
The TreeScape System: Reuse of Pre-Computed Aggregates
over Irregular OLAP Hierarchies

Torben Bach Pedersen Christian S. Jensen

Department of Computer Science,
Aalborg University, DK–9220 Aalborg Ø, Denmark,

ftbp,csj g@cs.auc.dk

Curtis E. Dyreson

School of Information Technology,
Bond University, Gold Coast, QLD 4229,
Australia,cdyreson@bond.edu.au

Abstract

We present the TreeScape system that, unlike any
other system known to the authors, enables the
reuse of pre-computed aggregate query results for
irregular dimension hierarchies, which occur fre-
quently in practice. The system establishes a foun-
dation for obtaining high query processing perfor-
mance while pre-computing only limited aggre-
gates. The paper shows how this reuse of aggre-
gates is enabled through dimension transforma-
tions that occur transparently to the user.

1 Introduction
In order to improve query performance, modern On-Line
Analytical Processing (OLAP) systems use a technique
known aspractical pre-aggregation, whereselectcombi-
nations of aggregate queries are materialized and re-used
when computing other aggregates; full pre-aggregation,
where all combinations of aggregates are materialized, is
infeasible, as it typically causes a blowup in storage re-
quirements of 200–500 times the size of the raw data [3, 5].
Normally, practical pre-aggregation requires the dimension
hierarchies to be regular, i.e., to be balanced trees, but this
is quite often not the case in real-world systems.

The TreeScape system presented here enables practi-
cal pre-aggregation even for irregular hierarchies, based on
techniques described previously by the authors [4]. We
show how to achieve practical pre-aggregation through
transformations of the dimensions and how the transforma-
tions can be accomplished transparently to the user. The

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 26th VLDB Conference,
Cairo, Egypt, 2000.

system enables the achievement of fast query response time
while saving huge amounts of storage compared to current
OLAP systems and techniques. The prototype implemen-
tation of TreeScape demonstrates that these benefits may
be achieved with standard technology. While this demon-
stration uses a particular RDBMS, it’s ODBC driver, and
particular relational OLAP tool, TreeScape is not depen-
dent on any specific suite of products1, making the solution
flexible and useful.

2 Normalizing Hierarchies
We use a small case study concerning patients and their di-
agnoses for illustrating the workings of the system. Diag-
noses have three different levels of precision, depending on
how accurate a patient’s condition can be described. The
most precise diagnoses arelow-level diagnoses, which are
grouped intodiagnosis families, which, in turn, are grouped
into diagnosis groups. The example data consists of 9 diag-
noses and their hierarchical relationship, along with patient
counts. The data can be seen in Table 1 and to the left in
Figure 1.

5 6

4,9 4,10

4 9 10

11,12

12 11

L14

14

14

13

13

5 6

4 9 10

12 11

14

13

T T

Figure 1: Dimension Transformations

The hierarchy is irregular. For example, it is unbalanced
because the diagnosis “Lung cancer” (14) has no low-level
diagnoses associated with it. The hierarchy is non-strict
because, e.g., diagnosis 4 (“Diabetes during pregnancy”)

1The solution assumes that an ODBC interface is available for the
RDBMS, a requirement that is met for all commercial RDBMSs.

595

Proceedings of the 26th VLDB Conference, Cairo, Egypt, pp. 595-598, September 10-14, 2000.
This copy is permitted by the Very Large Data Base Endowment.
Copyright © 2000 by the VLDB Endowment

ID Text Type
4 Diabetes during pregnancy Family
5 Insulin dependent diabetes during pregnancy Low-Level
6 Non insulin dependent diabetes during pregnancyLow-Level
9 Insulin dependent diabetes Family
10 Non insulin dependent diabetes Family
11 Diabetes Group
12 Pregnancy related Group
13 Cancer Group
14 Lung cancer Family

Diagnosis

ParentID ChildID
4 5
4 6
9 5
10 6
11 9
11 10
12 4
13 14

Grouping

DiagID Count
5 1

Patient

Table 1: Case Study Tables

has several parents. As a result, problems occur when pre-
aggregated data at lower levels is used to compute new val-
ues at higher levels. For example, if we pre-aggregate the
number of patients at the low-level diagnosis level and want
to aggregate to the diagnosis family level, we cannot de-
duce what the value should be for “Lung Cancer” (14). If
we pre-aggregate at the diagnosis family level, patients with
diagnoses 5 or 6 will be counted for both of the diagnoses 4
and 9, and 4 and 10, respectively, leading to wrong results
when we aggregate to the diagnosis group level.

