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The design of appropriate database schemas is critical to the effective use of database tech-
nology and the construction of effective information systems that exploit this technology. The
temporal aspects of database schemas are often particularly complex and thus difficult and
error-prone to design. This chapter focuses on the temporal aspects of database schemas. Its
contributions are two-fold. First, a comprehensive set of concepts are presented that capture
temporal aspects of schemas. Second, the use of these concepts for database design is explored.

The chapter first generalizes conventional functional dependencies to apply to temporal
databases, leading to temporal keys and normal forms. Time patterns identify when attributes
change values and when the changes are recorded in the database. Lifespans describe when
attributes have values. The temporal support and precision of attributes indicate the temporal
aspects that are relevant for the attributes and with what temporal granularity the aspects are
to be recorded. And derivation functions describe how the values of an attribute for all times
within its lifespan are computed from stored values. The implications of these concepts for
database design, of both relational and object-oriented schemas, are explored.

7.1 Introduction

The design of appropriate database schemas is crucial to the effective use of database
technology and the construction of information systems that exploit this technology.
The process of appropriately capturing the temporal aspects of the modeled reality in
the database schema—be it based on, . £., the relational model or an object-oriented
model—is complex and error prone, and the resulting schemas are often overly
difficult to understand. With a focus on the temporal aspects of database schemas,
this chapter explores the technical foundation for simplifying the conceptual design
process.
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More than a dozen temporal object-oriented data models have been proposed (38).
How to apply database design techniques to schemas in these models is still largely
an open problem. The particular data model chosen impacts the manner in which
object-oriented schemas are designed. As a natural first approach, this chapter pro-
vides a foundation for applying the well-developed relational database design theory
to these models. To render the relational design concepts relevant to these various
temporal object-oriented data models, this chapter extends these concepts to a tem-
poral relational model, with the application to a particular temporal object-oriented
model left as a subsequent task. This application is necessarily highly dependent on
the temporal object-oriented model chosen; we exemplify this mapping for a simple
object-oriented model, but space limitations prevent more comprehensive coverage.
Using the relational model as the basis for this chapter enables the approach to be ap-
plicable to the entire spectrum of temporal object-oriented models, while remaining
independent of the idiosyncrasies of any particular model.

Specifically, the chapter proposes to separate the design of conceptual database
schemas for time-oriented applications into two stages. In the first stage, the under-
lying temporal aspects are ignored, resulting in the design of simple, single-state
(so-called non-temporal) schemas. In the second stage, these initial schemas are
annotated with their temporal aspects. These annotations may imply further decom-
position of the annotated schemas, leading to the final conceptual schema.

The chapter focuses on the second stage, and begins with a non-temporal database
schema. The chapter’s contributions are two-fold. First, a comprehensive set of tem-
poral properties that may be used for annotation are defined and illustrated. Second,
the use of these properties is explored. Specifically, new guidelines for how the an-
notations should result in decomposition of the schemas are defined, and their use
is explored. The subsequent mapping of annotated, decomposed schemas to imple-
mentation platforms is beyond the scope of this chapter.

The chapter is structured as follows. Section 7.2 introduces conceptual temporal
relations that may capture the valid time and the transaction time of the stored tuples.
These are needed because the non-temporal relation schemas upon annotation may
reveal themselves to be temporal. Then, the assumed design process is outlined in
order to describe the context of this chapter’s topic. At the end, the car rental case
that will be used for illustration throughout is introduced.

Section 7.3 reviews how to extend conventional normalization concepts to apply
to temporal relations, leading to temporal keys and normal forms. It then argues
that the properties of attributes are relative to the objects they describe and thus
introduces surrogates for representing real-world objects in the model. The follow-
ing subsections address in turn different aspects of time-varying attributes, namely
lifespans, time patterns, derivation functions, temporal support, and temporal pre-
cision. Lifespans describe when attributes have values; time patterns identify when
attributes change values and when the changes are recorded in the database; deriva-
tion functions describe how the values of an attribute for all times within its lifespan
are computed from stored values; and the temporal support and precision of attributes
indicate the temporal aspects that are relevant for the attributes and with which tem-
poral granularity the aspects are to be recorded.
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Section 7.4, on decomposition guidelines, is devoted to the implications of the
temporal properties for conceptual database design. Section 7.5 surveys other ap-
proaches to temporally enhanced database design. The final section summarizes and
points to opportunities for further research.

7.2 Temporal Database Design—Overview and Context

This section sets the context for discussing temporally enhanced database design.
Specifically, we first adopt a particular model of time itself, then add time to conven-
tional relations to yield the conceptual temporal relations employed in the chapter.
We also define essential algebraic operators on the temporal relations. A description
of the database design process follows, and the section ends with an introduction of
the car rental case.

7.2.1 Modeling and Representing Time

Most physicists perceive the real time line as being bounded, the lower bound being
the Big Bang (which is believed to have occurred approximately 14 billion years ago)
and the and upper bound being the Big Crunch. There is no general agreement as to
whether the real time line is continuous or discrete, but there is general agreement in
the temporal database community that a discrete model of time is adequate.

Consequently, our model of the real time line is that of a finite sequence of
chronons (19). In mathematical terms, this is isomorphic to a finite sequence of
natural numbers (20). The sequence of chronons may be thought of as representing
a partitioning of the real time line into equal-sized, indivisible segments. Thus,
chronons are thought of as representing time segments such as femtoseconds or
seconds, depending on the particular data processing needs. Real-world time instants
are assumed to be much smaller than chronons and are represented in the model by
the chronons during which they occur. We will use ¢, possibly indexed, to denote a
chronon.

A time interval is defined as the time between two instants, a starting and a
terminating instant. A time interval is then represented by a sequence of consecu-
tive chronons where each chronon represent all instances that occurred during the
chronon. We may also represent a sequence of chronons simply by the pair of the
starting and terminating chronon. The restriction that the starting instant must be be-
fore the ending instant is necessary for the definition to be meaningful in situations
where an interval is represented by, e.g., a pair of identical chronons. Unions of in-
tervals are termed temporal elements (14).

7.2.2 Temporal Database Schemas

Two temporal aspects are of general relevance to data recorded in a database. To cap-
ture the time-varying nature of data, time values from two orthogonal time domains,
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namely valid time and transaction time, are associated with the tuples in a bitempo-
ral conceptual relation instance. Valid time captures the time-varying nature of the
portion of reality being modeled, and transaction time models the update activity
associated with the database.

For both time domains, we employ the model of time outlined in the previous
section. The domain of valid times is given as Dyr = {c},c3, ..., ct), and the
domain of transaction times may be given as Drr = {c},c}, ..., c}). A valid-time
chronon cV is thus a member of Dy 7, a transaction-time chronon ¢’ is a member of
Drr, and a bitemporal chronon ct = (c’, ¢?) is an ordered pair of a transaction-time
chronon and a valid-time chronon. ‘

Next, we define a set of names, Dy = {A1, Ay, . .., A, 4}, for explicit attributes and
a set of domains for these attributes, Dp = {Dy, Ds, ..., D, p}. For these domains,
weuse L;, 1,, and 1 as inapplicable, unknown, and inapplicable-or-unknown null
values, respectively (see, e.g., (1)). We also assume that a domain of surrogates is
included among these domains. Surrogates are system-generated unique identifiers,
the values of which cannot be seen, but only compared for identity (17). Surrogate
values are used for representing real-world objects. With the preceding definitions,
the schema of a bitemporal conceptual relation, R, consists of an arbitrary number,
e.g., n, of explicit attributes from D 4 with domains in D p, and an implicit timestamp
attribute, T, with domain 2P77UUCHXDvr Here, UC (“until changed”) is a special
transaction-time marker. A value (UC, c”) in a timestamp for a tuple indicates that the
tuple being valid at time ¢V is current in the database. The example below elaborates
on this.

