
&+252&+52126 ��
$�1HWZRUN�IRU�6SDWLRWHPSRUDO�'DWDEDVH�6\VWHPV��

�
�
�
�

1DWLRQDO�7HFKQLFDO�8QLYHUVLW\�RI�$WKHQV��178$���
$DOERUJ�8QLYHUVLW\��$$/%25*��
)HUQ8QLYHUVLWDHW�+DJHQ��+$*(1��
8QLYHUVLW\�RI�/
$TXLOD��81,9$4��

8QLYHUVLW\�RI�0DQFKHVWHU���,QVWLWXWH�RI�6FLHQFH�DQG�7HFKQRORJ\��80,67��
3ROLWHFQLFR�GL�0LODQR��32/,0,��

,QVWLWXW�1DWLRQDO�GH�5HFKHUFKH�HQ�,QIRUPDWLTXH�HW�HQ�$XWRPDWLTXH��,15,$�� �
$ULVWRWOH�8QLYHUVLW\�RI�7KHVVDORQLNL��$87��

7HFKQLFDO�8QLYHUVLW\�RI�9LHQQD��78�9,(11$��
6ZLVV�)HGHUDO�,QVWLWXWH�RI�7HFKQRORJ\��=XULFK��(7+=��

7(&+1,&$/�5(3257�6(5,(6�

TECHNICAL REPORT CH-00-03

1RYHO�$SSURDFKHV�LQ�4XHU\�3URFHVVLQJ�IRU�0RYLQJ�2EMHFWV�
'LHWHU�3IRVHU��&KULVWLDQ�6��-HQVHQ��DQG�<DQQLV�7KHRGRULGLV�

)HEUXDU\�����

&+252&+52126��705�5HVHDUFK�1HWZRUN�3URMHFW��1R�(5%)05;&7�������
&RQWDFW�3HUVRQ��3URI��7LPROHRQ�6HOOLV��'HSW��RI�(OHFWULFDO�DQG�&RPSXWHU�(QJLQHHULQJ��1DWLRQDO�7HFKQLFDO�
8QLYHUVLW\�RI�$WKHQV��=RJUDIRX��������*5�7HO�����������������)$;�����������������WLPRV#FV�QWXD�JU�

1

$EVWUDFW�
The domain of spatiotemporal applications is a treasure trove of new types of data
as well as queries. However, work in this area is guided by related research from
the spatial and temporal domains, so far, with little attention towards the true
nature of spatiotemporal phenomena. In this work the focus is on a spatiotemporal
sub-domain, namely moving point objects. We present new types of
spatiotemporal queries, as well as algorithms to process those. Further, we
introduce two access methods to index these kinds of data, namely the Spatio-
Temporal R-tree (STR-tree) and the Trajectory-Bundle tree (TB-tree). The former
is an R-tree based access method that considers the trajectory identity in the index
as well, while the latter is a hybrid structure, which preserves trajectories as well
as allows for R-tree typical range search in the data. We present performance
studies that compare the two indices with the R-tree (appropriately modified, for a
fair comparison) under a varying set of spatiotemporal queries and provide
guidelines for a successful choice among them.

�� ,QWURGXFWLRQ�
Space and time are two properties inherent to any object in the real world. If modeled in a database
(Spaccapietra et al. 1998, Tryfona and Jensen, 1999), efficient ways to query these kinds of data have to
be provided. Research efforts in the fields of spatial and temporal databases to index the respective data
are numerous, and as we shall see later on in this work, serve as the basis for a more far-reaching effort
into spatiotemporal data. However, it is sometimes not enough to take the “best” of both worlds to obtain
a satisfying solution to a given spatiotemporal problem. In our context the problem is the indexing of
spatiotemporal information. That is, to construct access methods to index spatial data changing over time.
More specifically, in this work we focus on data stemming from the PRYHPHQW�RI�VSDWLDO�SRLQW�REMHFWV.
We deal with point objects, since in many applications the size and shape of an object is of no
importance, but only its position matters. Examples include navigational systems, but also the thriving
developments in mobile computing (Barbará 1999). The estimates are that by the year 2003, 500 million
people will use mobile terminals (Karppinen 1999). Most of these terminals will be equipped with a GPS
device, and, thus, may make their positions available to the outside, digital world. Applications in this
context include spatiotemporal data mining, as well as fast processing of geo- and time-referenced
content.
The data obtained from moving point objects is similar to a “string”, arbitrary oriented in three-
dimensional space, where two dimensions correspond to space and one dimension corresponds to time1.
By sampling the movement of a point object, we obtain a polyline instead of a “string” representing the
trajectory of the moving point object. In pure geometrical terms this object movement is termed a
WUDMHFWRU\�(cf. Figure 1).
When designing an access method, we not only have to be aware of the nature of the data, but must also
know the types of queries the method is to be used for. Typical queries in spatial and temporal databases
are range (window) queries. Queries for spatiotemporal data are often more demanding due to extra
semantics involved. An object’s trajectory can be treated as spatial (three-dimensional) data itself, thus
supported by a spatial access method.

1 Although in the sequel we consider objects moving on a two-dimensional plane, extending to three dimensions
(e.g. movement of planes or satellites) is straightforward.

2

Figure 1: The movement of a spatial object and the corresponding trajectory

In the literature, the work on indexing of spatiotemporal data can be categorized into indexing present
and past information. The former direction includes works on indexing the present positions of moving
points (Kollios et al. 1999, Arge et al. 2000, Saltenis et al. 2000). In this context, more work on the
handling of mobile objects can be found in, e.g., (Wolfson et al. 1998, Wolfson et al. 1999).
 Within the latter direction, into which the present work also belongs, most approaches deal with
spatial data changing discretely over time and do not take continuous changes into account. Examples
include overlapping B-trees (Tzouramanis et al. 1999) and Quadtrees (Tzouramanis et al. 1998), R-trees
for multimedia data (Vazirgiannis et al. 1998), R-tree variations for spatial data (Nascimento et al. 1999),
and the generic indexing framework presented in (Relly et al. 1999).
 A problem not addressed by using any of the above access methods is the preservation of
trajectories. All the above access methods treat the data merely as a set of line segments, regardless of
whether some belong to the same trajectory. Line segments are grouped together merely according to
spatial properties such as proximity. This is not optimal, since certain types of queries require access to
parts of the whole trajectory. Further, the presented spatiotemporal data has another particularity; it is
considered to be append only with respect to time (Theodoridis et al. 1998). Data grows mainly in the
temporal dimension. Also, data is not deleted segment by segment but, if ever, in chunks, e.g., all
movements older than a year. A pack or “ purge” operation discussed in (Becker et al. 1996). On the other
hand, new segments need to be inserted fast to keep up with the stream of incoming positional data.
Thus, insertion has to be efficient, and deletion could be of minor importance.
 To capture the particularities of spatiotemporal data and queries, we propose two access methods.
The first, the Spatio-Temporal R-tree (hereafter called STR-tree), constructs an index not only according
to spatial properties, but also attempts to group segments according to the trajectories they belong to. We
term this property WUDMHFWRU\�SUHVHUYDWLRQ. The second, the Trajectory-Bundle tree (hereafter called TB-
tree), aims only for trajectory preservation and leaves other spatial properties aside.
 The outline of the paper is as follows. Section 2 describes the nature of the data as well as the type of
queries encountered in applications dealing with moving point objects. Section 3 presents the algorithms
comprising the proposed access methods. Section 4 presents query processing algorithms. Section 5 gives
the performance studies in which we compare both methods with the ‘classic’ R-tree, appropriately
modified to take gain of the “ knowledge” that the entries to be indexed are line segments. Finally, in
Section 6 we give conclusions and directions for future research.

3

�� 0RYLQJ�2EMHFWV��'DWD�DQG�4XHULHV�
In this section we discuss this type of spatiotemporal data by giving a motivating example. We further
introduce sampling as a method to measure positions over time. Also, we introduce a set of queries that
are of importance in the given application context.

���� 7UDMHFWRULHV�
The optimization of transportation, especially in highly populated areas, is a very challenging task that
may be supported by an information system. A core application in this context is fleet management.
Vehicles equipped with GPS devices transmit their positions to a central computer using either radio
communication links or mobile phones. At the central site, the data is processed and utilized. In order to
record the movement of an object, we would have to know the position at all times, i.e., on a continuous
basis. However, GPS and telecommunications technologies only allow us to sample an object’s position,
i.e., to obtain the position at discrete instances of time, such as every few seconds.
 A first approach to represent the movements of objects would be to simply store the position
samples. This would mean that we could not answer queries about the objects’ movements at times in-
between sampled positions. Rather, to obtain the entire movement, we have to interpolate. The simplest
approach is to use linear interpolation, as opposed to other methods such as polynomial splines (Bartels
et al. 1987). The sampled positions then become the endpoints of line segments of polylines, and the
movement of an object is represented by an entire polyline in three-dimensional space. In geometrical
terms, the movement of an object is termed a WUDMHFWRU\ (we will use “ movement” and “ trajectory”
interchangeably). The solid line in Figure 2(a) represents the movement of a point object. Space (x- and
y-coordinates) and time are combined to form a single coordinate system. The dashed line shows the
projection of the movement on the two-dimensional plane (Pfoser and Jensen 1999). Figure 2(b) shows
the spatiotemporal workspace (the cube in solid lines) and several trajectories (the solid polylines). Time
moves in the upward direction, and the top of the cube is the time of the most recent position sample. The
wavy-dotted lines at the top symbolize the growth of the cube with time. Interpolating trajectories raises
questions on the uncertainty associated with a particular representation (Pfoser and Jensen 1999).

