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Abstract

Data warehouses using a multidimensional view of data have become very popular in both busi-
ness and science in recent years. Data warehouses for scientific purposes such as medicine and
bio-chemistry1 pose several great challenges to existing data warehouse technology. Data ware-
houses usually use pre-aggregated data to ensure fast query response. However, pre-aggregation
cannot be used in practice if the dimension structures or the relationships between facts and di-
mensions are irregular. A technique for overcoming this limitation and some experimental
results are presented. Queries over scientific data warehouses often need to reference data that
is external to the data warehouse, e.g., data that is too complex to be handled by current data
warehouse technology, data that is ”owned” by other organizations, or data that is updated fre-
quently. An example of this are the public genome databases such as Swissprot. This paper
presents a federation architecture that allows the integration of multidimensional warehouse
data with complex external data.

1 Introduction

Data Warehousing (DW) and On-Line Analytical Processing (OLAP) systems based on a dimen-
sional view of data are being used increasingly in traditional business applications as well as in
applications such as health care and bio-chemistry for the purpose of analyzing very large amounts
of data. The use of DW and OLAP systems for scientific purposes raises several new challenges
to the traditional technology [9]. This paper describes two of these challenges, both of which are
concerned with implementation aspects. The first is the optimal use of pre-aggregated data for
improved query performance even when the data structures are irregular, while the second is the
integration of multidimensional OLAP databases with complex external data. Other challenges are
related to the conceptual and logical design of scientific data warehouses, including modeling and
querying complex multidimensional data [12, 15] and handling imprecise data [10, 15]. However,
these challenges are beyond the scope of this paper.

In order to improve query performance, modern OLAP systems [19] use a technique known
as practical pre-aggregation, where combinations of aggregate queries are materialized selectively
and re-used when computing other aggregates; full pre-aggregation, where all combinations of ag-
gregates are materialized, is infeasible, as it typically causes a blowup in storage requirements of
200–500 times the size of the raw data [8, 18]. Normally, practical pre-aggregation requires the
dimension hierarchies to be regular, i.e., to be balanced trees, but this is quite often not the case in

1In this preliminary version of the paper, we will use medical cases for examples, but we hope to learn enough about
biochemical data at the EML workshop to be able to revise the paper to use biochemical examples and thus show that our
DW techniques are relevant for biochemical data management.
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real-world systems. The technique presented here enables practical pre-aggregation even for irreg-
ular hierarchies. The details of the technique can be found elsewhere [11, 14]. We show how to
achieve practical pre-aggregation through transformations of the dimensions and how the transfor-
mations can be accomplished transparently to the user. The technique enables the achievement of
fast query response time while saving huge amounts of storage compared to current OLAP systems
and techniques. The prototype implementation of TreeScape [14] demonstrates that these benefits
may be achieved with standard technology.

OLAP systems are very popular for analyzing large amounts of data, as they provide both ease-
of-use and good query performance for queries that aggregate large amounts of data. However,
OLAP databases do not handle complex relationships in the data well, and it is hard to integrate
OLAP data with external data. One approach to integration is physical integration of the data in
one database, i.e., (physical) data warehousing [4], but physical integration is often not feasible, in
which case a federated approach is desirable. In a previous paper [13], we have defined the theo-
retical framework for handling federations of OLAP and object databases. A prototype federation
system, OLAP++, has been implemented [3]. In this paper we present the concepts of OLAP-object
federations and discuss advantages of using the federation approach compared to physical inte-
gration of the data, based on our experiences with the prototype system. The federation approach
allows users to easily pose OLAP queries that reference data residing in external databases, enabling
flexible and fast integration of external data in OLAP systems without the need for prior physical
integration.

2 Practical Pre-Aggregation for Irregular Hierarchies

This section describes a technique for using practical pre-aggregation even when the dimension
hierarchies are irregular.