A set of bitemporal functional (and multivalued) dependencies on the explicit
attributes are part of the schema. For now, we ignore these dependencies—they are
treated in detail later.

A tuple x =(aj,az,...,a, | %), in a bitemporal conceptual relation instance,
r(R), consists of a number of attribute values associated with a bitemporal timestamp
value. For convenience, we will employ the term “fact” to denote the information
recorded or encoded by a tuple.

An arbitrary subset of the domain of valid times is associated with each tuple,
meaning that the fact recorded by the tuple is true in the modeled reality during
each valid-time chronon in the subset. Each individual valid-time chronon of a single
tuple has associated a subset of the domain of transaction times, meaning that the
fact, valid during the particular chronon, is current in the relation during each of the
transaction-time chronons in the subset. Any subset of transaction times less than the
current time and including the value UC may be associated with a valid time. Notice
that while the definition of a bitemporal chronon is symmetric, this explanation is
asymmetric. This asymmetry reflects the different semantics of transaction and valid
time,

We have thus seen that a tuple has associated a set of so-called bitemporal
chronons in the two-dimensional space spanned by transaction time and valid time.
Such a set is termed a bitemporal element (19) and is denoted #?. Because no two
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CuIlD Name  Address Rating T

007 Leslie  Birch Street  Preferred  {(5,5),...,(5,20),...,09,5),...,(9,20)}

007 Leslie  Elm Street Preferred  {(5,21),...,(5,30),...,(25,20),...,

. (25, 30), (UC,21),...,(UC,30)}

007 Leslic ~ Beech Street  Preferred  {(10,5),...,(10,20),...,(25,5), ...,
(25,20), (UC, S), ..., (UC,20)}

Figure 7.1 A Bitemporal Conceptual Relation

tuples with mutually identical explicit attribute values (termed value-equivalent) are
allowed in a bitemporal relation instance, the full history of a fact is contained in a
single tuple.

Example 7.1
Consider a bitemporal relation recording information about the customers in a rental
car company. The schema has these explicit attributes:

Customer = (CulD, Name, Address, Rating)

Each customer has a unique customer id, CuID, a name, and an address. Also, arating
is maintained that records the value of the customer to the company. This rating is
used for preferential customer treatment.

In this example, we assume that the granularity of chronons is one day for both
valid time and transaction time, and the period of interest is some given month in
a given year, e.g., January 1995. Throughout, we use integers as timestamp compo-
nents. The reader may informally think of these integers as dates, e.g., the integer 15
in a timestamp represents the date January 15, 1995. The current time is assumed to
be 25 (i.e., now = 25).

Figure 7.1 shows an instance, customer, of this relation schema. The special value
UC in the relation signify that the given tuple is still current in the database and that
new chronons will be added to the timestamps as time passes and until the tuple is
logically deleted.

The relation shows the employment information for Leslie, a preferred customer.
On time 5, it is recorded that Leslie’s address will be Birch Street, from time 5 to
time 20, and Elm Street, from time 21 to time 30. Subsequently, it was discovered
that Leslie’s address was not Birch Street, but rather Beech Street, from time 5 to
time 20. As a result, on time 10, the information about Birch Street was (logically)
deleted, and the correct information was inserted.

Depending on the extent of decomposition, a tuple in a bitemporal relation may be
thought of as encoding an atomic or a composite fact. We simply use the terminology
that a tuple encodes a fact and that a bitemporal relation instance is a collection of
(bitemporal) facts.

Valid-time relations and transaction-time relations are special cases of bitempo-
ral relations that support only valid time or transaction time, respectively. Sets of
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valid-time and transaction-time chronons are termed valid-time and transaction-time
elements and are denoted by ¢V and #, respectively.

The remainder of the chapter will show how to extend existing normalization and
decomposition theory to apply to temporal relations such as that shown in Figure 7.1.

Example 7.2

As an aside, we now exemplify how this approach may be further extended to apply
to a temporal object-oriented data model, in this example, a very simple one. We use
an object-oriented model in which each tuple of Figure 7.1 is modeled as a separate
object, so in this case we have three distinct objects, each with its own identity. This
Customer object type has four attributes, CuID, Name, Address, and Rating, as
well as an implicit bitemporal element indicating the temporal extent of the object
instance. Note that these three objects in the class shown in Figure 7.1 all provide
information about the same customer, Leslie. :

Now, applying the decomposition approach introduced later in this chapter may
replace this object type with new object types, each with a subset of the attributes,
and each with an implicit valid-time, transaction-time or bitemporal element. This
chapter will give the rules by which these new object types can be configured, to
avoid anomalies and redundancy implicit in the original object type.

Note that more complex temporal object-oriented models may also benefit from
such decomposition, though the benefits and specifics of applying these decomposi-
tions vary from model to model. Hence, the remainder of this chapter will be in terms
of the relational model, leaving it to the reader to reformulate these decompositions
in terms of the temporal object-oriented model of their choice.

7.2.3 Associated Algebraic Operators

We have so far described the database structures in the bitemporal conceptual data
model—relations of tuples timestamped with bitemporal elements. We now define
some algebraic operators on these structures that will be used later. A complete
algebra is defined elsewhere (36).

Define a relation schema R = (Ay, ..., A4|T), and let r be an instance of this
schema. We will use A as a shorthand for all attributes A; of R. Let D be an arbitrary
set of explicit (i.e., non-timestamp) attributes of relation schema R. The projection
onDofr, ng(r), is defined as follows.

7B (r) = (z/PHD | 3x € r(z[D] = x[D]) AVy € r(y[D] = z[D]1 = y[T] C z[TDHA
Vt € z[T]3y e r(y[D] = z[D] A t € Y[T])}

The first line ensures that no chronon in any value-equivalent tuple of r is left unac-
counted for, and the second line ensures that no spurious chronons are introduced.

Let P be a predicate defined on A. The selection P on r, ag(r), is defined as
follows.

oB(r) ={zlzer A Pz[AD)
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As can be seen from the definition, o,‘?(r) simply performs the familiar snapshot

selection, with the addition that each selected tuple carries along its timestamp T.
Finally, we define two operators that select on valid time and transaction time.

Unlike the previous operators, they have no counterparts in the snapshot relational

* algebra. Let ¢¥ denote an arbitrary valid-time chronon and let ¢’ denote a transaction-

time chronon. The valid-timeslice operator (‘L’B) yields a transaction-time relation;
the transaction-timeslice operator (oP) evaluates to a valid-time relation!.

B (r) = {11 | 3x € r(z[A] = x[A] A 2[T] = (E'1(c, ) € x[T]} A 2[T] # B)}
o8Bt (r) = {2 | 3x e rz[A] = x[A] A 2[T] = {c®I(¢’, c?) € x[T1} A z[T] # 0)}

Thus, 78¢*(r) simply returns all tuples in r that were valid during the valid-time
chronon cv. The timestamp of a returned tuple is all transaction-time chronons as-
sociated with ¢?. Next, pBcf(r) performs the same operation except the selection is
performed on the transaction time c’.

Example 7.3
Consider the customer relation shown in Figure 7.1. The following result is pro-
duced by 7B25(customer).