(a) (b)

Figure 2: Moving point objects: (a) a trajectory and (b) a spatiotemporal space with several trajectories

Semantically, the temporal dimension is different from the two spatial dimensions. In classical spatial
databases only positional information is available. In our case, however, we have also GHULYHG�
LQIRUPDWLRQ, e.g., speed, acceleration, traveled distance, etc. Consequently, information is derived from
the combination of spatial and temporal data. Further, we do not only store a number of spatial objects in
the index, i.e., line segments, but rather have entries that are parts of larger objects, the trajectories. As
we will see in the next section, these differences create interesting new and inherently spatiotemporal
types of queries.

4

���� 4XHULHV�
When combining space and time, new query types emerge. Current research in spatiotemporal databases
deals mostly with the handling of QRZ�UHOHYDQW�GDWD (Sistla et al. 1997, Kollios et al. 1999, Arge et al.
2000, Saltenis et al. 2000), i.e., one is interested in the current position, speed, and heading of a moving
object (dynamic information). Storing the trajectories of moving objects would not only allow us to
determine dynamic information for the FXUUHQW�SRVLWLRQ of the object, but IRU�DOO�KLVWRULF�SRVLWLRQV stored
in the database.
 A typical search on sets of objects’ trajectories includes a selection with respect to a given range, a
search inherited from spatial and temporal databases. Queries of the form “ ILQG�DOO�REMHFWV�ZLWKLQ�D�JLYHQ�
DUHD�(RU�DW�D�JLYHQ�SRLQW)�VRPH�WLPH�GXULQJ�D�JLYHQ�WLPH�LQWHUYDO�(RU�DW�D�JLYHQ�WLPH�LQVWDQW)” or “ ILQG�WKH�
N�FORVHVW�REMHFWV�ZLWK�UHVSHFW�WR�D�JLYHQ�SRLQW�DW�D�JLYHQ�WLPH�LQVWDQW” (Theodoridis et al. 1998) remain
very important. A query type important in temporal databases is the time-slice query, i.e., in the
spatiotemporal context, to determine the positions of (all) moving objects at a given time point in the past
(Theodoridis et al. 1996). Using the 3-dimensional representation presented in Section 2.1, the time-slice
query constitutes a special case of a range query with a query window of]HUR�H[WHQW� LQ� WKH� WHPSRUDO�
GLPHQVLRQ.
 In addition, novel queries become important due to the specific nature of spatiotemporal data. The
so-called trajectory-based queries are classified in ‘WRSRORJLFDO’ queries, which involve the whole
information of the movement of an object, and ‘QDYLJDWLRQDO’ queries, which involve derived
information, such as speed and heading.
 As such, we distinguish between two types of spatiotemporal queries:

• FRRUGLQDWH�EDVHG�TXHULHV, such as point, range, and nearest-neighbor queries in the resulting three-
dimensional space, and

• WUDMHFWRU\�EDVHG� TXHULHV, involving the topology of trajectories (topological queries) and derived
information, such as speed and heading of objects (navigational queries).

 Both coordinate- and trajectory-based queries will be involved in our performance study in Section 5
while in the sequel we discuss the latter ones in more detail.

2.2.1 Topological Queries

Topological queries involve the whole or a part of the trajectory of an object. They are deemed very
important but also rather expensive. A definition of a well established set of predicates, such as the 9-
intersection model (Egenhofer and Franzosa 1991) for spatial data and the thirteen relations between
intervals (Allen 1983) for temporal data is not yet available for spatiotemporal data. In one of the first
approaches, Erwig and Schneider (1999) discuss extending SQL with the spatiotemporal versions of the
eight basic spatial predicates, GLVMRLQW, PHHW, RYHUODS, HTXDO, FRYHUV, FRQWDLQV, FRYHUHG�E\, and LQVLGH,
defined by the 9-intersection model as well as composite predicates based on the basic ones, namely
HQWHU (and its reverse, OHDYH), FURVV, and E\SDVV.
 Whether an object HQWHUV, FURVVHV, or E\SDVVHV a given area can be determined only after examining
more than one segment of its trajectory. For instance, an object HQWHUHG into an area with respect to a
given time horizon, iff the start point of its least recent segment (respectively, the endpoint of its most
recent segment) was outside (respectively, inside) the given area. Recent here refers to time, e.g., a point
is less recent, if its time stamp is older in time. Similar definitions hold for the OHDYH, FURVV, and E\SDVV
predicates, which are also illustrated in Figure 3(a).

2.2.2 Dynamic Information and Navigational Queries

Dynamic information is not explicitly stored, but has to be derived from the trajectory information. The
average or top VSHHG of an object is determined by the fraction of traveled distance over time. The

5

KHDGLQJ of an object is computed by determining a vector between two specified positions. Also, the DUHD
an object covers is computed by considering the convex hull of its trajectory. From these definitions, it is
evident that each property is unique but depends on the WLPH� LQWHUYDO considered. For example, the
heading of an object in the last ten minutes may have been strictly East, but considering the last hour it
may have been Northeast. The same is true for speed; at the moment, the speed of an object might be 100
mph, but during the last hour, it might average out to 30 mph.
 Queries involving speed or heading are expected to be very important in real-life applications. Let us
discuss the following examples: “$W�ZKDW�VSHHG�GRHV�WKLV�SODQH�PRYH"�:KDW�LV�LWV�WRS�VSHHG"” (Erwig et
al. 1999). The former considers the QRZ instance as the time horizon, whereas the second one is an
aggregation over a longer time period. But again, to compute the result, we have to examine a set of line
segments that belong to the same trajectory, as opposed to lie within a spatiotemporal range. Further
examples in this context DUH�³:KDW�ZDV�WKH�DUHD�D�WD[L�FRYHUHG�GXULQJ�LW¶V�GXW\�\HVWHUGD\",” “:KDW�ZDV�
WKH�VRXWKHUQ�PRVW�SRLQW�LW�UHDFKHG"�” “:LWK�ZKDW�RWKHU�WD[LV�GLG�D�WD[L�PHHW�GXULQJ�LWV�GXW\�IURP���D�P��
WR����D�P��WKLV�PRUQLQJ"�´�³:KDW�ZDV�WKH�GLVWDQFH�WUDYHOHG�E\�D�WD[L�GXULQJ�LWV�GXW\�IURP���D�P��WR����
D�P��WKLV�PRUQLQJ"” .
 Table 1 summarizes the spatiotemporal query types. We adopt a signature like notation as presented
in (Güting et al. 2000). The ‘operation’ column shows the operation used for the query type in question,
and the signature column shows the involved types, e.g., a coordinate-based query uses the inside
operation to determine the segments that within the specified range. The notation {segments} simply
refers to a set, it does not capture that this set constitutes one or more trajectories.

4XHU\�7\SH� 2SHUDWLRQ� 6LJQDWXUH�
Coordinate-based Queries overlap, inside, etc. range × {segments} Å {segments}

Topological
Queries

enter, leave, cross, bypass range × {segments} Å {segments}
Trajectory-
based
Queries Navigational

Queries
traveled distance, covered area
(top or average) speed, heading
parked

{segments} Å int
{segments} Å real
{segments} Å bool

Table 1: Types of spatiotemporal queries

2.2.3 Combined Queries

An important issue in dealing with spatiotemporal queries is to extract information related to (partial)
trajectories, i.e., we have to (a) select the trajectories and (b) select the part of each trajectory we want to
retrieve. Selection of trajectories can occur (i) by querying the trajectory identifier, (ii) by selecting a
segment of the trajectory using a spatiotemporal range, (iii) by using a topological query, and/or (iv) by
using derived information. In the previous examples we left the identity of the taxi unspecified; it can
either be selected by an identifier, e.g., “ taxi no. 120” , or by spatiotemporal selection, e.g., “ a taxi at the
corner of 5th Avenue and Central Park South between 7 am and 7:15 am today” .
In the following we show some more examples for combined search.

• “:KDW�ZDV� WKH�DUHD� WD[L�QR����FRYHUHG�GXULQJ�LW¶V�GXW\�\HVWHUGD\"´ uses the taxi (trajectory) id to
identify the trajectory. <HVWHUGD\ delimits the relevant chunk of the trajectory.

• “:KDW�ZHUH�WKH�WUDMHFWRULHV�RI�WKH�WD[LV�LQ�WKH�KRXU�DIWHU�OHDYLQJ�WKH�DUHD�RI�&HQWUDO�3DUN�DW����DP�
WRGD\�LQ�DQ�(DVWHUQ�GLUHFWLRQ"” Here, we identify the trajectories by a spatiotemporal range, “ OHDYLQJ�
WKH�DUHD�RI�&HQWUDO�3DUN�DW����DP� WRGD\�“ and a derived property, in this case a direction, “ LQ�DQ�
(DVWHUQ�GLUHFWLRQ.” The size of the trajectory is delimited by a temporal range, “ LQ�WKH�KRXU�DIWHU.”