A solution of the problems with pre-aggregation is
to render the hierarchies well-behaved bynormalizing
them. Informally, the normalization process introduces new
placeholdervalues where the hierarchy is unbalanced, and
introducesfusedvalues that representsets of parent val-
ues when child values have multiple parents. The result of
normalizing the hierarchy described above is seen to the
right in Figure 1. For example, value “L14” represent-
ing “Lung Cancer” at the low-level diagnosis level, and
value “4,9” representing the set of diagnosesf4; 9g are in-
troduced by the normalization. In the figure, all boldface
values and links have been added by the normalization pro-
cess. The normalization technique is described in detail
elsewhere [4].

The normalized hierarchy supports practical pre-
aggregation. For example, it is possible to store counts
of patients at the low-level diagnosis level, and then re-use
these to compute the counts for diagnosis families and diag-
nosis groups. With the example data (one patient with diag-
nosis 5), this will only require the storage of the one value
versus six values being required forfull pre-aggregation
(one value for low-level diagnosis5, two values for diag-
nosis families4 and9, two values for diagnosis groups11
and12, and one value for>, which represents the total for
all diagnoses).

The example is somewhat indicative of the storage sav-
ings achieved within a single dimension. When several di-
mensions are combined, the total space saved (with respect
to full pre-aggregation) is the product of the savings in each
dimension, resulting in savings factors of100 or more in
practice. The savings occur because ofmultidimensional
sparseness[3, 5], the phenomenon of the multidimensional
space being very sparse for the lower levels in the dimen-

sions, while quickly becoming more dense at higher levels.
The query response time using the normalization approach
will not be quite as fast as using full pre-aggregation, but
will most likely be comparable, i.e., within an order of mag-
nitude. This is much faster than computing the results from
the base data, as would be required withnopre-aggregation.

3 System Architecture
While the hierarchy transformations enable practical pre-
aggregation, they also have the undesired side-effect of in-
troducing new values into the hierarchies that are of little
meaning to the users. Thus, the transformations should re-
main invisible to the users. This is achieved by working
with two versions of each user-specified hierarchy and by
using a query rewrite mechanism. This is described in de-
tail in Section 4. The overall system architecture is seen in
Figure 2.

ROLAP Client Tool

ROLAP DB
(Oracle)

Query-Transforming
ODBC Driver (QTOD)

Generic SQL

Generic
Transformed SQL

DBMS Specific
ODBC Driver

DBMS Specific
Transformed SQL

Figure 2: System Architecture

The ROLAP client tool , in this case the ROLAP tool
Synchrony which originated from Kimball’s Startracker
tool [1], makes SQL requests to the ROLAP database, in
this case the Oracle8 RDBMS, using the ODBC standard.
We have implemented a special, query-transformingODBC
driver (QTOD) that, based on case-specific metadata, trans-

596

DiagID Lowlevel Family Group
5 Insulin dependent diabetes during pregnancy Diabetes during pregnancy Diabetes
5 Insulin dependent diabetes during pregnancy Diabetes during pregnancy Pregnancy related
5 Insulin dependent diabetes during pregnancy Insulin dependent diabetes Diabetes
6 Non insulin dependent diabetes during pregnancyDiabetes during pregnancy Diabetes
6 Non insulin dependent diabetes during pregnancyDiabetes during pregnancy Pregnancy related
6 Non insulin dependent diabetes during pregnancyNon insulin dependent diabetes Diabetes

100 !Lowlevel!Lung Cancer Lung cancer Cancer

Table 2: DDiagnosis Dimension Table

forms the SQL requests into requests that hide the trans-
formations from the users, returning the query results that
the user would expect based on the original hierarchies. A
transformed request is submitted to the OLAP DB using an
RDBMS-specific ODBC driver. The QTOD component is
common to all RDBMSs, so Oracle8 may be replaced by
another RDBMS such as IBM DB2, Informix, or MS SQL
Server. Another ROLAP tool may also be used, making the
solution quite general and flexible.