2.1 Normalizing Hierarchies

We use a small case study concerning patients and their diagnoses for illustrating the workings
of the system. Diagnoses have three different levels of precision, depending on how accurate a
patient’s condition can be described. The most precise diagnoses are low-level diagnoses, which are
grouped into diagnosis families, which, in turn, are grouped into diagnosis groups. The example
data consists of 9 diagnoses and their hierarchical relationship, along with patient counts. The data
can be seen in Table 1 and to the left in Figure 1.
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Figure 1: Dimension Transformations
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ID Text Type
4 Diabetes during pregnancy Family
5 Insulin dependent diabetes during pregnancy Low-Level
6 Non insulin dependent diabetes during pregnancy Low-Level
9 Insulin dependent diabetes Family

10 Non insulin dependent diabetes Family
11 Diabetes Group
12 Pregnancy related Group
13 Cancer Group
14 Lung cancer Family

Diagnosis

ParentID ChildID
4 5
4 6
9 5

10 6
11 9
11 10
12 4
13 14

Grouping

DiagID Count
5 1

Patient

Table 1: Case Study Tables

The hierarchy is irregular. It is unbalanced because the diagnosis “Lung cancer” (14) has no
low-level diagnoses associated with it and non-strict because, e.g., diagnosis 4 (“Diabetes during
pregnancy”) has several parents.

With this data, problems occur when pre-aggregated data at lower levels is used to compute
new values at higher levels. For example, if we pre-aggregate the counts of patients at the low-level
diagnosis level and want to aggregate to the diagnosis family level, we cannot deduce what the
value should be for “Lung Cancer” (14). If we pre-aggregate at the diagnosis family level, patients
with diagnoses 5 or 6 will be counted for both of the diagnoses 4 and 9, and 4 and 10, respectively,
leading to wrong results when we aggregate to the diagnosis group level.

Our solution to the problems with reusing aggregates is to render the hierarchies well-behaved
by normalizing them. Informally, the normalization process introduces new placeholder values
where the hierarchy is unbalanced, and introduces fused values that represent sets of parent values
when child values have multiple parents. The result of normalizing the hierarchy in our example is
given to the right in Figure 1. For example, value “L14” representing “Lung Cancer” at the low-
level diagnosis level, and value “4,9” representing the set of diagnoses �������
	 are introduced by the
normalization. In the figure, all values and links in boldface have been added by the normalization
process, which is described in detail elsewhere [11].

The normalized hierarchy supports practical pre-aggregation. For example, it is possible to
store counts of patients at the low-level diagnosis level, and then re-use these to compute the counts
for diagnosis families and diagnosis groups. With the example data (one patient with diagnosis
5), this will only require the storage of the one value versus six values being required for full pre-
aggregation (one value for low-level diagnosis � , two values for diagnosis families � and � , two
values for diagnosis groups �� and ��� , and one value for � , which represents the total for all
diagnoses).

The example is somewhat indicative of the storage savings achieved within a single dimension.
When several dimensions are combined, the total space saved (with respect to full pre-aggregation)
is the product of the savings in each dimension, resulting in savings factors of ���� or more in
practice. The savings occur because of multidimensional sparseness [8, 18], the phenomenon of
the multidimensional space being very sparse for the lower levels in the dimensions, while quickly
becoming more dense at higher levels. The query response time using the normalization approach
will not be quite as fast as using full pre-aggregation, but will most likely be comparable, i.e.,
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within an order of magnitude. This is much faster than computing the results from the base data, as
would be required with no pre-aggregation. A study of the benefits of normalization are presented
in Section 2.3.

2.2 TreeScape System Architecture

While the hierarchy transformations enable practical pre-aggregation, they also have the undesired
side-effect of introducing new values into the hierarchies that are of little meaning to the users.
Thus, the transformations should remain invisible to the users. This is achieved by working with
two versions of each user-specified hierarchy and by using a query rewrite mechanism, as described
in detail elsewhere [11, 14]. The overall system architecture is seen in Figure 2.

