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Christian S. Jensen Simonas Šaltenis Giedrius Slivinskas

Department of Computer Science, Aalborg University�
csj, simas, giedrius � @cs.auc.dk

Abstract

Most data managed by existing, real-world database ap-
plications is time referenced. Often, two temporal aspects
of data are of interest, namely valid time, when data is true
in the mini-world, and transaction time, when data is cur-
rent in the database, resulting in so-called bitemporal data.
Like spatial data, bitemporal data thus has associated two-
dimensional regions. Such data is in part naturally now-
relative: some data is true until the current time, and some
data is part of the current database state. So, unlike for spa-
tial data, bitemporal data regions may grow continuously.
Existing indices, e.g., B � - and R-trees, typically do not con-
tend well with even small amounts of now-relative data.

In contrast, the 4-R index presented in the paper is ca-
pable of indexing general bitemporal data efficiently. The
different kinds of growing data regions are transformed
into stationary regions, which are then indexed by R � -trees.
Queries are also transformed to counter the data transfor-
mations, yielding a technique with perfect precision and
recall. Performance studies indicate that the technique is
competitive with the best existing index; and unlike this ex-
isting index, the new technique does not require extension
of the DBMS kernel.

1. Introduction

Two temporal aspects of data are fundamental—valid
time and transaction time [10]. The valid time of a database
tuple is the time when the tuple is true in the modeled re-
ality, the mini-world. A tuple’s transaction time is the time
during which the tuple is current in the database. These
temporal aspects of data are essential in a wide range of
existing, real-world applications, including medical, finan-
cial, travel, and multimedia applications. For example,
real-world (non-textbook!) banking databases do record at
which times the (past and present) balances of an account
apply. Transaction time is essential in applications where
trace-ability or accountability are important. Data with both
valid and transaction time associated is termed bitemporal.

Although several dozen data models and temporal query
languages have been proposed and although the new SQL
standard has an associated Temporal Part [21], the major
DBMSs provide little support for temporal data manage-
ment. As a result, each new database application is con-
signed to solve anew and in an ad-hoc fashion temporal data
management problems that could be solved by the DBMS.
This paper proposes an efficient bitemporal indexing tech-
nique that can be implemented as a layer on top of an exist-
ing DBMS, by an independent third-party developer. In this
sense, the index is light-weight.

There has recently been proposed a number of indices for
temporal data (e.g., [3, 12, 13, 15, 16]; see [23] for a sur-
vey). The majority are for transaction-time data, and only
few support valid-time data. Significantly less research has
been done on creating indices for bitemporal data. Spatial
indices are obvious candidates for indexing bitemporal data,
due to the similarities between bitemporal and spatial data:
the combined valid and transaction time of a tuple can be
treated as a region in two-dimensional space. Several exist-
ing proposals [3, 12, 13] are based on the R � -tree [1].

The bitemporal indices generally fall short in efficiently
supporting now-relative data [6], data for which the end of
the valid time or/and transaction time tracks the progressing
current time. Now-relative data occurs naturally in most
real-world databases. For example, consider the record-
ing of a new employee in a company’s database. The time
when the employee starts working (valid-time interval be-
gin) is known, but it is unknown when the employee will
leave. This is captured by letting the valid-time end ex-
tend to the progressing current time. The same applies to
transaction time. The transaction-time interval begin of a
tuple is the time when it is inserted into the database. Since
we do not know when the tuple will stop being current, the
transaction-time end extends to the current time. Two of
the existing indices, the 2-R index and the Bitemporal R-
tree [13], efficiently support now-relative transaction time,
but not now-relative valid time.

Only the GR-tree [3] supports both now-relative valid
time and now-relative transaction time, and thus general
bitemporal data, efficiently. But no existing DBMSs sup-
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port this index, and adding it to a DBMS such as DB2, Or-
acle, or Sybase would require an extension of the DBMS’s
kernel. The extensibility features of these systems do not
offer adequate support for such extensions. Perhaps most
prominently, obtaining adequate concurrency control re-
mains problematic [5]. The indexing technique proposed
in this paper achieves performance that is comparable to the
GR-tree’s, and it may be implemented on-top of any DBMS
that supports R-trees, as does, e.g., Informix.

The reliance of R-trees on (minimum) bounding rect-
angles does not combine well with growing regions. This
shortcoming is overcome by applying transformations to the
growing bitemporal data regions that render them station-
ary and thus amenable to R-tree indexing. Growing regions
come in four kinds, and each kind of regions has its own
transformation and is indexed with its own R � -tree. The
resulting index is termed the 4-R index. Queries on the in-
dex are transformed into four separate queries, one for each
tree. The approach may be seen as a generalization of the
approach underlying the 2-R index [12] or as an “extreme”
case of the GR-tree.