We have chosen to base the prototype on an RDBMS
(Oracle8) since RDBMSs are the most commonly used
platform for Data Warehouse and OLAP applications. Ad-
ditionally, the major RDBMSs now, like dedicated multi-
dimensional DBMSes (MDDBs), use pre-aggregated data
for faster query responses [6]. However, the approach
could also be implemented using multidimensional tech-
nology, e.g., based on the Microsoft OLE DB for OLAP
standard [2].

The transformation algorithms are implemented in Or-
acle’s PL/SQL programming language. The transforma-
tions are relatively fast, taking at most a few minutes,
even for large dimensions. Once the dimension hierarchies
have been transformed, the QTOD transforms queries and
results between the original and transformed hierarchies.
The QTOD is a thin layer and adds very little overhead
to queries. It is implemented using GNU Flex++/Bison++
scanner/parser generators and the MS Visual C++ compiler.

4 Implementation Specifics
Studies have shown that queries on a data warehouse con-
sist of 80%navigationalqueries, which explore the dimen-
sion hierarchies, and 20%aggregationqueries, which ag-
gregate the data at various levels of detail [1]. These two
types of queries are treated differently to give the user the
illusion that the dimension hierarchies have their original
form.

The multidimensional data is captured in astar
schema[1]. The dimension table for the Diagnosis dimen-
sion is given in Table 2, which has one column for the low-
level diagnosis ID in addition to columns for the textual
descriptions of low-level diagnoses, diagnosis families, and
diagnosis groups.

The hierarchy captured in the table ispartially normal-
ized, i.e., placeholder values have been introduced to bal-
ance the hierarchy (but it remains non-strict). Specifically,

the “!Lowlevel!Lung Cancer” placeholder value has been
inserted into the Low-level Diagnosis level. We prefix such
values with a “!” and their level to indicate that they are in-
serted by the transformation process. Note the multiple oc-
currences of lower-level values caused by the non-strictness
of the hierarchy. This is the table that will be used for user
navigation in the hierarchy. Its name is prefixed with a “D”
to distinguish it from another “Diagnosis” dimension table
(described below), to be used for aggregation queries.

We now describe how to achieve transformation trans-
parency fornavigational queries. The query below re-
trieves all low-level diagnosis names.

SELECT DISTINCT Lowlevel
FROM Diagnosis

Navigational queries issued by ROLAP tools have ex-
actly this format. The query is transformed by the QTOD
into the query below, which operates against the table DDi-
agnosis. The transformed query returns the result seen in
Table 3.

SELECT DISTINCT Lowlevel
FROM DDiagnosis
WHERE Lowlevel NOT LIKE ’!%’

Lowlevel
Insulin dependent diabetes during pregnancy

Non insulin dependent diabetes during pregnancy

Table 3: Navigational Query Result

Due to the use ofDISTINCT as a quantifier, duplicates
are not returned. TheNOT LIKE predicate removes the
placeholder values inserted into the hierarchy to balance it,
which in this case is the value “!Lowlevel!Lung Cancer.”
As desired, the result is unaffected by the translations.

For aggregation queries, it is also possible to achieve
transformation transparency, although this is more difficult.
For dimensions with non-strictness, a special dimension ta-
ble is introduced that holds only the part of the normal-
ized hierarchy that doesnot contain non-strictness. In the
normalized hierarchy to the right in Figure 1, this part is
the Low-level Diagnosis category and the two special cate-
gories introduced by the normalization process to holdsets
of diagnosis familiesandsets of diagnosis groups, respec-
tively. This part of the hierarchy is implemented in the Di-
agnosis dimension table seen in Table 4.

597

DiagID Lowlevel Family Group
1000020 !Low-level Diagnosis!Lung cancer 14 13

5 Insulin dependent diabetes during pregnancy 4,9 11,12
6 Non insulin dependent diabetes during pregnancy4,10 11,12

Diagnosis

Group SGroup
Cancer 13

Diabetes 11,12
Pregnancy Related 11,12

SGroup

Table 4: Dimension and Group Tables for Aggregation

The “Lowlevel” column contains the normal textual
diagnosis description, whereas the special “Family” and
“Group” columns contain comma-separated ordered lists of
the IDs of the sets of values that are represented by the col-
umn values. For example, value “4,9” represents the set
f4; 9g.