6

• “:KDW�ZHUH� WKH�WUDMHFWRULHV�RI�REMHFWV�DIWHU�WKH\�OHIW�7XFVRQ�EHWZHHQ���DP�DQG���DP�WRGD\��LQ�WKH�
QH[W�KRXU"” uses the range, “ 7XFVRQ�EHWZHHQ���DP�DQG���DP�WRGD\,” to identify the trajectories. “ ,Q�
WKH�QH[W�KRXU“ gives a (temporal) range to delimit the parts of the trajectories, we want to retrieve.
Figure 3(b) illustrates this principle. The dotted cube represents the spatiotemporal range to select the
trajectories and the polyline stands for a selected trajectory of a moving object. The thick part of the
polyline represents the part of the trajectory that is retrieved (e.g., LQ�WKH�QH[W�KRXU).

(a) (b)

Figure 3: (a) Topological predicates and (b) combined queries

Along these lines, one can construct various query combinations that are all plausible in the
spatiotemporal application context.

�� 7KH�$FFHVV�0HWKRGV�
Having described the types of data and queries, will the following section define the two access methods
proposed for those types of data and queries. Before that, we will give a short overview of the R-tree
(Guttman 1984). The R-tree is a height-balanced tree with the index records in its leaf nodes containing
pointers to actual data objects. Leaf node entries are of the form (LG, 0%%), where LG is an identifier that
points to the actual object and 0%% (Minimum Bounding Box) is an n-dimensional interval. Non-leaf
node entries are of the form (SWU, 0%%), where SWU is the pointer to a child node and 0%% is the covering
n-dimensional interval. A node in the tree corresponds to a disk page. Every node contains between P
and 0 entries. The lower bound P prevents the degeneration of the trees. Whenever the number of node
entries drops below P, the node is deleted and its entries reinserted. The upper bound 0 is called the
fanout and is determined by the page size. Whenever the number of node entries would rise above 0, the
node is split. Figure 4 exemplifies an R-tree with a fanout 0 = 3.
 The insertion of a new entry into the R-tree is done by traversing a single path from the root to the
leaf level. The path is chosen with respect to the least enlargement criterion (ChooseLeaf algorithm in
(Guttman 1984)) and covering MBBs are adjusted accordingly. In case an insertion causes splitting of a
node, its entries are reassigned into the old node and a newly created one (according to one of the three
alternative algorithms, Exhaustive, QuadraticSplit or LinearSplit, proposed in (Guttman 1984)). To delete
an entry from the R-tree, a reverse insertion procedure applies, i.e., covering MBBs are adjusted
accordingly. In case the deletion causes an underflow in a node, i.e., node occupancy falls below P, the
node is deleted and its entries are re-inserted. When searching an R-tree, we check whether a given node
entry overlaps the search window (assuming a range query). If so, we visit the child node and thus
recursively traverse the tree. Since overlapping MBBs are permitted, at each level of the index there may
be several entries that overlap the search window. An example is given in Figure 4, where a point query
for point X results into the paths R6-R2-r5 and R7-R4-r8.

7

Figure 4: An R-tree index

In the context of spatiotemporal data this technique proves to be inefficient. Figure 5(a) shows that in
approximating the line segments with MBBs, we introduce large amounts of dead space (Theodoridis et
al. 1998). It is evident that the corresponding MBB covers a large portion of the space, whereas the actual
space occupied by the trajectory is small. This leads to high overlap and consequently to a small
discrimination capability of the index structure.

�

�

�

(x , y , t)1 1 1

(x , y , t)2 2 2

(x , y , t)3 3 3

(x , y , t)4 4 4

1
4 3

2

(a) (b)

Figure 5: (a) approximating trajectories using MBBs, and (b) mapping of line segments in a MBB

Another aspect not captured in R-trees is the knowledge about the specific trajectory a line segment
belongs to. To smoothen these inefficiencies (and provide an as fair as possible performance comparison
later in Section 5), we modify the R-tree as follows:

• As can be seen in Figure 5(b), a line segment can only be contained in four different ways in an
MBB. This extra information is stored at the leaf level by simply modifying the entry format to (id,
MBB, orientation), where the orientation’ s domain is {1,2,3,4}.

• Assuming we number the trajectories from 0 to n, a leaf node entry is then of the form (id,
trajectory#, MBB, orientation).

 Although these suggestions are simple to implement and they improve the efficiency of the R-tree to
index line segments as parts of trajectories of moving points, we argue that it is not enough and query
processing is still problematic. To overcome it, we propose two novel approaches in indexing
trajectories, the STR-tree and the TB-tree.

���� 7KH�675�WUHH��
The STR-tree is an extension of the (appropriately modified, as discussed previously) R-tree to support
efficient query processing of trajectories of moving points. The two access methods differ in their
insertion/split strategy.

3.1.1 Insert algorithm

The insertion process is considerably different from the procedure known from the R-tree. As already
mentioned, the insertion strategy of the R-tree is based on the (purely spatial) least enlargement criterion.
On the other hand, the insertion in the STR-tree works differently in that we not only consider VSDWLDO�
FORVHQHVV but also partial WUDMHFWRU\�SUHVHUYDWLRQ, i.e., we try to keep line segments belonging to the same

8

trajectory together. As a consequence, when inserting a new line segment, the goal should be to insert it
as close as possible to its predecessor in the trajectory. Thus, insertion in the STR-tree involves a new
algorithm, FindNode, which returns the node that contains the predecessor. As for the insertion, if there is
room in this node, the new segment is inserted there. Otherwise, we have to apply a node split strategy.
In Figure 6, we show a sample index, in which the node returned by FindNode is marked with an arrow.
In the following we will discuss how the new insertion strategy can be combined with the known R-tree
algorithms.�

Figure 6: Insertion into the STR-tree

Algorithm Insert(N,E)
INS1 Invoke FindNode(N,E)
INS2 IF node N’ found,

IF N’ has space,
insert E

ELSE
IF the p-1 parent nodes are full,

invoke ChooseLeaf(N’’,E) on a tree, pointed to by N’’, which excludes the current branch.
ELSE invoke Split(N’).

ELSE ChooseLeaf(N,E).

Algorithm FindNode(N,E)
FN1 IF N is NOT a leaf,

FOR EACH entry E’ of N whose MBB intersects with the MBB of E,
invoke FindNode(N’,E), where N’ is the childnode of N pointed to by E’.

ELSE
IF N contains an entry that is connected to E,

RETURN N.

Figure 7: STR-tree insert algorithm

The ideal characteristics for an index suitable for object trajectories would be to decompose the overall
space according to time, the dominant dimension in which “ growth” occurs, and at the same time to
preserve trajectories. In the following, we describe the Insert algorithm shown in Figure 7, which
includes an additional parameter, called the SUHVHUYDWLRQ�SDUDPHWHU��S, which indicates the number of
levels we “ reserve” for the preservation of trajectories. When a leaf node returned by FindNode is full,
the algorithm checks whether the S-1 parent nodes are full (in Figure 6, for S = 2, we only have to check
the node drawn in bold at non-leaf level 1). In case RQH�RI�WKHP�LV QRW�IXOO, the leaf node is split. In case
DOO�RI� WKH�S���SDUHQW�QRGHV�DUH IXOO, Insert invokes ChooseLeaf2 on the subtree including all the nodes
further to the right of the current insertion path (the gray shaded tree in Figure 6). In the technical report

2 In the sequel, the so-called ChooseLeaf and QuadraticSplit algorithms will be used without further details, since
they are identical to Guttman’ s original algorithms.

9

to this paper (Pfoser et al. 2000) it was experimentally established that the best choice of a preservation
parameter is S = 2. A smaller S decreases the trajectory preservation and increases the spatial
discrimination capabilities of the index. The converse is true for a larger S.

3.1.2 Split algorithm

Since the goal is to preserve trajectories in the index, splitting a leaf node requires an analysis of what
kinds of segments are contained inside a node. Any two segments in a leaf node may belong to the same
trajectory or not and, suppose they belong to the same trajectory, may have common endpoints or not.
Following that, a node can contain four different types of segments:

• GLVFRQQHFWHG segments, i.e., such a segment is not connected to any other segment in the node,

• IRUZDUG�FRQQHFWHG segments, i.e., the top endpoint (i.e., the more recent endpoint, in terms of time)
of such a segment is connected to the bottom endpoint of another segment belonging to the same
trajectory,

• EDFNZDUG�FRQQHFWHG segments, i.e., the bottom endpoint of such a segment is connected to the top
endpoint of another segment belonging to the same trajectory, and

• EL�FRQQHFWHG segments, i.e., both (top and bottom) endpoints of such a segment are connected to the
(bottom and top, respectively) endpoint of two other segments belonging to the same trajectory.

 With this, we can distinguish the three split scenarios of Figure 8. In case (a) where all segments are
GLVFRQQHFWHG, the QuadraticSplit algorithm is invoked to determine the split. In case (b) where not all but
at least one segment is GLVFRQQHFWHG, the GLVFRQQHFWHG ones are placed into the newly created node.
Finally, in case (c) where no GLVFRQQHFWHG segments exist, the most recent (i.e., with respect to time)
EDFNZDUG�FRQQHFWHG segment is placed into the newly created node. Figure 9 summarizes the split
algorithm.