CulD Name Address Rating T
007 Leslie FElm Street Preferred {5,...,25}

This says that at transaction time 5 we stored this information, and this information
is still current (at time 25). The valid-timeslice operator selects all tuples with a
timestamp that contains a chronon that has the argument chronon as its second
component. The timestamp of result tuples contain those transaction-time chronons
that were associated with the argument valid-time chronon.

The similar operators for valid-time and transaction-time relations are simpler
special cases and are omitted for brevity. We will use superscripts «T» and “V” for
the transaction and valid-time counterparts, respectively.

To extract from r the tuples valid at time c” and current in the database during fod
(termed a snapshot of r), either 75 (05 (r)) or pX(zBc?(r)) may be used; these two
expressions evaluate to the same snapshot relation.

7.2.4 Overview of the Design Process

The topics considered in this chapter are displayed in their data modeling context in
Figure 7.2 and are discussed in the following.

We assume that an atemporal database schema is initially produced. This database
schema consists of atemporal versions of the conceptual-relation schemas described

1. Operator p was originally termed the rollback operator, hence the choice of symbol.
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Atemporal
Conceptual Modeling

Atemporal DB Schema

Temporal
Annotation

. Annotated DB' Schema

Schema
Decomposition

Decomposed DB Schema

Platform
Mapping

l Platform-Specific DB Schema

Figure 7.2 Data Modeling Context

earlier in this section. The database schema is atemporal in the sense that all temporal
aspects related to valid and transaction time of the relation schemas are simply
ignored—or left unspecified. These atemporal relation schemas may also be thought
of as primitive object types: Each instance of an object type, i.e., each object (or
tuple), has an ID (a surrogate) that is independent of its state, and the state is
described solely using single-valued attribute values with domains defined by built-in
types.

A wide range of design approaches may be employed to produce the initial atem-
poral database schema—no assumptions are made.

In the next step, the relation schemas, or primitive object-type schemas, are an-
notated with temporal properties, to be defined in the next section. Following the
annotation, the schema description is complete. The subsequent step is then to apply
decomposition guidelines, to be defined in Section 7.4, to the schemas, leading to a
decomposed conceptual database schema, with genuine temporal relation schemas
as defined earlier. This database schema may subsequently be mapped to various
implementation platforms, e.g., SQL-92 (30), SQL3, or TSQL2 (39).

It is an underlying rationale that the database is to be managed by a relational, or
temporal-relational, DBMS that employs tuple timestamping. Indeed, increasingly
many databases are being managed by relational DBMSs; and these systems, in
addition to most temporal relational prototype DBMSs, employ tuple timestamping.
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Branch = (BrID, Name, Location, Manager, AssistantMgr, Capacity)

Car = (CarID, Branch, Model, Make, Category, Year, Mileage, LastServiced)

Customer = (CulD, Name, Address, Rating)

RentalBooking = (RBID, Branch, Category, Customer, Price, CreditCardNo,
CardType)

Figure 7.3 Car Rental Schema .

Hence, the decomposition that maps the atemporal database schema to a decom-
posed, tuple-timestamped temporal database schema is an important component of
a design framework. Specifically, this decomposed temporal database schema pro-
; vides an attractive starting point for mapping the database schema to the database
schema of a specific DBMS (such as CA Ingres, DB2, Informix, Microsoft, Oracle,
or Sybase). It is attractive because the “conceptual distance” to the various DBMS
schemas is small.
Throughout, we will use the car rental case for exemplification.

7.2.5 - Example-—Car Rentals

Figure 7.3 describes the car rental database schema that will be annotated with tem-
poral properties and decomposed in the next two sections. The aspects of the schema
that are not self-explanatory are described briefly next. Branches have Manager and
Location attributes. The Capacity attribute indicates the maximum number of cars
a branch is able to manage. A car belongs to a specific branch, so attribute Branch
is a foreign key referencing table Branch. The Customer relation was introduced
in Example 7.1. When a car rental is booked, the booking is for a specific branch
and car category (e.g., Economy, Compact, Mid-size). It is made by a customer
who is quoted a certain price, and the customer made the reservation using a credit
card.

7.3 Temporal Properties of Data

The schema just presented is atemporal; there is no mention of time-varying values.
The following sections will discuss how this schema is elaborated and decomposed
when time is considered. But first we examine conventional functional dependencies,
which will be subsequently applied to time-varying relations.

7.3.1 Functional Dependencies

Functional dependencies play a central role in conventional database design and
should also do so in our framework. In our framework, we initially design a non-
temporal database schema and ignore the issues of valid and transaction time. Thus,
different attributes in the same initial schema may have different requirements with
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respect to temporal support; for example, some attributes may require valid-time
support while other attributes do not. ‘

As background for considering temporal functional dependencies, we next state
the notion of a functional dependency for conventional (snapshot) relations.

Definition 7.1 ,

Let a relation schema R be defined as R = (A1, Az, ..., A,), and let X and Y be sets
of attributes of R. The set Y is functionally dependent on the set X, denoted X — Y,
if for all meaningful instances r of R,

Vs1, 52 € r(s1[X] = 52[X]1 = 51[Y] = 52[Y]).
If X — Y, we say that X determines Y.

A functional dependency constrains the set of possible extensions of a relation.
Which functional dependencies are applicable to a schema reflects the reality being
modeled and the intended use of the database. Determining the relevant functional
dependencies is a primary task of the database designer.

7.3.2 Temporal Functional Dependencies

Generalizations of conventional dependencies make it meaningful to apply depen-
dencies to the initial schemas, similarly to how dependencies are applied in conven-
tional normalization. The designer’s use of the dependencies is not affected by the
attributes’ particular levels of temporal support.

7.3.2.1 Generalizing Functional Dependencies to Temporal Relations

In database design, functional dependencies are intensional, i.e., they apply to every
possible extension. This intuitive notion already encompasses time, for a functional
dependency may be interpreted as applying at any time in reality and for any stored
state of the relation.

To be specific, consider the restricted case of a transaction-time relation r, with
schema R = (Ay, ..., Ap|T), and a parallel snapshot relation r’ with the same
schema (but without the implicit timestamp attribute), i.e., R’ = (Ay, ..., A,). The
current state of r, denoted by p;fow(r), where “now” denotes the current time, will
faithfully track the current state of r’. Past states of r’ will be retained in r, and can be
extracted via pf (r), with “¢” being the desired past point in time. A functional depen-
dency on R’ will hold for all possible extensions, and hence for all past states of 7.
Hence, the same functional dependency must hold for all snapshots of r (this insight
first appeared over a decade ago (4)). A similar argument can be applied to valid-time
relations and to bitemporal relations, yielding the following characterization (22).

Definition 7.2
Let X and Y be sets of non-timestamp attributes of a bitemporal relation schema R. A

temporal functional dependency, denoted X N Y, exists on R if for all meaningful
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instance r of R,
V¥, cVs1, 52 € TV (0B (M) (511X ] = 520X ] = 51[Y] = 52[Y D).

In the definition of a temporal functional dependency, a temporal relation is perceived

" as a collection of snapshot relations. Each such snapshot of any extension must

satisfy the corresponding functional dependency.

The parallel between conventional functional dependencies and temporal func-
tional dependencies means that inference rules such as Armstrong’s axioms have
close temporal counterparts that play the same role in the temporal context as do
the non-temporal rules in the non-temporal context. Next, we can also define tempo-
ral keys (22). For example, the explicit attributes X of a temporal relation schema R

form a (temporal) key if X IR Finally, we can generalize snapshot normal forms
in a similar manner.