We need to capture the remaining part of the hierarchy,
which consists of non-strict mappings from a “set-of-X”
category to the “X” category, e.g., the mapping of the “set-
of-Diagnosis Group” category to the “Diagnosis Group”
category to the right in Figure 1, which mapsf13g to 13

(Cancer) andf11; 12g to 11 (Diabetes) and12 (Pregnancy
Related). This is done by introducing a special table for
each such mapping, named by the category prefixed with
an “S” (for Set-of). For example, for the Diagnosis Group
category, table “SGroup” in Table 4 maps sets of diagnosis
groups to the individual diagnosis groups in the sets. The
“Group” column represents the diagnosis group, while the
“SGroup” column represents the associated set of diagnosis
groups.

With these tables available, it is possible to obtain trans-
formation transparency for aggregation queries. A ROLAP
aggregation query has the format of the query below that
computes the number of patients per diagnosis group.

SELECT Diagnosis.Group, SUM(Patient.Count)
FROM Diagnosis,Patient
WHERE Diagnosis.DiagID=Patient.DiagID
GROUP BY Diagnosis.Group

This is transformed into the query given next.

SELECT SGroup.Group, SUM(QQQQQQQ.Count)
FROM Sgroup,

(SELECT Diagnosis.Group,
SUM(Patient.Count) AS Count

FROM Diagnosis,Patient
WHERE Diagnosis.DiagID=Patient.DiagID
GROUP BY Diagnosis.Group) QQQQQQQ

WHERE QQQQQQQ.Group=SGroup.SGroup AND
SGroup.SGroup NOT LIKE ’!%’

GROUP BY SGroup.Sgroup

The transformed aggregation query has two parts. The
nested table expression computes the number of patients
perset of diagnosis group, making this available via corre-
lation nameQQQQQQQ. This part of the hierarchy is a bal-
anced tree, so the RDBMS can safely use pre-aggregated
data for optimizing the query performance. The result
of the nested table expression is used in the outer query,
which aggregates the last part of the way up to the diagno-
sis groups using the “SGroup” table. The outer query also

filters out any placeholder values inserted by the normal-
ization process (prefixed with a “!”). As a result, the client
OLAP tool will retrieve the expected result.

Good query performance without the use of excessive
storage for pre-aggregated data is obtained by using practi-
cal pre-aggregation for the “nice” part of the hierarchy cap-
tured in the “Diagnosis” dimension table. The query trans-
formation exemplified here can be performed for all RO-
LAP aggregation queries, making the solution quite gen-
eral.

5 Demonstration
Based on concrete data from a real-world case study, the
demonstration will initially show snapshots that illustrate
the hierarchy normalization process. Next, query process-
ing will be demonstrated by means of concrete naviga-
tional and aggregation queries. This includes a descrip-
tion of how the queries are transformed to hide the hier-
archy transformations from the user, as well as the evalua-
tion of the queries on concrete data. Finally, the demonstra-
tion will compare the query execution times for the queries
and the amount of storage required for pre-aggregated
data with the two alternatives to our approach, namely
no pre-aggregation, which gives very long query response
times, andfull pre-aggregation, which requires unrealisti-
cally large amounts of storage for pre-aggregated data.

Supporting material in the form of slides and posters will
be used in the demonstration.

References
[1] R. Kimball. The Data Warehouse Toolkit. Wiley Com-

puter Publishing, 1996.
[2] Microsoft Corporation. OLE DB for OLAP Version 1.0

Specification. Microsoft Technical Document, 1998.
[3] The OLAP Report. Database Explosion. <www.-

olapreport.com/DatabaseExplosion.htm>. Current as
of February 18, 2000.

[4] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson. Ex-
tending Practical Pre-Aggregation in On-Line Analy-
tical Processing. InProc. VLDB, pp. 663–674, 1999.
Extended version available as TR R-99-5004, Dept.
of Comp. Sci. Aalborg University,<www.cs.auc.dk/
�tbp/articles/R995004.ps>, 1999.

[5] A. Shukla et al. Storage Estimation for Multidimen-
sional Aggregates in the Presence of Hierarchies. In
Proc. VLDB, pp. 522–531, 1996.

[6] R. Winter. Databases: Back in the OLAP game.Intel-
ligent Enterprise Magazine, 1(4):60–64, 1998.

598