(a) (b) (c)

Figure 8: Different split scenarios

The general idea behind the Split algorithm is, to put newer, and thus more recent segments into new
nodes. Consequently, new segments are much likelier inserted into these nodes, i.e., these nodes have a
higher “ insertion potential” than the ones containing older nodes. This potential allows us also to relax
the minimum node capacity P constraint, known from the R-tree, when splitting a node.
 Finally, the splitting of non-leaf nodes is simple, in that we only create a new node for a new entry.
Using this insertion and split strategy, we obtain an index that preserves trajectories and considers time as
the dominant dimension when decomposing the occupied space.

10

Algorithm Split(N)
S1 IF node is a non-leaf node,
 invoke SplitNon-leafNode(N).
 ELSE invoke SplitLeafNode(N).

Algorithm SplitNon-leafNode(N)
SNN1 Put the new entry into a new node and keep the old one as it is

Algorithm SplitLeafNode(N)
SLN1 IF entries in node are all disconnected segments,

invoke QuadraticSplit(N).
ELSE IF node contains disconnected, and other types of segments,

put all disconnected segments in a new node.
ELSE IF node contains single and disconnected segments,

put the newest single connected segment in new node

Figure 9: STR-tree split algorithm

���� 7KH�7%�WUHH�
The TB-tree is fundamentally different from the previously presented access methods. The STR-tree
introduces a new insertion/split strategy to achieve trajectory orientation while not compromising the
space discrimination capabilities of the index too much. Apart from this, the STR-tree is an R-tree based
access method. The TB-tree takes a more radical step. An underlying assumption when using the R-tree
is that all inserted geometries are independent. In our context this translates to all line segments being
independent. However, line segments are parts of trajectories and this knowledge is only implicitly
maintained in the R-tree and the STR-tree structures. With the TB-tree, we aim for an access method that
VWULFWO\� SUHVHUYHV� WUDMHFWRULHV such that a leaf node only contains segments belonging to the same
trajectory, thus the index is actually a WUDMHFWRU\�EXQGOH. This approach is only feasible by making some
concessions to the most important R-tree property, node overlap or spatial discrimination. As a
drawback, line segments independent from trajectories that lie spatially close will be stored in different
nodes. As the overlap increases, the space discrimination decreases, and, thus, the classical range query
cost increases. However, by giving up on space discrimination, we gain on trajectory preservation. As we
shall see later, this property is important for answering ‘pure spatiotemporal’ queries.
 Before going into the details of the TB-tree construction algorithms, it is important to mention the
following. Both the (modified) R-tree and the STR-tree store entries of the format (LG, WUDMHFWRU\�, 0%%,
RULHQWDWLRQ) at the leaf level. Since the TB-tree does not allow segments from different trajectories to be
stored in the same leaf node, the WUDMHFWRU\� is assigned to the node rather than to each entry. Thus, the
format of a leaf node entry is (LG, 0%%, RULHQWDWLRQ) while WUDMHFWRU\� can be stored once in the header of
the leaf node.

3.2.1 Insert Algorithm

The goal is to “ cut” the whole trajectory of a moving object into pieces, where each piece is of size 0
line segments, with 0 being the fanout, i.e., a leaf node contains 0 segments of the trajectory. Figure 10
illustrates the insertion procedure, formally shown in Figure 11. Important stages throughout the
procedure are marked with black, circled numbers from 1 to 6.
 To insert a new entry, we simply have to find the leaf node that contains its predecessor in the
trajectory. We start by traversing the tree from the root and step into every child node that overlaps with
the MBB of the new line segment. We choose the leaf node containing a segment connected to the new
entry (stage 1 in Figure 10). Finding a segment is summarized in the FindNode algorithm, which is
identical to the one known from the STR-tree. In case the leaf node is full, a VSOLW strategy is needed.
Splitting a leaf node would violate our principle of total trajectory preservation. Thus, instead of the split,

11

we choose to create a new leaf node. Back to our example, we step up the tree until we find a non-full
parent node (stages 2 through 4). We choose the right most path (stage 5) to insert the new node. If there
is room in the parent node (stage 6), we insert the new leaf node as shown in Figure 10. In case it is full,
we split it by creating a new node at (non-leaf) level 1 that has the new leaf node as its only descendant.
If necessary, the split is propagated upwards. Illustratively, the TB-tree is growing from left to right, i.e.,
the left most leaf node was the first and the right most was the last, we inserted.

Figure 10: Insertion into the TB-tree

Algorithm Insert(N,E)
INS1 Invoke FindNode(N,E)
INS2 IF node N’ is found,
 IF N’ has space,
 insert new segment.
 ELSE
 create new leaf node for new segment
 ELSE
 create new leaf node for new segment

Figure 11: TB-tree insert algorithm

3.2.2 Space Discrimination and Trajectory Preservation

At this point one might argue that this strategy leads to an index with a high degree of overlap. This
would certainly be the case if it were arbitrary 3-dimensional data that was indexed. In that case, we
would neglect a vital property a spatial index ought to possess, VSDFH�GLVFULPLQDWLRQ. However, in our
case, we only “ neglect” two out of three dimensions, the spatial dimensions, with respect to space
discrimination. The temporal dimension offers a given space discrimination, in that data is inserted in an
append-only format (Theodoridis et al. 1998), i.e., by an increasing time horizon.
 As such, the structure of the TB-tree is actually a set of leaf nodes, each containing a partial
trajectory, organized in a tree hierarchy. In other words, a trajectory is distributed over a set of
disconnected leaf nodes. As we shall see later on when discussing about query processing, it is necessary
to be able to retrieve segments based on their trajectory identifier. A simple solution we have
implemented is to connect leaf nodes by a superimposed data structure. We choose a linked list that
connects leaf nodes including parts of the same trajectory in such a way that preserves trajectory
HYROXWLRQ. Figure 12 illustrates a part of a TB-tree structure and a trajectory illustrating this approach. For
clarity, the trajectory is drawn as a band rather then a line. The trajectory symbolized by the grey band is
fragmented across six nodes, c1, c3, etc. In the TB-tree these leaf nodes are connected through a linked
list.
 By visiting an arbitrary leaf node, these links allow us to retrieve the (partial) trajectory at minimal
cost: Considering a fanout I at a leaf node, the size of the partial trajectory contained in the leaf node is I.
Among the segments stored and assuming that I ≥ 3, it is by definition that I-2 segments are EL�FRQQHFWHG,

12

one is IRUZDUG�FRQQHFWHG and one is EDFNZDUG�FRQQHFWHG. To find the remaining segments of the same
trajectory, one has just to follow the pointers of the linked list to the next and to the previous leaf node.

Figure 12: The TB-tree structure

���� $�4XDOLWDWLYH�&RPSDULVRQ�
To conclude the discussion, we compare the indices built by the various access methods in an intuitive
way. Figure 13(a) illustrates a set of ten trajectories. Using the three methods we have built indexes (of
height 3 in all cases). Figure 13(b)-(g) illustrate the entries of two top levels (levels 1 and 2) of each
index. By visual inspection, the TB-tree seems to create a well-formed index in terms of node MBB
overlap. The STR-tree, although it creates a similar MBB alignment at level 2, differs from the TB-tree at
level 1. This is due to the algorithmic influence from the R-tree. In Section 5, we will see how this
difference in arranging the trajectories within the index affects the capability of each method with respect
to query processing.

(a) (b) (c) (d) (e) (f) (g)

Figure 13: Trajectories and covering MBBs: (a) 10 trajectories; MBBs of the R-tree (b) at level 1 and (c)
at level 2, respectively for the STR-tree (d)-(e), and respectively for the TB-tree (f)-(g).

�� 4XHU\�3URFHVVLQJ�
Section 0 described various types of queries as they occur in the spatiotemporal application context. In
this section, we present the algorithms for processing those queries using the three access methods. The
algorithms can be classified as FRRUGLQDWH�EDVHG, WUDMHFWRU\�EDVHG, or FRPELQHG queries (cf. Section 0).

13

 The processing of coordinate-based queries is straightforward as a direct extension of the classical
range query processing using the R-tree; the idea is to descend the tree with respect to coordinate
constraints until the entries are found in the leaf nodes (Guttman 1984). Trajectory-based queries
comprise topological and navigational queries. In the following, we will show how to reduce the former
type to ordinary range queries. The latter is somewhat special in that it actually aggregates on coordinate-
based query results. Thus we will omit these queries in this context. Algorithms for combined queries are
different in that not only a spatial, but also a combined search, is performed, i.e., we not only retrieve all
entries contained in a given sub-space (range query), but retrieve entries belonging to the same trajectory.
 In Figure 14(a), cube c1 represents a spatiotemporal range to select two among a set of trajectories,
namely t1 and t2, for which we retrieve sub-trajectories, shown in dark gray, bounded by the cube c2,
representing another spatiotemporal range. For emphasis, the trajectories are again drawn as bands rather
then lines. As shown in Section 2.2.2, range queries are not the only means to query a partial trajectory.
However, as we will see in the next section, the other methods can either be reduced to range queries or
do not depend on spatiotemporal indexing (using the WUDMHFWRU\�).