Example 7.4
These are some of the dependencies that hold in the rental car database schema (this
schema was shown in Figure 7.3):

In Branch: Name LN Location Manager AssistantMgr Capacity

In Car: CarID LN Branch Model Make Category Year Mileage
LastServiced
In Customer: CulD N Rating

CulD Address —1) Name

In table Customer, attribute CuID determines Rating, but because the same cus-
tomer may have several names and addresses at a time, CuID does not determine
Name and Address. Attributes CuID and Address together determine Name because
customers have only one Name associated with each of their possible several ad-
dresses. Note that in table Branch, Name (and also BrID) is a key, as is CarID in
schema Car.

Definition 7.3
A pair (R, F) of a temporal relation schema R and a set of associated temporal
functional dependencies F is in temporal Boyce-Codd normal form (TBCNF) if

VX -S> Y e FFY € X v X — R).

Definition 7.4

A pair (R, F) of a temporal relation schema R and a set of associated temporal
functional dependencies F is in temporal third normal form (T3NF) if for all non-
trivial temporal functional dependencies X L YinF +, X is.a temporal super-key
for R or each attribute of Y is part of a minimal temporal key of R.

In a similar fashion, it is possible to devise temporal variants of other well-known
dependencies (e.g., multi-valued and join) and normal forms (e.g., fourth and fifth
normal forms). Similarly, the notions of lossless-join and dependency-preserving
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decomposition can be naturally extended to temporal relations. Furthermore, one can
define temporal variants of conventional integrity constraints involving uniqueness, '
referential integrity, and subset and cardinality constraints.

To illustrate, we define foreign key constraints. Let bitemporal schemas R and §
have explicit attributes A, Az,...,Apand B, B,, .. ., B, respectively. Attributes
X of § is a foreign key 'referencing attributes ¥ of R if X and Y have the same
number of attributes, if the attributes of X and ¥ are pair-wise compatible, and if
for all meaningful instances r of R and s of S ) : :

ve?, ¢ (B (eB(oB(5)) € BB (oB ().

If both R and S do not support valid or transaction time, the corresponding timeslice
operations are simply omitted in the subset condition above. If only one of R and
S supports valid time then the valid-timeslice operation with time argument NOW
is applied to that relation. The same applies to transaction time. For example, if R
supports only transaction time and S supports only valid time, the condition becomes
nR(TBNOW (s)) C =B (oBNOW (r)).

Example 7.5
In the rental car database schema, all relation schemas are in TBCNF, with the

exception of schema Customer where non-trivial dependency CuID N Rating
violated the requirement that the left-hand side must be a superkey. To bring the
database schema to TBCNE, Customer is thus decomposed into two schemas.

CustomerAddr = (CulD, Name, Address)
CustomerRating = (CulD, Rating)

Here, CulD of CustomerRating would be declared as a foreign key referencing
CulD of CustomerAddr.

7.3.2.2 Strong Temporal Functional Dependencies

The temporal dependencies we have seen thus far apply snapshot dependencies
to individual snapshots in isolation. Thus, these dependencies are not capable of
capturing the relative variation over time of attribute values. So while we were able
to capture dependencies such as a salary attribute (at any time) being determined by
an employee-name attribute, we cannot capture that a salary of an employee does not
change within a month, or never changes. These latter constraints require looking at
more than one time point to determine if the constraint is satisfied by a particular
relation instance. This distinction has previously been captured more generally with
the terms intrastate and interstate integrity constraints (3).

While a temporal dependency holds if the corresponding conventional dependency
holds for each snapshot in isolation, we now “bundle” tuples of certain snapshots
and require the corresponding snapshot dependency to hold for each “bundle” in
isolation. A “bundle” is defined to contain all tuples in all valid timeslices of the
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result obtained from applying a single transaction timeslice operation to a meaningful
bitemporal database instance of the schema under consideration. This is stated more
precisely below.

' Definition 7.5

Let X and Y be sets of non-timestamp attributes of a bitemporal relation schema R.
A strong temporal functional dependency, denoted X Sy , exists on R if for all
meaningful instances r of R,

ve! e, ¥y € TR (PR IVs2 € LBB(NEIX] = 52[X] = 51[F] = s2¥]).

Strong temporal dependencies are useful in part because they have a practical

and intuitive interpretation. Specifically, if X LN Y holds on a relation schema, this
means that Y does not vary with respect to X.

Example 7.6
In the rental car schema, there are several strong dependencies, e.g., the following.

In Car: CarID % Model Make Category Year

In RentalBooking: RBID e Branch Category Customer Price
CreditCardNo CardType

Strong temporal normal forms and integrity constraints can be analogously defined.

In the strong temporal dependency X LY Y, attributes X may vary more often
than attributes Y, but X must change when ¥ changes.

Definition 7.6
Let X and Y be sets of non-timestamp attributes of a bitemporal relation schema

R. A strong temporal equivalence, denoted X (St Y, exists on R if X E) Y and
Str
Y —X.

Intuitively, X 3, Y means that the sets of attributes X and ¥ change values simul-
taneously, and are thus synchronous. We return to this issue in Section 7.4.4.

It is possible to take these notions of dependencies even further, as has subse-
quently been done by Wang and his colleagues (45) and by Wijsen (46). Wang et
al. generalized strong dependencies to dependencies that were along a spectrum
between our temporal functional dependencies, which apply to individual times-
lices, and strong functional dependencies, which apply to all timeslices at once.
Specifically, they define a functional dependency for each available granularity (e.g.,
second, week, year), and require that the equality holds only during a unit of the
granularity. Next, Wijsen has recently developed a normalization theory for valid-
time databases that includes three types of temporal dependencies. Two correspond
to our temporal dependency and strong temporal dependency. The third dependency
is in-between the two. This so-called dynamic dependency holds if the corresponding
snapshot dependency holds on the unions of all pairs of consecutive snapshots.
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7.3.3 Using Surrogates

An attribute is seen in the context of a particular real-world entity. Thus, when we talk
about a property, e.g., the frequency of change, of an attribute, that property is only
meaningful when the attribute is associated with a particular entity. As an example,
the frequency of change of a salary attribute with respect to a specific employee
in a company may reasonably be expected to be relatively regular, and there will
only be at most one salary for the employee at each point in time. In contrast, if the
salary is with respect to a department, a significantly different pattern of change may
be expected. There will generally be many salaries associated with a department at
a single point in time. Hence, it is essential to identify the reference object when
discussing the semantics of an attribute. ‘

We employ surrogates for representing real-world entities in the database. In this
regard, we follow the approach adopted in, e.g., the TEER model by Elmasri (11).
Surrogates do not vary over time in the sense that two entities identified by identical
surrogates are the same entity, and two entities identified by different surrogates are
different entities. We assume the presence of surrogate attributes during the design
process. Just prior to performing the implementation-platform mapping, surrogate
attributes may be either (a) retained, (b) replaced by regular (key) attributes, or (c)
eliminated.

Example 7.7

In our database schema, we add a surrogate to each of the (now) six tables. For
example, we add a surrogate for branches, BrSur, to table Branch and a surrogate
for cars, CarSur, to table Car.

Definition 7.7
Let X be a set of non-timestamp attributes of a bitemporal relation schema R with

. o L S
surrogate attribute S. Then X is said to be fime invariant if § — X.