To provide a proper understanding of the properties and
behavior of the 4-R index, a substantial portion of the paper
covers results of quite extensive performance studies of the
index, thus providing detailed insight into the specifics of
the index and its constituent trees.

The presentation is structured as follows. First, Sec-
tion 2 briefly describes important concepts and introduces
two-dimensional bitemporal regions. Section 3 surveys the
existing work related to the indexing of bitemporal data.
The 4-R index, including data and query transformations,
is described in Section 4. Section 5 presents performance
studies. The final section offers conclusions and directions
for future work.

2. Bitemporal Data and Its Representation

As a foundation for understanding the challenges of in-
dexing bitemporal data, this section first describes in more
detail the nature of bitemporal data, then characterizes the
different kinds of two-dimensional bitemporal data regions.

As mentioned in the previous section, valid time captures
when a tuple is true in the modeled reality, and transac-
tion time captures when a tuple is current in the database
[10]. These two temporal aspects are orthogonal in that
each could be recorded independently, and each has spe-
cific properties associated with it. The valid time of a tuple
can be in the past or in the future and can be changed freely.
In contrast, the transaction time of a tuple cannot extend
beyond the current time and cannot be changed.

TQuel’s four-timestamp format [19] (4TS) is the most
popular format for bitemporal data representation. With this
format, each tuple has a number of non-temporal attributes

and four time attributes: VT � and VT
�
—the times when

the tuple’s information became and ceased to be true in the
modeled reality; TT � and TT

�
—the times when the tuple

became and ceased to be current in the database.
A tuple is now-relative if its information is valid un-

til the current time or if the tuple is part of the current
database state. This is represented in the 4TS format by
the use of variables, which denote the current time, for the
time attributes VT

�
and TT

�
[6]. The variable UC (“until

changed”) is used for TT
�

, and the variable NOW is used
for VT

�
. Table 1 exemplifies bitemporal data. The time

granularity is a month, and the current time is assumed to
be 9/97.

Employee Department TT
�

TT
�

VT
�

VT
�

1 John Advertising 4/97 UC 3/97 5/97
2 Tom Management 3/97 7/97 6/97 8/97
3 Jane Sales 5/97 UC 5/97 NOW
4 Julie Sales 3/97 7/97 3/97 NOW
5 Julie Sales 8/97 UC 3/97 7/97
6 Michelle Management 5/97 UC 3/97 NOW

Table 1. The EmpDep Relation

Tuple 1 records that the information “John works in Ad-
vertising” was true from 3/97 to 5/97 and that this was
recorded during 4/97 and is still current. Tuple 3 records
that “Jane works in Sales” from 5/97 until the the current
time, that we recorded this fact on 5/97, and that this re-
mains part of the current database state.

Specific constraints apply to insertions, deletions, and
modifications of tuples. When inserting a new tuple, the
constraints VT � � VT

�
and VT � � ‘current time’ if VT

�

is equal to NOW apply to valid time; and the constraints
TT ��� ‘current time’ and TT

�
� UC apply to transaction

time. Any current database tuple can be deleted or modi-
fied. Deleting a tuple, the TT

�
value UC is changed to the

fixed value ‘current time’ �	� 1, making the tuple not current
anymore (e.g., Tuple 2); tuples are not physically deleted.
A modification is modeled as a deletion followed by an in-
sertion (e.g., an update led to Tuple 4 and Tuple 5).

The temporal aspect of a tuple can be represented graph-
ically by a two-dimensional (“bitemporal”) region in the
space spanned by valid and transaction time [10]. Cases
1–4 in Figure 1 illustrate the bitemporal regions of Tuples
1–4, respectively.

A now-relative transaction-time interval yields a rectan-
gle that “grows” in the transaction-time direction as time
passes (Tuple 1, Case 1). Having both transaction- and
valid-time intervals being now-relative yields a stair-shaped
region growing in both transaction time and valid time as
time passes (Tuple 3, Case 3). If, at some time, a tuple stops

1We use closed intervals and let [TT
�

, TT
�

] denote the interval that
includes TT

�
and TT

�
.
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Figure 1. Bitemporal Regions

being current, the bitemporal region stops growing (Tuples
2 and 4; Cases 2 and 4).

Information may be recorded in the database after it be-
comes true in the modeled reality. In such situations, if both
the transaction- and valid-time intervals are now-relative
(Tuple 6), the bitemporal region would be a growing stair-
shape with a high first step. It is also possible to record
information in the database before it becomes true in the
modeled reality. In this case, the valid-time end must be
a ground value (Tuple 2); otherwise, the valid-time end,
which would extend to the current time, would initially be
smaller than the valid-time start, violating the second inser-
tion constraint of the valid time.