(a) (b)

Figure 14: Processing (a) combined and (b) topological queries

���� 7RSRORJLFDO�4XHULHV�
The concept of topology as it exists in the context of spatial databases (Egenhofer and Franzosa 1991,
Papadias et al. 1995) can be applied to the spatiotemporal domain as well. In Section 2.2.1 we stated the
relationships enters, leaves, crosses, and bypasses. In this section, we present algorithms to process those
relationships/queries based on the algorithm used for range queries.
 Consider the following query, “:KLFK�WD[LV�OHIW� WKH�7XFVRQ�FLW\�OLPLWV�EHWZHHQ���DQG��DP�WRGD\"”
What we want to retrieve is all taxis that left the spatiotemporal range “ 7XFVRQ�FLW\�OLPLWV�EHWZHHQ���DQG�
�DP� WRGD\” . In Figure 14(b), the cube represents a spatiotemporal range, and t2 is a trajectory of a
moving object leaving the range. The other trajectories, t1, t3, and t4, are entering, crossing, or bypassing
the specified range, respectively. To detect a trajectory leaving a given range we have to examine the
segments of the trajectories intersecting the four sides of the spatiotemporal range as shown in Figure
14(b). If a trajectory leaves or enters a range, it is only one qualifying segment to be found. By entering,
the moving object will be directed “ inwards” , i.e., the starting point (bottom endpoint) of the segment
should be outside the cube. In the reverse procedure, upon leaving, the starting point (bottom endpoint)
of the segment should be inside the cube. In case a trajectory crosses a range (e.g., t3) two or more
qualifying segments will be found (or, in an extreme case, only one segment with both endpoints outside
the cube). In case a trajectory bypasses a range (e.g. t4), no qualifying segment will be found. Thus, we
can use modified range queries to evaluate topological predicates.

14

���� &RPELQHG�6HDUFK�$OJRULWKPV�
We will devise separate algorithms, on one hand, for the R-tree and the STR-tree and, on the other hand,
for the TB-tree. The algorithm for the TB-tree is different in that this method provides the data structure
of a linked list to retrieve partial trajectories.

4.2.1 Combined search in the R-tree and the STR-tree

As already mentioned, the R-tree and the STR-tree differ only in the way entries are inserted and nodes
are split. For searching, this distinction is not important, therefore we can devise a common combined
search algorithm.
 The first step in processing combined queries is to retrieve an initial set of segments based on a
spatiotemporal range. We can apply the range-search algorithm used in the R-tree. The idea is to descend
the tree with respect to intersection properties until the entries are found in the leaf nodes (Guttman
1984). In Figure 15, we search the tree using the cube c1 and retrieve two segments of trajectory t2
(labeled 1 and 2), and four segments of trajectory t1 (labeled 3 to 6). The six segments are shown in
darker grey contained in the cube c1. This completes the first stage of the combined search.
 In the second stage, we have to extract partial trajectories. We now take each of the found segments
and try to find its connecting segment, first, in the same leaf node, and, second, in other leaf nodes.
Consider segment 1 of trajectory t2. We have to find two segments, one connected to the top endpoint
(forward connected) and one connected to the bottom endpoint (backward connected). We may find
those segments in the same leaf node, or we have to search in other leaf nodes. Searching in other leaf
nodes is conducted as a range search, with the endpoint of the segment in question as a predicate.
Arriving at the leaf level, the algorithm checks whether a segment is connected to the segment in
question in the specified way. Using this recursive approach, we retrieve more and more segments of the
trajectory. The algorithm continues until a newly found segment is outside cube c2. The last segments
returned for segment 1 are segments 7 and 8.

Figure 15: Stages in combined search

Figure 16 gives a sketch of the combined search algorithm for the R-tree and the STR-tree. One problem
remains, namely not to retrieve the same trajectory twice. The initial range search retrieves two segments,
1 and 2, of trajectory t2. By using both segments as a starting point, we will retrieve the same trajectory
twice. To avoid this situation, we need to store the WUDMHFWRU\� once it is retrieved and check before
querying a new trajectory whether it was retrieved already. In our example, if we use segment 1 first to
retrieve a partial trajectory t1 and store this information, we omit retrieving it again for segment 2.

15

Algorithm CombinedSearch(N,range1,range2)
CS1 IF N is NOT a leaf,
 FOR EACH entry E’ of N whose MBB intersects with range1,
 invoke CombinedSearch(N’,E), where N’ is the childnode of N pointed to by E’.
 ELSE
 for all entries E that satisfy range1 AND whose trajectory was not yet retrieved, invoke
 DetermineTrajectory(N,E)

Algorithm DetermineTrajectory(N,E,range2)
DT1 Loop through N and find segment E’ that is fwd connected to E
DT2 WHILE found AND E’ is within range2
 Add E’ to set of solutions,
 Loop through N and find segment E’ that is connected to the new E
DT3 IF not found (but within range)
 invoke FindConnSegment(root,E,forward)
 repeat from DT1
DT4 the same as above for bwd connected

Algorithm FindConnSegment(N,E,direction)
FCS1 IF N is NOT a leaf,
 FOR EACH entry E’ of N whose MBB intersects with the MBB of E,
 invoke FindConnSegment(N’,E,direction), where N’ is the childnode of N pointed to by E’.
 ELSE
 IF N contains an entry that is direction connected to E,
 RETURN N.

Figure 16: R-tree and STR-tree: CombinedSearch algorithm for trajectory-based queries

4.2.2 Combined search on the TB-tree

The combined search algorithm of the TB-tree is similar to the one presented above. The difference lies
in how the partial trajectories are retrieved. The R-tree and the STR-tree structures provide little help in
retrieving trajectories, i.e., connected segments, but offer only a modified range search algorithm. The
TB-tree, on the other hand, provides the supplemental data structure of a linked list. This allows us to
retrieve connected segments without searching.
 The first stage in combined searching is the same as before. Here, for those seed segments, in our
example segments 1 and 2 for t2 and segments 3 to 6 for t1, we have to retrieve a partial trajectory
contained in the outer range c2. Again, we have two possibilities, a connected segment can be (a) in the
same leaf node, or (b) in another node. If it is in the same, finding it is trivial. If it is in another node, we
have to follow the next (previous) pointer to another leaf node (cf. Section 3.2.2).
 Although the approach to retrieve partial trajectories is different, we have to take care not to retrieve
the same trajectory more than once (cf. Section 4.2.1). Once a partial trajectory is retrieved, we store its
id, and, before retrieving another trajectory, we check whether it was retrieved already. Figure 17
contains the updates to the combined search algorithm as presented in Figure 16.

Algorithm FindConnSegment(E,N,direction)
FCS1 Set N to be the node pointed to be the direction pointer

Figure 17: TB-tree: CombinedSearch algorithm update

�� 3HUIRUPDQFH�&RPSDULVRQ�
In this section, we aim at comparing the three access methods and establishing conditions, which are
optimal for each one. This allows us to delimit the situations in which each access method is useful.
Thus, we compare the access methods under varying sets of data and queries. The performance studies
were conducted using C implementations of the three access methods. As for the parameters of the
experiments, we have chosen the page size for the leaf and non-leaf nodes to be 1024 bytes. With this

16

page size, the R-tree and the STR-tree fanout is 28 and 36 for leaf and non-leaf nodes, respectively. Since
the leaf node structure of the TB-tree is different, the fanout is 31 and 36 for leaf and non-leaf nodes,
respectively.

���� 'DWDVHWV�
Unlike spatial data, where there exist several popular real datasets for experimentation purposes (e.g., the
TIGER/Line files of geographic features, such as roads, rivers, lakes, boundaries, etc., covering the entire
United States (Census 1994)), well-known and widely accepted spatiotemporal datasets for experimental
purposes are missing. Due to the lack of real data, our performance study consists of experiments on
synthetic datasets. We utilize the GSTD generator of spatiotemporal datasets (Theodoridis et al. 1999) to
create trajectories of moving objects under various distributions3. GSTD allows the user to generate a set
of line segments stemming from a specified number of moving objects. Probability functions are used to
describe the movement of the objects as a combination of several parameters. More precisely, the user
can specify the initial positional distribution of the objects in the unit workspace [0, 1)2 as well as the
stepping in time and space for each movement using either uniform, Gaussian, or skewed probability
functions.
 The parameters of the generator are given the following values: The initial distribution of points is
Gaussian, i.e., all points are distributed around the center of the workspace. The movement of points is

always ruled by a random distribution of the form random(-x,x), thus achieving an unbiased spread of
the points in the workspace. The number of different possible snapshots (i.e., the temporal resolution) is
held constant at 100K. Finally, the number of moving objects (i.e., trajectories) varies between 10 and
1000, resulting in datasets consisting of between 15K and 1500K entries (i.e., line segments)4.

���� 6SDFH�8WLOL]DWLRQ�DQG�,QGH[�6L]H��
An aspect often neglected when comparing access methods is the VL]H of the created index structures.
Table 2 lists the sizes of the three different indices and the corresponding space utilization.