Because it is assumed that different entities are represented by different surrogates
and the same entity always is represented by the same surrogate, this is a rather
natural definition of time invariant attributes. By combining standard temporal de-
pendency and strong temporal dependency, the notion of a time-invariant key (which
had previously been used with a different meaning (31)) results.

Definition 7.8

Let X be a set of non-timestamp attributes of a bitemporal relation schema R with
surrogate attribute S. Then X is termed a time-invariant key (TIK) if S S X and
x5 R

The first requirement to attributes X is that they be time invariant. The second is that

they be a temporal key. In combination, the requirements amount to saying that X is
a key with values that do not change (with respect to the surrogate attribute).

Sl )
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Example 7.8

For schema Branch, we have seen that Name and BrID are keys. Because BrSur
strongly determines only BrID, and not Name, BrID is a time-invariant key. The
intuition is that a branch may change name, but not its BrID value. In schema

‘ RentalBooking, we have that RBSur E) RBID, so as we have seen that RBID is

a key, RBID is also a time-invariant key. Surrogates such as BrSur and RBSur in
relations with a time-invariant key are eliminated from the schema.

7.3.4 Lifespans of Individual Time-Varying Attributes

In database design, one is interested in the interactions among the attributes of the
relation schemas that make up the database.

Here, we provide a basis for relating the lifespans of attributes. Intuitively, the
lifespan of an attribute for a specific object is all the times when the object has
a value, distinct from 1;, inapplicable null, for the attribute. Note that lifespans
concern valid time, i.e., are about the times when there exist some valid values.

To more precisely define lifespans, we first define an auxiliary function vte that
takes as argument a valid-time relation r and returns the valid-time element defined
by vte(r) = {c” | As(s € r A ¢’ € s[T])}. The result valid-time element is thus the
union of all valid timestamps of the tuples in an argument valid-time relation.

Definition 7.9
Let a relation schema R = (S, Ay, . . ., A, | T) be given, where S is surrogate valued,
and let r be an instance of R. The lifespan for an attribute 4;, i =1,...,n, with

respect to a value s of S in r is denoted Is(r, A;, 5) and is defined by Is(r, A;, 5) =
Vte(”?::m;ui ).

Lifespans are important because attributes are guaranteed to not have any inappli-
cable null value during their lifespans.

Inapplicable nulls may occur in a relation schema when two attributes have dif-
ferent lifespans for the same object/surrogate. To identify this type of situation, we
introduce the notion of lifespan equal attributes.

Definition 7.10

Let a relation schema R = (S, Ay, ..., A, | T) be given where S is surrogate valued.
Two attributes A; and A; in R are termed lifespan equal with respect to surrogate S,
denoted A; B¢ Aj, if for all meaningful instances r of R, Vs € dom(S)(Is(r, A;, s) =
Is(r, A}, 5)).

Example 7.9
In schema Car, all attributes are mutually lifespan equal: values exist for all attributes
when a car is first registered at a branch, and meaningful values persist for all
attributes.

All branches have a manager, but small branches have no assistant manager. Thus,
some branches only get a meaningful value for attribute AssistantMgr after having
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reached a certain capacity. This means that AssistantMgr is not lifespan equal to
the other attributes, €.g., Manager and Capacity.

The importance of lifespans in temporal databases has been recognized in the
context of data models in the past (cf. (6, 5, 11)). Our use of lifespans for database
design differs from the use of lifespans in database instances. In particular, using
lifespans during database design does not imply any need for storing lifespans in the
database.

7.3.5 Time Patterns of Individual Time-Varying Attributes

In order to capture how an attribute varies over time, we introduce the concept of a
time pattern. Informally, a time pattern is simply a sequence of times.

Definition 7.11

The time pattern T is a partial function from the natural numbers N to a domain Dy
of times: T : N — Dr. If T (i) is defined, so is T(j)forall j <i. We term T(@) the
i’th time point.

In the context of databases, two distinct types of time patterns are of particular
interest, namely observation patterns and update patterns. The observation pattern
Oy, for an attribute A relative to a particular surrogate s, is the times when the
attribute is given a particular value, perhaps as a result of an observation (e.g., if
the attribute is sampled), a prediction, or an estimation. We adopt the convention that
03 (0) is the time when it was first meaningful for attribute A to have a value for the
surrogate 5. Observation patterns concern valid time. The observation pattern may
be expected to be closely related to, but distinct from, the actual (possibly unknown)
pattern of change of the attribute in the modeled reality. The update pattern U is the
times when the value of the attribute is updated in the database. Thus, update patterns
concern transaction time,

Note that an attribute may not actually change value at a time point because it may
be the case that the existing and new values are the same. The times when changes
take place and the resulting values are orthogonal aspects.

We may use time patterns to Capture precisely the synchronism of attributes. To
this end, define T, to be the restriction of time pattern T to the valid-time element ¢,
that is, to include only those times also contained in ¢,

Definition 7.12

Define relation schema R = (S, A1, ..., A, | T) where S is surrogate valued. Two
attributes A; and A; in R, with observation patterns Oji and Ojj, are synchronous
with respect to S, denoted AiZgA;, if for all meaningful instances r of R and for all
surrogates s,

s s
04, ls¢r.41,5)008(r,4,,5) = OF 1540905, 4,5).
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Thus, attributes are synchronous if their lifespans are identical when restricted to the
intersection of their lifespans.

Example 7.10

.In schema Car, attributes Branch, Model, Make, Category, and Year are syn-

chronous (if ownerships of cars often shift among branches, Branch would not be
considered synchronous with the four other attributes). Each of attributes Mileage
and LastServiced not synchronous with other attributes in the schema. Mileage is
updated when a car is returned, and LastServiced is updated when a car is serviced
(which occurs less frequently!).

In schema RentalBooking, values for all attributes are provided when a booking
is made and are not subsequently updated. Thus, all attributes in this schema are
synchronous.

7.3.6 The Values of Individual Time-Varying Attributes

We proceed by considering how attributes may encode information about the objects
they describe. As the encoding of the transaction time of attributes is typically built
into the data model, we consider only valid-time relations.

A relation may record directly when a particular attribute value is valid. Alterna-
tively, what value is true at a certain point in time may be computed from the recorded
values. In either case, the relation is considered a valid-time relation.

Definition 7.13

A derivation function f is a partial function from the domains of valid times Dyr
and relation instances r with schema R to a value domain D in the universal set of
domains Dp, i.e., f: Dyr x r(R) = D.

Example 7.11 .

The Mileage attribute of Car has associated two derivation functions. One function
interpolates recorded mileage values for cars so that a value may be provided for
all times. Among other uses, this function is used to project future mileage when
scheduling maintenance for the cars. The other derivation function is the discrete
derivation function that does not manufacture any information, but only provides
mileage values for the times when they are actually recorded.

The importance of derivation functions in data models has previously been argued
convincingly by, e.g., Klopprogge and Lockemann (25), Clifford and Crocker (6) and
Segev and Shoshani (35).

7.3.7 Temporal Support of Attributes

During database design, a model of a part of reality is created. What aspects of the
modeled reality to capture and what to leave out is determined by the functional
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requirements to the application being created. The application may require any com-
bination of valid-time and transaction-time support, or no temporal support, for each
of the time-varying attributes.

Next, attributes may be either state-based or event-based. Values of state-based
attributes are valid for durations of time while values of event-based attributes are
valid only for instants in time.

Combining these alternatives, there are six possibilities for the temporal support
required for a time-varying attribute.