ROLAP Client Tool

ROLAP DB
(Oracle)

Query-Transforming
ODBC Driver (QTOD)

Generic SQL

Generic
Transformed SQL

DBMS Specific
ODBC Driver

DBMS Specific
Transformed SQL

Figure 2: TreeScape System Architecture

The ROLAP client tool makes SQL requests to the ROLAP database, in this case the Oracle8
RDBMS, using the ODBC standard. We have implemented a special, query-transforming ODBC
driver (QTOD) that, based on case-specific metadata, transforms the SQL requests into requests
that hide the transformations from the users, returning the query results that the user would expect
based on the original hierarchies. A transformed request is submitted to the OLAP DB using an
RDBMS-specific ODBC driver. The QTOD component is common to all RDBMSs, so Oracle8
may be replaced by another RDBMS such as IBM DB2, Informix, or MS SQL Server. Any ROLAP
tool may be used, making the solution quite general and flexible.

The prototype is based on an RDBMS (Oracle8) since RDBMSs are the most commonly used
platform for Data Warehouse and OLAP applications. Additionally, the major RDBMSs now,
like dedicated multidimensional DBMSes (MDDBs), use pre-aggregated data for faster query re-
sponses [20]. However, the approach could also be implemented using multidimensional technol-
ogy, e.g., the Microsoft OLE DB for OLAP technology [7].

The transformation algorithms are implemented in Oracle’s PL/SQL programming language.
The transformations are relatively fast, taking at most a few minutes, even for large dimensions.
Once the dimension hierarchies have been transformed, the QTOD transforms queries and results
between the original and transformed hierarchies. The QTOD is a thin layer and adds very little
overhead to queries. It is implemented using GNU Flex++/Bison++ scanner/parser generators and
the MS Visual C++ compiler.
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2.3 TreeScape Experimental Results

In this section, we briefly describe the results of comparing our technique to the two alternatives,
namely no pre-aggregation, which gives very long query response times, and full pre-aggregation,
which requires unrealistically large amounts of storage for pre-aggregated data. We assume that an
answer can be fetched using 1 I/O in the optimal case, and that 1 I/O takes 10ms to perform.

The comparison has been done analytically using a combination of real and synthetic data. The
dimension data is based on the British “Read Codes” diagnosis classification. The initial dimension
hierarchy has 22570 values (diagnoses), while the transformed hierarchy has 51695 nodes, both have
eight levels. The fact data has been synthetically generated to have 10% density per dimension, i.e.,
� ��� density for two dimensions, � ���� density for three dimensions, etc., which corresponds to real-
world cases where the multidimensional space gets very sparse when the number of dimensions
increase. For the our technique, materialized aggregates where chosen so that the average-case
performance was at most ten times worse than the optimal performance obtained with full pre-
aggregation.

We found that the benefit of our technique increased dramatically with the number of dimen-
sions. For four dimensions, the average response time with no pre-aggregation is 57 years, which
clearly makes this alternative unsuable. Even with a speed increase of a factor of 1000 due to the use
of parallel and sequential I/O, we still get an average response time of 20 days. Full pre-aggregation,
on the other hand, requires 41 times the size of the base data, equal to 1.1 petabytes of storage for
four dimensions, which puts it far beyond the capacity of current disk systems. We note that the
problems with these techniques will only get worse for more dimensions. In comparison, our tech-
nique achieves an average response time of 98 ms using only 80% more storage than the base data,
making it very attractive.

3 Federations of OLAP and Object Databases

In this section, we present the concepts used in OLAP-object federations and argue why federations
are often superior to physical integration of the data.

3.1 Federation Concepts

OLAP systems use a multidimensional view of data that typically categorize data as being measur-
able facts (measures) and dimensions, which are mostly textual and characterize the facts. Dimen-
sions are structured using categories (levels) that correspond to the required levels of detail. Object
systems use the familiar concepts of classes, attributes, and relationships between classes. A feder-
ation between an OLAP and an object DB is defined by specifying a link between a category in the
OLAP DB and a class in the object DB.