� 5�WUHH� 675�WUHH� 7%�WUHH�
,QGH[�VL]H� ~ 95 KB per object ~ 57 KB per object ~ 51 KB per object

6SDFH�XWLOL]DWLRQ� 55%-60% ~100% ~100%

Table 2: Index sizes and space utilization

Space utilization shows the average number of entries per node in percent, i.e., an average space
utilization of 100% means that all nodes are filled. The average space utilization for the R-tree is between
55% and 60%, whereas it approaches 100% in case of the STR-tree and the TB-tree. The reason for this
is that the R-tree construction strategy that does not take the unilateral growth of the data in the temporal
dimension into account. The largest index is the R-tree, which is roughly twice as big as the other two
indices. For example, for datasets of 1000 objects (i.e., consisting of 1500K line segments), the R-tree
size is about 95 MB while the other two indices size about 57 MB. This difference is mainly due to its
small space discrimination. The TB-tree is smaller than the STR-tree. The two indices have similar space

3 The GSTD generator has been also used in the performance comparison that appears in (Nascimento et al. 1999)
between the three-dimensional R-tree and several of its persistent variations for spatiotemporal indexing.

4 Note that the resulting number of entries is smaller than the number of objects times the number of possible
snapshots; GSTD outputs only the necessary ones to reproduce the dataset motion (Theodoridis et al. 1999).

17

utilization, however, the TB-tree’ s fanout is larger. For a ten times larger dataset, the index size increases
by the same factor for the STR-tree and the TB-tree. The increase is only approximate in the case of the
R-tree, since its space utilization can fluctuate.

���� 3UHVHUYDWLRQ�3DUDPHWHU�
An important parameter of the STR-tree is the number of levels we use in the index to preserve the
moving object trajectories. In the following experiment, we show the effects of a varying preservation
parameter S on the created index. The data file used in the experiments shown in Figure 18 contains
100K segments stemming from 10 moving objects with a time horizon of 200K points.
 An important characteristic of an access method is the creation cost for an index, which in this
experiment is measured by the QXPEHU�RI�QRGH�DFFHVVHV as shown in Figure 18. We distinguish node
accesses at intermediate levels and at the leaf level, since varying the preservation parameter has different
effects on intermediate and leaf levels during insertion (FindNode), we consider the number of node
accesses grouped accordingly.
 From Figure 18 one can see that a SUHVHUYDWLRQ�SDUDPHWHU S� �1 or 2 seems to be the best choice.
The total number of node accesses is almost the same. For S = 3 the number of intermediate node
accesses increases drastically. In this case, more levels in the tree are used to preserve trajectories, i.e.,
the overlap between nodes increases, and finding a segment during insertion requires more node
accesses. However, in using S = 1, trajectories are hardly preserved (cf. Section 3.1). Thus, the obvious
choice is a preservation parameter of 2. Compared to the R-tree, the STR-tree has for this particular data
set fewer node accesses during index creation.

0

50000

100000

150000

200000

250000

300000

1 2 3
preservation parameter p

no
de

 a
cc

es
s

R-tree, non-leaf
R-tree, leaf
STR-tree, non-leaf
STR-tree, leaf

Figure 18: Comparison STR/R-tree number of node accesses for insertion with varying preservation
parameter S

���� 5DQJH�4XHULHV�
Range queries are important for spatial data as well as spatiotemporal data. In this section, we compare
the three access methods for processing range queries. As already mentioned, we use datasets�stemming
from 10 to 1000 moving objects. As for the queries, we use three sets of query windows with a range of
1%, 10%, and 20% of the total range with respect to each dimension, i.e., 0.0001%, 0.1%, and 0.8% of
the total space. Each query set includes 1000 query windows.
 Figure 19 shows the number of total node accesses for various range queries and datasets. Do note
that both axes are of a logarithmic scale, the x-axes is to base of 2 and the y-axes is to the base of 10. We
can observe two major trends. First, for a small number of moving objects, the STR-tree and the TB-tree
show superior range query performance over the R-tree. The break-even point at which this trend is
reversed, depends on the query size. In case of a 1% range per dimension, the break-even point with
respect to the R-tree for the STR-tree is at 30 moving objects, and for the TB-tree at 60 moving objects
(cf. Figure 19(a)). For a larger, 10% range size per dimension the break-even point for the STR-tree is at
25 moving objects and for the TB-tree at 200 moving objects (cf. Figure 19(b)). In case of an even larger

18

range, e.g., 20% per dimension, the break-even points increase to 50 and over 1000 moving objects for
the STR-tree and the TB-tree, respectively (cf. Figure 19(c)).
 Both, the TB-tree and the STR-tree, are trajectory oriented. For a smaller number of trajectories the
total dataset (line segments) is more oriented along time than it is with respect to space. We term this
property the WHPSRUDO�GLVFULPLQDWLRQ, as the dataset grows only with respect to the temporal dimension.
Thus, for such a dataset, the spatial discrimination capabilities of the index are of no importance.
However, if the number of trajectories increases, more segments exist at a given point in time. Thus, the
spatial discrimination becomes important. Otherwise the overlap between the nodes increases.

1000

10000

100000

1000000

10 25 50 100 250 500 1000

moving objects

no
de

 a
cc

es
s

R - tree
STR - tree
TB - tree

1000

10000

100000

1000000

10 25 50 100 250 500 1000
moving objects

no
de

 a
cc

es
s

R - tree
STR - tree
TB - tree

10000

100000

1000000

10000000

10 25 50 100 250 500 1000

moving objects

no
de

 a
cc

es
s

R - tree
STR - tree
TB - tree

(a) (b) (c)

Figure 19: Comparison on range queries for datasets with a varying number of PRYLQJ�REMHFWV: varying
range, (a) 1%, (b) 10% and (c) 20% in each dimension

The R-tree does not “ know” about the natural discrimination of the data. Its sole purpose is to group
objects according to spatial characteristics, i.e., spatial proximity. For a small number of trajectories, this
ambition turns out to be a “ boomerang” . In this case, the spatial discrimination is of minor importance.
The TB-tree puts connected segments in the same node and does not care about spatial discrimination. It
thus exploits the temporal discrimination of the data. As the results show, this approach is better up to a
certain number of segments. The STR-tree tries to take a middle ground approach between the two
extremes. However, although this index performs better than the R-tree for a small number of
trajectories, it is always worse than the TB-tree. The STR-tree, too, is heavily dedicated to preserve
trajectories. This explains its performance with respect to the R-tree. However, because of its R-tree
properties, it is worse than the TB-tree for a small number of trajectories.

1000

10000

100000

10 20 40 80
time [units]

no
de

 a
cc

es
s

R - tree
STR - tree
TB - tree

10000

100000

1000000

10 20 40 80
time [units]

no
de

 a
cc

es
s

R - tree
STR - tree
TB - tree

10000

100000

1000000

10 20 40 80
time [units]

no
de

 a
cc

es
s

R - tree
STR - tree
TB - tree

(a) (b) (c)

Figure 20: Comparison on range queries for datasets with a varying WLPH�KRUL]RQ: range, (a) 1%, (b) 10%
and (c) 20% in each dimension

So far, we considered only the number of moving objects as a parameter for data. Other parameters for
include a varying WLPH� KRUL]RQ, i.e., shorter/longer trajectories from a fixed number of objects and a
varying REMHFW�VSHHG. For the experiments shown in Figure 20, we used time horizons of 100K, 200K,
400K, and 800K points for datasets stemming from 10 moving objects. As we can see in, the time

19

horizon does not affect the range query performance. This is a desirable property since our datasets grow
only in the temporal dimension.
 The objects agility, however, does influence the query performance. Generally, we use an object
agility of 3% in our experiments, i.e., in-between two consecutive time stamps, the object can move up to
3% of the size of the extent of workspace. In these experiments, we vary this parameter to be 0.75%,
1.5%, 3%, 6%, as well as up to 12%. What we can observe in Figure 21 is that the performance of all
indices degrades with an increased object speed, i.e., the more space they cover per time. However, the
TB-tree seems more affected than the R-tree and the STR-tree, due to not considering spatial
characteristics when inserting a new segment.

1000

10000

100000

0,75 1,5 3 6 12
agility [%]

no
de

 a
cc

es
s

R -tree
STR - tree
TB - tree

10000

100000

1000000

0,75 1,5 3 6 12
agility [%]

no
de

 a
cc

es
s

R - tree
STR - tree
TB - tree

10000

100000

1000000

0,75 1,5 3 6 12
agility [%]

no
de

 a
cc

es
s

R - tree
STR - tree
TB -tree

(a) (b) (c)

Figure 21: Comparion on range queries for datasets with a varying REMHFWV�DJLOLW\: range, (a) 1%, (b) 10%
and (c) 20% in each dimension

���� 7LPH�6OLFH�4XHULHV�
In several applications it is useful to determine the positions of (all) moving objects at a given point in
the past (Theodoridis et al. 1996). This query type constitutes a special case of a range query with a query
window of]HUR�H[WHQW�DW�WKH�WHPSRUDO�GLPHQVLRQ. The size of the query window at the spatial dimensions
can be arbitrary. In the performance studies we choose 1%, 10%, and 100% of the respective range in
each spatial dimension. This corresponds to three sets, each comprising of 1000 individual queries.
 The results shown in Figure 22 are similar to what could be seen in the previous section. For each set
of queries (Figure 22(a)-(c)), there exists a break-even point in terms of number of moving point objects
when the number of node accesses for the R-tree is smaller than for the STR-tree and the TB-tree,
respectively. The break-even point moves from 60 moving objects (1% range) to 500 moving objects
(100% range). This trend can also be observed in the case of range queries. However, there the TB-tree
does always outperform the STR-tree. In Figure 22(a)-(c), we observe that the gap between the two
indices is getting smaller with an increasing range until STR-tree outperforms the TB-tree (Figure 22(c)).

