354�{�351¢9KHL8�{�351¢9�9 � < DI

{LJ � 354/{/E ; {51¡H 8�{�HMFÒ{51¢9 �
< 1 �

DI
{KJ � 3 ; {!HNFÒ{^9 � E ôA1 DI

{KJ � 354�{�H 8�{^9�3 ; {ÅHMFÒ{h9�E DI
{LJ � 354�{!H 8�{(9 �

Let ¶ < 3�T 4 U � V�4 W � Xh6�T 4 U� V�4 W� Xh6�®�®�®�6�T 4 UD V�4 WD Xb6�T ; U� V ; W� Xh6�T ; U� V ; W� X\6�®�®�®�6�T ; UD V ; WD X59 be a time-parameterized rect-
angle. We provide the algorithm for computing the piece-wise quadratic function for the shortest squared
distance ��C�3(¶R6�1¢9 between moving point P and time-parameterized rectangle ¶ during time interval T 1 U V�1 W X ." È)���&O/É�PE� 3¢¨+6Np¼6�T 1 U V�1 W X(9 :

1 Set Q Ì ~ .
2 For each dimension t < �?6�®�®�®n6¢� , do:

If ; {Òu<Ä; U{ and 1 U{ < 354/{ÅHL4 U{ 9G=Æ3 ; U{ H ; {h9rQ÷T 1 U V�1 W X , add 1 U{ to Q .
If ; {Òu<Ä; W{ and 1�W{ < 354/{ÅHL4!W{ 9G=Æ3 ; W{ H ; {h9rQ÷T 1�UOV�1�W�X , add 1�W{ to Q .

3 Sort Q . The elements of Q divide T 1 U V�1 W X into at most ô?�$EÄ� intervals. For each such interval k!l :

�@C�3(¶R6�1¢9 < DI
{LJ � ��C%ì {�3(¶R6�1¢9&6

where

�@C&ì {�3(¶R6�1�9 < RSUT 1 � 3 ; U{ H ; {h9 � E�ôA1�354 U{ HL4�{^9�3 ; U{ H ; {h9�EJ354 U{ H�4�{b9 � È)V ��1�QÙk�l�354�{OE ; {51Ò� 4 U{ E ; U{ 1�9
1 � 3 ; W{ H ; {h9 � E�ôA1�354!W{ HL4�{^9�3 ; W{ H ; {h9�EJ354!W{ H�4�{b9 � È)V ��1�QÙk�l�354�{OE ; {51ÒB 4�W{ E ; W{ 1�9� W �.XY�(
&ZÜÈ%�&�

In step 2, the algorithm computes the times when the

R

x = x =

q

q
(t)

q

(t)

(R,t)d

xx

d (R,t)=0

Figure 17: Distance between a Moving Point
P and a Time-Parameterized Rectangle ¶

moving point P crosses the moving hyper-planes 4Å{ < 4 U{ 351¢9
and 4 { < 4 W{ 351�9 —the extensions of the two of ¶ ’s opposite
sides that are parallel to the 4!{ axis (see Figure 17). Note
that here, 1 U{ is not necessarily less than 1 W{ . In step 3, during
each of k�l , P does not cross any of the above-mentioned hy-
perplanes. From the formulas in step 3, it is quite straight-
forward to obtain the parameters ½ , ¿ , and À mentioned in
Section 3.3.

Note that for the time periods where P is inside ¶ ,
�@C?3(¶R6�1¢9 <�� .
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