The case study concerns data in three different databases, each managed by a separate organiza-
tion. Each databases serves a different purpose, but the databases contain related data. A graphical
illustration of the databases using UML notation [16] is seen in Figure 3.

The three databases were built and are used separately, which explains the differences in their
information contents. We want to use them together, to exploit information from the demographic
and epidemiology databases in OLAP queries against the admissions database.

The measured fact in the OLAP DB is the total number of admissions The facts are characterized
by a Hospital dimension and a Diagnosis dimension. The Hospital dimension has Hospital and
State categories. The Diagnosis dimension has the categories Diagnosis and Diagnosis Group.
The demographic object DB has State, City, and Mayor classes, while the epidemiology object
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Figure 3: UML Schema of Federation Case Study

DB has Symptom, Diagnosis, Contagious Diagnosis, and Non-Contagious Diagnosis classes. The
“diag link” link links the Diagnosis category in the OLAP part to the Diagnosis class in the object
part as indicated by the dotted lines. The “city link” link links the Hospital category to the City
class. Below is an example query for the schema in the SumQL++ federation language [13].

SELECT Admissions BY CATEGORY Hospital,Diagnosis
FROM Admissions
WHERE Hospital.city link.population � 1,000,000

AND Diagnosis.diag link.symptoms.name = “Cough”

The above query gets the total number of admissions for a 2-dimensional cross product of hos-
pital and diagnosis where the cities in which the hospitals are located have a population of more
than 1 million and the diagnoses have cough as a symptom. This query uses the links ”diag link”
and ”city link” to go from the OLAP schema to the object schema.

3.2 OLAP++ System Architecture

The overall architecture of the OLAP++ system is seen in Figure 4. The object part of the system is
based on the OPM tools [2] that implements the Object Data Management Group (ODMG) object
data model [1] and the Object Query Language (OQL) [1] on top of a relational DBMS, in this case
the ORACLE RDBMS. The OLAP part of the system is based on Microsoft’s SQL Server OLAP
Services using the Multi-Dimensional eXpressions (MDX) [7] query language.

When a SumQL++ query is received by the Federation Coordinator (FC), it is first parsed to
identify the measures, categories, links, classes and attributes referenced in the query. Based on
this, the FC then queries the metadata to get information about which databases the object data and
the OLAP data reside in and which categories are linked to which classes. Based on the object
parts of the query, the FC then sends OQL queries to the object databases to retrieve the data for
which the particular conditions holds true. This data is then put into a ”pure” SumQL statement
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Figure 4: OLAP++ Architecture

(i.e. without object references) as a list of category values. This SumQL statement is then sent to
the OLAP database layer to retrieve the desired measures, grouped by the requested categories. The
SumQL statement is translated into MDX by a separate layer, the ”SumQL-to-MDX translator”, and
the data returned from OLAP Services is returned to the FC. The reason for using the intermediate
SumQL statements is to isolate the implementation of the OLAP data from the FC. As an another
alternative, we have also implemented a translator into SQL statements against a ”star schema”
relational database design [5]. The system is able to support a good query performance even for
large databases while making it possible to integrate existing OLAP data with external data in object
databases in a flexible way that can adapt quickly to changing query needs.

3.3 Advantages of Federation

Many reasons exist for preferring federating OLAP DBs with external DBs, as opposed to physically
integrating these. The generic arguments for federation include leveraging existing technology,
accessing the most current information, and allowing the autonomous existence of the systems
being federated. These arguments also apply here, so we concentrate on the advantages specific
to OLAP and object databases.

In many situations, OLAP DBs only contain abstract summary data and not the base data from
which the summary data is derived. For example, summary databases provided by the Ministry
of Health do not permit access to base data, e.g., diagnosis information, which is considered too
sensitive for general disclosure. The same situation arises in census databases, where only highlevel
information is disclosed publicly. In these cases, the federation approach allows superusers to access
the base data to answer certain queries without having to put sensitive data into the OLAP DB itself.