1000

10000

100000

1000000

10 25 50 100 250 500 1000

moving objects

no
de

 a
cc

es
s

R - tree
STR - tree
TB - tree

1000

10000

100000

1000000

10 25 50 100 250 500 1000

moving objects

no
de

 a
cc

es
s

R - tree
STR - tree
TB - tree

1000

10000

100000

1000000

10 25 50 100 250 500 1000

moving objects

no
de

 a
cc

es
s

R - tree
STR - tree
TB - tree

(a) (b) (c)

Figure 22: Comparison on time slice queries: varying spatial range, (a) 1%, (b) 10% and (c) 100% in
each spatial dimension

20

The nature of a time slice query is to retrieve all positions of moving objects at a given instance in time.
In other words, this query favors particularly an index that organizes its content based on its spatial
aspects (R-tree and STR-tree) rather than relying on the temporal discrimination capabilities of the data
(TB-tree). For smaller ranges (Figure 22(a)), this phenomenon is not as apparent as for larger ranges.

���� 7RSRORJLFDO�4XHULHV�
In Section 4.1, we discussed how topological queries can be reduced to range queries. Figure 23(a)-(c)
show the results of a performance study with three sets of range queries, 1000 queries each, with a range
of 1%, 10%, and 20% of the total range of the respective range in each dimension, i.e., 0.0001%, 0.1%,
and 0.8% of the total space.

1000

10000

100000

1000000

10 25 50 100 250 500 1000

moving objects

no
de

 a
cc

es
s

R - tree
STR - tree
TB - tree

10000

100000

1000000

10000000

10 25 50 100 250 500 1000

moving objects

no
de

 a
cc

es
s

R - tree
STR - tree
TB - tree

10000

100000

1000000

10000000

10 25 50 100 250 500 1000

moving objects

no
de

 a
cc

es
s

R - tree
STR - tree
TB - tree

(a) (b) (c)

Figure 23: Comparison on topological queries: varying range, (a) 1%, (b) 10% and (c) 20% in each
dimension

The results of Figure 23 are largely similar to the range query performance. This does not come as a
surprise since topological queries are transformed into range queries. Recall that during processing this
type of topological queries, each range is decomposed into four smaller range queries as outlined in
Section 4.1.

���� &RPELQHG�4XHULHV�
What follows is a performance study related to the algorithms for combined searching as presented in
Section 4.2. We use datasets stemming from a varying number of moving objects. As for the queries, the
size of the inner and the outer range is 1% (0.0001%) and 10% (0.1%), and 1% (0.0001%) and 20%
(0.8%) in each dimension (of total space). Each set of queries consists of 1000 individual queries.
 The results in Figure 24 show that the TB-tree is in all cases superior to the STR-tree and the R-tree,
up to one order of magnitude with the gap increasing in proportion to the number of objects. Apart from
the (partial) trajectory preservation in each node, it is also the additional data structure (a linked list) for
retrieving neighbor nodes that contribute to this result. Thus, the numbers of node accesses in case of the
TB-tree are only slightly increased over the numbers from the range query experiments in Figure 19(a).
Comparing the STR-tree with the R-tree, they only differ in the index structure itself but have the same
combined search algorithms. As we have observed a break-even point between those two methods for
range queries, it also exists here. For the first experiment, shown in Figure 24(a), the break-even point is
at about 300 moving objects. For the second experiment, involving a larger secondary range, the break-
even point is at 500 moving objects.

21

1000

10000

100000

1000000

10000000

10 25 50 100 250 500 1000

moving objects

no
de

 a
cc

es
s

R - tree
STR - tree
TB - tree

1000

10000

100000

1000000

10000000

10 25 50 100 250 500 1000

moving objects

no
de

 a
cc

es
s

R - tree
STR - tree
TB - tree

 (a) (b)

Figure 24: Comparison on combined queries: (a) 1% inner range and 10% outer range and (b) 1% inner
range and 20% outer range, in each dimension

���� 6XPPDU\�
We conclude the performance studies by saying that the TB-tree is an index supporting trajectory-based
queries much more efficiently than the R-tree does. At the same time, its performance on typical range
queries is competitive to the R-tree. As shown in the experiments, for combined queries the TB-tree
performance is closely connected to the “ number of moving objects” parameter of the datasets; the
relative gap increases with an increasing number of moving objects compared with the other two
structures. As for the STR-tree, although designed to combine the benefits of the TB-tree and the R-tree,
it usually performs worse than the TB-tree, with the only exception being time slice queries and range
queries for very special cases of data.

�� &RQFOXVLRQV�DQG�)XWXUH�:RUN�
Work so far in spatiotemporal query processing has dealt with range queries, a typical search for spatial
data. However, spatiotemporal data, in the context of trajectories of n-dimensional moving objects, is
somewhat different from (n+1)-dimensional spatial data due to the peculiarity of the temporal dimension
(Theodoridis et al. 1998). In this paper, we present a set of pure spatiotemporal queries, the so called
trajectory-based (topological and navigational) queries, as well as combined (coordinate- and trajectory-
based) queries. Efficient processing of those queries requires indices and access methods for
spatiotemporal data; a simple modification to the R-tree as well as two new access methods, namely the
STR-tree and the TB-tree, are proposed for indexing the trajectories of moving point objects.
 First, trajectory data and a set of queries are defined to derive requirements. Trajectory data is
obtained by discretely sampling the movement of point objects in time. A linear interpolation is used in-
between the samples. The set of queries is then presented. Subsequently, the paper discusses the R-tree to
determine the shortcomings of this method with respect to spatiotemporal data and queries, and
introduces modifications to overcome these limitations. Then the STR-tree and the TB-tree are proposed,
both tailored to the requirements of trajectory data and spatiotemporal queries. They can also easily be
implemented on top of the R-tree, a method already adopted in commercial extensible database systems,
since both methods maintain several properties and construction algorithms of it.
 The performance study presents results from experiments involving spatial range queries, as well as
experiments related to topological and navigational queries. The TB-tree proves to be an access method
well suited for trajectory-based queries, by at the same time having a good spatial search performance.
The STR-tree performance stays behind the TB-tree. Although designed to combine the “ best of both
worlds” , it seems the STR-tree is rather a compromise. The ‘pure’ concepts of the R-tree and the TB-tree
seem to be far superior in their respective domains. Here, the conclusion might be that it is not wise to
tamper with “ perfection.”

22

Although recent literature includes related work on indexing trajectories of moving objects by
maintaining the complete history of object movement (Vazirgiannis et al. 1998, Tzouramanis et al. 1998,
Nascimento et al. 1999, Tzouramanis et al. 1999), the work presented in this paper is the first

• to propose an access method (namely, the TB-tree) clearly addressing the requirements and
peculiarities of this context by considering WUDMHFWRU\�SUHVHUYDWLRQ,

• to propose and implement specific modifications to the ‘classic’ R-tree in order to overcome (some
of) its inefficiencies, and

• to present novel query processing algorithms for ‘pure’ spatiotemporal searching apart from the
typical range querying.

 This work points to several future research directions. (a) MBBs are used as the underlying
approximations in all methods. A suggestion would be to use other geometric bodies that are a more
suitable approximation for moving objects’ trajectories. For example, related work on indexing line
segments (Bertino et al. 1998) could direct to other, perhaps more efficient, approximations. (b) The
present work only presents preliminary algorithms to process navigational and topological queries.
Derived from the requirements from real spatiotemporal applications, e.g., fleet management, these
algorithms can be refined and defined in more detail. (c) Not only novel queries, such as the previous
ones, but also known though expensive spatial queries deserve more attention in the spatiotemporal
domain; examples include nearest-neighbors (Roussopoulos et al. 1995), multi-way joins (Mamoulis and
Papadias 1999) and closest-pairs (Corral et al. 2000). Finally, (d) it would be interesting to investigate
whether the proposed types of queries are the only (or the fundamental) ones particular for the present
application context.

5HIHUHQFHV�
Arge, L., Agarwal, P., and Erickson, J.: Indexing Moving Points. In 3URFHHGLQJV� RI� WKH� �� � � � $&0�

6\PSRVLXP�RQ�3ULQFLSOHV�RI�'DWDEDVH�6\VWHPV, to appear, 2000.
Allen, J.F.: Maintaining Knowledge About Temporal Intervals. &RPPXQLFDWLRQV�RI�WKH�$&0, 26(11), pp.

832-843, 1983.

Barbará, D.: Mobile Computing and Databases – a Survey. ,(((�7UDQVDFWLRQV�RI�.QRZOHGJH�DQG�'DWD�
(QJLQHHULQJ, 11(1), pp. 108-117, 1999.

Bartels, R., Beatty, J., and Barsky, B��� $Q� ,QWURGXFWLRQ� WR� 6SOLQHV� IRU� 8VH� LQ� &RPSXWHU�*UDSKLFV�	�
*HRPHWULF�0RGHOLQJ. Morgan Kaufmann Publishers, Inc., 1987.

Becker, B., Gschwind, S., Ohler, T., Seeger, B., and Widmayer, P.: An Asymptotically Optimal
Multiversion B-Tree. 7KH�9/'%�-RXUQDO, 5(4), pp. 264-275, 1996.