Valid-time:

. Transaction-time:
no support required .
. no support required
state support required .
support required

event support required

Example 7.12

In schema CustomerAddr, support for neither valid nor transaction time is required.
In CustomerRating, valid-time state support is required for the Rat ing attribute.
In schema RentalBooking, we require both valid-time-state and transaction-time
support for all attributes. The valid time records when the booking is for, and old
bookings are to be retained. In schema Car, attribute Mileage requires valid-time-
event support and transaction-time support. The remaining attributes require only
transaction-time support.

7.3.8 Temporal Precision of Attributes

Each time-varying attribute has an associated observation pattern, as discussed in
Section 7.3.5. A time pattern is a function to a time domain, that has an associ-
ated time granularity. The granularity is the precision in which the time-variance is
recorded. If a hiring decision occurred sometime during the business day, but it is
not known exactly when (i.e., what minute or hour) the decision occurred, then it is
inappropriate to store that fact with a timestamp at a minute granularity. The reason
is that a particular minute must be chosen, and that minute is probably incorrect, with
the implication that the model is incorrect .

This property of time-varying attributes is important for database design because
temporal relational data models and query languages are frequently based on the
(sometimes implicit) assumption that all time-varying attributes of a relation may
be recorded with the same precision. For example, in tuple timestamped models, the
time-variance of all attribute values is recorded with a single timestamp attribute (or
the same set of timestamp attributes).

One approach is to use the minimum granularity of the DBMS at the precision
of all relations. As just discussed, this results in a low-fidelity model of reality. A
better approach is to choose the most appropriate granularity for each relation. We
propose a simple strategy. First, each attribute is associated with a set of granularities.
The smallest granularity in this set is the granularity in which the time-variance of
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the attribute is known. Other, coarser granularities represent granularities which are
acceptable to the applications utilizing the relation. Then the relation is decomposed
only if there is not a common granularity that is a member of the granularity sets of
all attributes.

Example 7.13 ‘

In schema Car, values for Mileage must be recorded with a precision of minutes.
The granularity of hours is too coarse because a car may change its mileage within the
same hour, which should be possible to record. Bookings of rentals must be recorded
by the minute or second. Thus, the attributes of RentalBooking have minute and
second as their acceptable granularities.

7.3.9 Summary of Attribute Semantics
In summary, the database designer is expected to initially annotate the relation

schemas using (regular and strong temporal) dependencies. Then surrogates are used
for the modeling of entity types. The notions of lifespans, time patterns, and deri-

* vation functions are used for capturing the semantics of attributes, and the temporal

support and precision of the attributes are recorded.

Below, we summarize the tasks of the database designer. The designer starts with
a set of atemporal conceptual relation schemas in hand. To annotate these schemas
with temporal properties, the indicated tasks are performed.

1. Identify entity types and represent them with surrogate attributes. The real-world
objects (or entities) that the attributes of the database describe are represented
with surrogate attributes. Here, time-invariant keys are also identified.

2. Determine the required temporal support. For each attribute, indicate the required
temporal support for the attribute. Record the interactions (if any) between the
valid time and the transaction time implied by the temporal specializations in
effect for the attribute.

3. Describe precisions. For each time-varying attribute, indicate its set of applicable
granularities.

4. Describe lifespans. For each relation schema, describe the lifespans of the at-
tributes.

5. Determine observation and update patterns. For each relation schema, indicate
which attributes are synchronous, i.e., share observation and update patterns.

6. For each attribute, indicate its appropriate derivation or interpolation function(s).
The functions concern interpolation in valid-time, and there may be several func-
tions per attribute.

7. Specify temporal functional dependencies on the schemas. This includes the iden-
tification of (primary) keys.

8. Specify strong temporal functional dependencies.
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7.4 Decomposition Guidelines

In this section, we discuss how the properties of schemas with time-varying attributes
as captured in the previous section are used during database design. Emphasis is on
the use of the properties for schema decomposition. In addition, issues relevant to the
related aspects of view and physical design are touched upon as well.

Database designers are faced with a number of design criteria which are typically
conflicting, making database design a challenging task. So, while we discuss certain
design criteria in isolation, it is understood that there may be additional criteria that
should also be taken into consideration (e.g., good join performance). ‘

Two important goals are to eliminate the use of inapplicable nulls and to avoid
the repetition of information. Additionally, the conceptual model employed poses
constraints on what attributes that may reside in the same relation schema. We
formulate decomposition guidelines that address these concerns.

7.4.1 Normal Form Decomposition

With the introduction of temporal functional dependencies, it is possible to apply
conventional normalization theory to our conceptual relations. Thus, dependencies
are indicated, satisfaction of normal forms is tested, and relation schemas are de-
composed where necessary. ‘

With the introduction of strong temporal functional dependencies and surrogates,
it became possible to distinguish between time-varying keys and time-invariant keys,
where the latter may serve the purposes of surrogates.

7.4.2 Temporal Support and Precision Decomposition Rules

The characterization of attributes according to the temporal support they require is
important for database design because the conceptual data model permits only one
type of temporal support in a single relation (as do also temporal implementation
data models). We embed this requirement in a simple decomposition rule.

Definition 7.14(Temporal Support Decomposition Rule.)

To achieve the correct temporal support of time-varying attributes, decompose tem-
poral relation schemas to have only attributes with the same temporal support re-
quirements in the same schema, except for the surrogate attribute(s) forming the

primary key.

Example 7.14

Schema Car must be decomposed. Specifically, attribute Mileage is removed from
the schema, and a new schema, CarMileage, with attributes CarID and Mileage is
introduced.

It may be possible to avoid such decomposition in certain circumstances, but the
designer should be aware of the potential drawbacks of doing so. Consider includ-
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ing an attribute S requiring snapshot support together with an attribute T requiring
transaction-time support, in a transaction-time relation. Because it is embedded
in a transaction-time relation, it is given transaction-time support, and past val-
ues are automatically retained. Taking the transaction timeslice at now produces

* the correct values for S, but taking a transaction timeslice at a time in the past,

at time ¢; < now, may retrieve an old value of S, which is inconsistent with the
requirement that it be a snapshot attribute. Such queries must take this into ac-
count, timeslicing the relation as of now to get the value of S, then join this
with the timeslice of the relation as of ¢; to get the value of T, which is quite
awkward.

Including the attribute S along with an attribute V' requiring valid-time support
is even more problematic. Whereas the system provides the transaction time during
modifications, the user must provide the valid time. This raises the issue of what
should the valid time be for the snapshot attribute S. All updates have to maintain
this semantics, and queries also have to consider the valid time.

Next, the existence of a strict correlation (a type of temporal specialization (18))
between the valid and transaction time of an attribute can reduce the need for decom-
position. Consider an attribute D that requires both valid-time and transaction-time
support, but which is degenerate, i.e., the valid and transaction times are exactly
correlated. Thus whenever a change occurs in the modeled reality, the new data is
immediately recorded in the database. This attribute may reside in a valid-time re-
lation with another attribute V requiring only valid-time support. Transaction-time
queries can be recast as valid-time queries on the relation, exploiting the correlation
between the two kinds of time. Similarly, D may reside in a transaction-time relation
with the attribute T'. »

Moving on to precisions, the conceptual data model, and indeed all temporal rela-
tional data models, support only a single precision per relation for each of transaction
and valid time. It then becomes necessary to separate attributes that require different,
incompatible precisions.

Definition 7.15(Precision Decomposition Rule.)

To accurately reflect the temporal precisions of time-varying attributes, decompose
relation schemas so that all attributes in a schema have a compatible temporal preci-
sion, that is, a common granularity.