Federating OLAP and object DBs enables a simple and special-purpose OLAP system. An
OLAP DB needs not contain all objects, attributes, and relationships in the base database, but only
the elements relevant to summary querying. This is attractive, as capturing all information in the
OLAP DB unnecessarily impedes casual use of the OLAP system. Indeed, most OLAP systems do
not have the necessary facilities to support this extra information. The federated approach allows the
OLAP DB to remain simple, while still allowing access to relevant external data. When OLAP data
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resides in a special-purpose OLAP system, we cannot use existing database middleware to access
it, leading to a need for technology that enables federations of OLAP DBs and external DBs.

It is possible to obtain better performance when performing aggregation querying in an OLAP-
type system rather than in a general-purpose DBMS. OLAP systems typically employ specialized,
performance enhancing techniques, such as multidimensional storage [19] and pre-aggregation [4,
19]. This performance gain can often outweigh the performance loss due to the fact that the data
is not physically integrated, meaning that a federated system can have comparable (or even better)
performance without the limitations incurred by physical integration. Our experiments have shown
that the federation approach performs up to 40 times faster than executing the queries on a relational
database where the data has been physically integrated. Next, it is easier to formulate aggregation
queries in an OLAP system than in a general (relational or object) DBMS. This is because an OLAP
query language is designed exclusively for expressing aggregation queries over categories, taking
advantage of, e.g., the automatic aggregation implied by the OLAP DB semantics. Even when
extending an OLAP language to access object data, it is easier to pose aggregation queries in the
extended language than in a general database query language such as OQL or SQL.

An OLAP system may support the formulation of aggregation queries that return correct, or
meaningful, query results. When building an OLAP DB, the data may be shaped in order to satisfy
summarizability conditions [6]. Briefly, an aggregation query satisfies summarizability conditions
if the query result is correct w.r.t. the real world. For example, summarizing the populations over
cities to get summaries for states will produce incorrect results if the populations in towns and farms
outside cities are not accounted for. As another example, if patients have several diseases, and we
summarize over all diseases to get the total number of sick people, we will get the wrong result
as some patients are counted more than once. We may enrich an OLAP system with information
that enables the system to ensure correctness. For example, we may specify that inventory levels
should not be added across time [6] or that patient counts for diseases should not be added. In a
general-purpose DBMS, no mechanisms for ensuring correct aggregation results are available.

The federated approach offers additional flexibility when query requirements change. OLAP
DBs may be huge, and therefore rebuilding them may be time consuming. Updates to an OLAP DB,
e.g., adding new types of information, may require a total or partial rebuild of the database. Because
of the rebuild time, a rebuild of the OLAP DB will most likely be refused totally or postponed to the
next scheduled rebuild, e.g., once a week or once a month. In contrast, a new link can be added in
a matter of minutes, yielding much faster access to newly required information. This allows rapid
prototyping of OLAP systems. The above reasoning suggests that in many cases, it is advantageous
to logically federate OLAP and object databases instead of performing physical integration.

4 Conclusion

Data warehouses using a multidimensional view of data are increasingly used for business as well
as scientific purposes such as medicine and bio-chemistry. However, the application of DW tech-
nology to the scientific domain poses several great challenges to existing DW technology. This
paper presented techniques that aimed to solve two such challenges, namely the optimal use of pre-
computed aggregates over irregular hierarchies and the integration of multidimensional data with
complex external data.

The first technique employed the process of normalizing irregular dimension hierarchies in order
to enable practical pre-aggregation. When the dimension hierarchies are irregular, we showed that
this technique is far superior to the two alternatives, namely no or full pre-aggregation.

The second technique used a federation approach to logically combine multidimensional OLAP
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data with complex external data stored in object databases. The paper showed that the federation ap-
proach was often superior, in terms of flexibility, correct query results, and performance, to physical
integration of the data.
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