Bertino, E., Catania, B., and Shidlovsky, B.: Towards optimal indexing for segment databases. In
3URFHHGLQJV�RI�WKH�,QWHUQDWLRQDO�&RQIHUHQFH�RQ�([WHQGLQJ�'DWDEDVH�7HFKQRORJ\, pp. 39-53, 1998.

Census, Bureau of the: Tiger/Line Census Files: Technical Documentation. U.S. Department of
Commerce, 1994.

Corral, A., Manolopoulos, Y., Theodoridis, Y., and Vassilakopoulos, M.: Closest Pair Queries in Spatial
Databases. In 3URFHHGLQJV� RI� WKH�$&0�6,*02'�&RQIHUHQFH� RQ�0DQDJHPHQW� RI�'DWD, to appear,
2000.

Egenhofer, M. and Franzosa, R.: Point-Set Topological Spatial Relations�� ,QWHUQDWLRQDO� -RXUQDO� RI�
*HRJUDSKLF�,QIRUPDWLRQ�6\VWHPV, 5(2), pp. 161-174, 1991.

Erwig, M. and Schneider, M.: Developments in Spatio-Temporal Query Languages, In 3URFHHGLQJV�RI�
'(;$�:RUNVKRS�RQ�6SDWLR�7HPSRUDO�'DWD�0RGHOV�DQG�/DQJXDJHV, 1999

23

Erwig, M., Güting, R.H., Schneider, M., and Vazirgiannis, M.: Spatio-Temporal Data Types: An
Approach to Modeling and Querying Moving Objects in Databases, *HR,QIRUPDWLFD, 3(3), pp. 269-
296, 1999.

Güting, R., Böhlen, M., Erwig, M., Jensen, C., Lorentzos, N., Schneider, M., and Vazirgiannis, M.: A
Foundation for Representing and Querying Moving Objects. $&0� 7UDQVDFWLRQV� RQ� 'DWDEDVH�
6\VWHPV, to appear, 2000.

Guttman, A.: R-trees: a Dynamic Index Structure for Spatial Searching. ,Q� 3URFHHGLQJV� RI� WKH�$&0�
6,*02'�&RQIHUHQFH�RQ�WKH�0DQDJHPHQW�RI�'DWD, pp. 47-57, 1984.

Karppinen, J.: Wireless Multimedia Communications: a Nokia View. In 3URFHHGLQJV� RI� WKH�:LUHOHVV�
,QIRUPDWLRQ�0XOWLPHGLD�&RPPXQLFDWLRQV�6\PSRVLXP, Aalborg University, 1999.

Kollios, G., Gunopulos, D., and Tsotras, V.: On Indexing Mobile Objects. In 3URFHHGLQJV�RI� WKH��� � � �
$&0�6\PSRVLXP�RQ�3ULQFLSOHV�RI�'DWDEDVH�6\VWHPV��pp� 261-272, 1999.

Mamoulis, N. and Papadias, D.: Integration of Spatial Join Algorithms for Processing Multiple Inputs. In
3URFHHGLQJV�RI�WKH�$&0�6,*02'�&RQIHUHQFH�RQ�0DQDJHPHQW�RI�'DWD, pp. 1-12, 1999.

Nascimento, M., Silva, J., and Theodoridis, Y.: Evaluation of Access Structures For Discretely Moving
Points. In 3URFHHGLQJV�RI� WKH�,QWHUQDWLRQDO�:RUNVKRS�RQ�6SDWLR�7HPSRUDO�'DWDEDVH�0DQDJHPHQW,
pp. 171-188, 1999.

Papadias, D., Theodoridis, Y., Sellis, T., and Egenhofer, M.: Topological Relations in the World of
Minimum Bounding Rectangles: A Study with R-trees. In 3URFHHGLQJV� RI� WKH� $&0�6,*02'�
&RQIHUHQFH�RQ�0DQDJHPHQW�RI�'DWD, pp. 92-103, 1995.

Pfoser, D. and Jensen, C.: Capturing the Uncertainty of Moving-Object Representations, In 3URFHHGLQJV�
RI�WKH�� � � �,QWHUQDWLRQDO�6\PSRVLXP�RQ�6SDWLDO�'DWDEDVHV, pp. 111-132, 1999.

Pfoser, D., Jensen, C. S., and Theodoridis, Y.: Novel Approaches In Query Processing For Moving
Objects. CHOROCHRONOS Technical Report, CH-00-3, 2000.

Relly, L., Kuckelberg, A., and Schek:, H. J.: A Framework of a Generic Index for Spatio-Temporal Data
in CONCERT. In 3URFHHGLQJV� RI� WKH� ,QWHUQDWLRQDO� :RUNVKRS� RQ� 6SDWLR�7HPSRUDO� 'DWDEDVH�
0DQDJHPHQW, pp. 135-151, 1999.

Roussopoulos, N., Kelley, S., and Vincent, F.: Nearest Neighbor Queries. In 3URFHHGLQJV�RI�WKH�$&0�
6,*02'�&RQIHUHQFH�RQ�0DQDJHPHQW�RI�'DWD, pp. 71-79, 1995.

Saltenis, S., Jensen, C., Leutenegger, S., and Lopez, M.: Indexing the Positions of Continuously Moving
Objects. In 3URFHHGLQJV�RI�WKH�$&0�6,*02'�&RQIHUHQFH�RQ�0DQDJHPHQW�RI�'DWD, to appear, 2000.

Sistla, A., Wolfson, O., Chamberlain, S., and Dao, S.: Modeling and Querying Moving Objects. In
3URFHHGLQJV�RI�WKH��� � � �,QWHUQDWLRQDO�&RQIHUHQFH�RQ�'DWD�(QJLQHHULQJ, pp. 422-432, 1997.

Spaccapietra, S., Parent, C., and Zimanyi, E.: Modeling Time from a Conceptual Perspective. In
3URFHHGLQJV�RI�WKH�,QWHUQDWLRQDO�&RQIHUHQFH�RQ�,QIRUPDWLRQ�DQG�.QRZOHGJH�0DQDJHPHQW, pp. 432-
440, 1998.

Theodoridis, Y., Sellis, T., Papadopoulos, A., and Manolopoulos, Y.: Specifications for Efficient
Indexing in Spatiotemporal Databases, In 3URFHHGLQJV� RI� WKH� �� � � � ,QWHUQDWLRQDO� &RQIHUHQFH� RQ�
6FLHQWLILF�DQG�6WDWLVWLFDO�'DWDEDVH�0DQDJHPHQW, pp. 123-132, 1998.

Theodoridis, Y., Silva, R., and Nascimento, M.: On the Generation of Spatiotemporal Datasets. In
3URFHHGLQJV�RI�WKH�� � � �,QWHUQDWLRQDO�6\PSRVLXP�RQ�6SDWLDO�'DWDEDVHV, pp.147-164, 1999.

Theodoridis, Y., Vazirgiannis, M., and Sellis, T.: Spatio-Temporal Indexing for Large Multimedia
Applications. In 3URFHHGLQJV� RI� WKH�� ��� � ,(((� ,QWHUQDWLRQDO�&RQIHUHQFH�RQ�0XOWLPHGLD�&RPSXWLQJ�
DQG�6\VWHPV, pp. 441-448, 1996.

Tryfona, N. and Jensen, C. S.: Conceptual Data Modeling for Spatiotemporal Applications,
*HRLQIRUPDWLFD, 3(3), pp. 245-268, 1999.

24

Tzouramanis, T., Manolopoulos, Y., and Lorentzos, N.: Overlapping B+-Trees: an Implementation of a
Transaction Time Access Method. 'DWD�DQG�.QRZOHGJH�(QJLQHHULQJ, 29(3), pp. 381-404, 1999.

Tzouramanis, T. , Vassilakopoulos, M., and Manolopoulos, Y.: Overlapping Linear Quadtrees: A Spatio-
Temporal Access Method. In� 3URFHHGLQJV� RI� WKH� � � � � ,QWHUQDWLRQDO� 6\PSRVLXP� RQ� $GYDQFHV� LQ�
*HRJUDSKLF�,QIRUPDWLRQ�6\VWHPV, pp. 1-7, 1998.

Vazirgiannis, M., Theodoridis, Y., and Sellis, T.: Spatio-Temporal Composition and Indexing for Large
Multimedia Applications. 0XOWLPHGLD�6\VWHPV, 6(4), pp. 284-298, 1998.

Wolfson, O., Xu, B., Chamberlain, S., and Jiang, L.: Moving Objects Databases: Issues and Solutions. In
3URFHHGLQJV�RI�WKH��� � � �,QWHUQDWLRQDO�&RQIHUHQFH�RQ�6FLHQWLILF�DQG�6WDWLVWLFDO�'DWDEDVH�0DQDJHPHQW,
pp.111-122, 1998.

Wolfson, O., Jiang, L., Sistla, A. P., Chamberlain, S., Rishe, N, and Deng, M.: Databases for Tracking
Mobile Units in Real Time. In 3URFHHGLQJV�RI�WKH��� � � �,QWHUQDWLRQDO�&RQIHUHQFH�RQ�'DWDEDVH�7KHRU\,
pp. 169-186, 1999.