Example 7.15
The Precision Decomposition Rule does not give rise to decomposition in the car
rental schema.

A more general approach was recently proposed by Wang and his colleagues, us-
ing their temporal functional dependencies based on granularities (45), discussed
briefly in Section 7.3.2.2. Their approach is complex and may generate new granular-
ities, of uncertain comprehensibility by the user. The Precision Decomposition Rule
above is very simple and does not generate new granularities, but may decompose
relations more than Wang’s approach.
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7.4.3 Lifespan Decomposition Rule

One important design criterion in conventional relational design is to eliminate the
need for inapplicable nulls in tuples of database instances. We introduced in Sec-
tion 7.3.4 the notion of lifespans in order to capture when attributes are defined
for the objects they are introduced in order to describe. Briefly, the lifespan for an
attribute—with respect to a particular surrogate representing the object described by
the attribute—is all the times when a meaningful attribute value, known or unknown,
exists for the object.

The following definition uses the concepts from Section 7.3.4 to characterize
temporal database schemas with instances that do not contain inapplicable nulls.

Definition 7.16
A relation schema R = (S, Ay, ..., A, | T) where § is surrogate valued is lifespan
homogeneous if YA, B € R(A B¢ B).

With this definition, we are in a position to formulate the Lifespan Decomposition
Rule, which ties the connection of the notion of lifespans of attributes with the
occurrence of inapplicable nulls in instances.

Definition 7.17(Lifespan Decomposition Rule.)
To avoid inapplicable nulls in temporal database instances, decompose temporal
relation schemas to ensure lifespan homogeneity.

Example 7.16

In schema Branch, attribute AssistantMgr’s lifespan deviated from those of the
other attributes. Thus, AssistantMgr is removed from Branch, and a new schema,
Assistant, with attributes AssistantMgr and BrID is introduced. ’

It is appropriate to briefly consider the interaction of this rule with the the exist-
ing temporal normal forms that also prescribe decomposition of relation schemas.
Specifically, while the decomposition that occurs during normalization does, as a
side effect, aid in eliminating the need for inapplicable nulls, a database schema that
obeys the temporal normal forms may still require inapplicable nulls in its instances.
By adjusting the schema, the lifespan decomposition rule attempts to eliminate re-
maining inapplicable nulls.

7.4.4 Synchronous Decomposition Rule

The synchronous decomposition rule is based on the notion of observation pattern,
and its objective is to eliminate a particular kind of redundancy. In Section 7.3.5,
we defined the notion of synchronous attributes, which is here employed to de-
fine synchronous schemas and the accompanying decomposition rule. Finally, we
view synchronism in a larger context, by relating it to existing concepts, and dis-
cuss the decomposition rule’s positioning with respect to logical versus physical
design.
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With this definition, we can characterize relations that avoid the redundancy
caused by a lack of synchronism and then state the Synchronous Decomposition
Rule.

Definition 7.18

Define relation schema R = (S, An...,An|T) where S is surrogate valued. Rela-

tion R is synchronous if VA;, Aj € R(A; 25 Aj).

Definition 7.19(Synchronous Decomposition Rule.)
To avoid repetition of attribute values in temporal relations, decompose relation
schemas until they are synchronous.

Example 7.17 ,

In the current Car schema attribute LastServiced is not synchronous with the
remaining attributes. In consequence, this LastServiced is removed from Car and
the schema CarService = (CarID, LastServiced) is included into the car rental
database schema.

Alternative notions of synchronism have previously been proposed for database
design by Navathe and Ahmed (31), and by Wijsen (46). While these notions are
stated with varying degrees of clarity and precision and are defined in different
data-model contexts, they all seem to capture the same basic idea, namely that of
value-based synchronism, which differs from the synchronism used in this chapter.

It is our contention that in this context, the synchronous decomposition rule is
only relevant at the level of the schema of the implementation platform, and depend-
ing on the actual implementation platform, the rule may be relevant only to physical
database design. Surely, the redundancy that may be detected using the synchronism
concept is important when storing temporal relations. Next, this type of redundancy
is of little consequence for the querying of logical-level relations using the TSQL2
query language (21, 39), a particular implementation platform. Indeed, it will often
adversely affect the ease of formulating queries if logical-level relations are decom-
posed solely based on a lack of synchronism.

Finally, the need for synchronism at the logical level has previously been claimed
to make normal forms and dependency theory inapplicable (e.g., (13)). The argument
is that few attributes are synchronous, meaning that relation schemas must be maxi-
mally decomposed, which leaves other normalization concepts irrelevant. This claim
does not apply to the framework put forth here.

For completeness, it should be mentioned that while the synchronism concepts
presented in this section have concerned valid time, similar concepts that concern
transaction time and employ update patterns rather than observation patterns may
also be defined.

7.4.5 Implications for View Design

The only concept from Section 7.3 not covered so far is derivation functions. These
relate to view design, as outlined next.
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For each time-varying attribute, we have captured a set of one or more derivation
functions that apply to it. It is often the case that exactly one derivation function
applies to an attribute, namely the discrete interpolation function (21), which is a
kind of identity function. However, it may also be the case that several nontrivial
derivation functions apply to a single attribute.

By using the view mechanism, we maintain the separation between recorded data
and data derived via some function. Maintaining this separation makes it possible to
later modify existing interpolation functions.

Thus, the database designer first identifies which sets of derivation functions that
should be applied simultaneously to the attributes of a logical relation instance and
then, subsequently, defines a view for each such set. Although interpolation functions
have previously been studied, we believe they have never before been associated with
the view mechanism.

Example 7.18

Two derivation functions were associated with attribute Mileage of schema
CarMileage. As the discrete derivation function is the default for event relations,
only one view has to be defined, namely one to produce the interpolated Mileage
values.

74.6 Summary

In this section, we have provided a set of guidelines for the decompositidn of con-
ceptual relations based on their temporal properties. Here, we briefly review the
proposed guidelines.

® With temporal functional dependencies as the formal basis, conventional normal-
ization theory was made applicable to the conceptual relations considered here. In
particular, the traditional normal forms, e.g., third normal form, BCNF, and fourth
normal form, and their decomposition algorithms are applicable.

® The temporal support decomposition rule ensures that each relation has a temporal
support appropriate for the attributes it contains.
® The precision decomposition rule uses the granularity sets to prescribe decompo-

sition of relation schemas and to determine the granularity of the resulting relation
schemas.

= The lifespan decomposition rule ensures that inapplicable nulls are not required.

8 The synchronous decomposition rule removes redundant attribute values, while
being less strict than previous definitions of value synchronism.

® Strong temporal functional dependencies, together with the temporal functional
dependencies, allow the designer to identify time-invariant primary keys, which
may play the role of surrogates that can then subsequently be eliminated.

® The derivation function associated with attributes induce views computing the
derived values.
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Branch = (BrID, Name, Location, Manager, Capacity)

+ valid-time state and transaction-time support is required

* BrID is a time-invariant key and Name is a key
Assistant = (AssistantMgr, BrID)

» valid-time state and transaction-time support is required

« BrID is a foreign key referencing BrID of Branch
Car = (CarID, Branch, Modei , Make, Category, Year)

« transaction-time support is required

¢ CarID is a time-invariant key
CarMileage = (CarID, Mileage) .

« valid-time event and transaction-time support is required

' « the precision for valid time is minutes

« CarID is a foreign key referencing CarID of Car
CarMileageView = (CarID, S-C(Mileage))

* view derived from CarMileage

« S—C is a step-wise constant derivation function
CarService = (CarID, LastServiced)

* transaction-time support is required

* CarID is a foreign key referencing CarID of Car
CustomerAddr = (CuID, Name, Address)

* no temporal support is required

* (CulD, Name) is a key
CustomerRating = (CuID, Rating)

« valid-time state support is required

* CuID is a foreign key referencing CuID of CustomerAddr
RentalBooking = (RBID, Branch, Category, Customer, Price,

CreditCardNo, CardType)

« valid-time state and transaction-time support required

» the precision for valid time is minutes

* RBID is a time-invariant key

* Branch is a foreign key referencing BrID of schema Branch

» Customer is a foreign key referencing CuID of CustomerAddr

Figure 7.4 Final Conceptual Car Rental Schema

Example 7.19
Following the steps described here, the car rental schema in Figure 7.3 now appears
as shown in Figure 7.4. Sample annotations are included.

While conceptual design is concerned with adequately modeling the semantics of
the application, physical design is concerned with performance. The concepts con-
cerning synchronism, i.e., time patterns, including observation and update patterns,
are relevant for physical design. Their use was discussed in Section 7.4.4. Physi-
cal design may also reverse some of the decomposition that is indicated by logical
design.
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7.5 Other Approaches to Temporally Enhanced Database Design

This section surveys in turn approaches to temporally enhanced database design
based on normalization concepts and approaches based on Entity-Relationship (ER)
modeling.

7.5.1 Normalization-Based Approaches

For relational databases, a mature and well-formalized normalization theory exists,
complete with different types of dependencies, keys, and normal forms. Over the
past two decades, a wealth of temporal relational data models have been proposed.
Because these temporal models utilize new types of relations, the existing normaliza-
tion theory is not readily applicable, prompting a need to revisit the issues of database
design.

The proposals for temporal normalization concepts, e.g., dependencies, keys, and
normal forms, presented in this chapter are based in part on earlier concepts (sur-
veyed in (22)). Space constraints preclude a detailed coverage of these earlier con-
cepts; instead, we briefly survey but a few dependency and normal form concepts.

Some earlier works involving dependencies, e.g., those by Tansel and Garnett (40)
and Lorentzos (28), treat nested relations with temporal information and relations
with time interval-valued attributes that are unfoldable into relations with time point
attributes as snapshot relations with explicit temporal attributes and apply “temporal”
dependencies in these contexts. Other dependencies, specifically Vianu’s dynamic
dependency (44), Navathe and Ahmed’s temporal dependency (31), and Wijsen’s dy-
namic and temporal functional dependencies (46), are inter-state dependencies, and
thus are more ambitious than the temporal dependency (an intra-state dependency)
considered earlier in this chapter. In fact, these dependencies are more closely re-
lated to the notion of synchronism defined in Section 7.3.5 and based on observation
patterns.

Now considering earlier normal forms, quite a diverse set of proposals exist. Ben-
Zvi (2) bases his time normal form on the notion of a contiguous attribute. Informally,
an attribute in a temporal relation is contiguous if there exists a value of that attribute
for each point in time and for each real-world entity captured in the relation. Segev
and Shoshani define, in their Temporal Data Model, a normal form, 1TNF, for valid-
time relations (34). In their data model, it is possible for time-slice operations to
result in attributes that have multiple values at a single point in time. The 1TNF
normal form ensures that this anomaly is avoided. Navathe and Ahmed (31) base
their time normal form (TNF) on their value-based notion of synchronous attributes
and define 1TNF to ensure that time-varying attributes are synchronous, i.e., change
at the same time. This value-based concepts is related to the identity-based notion
of synchronous attributes defined earlier in the chapter. Lorentzos (28) defines a P
normal form and a Q normal form. P normal form essentially guarantees the relation
to be coalesced (37), and Q normal form appears to have similarities with Navathe
and Ahmed’s concept of synchronism.
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7.6 Summary and Directions

As illustrated by the dependencies and normal forms surveyed above, the early
proposals for normalization concepts are typically specific to a particular temporal
data model. This specificity is a weakness since a given concept inherits the pecu-
liarities of its data model; it is unsatisfactory to have to define each normalization

' concept anew for each of the more than two dozen existing temporal data models

(33). Furthermore, the existing normal forms often deviate substantially in nature
from conventional normal forms.

This chapter represents an attempt at lifting the definition of temporal normaliza-
tion concepts from a representation-dependent, model-specific basis to a semantic,
conceptual basis, in the process making the concepts readily applicable to an entire
class of temporal relational data models.

Most recently, proposals that are consistent with and refine the approach adopted
in this chapter (and in (21, 22)) have been developed. Specifically, Wang et al. (45)
and Wijsen (47) have defined dependencies and associated normal forms that extend
the normal forms provided here and that are based on temporal granularities and
apply to complex objects. These proposals were discussed in Section 7.3.2.2.

7.5.2 ER-Based Design Approaches

The ER model, using varying notations and with some semantic variations, continues
to enjoy a remarkable popularity in the research community, the computer science
curriculum, and in industry.

As pointed out earlier, it has been widely recognized that temporal aspects of
database schemas are prevalent and difficult to model. Because this also holds true
when using the ER model, it is not surprising that enabling the ER model to properly
capture time-varying information has been an active area of research for the past
decade and a half. About a dozen temporally enhanced ER models have resulted.
Reference (15) surveys and compares all such models known to its authors at the
time of its writing.

Combined, the temporal ER models represent a rich body of insights into the
temporal aspects of database design. Table 7.1 provides an overview of the models
and contains references to further readings; the reader is encouraged to study the
models.

7.6 Summary and Directions

In order to exploit the full potential of database technology—conventional as well as
temporal—guidelines for the design of appropriate database schemas are required.
This chapter has presented concepts for capturing the temporal properties of at-
tributes. These concepts include temporal and strong temporal functional dependen-
cies and time-invariant keys. Also included are surrogates that represent the real-
world objects described by the attributes, lifespans of attributes, observation and

update patterns for time-varying attributes, and derivation functions that compute
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Table 7.1 Overview of Temporal ER Models

Name Main references Based on
Temporal Entity-relationship Model (24, 25) ER
Relationships, Attributes, Keys, and Entities Model (12) ER
Model for Objects with Temporal Attributes and Relationships  (32) ER & OO
Temporal EER model (10, 11) EER
Semantic Temporal EER model (8,9) ER
Entity-Relation-Time mode] (42, 43,29) ER
Temporal ER model 41 ER
Temporal EER model @n EER
Kraft's Model 26 ER
TERC+ (48) ERC+
TimeER (16) EER

new attribute values from stored ones. We subsequently showed the important roles
these concepts play during database design. We were able to formulate four addi-
tional decomposition guidelines that supplement normal-form-based decomposition.

We feel that several aspects merit further study. An integration of all the various
existing contributions to temporal relational database design into a complete frame-
work has yet to be attempted. Likewise, a complete design methodology, including
conceptual (implementation-data-model independent) design and logical design, for
temporal databases should be developed. Finally, a next step is to adopt the concepts
provided in this chapter in richer, entity-based (or semantic or object-based) data
models.

Finally, the ideas presented here and the methodology that will follow should
be transitioned to existing implementation platforms, including non-temporal query
languages such as SQL-92 (30). In the short and perhaps even medium term, it is
unrealistic to assume that applications will be designed using a temporal data model,
implemented using novel temporal query languages, and run on as yet nonexistent
temporal DBMSs.
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