Stated generally, we obtain four combinations of time
attributes for which the bitemporal regions are qualitatively
different, as illustrated in Figures 1 and 2 where ‘tt1’, ‘tt2’,
‘vt1’, and ‘vt2’ denote ground values that satisfy the con-
straints given above. Stair-shapes having first steps of dif-
ferent heights are not treated as being qualitatively different.

TT � TT
�

VT � VT
�

Case 1 tt1 UC vt1 vt2
Case 2 tt1 tt2 vt1 vt2
Case 3 tt1 UC vt1 NOW (tt1 ��� vt1)
Case 4 tt1 tt2 vt1 NOW (tt1 ��� vt1)

Figure 2. Combinations of Time Attributes

We have set the context for using spatial indices for in-
dexing bitemporal data. Some indices for bitemporal data
that are based on this approach already exist; we discuss
them next.

3. Overview of the Existing Bitemporal Indices

References [2, 23] provide comprehensive surveys of in-
dices for different types of temporal data. This section fo-
cuses solely on the indexing of bitemporal data.

All existing indices for now-relative bitemporal data are
based on the idea that bitemporal data can be viewed as a
special case of spatial data (recall Figure 1) and that spatial
indices can be utilized to index bitemporal data.

Many indices have been developed for spatial data with
extent (i.e., non-point data) [17]. One of the most robust
such indices is the R-tree [7] in its different variants—e.g.,
the R � -tree [22], the R � -tree [1], and the Hilbert R-tree
[11]. In the R-tree, entries of a leaf-level node store min-
imum bounding rectangles of spatial regions together with
pointers to the data tuples containing those regions. Entries
of a non-leaf node store minimum bounding rectangles of
child nodes together with pointers to those child nodes. The
minimum bounding rectangle of a child node is the rect-
angle that bounds all entries of that child node. All vari-
ants of the R-tree try to minimize the overlap between the
minimum bounding rectangles of the nodes at each level of
the tree and to minimize the dead space in the bounding
rectangle of each node (the dead space is the space in the
minimum bounding rectangle not occupied by any of the
enclosed rectangles). Minimizing overlap reduces the I/O-
incurring branching of search into several subtrees. Mini-
mizing dead space reduces the probability that queries un-
necessarily access disk pages, eventually finding no quali-
fying data.

The R � -tree is promising for indexing now-relative
bitemporal data, but does not accommodate growing bitem-
poral regions. The straightforward approach to accommo-
dating growing regions, the maximum-timestamp approach,
is to represent these regions using the maximum possible
transaction- and valid-time values. As a consequence, their
minimum bounding rectangles are static, but the result is
also excessive overlap and dead space, as illustrated in Fig-
ure 3(a).

Kumar et al. [12, 13] propose a new index to han-
dling now-relative transaction time, but do not address
now-relative valid time—data regions with an open valid
time still must be represented using a maximum-timestamp
value. In their index, the 2-R index, they use two R-trees.
The front R-tree indexes all growing (i.e., current) rectan-
gles, while the back R-tree indexes all static (i.e., logically
deleted) rectangles. Observing that all growing rectangles
are in the front tree and that they all extend to the pro-
gressing current time, Kumar et al. show that storing only
the non-growing transaction-time begin value together with
their fixed valid-time interval in the front tree is adequate to
support now-relative transaction time. The 2-R index con-
tends well with now-relative transaction time and performs
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better [3] than the single, maximum-timestamp R � -tree, but
it suffers from the penalty that two trees often have to be
searched in a single query, resulting in more disk accesses
and diminishing the advantages gained from the decreased
overlap. The problem of representing now-relative valid
time also remains open in the 2-R index. As discussed al-
ready, using the maximum valid-time value for NOW is not
promising.

Instead of replacing UC and NOW with maximum time
values, the GR-tree [3] extends the R � -tree [1] to allow for
the storage of these variables in tree nodes. The GR-tree
thus accommodates bitemporal regions (shown in Figure 1)
and uses minimum bounding regions that can be either static
or growing and either rectangles or stair-shapes (see Fig-
ure 3(b)). It has been shown [3] that the GR-tree outper-
forms indices based on the previously described approaches
by a factor of 3 or more. The GR-tree is an efficient index,
but its implementation requires access to and extension of
the DBMS kernel.

Based on the above, we may conclude that two different
approaches exist for indexing now-relative bitemporal data.
The first approach is to create a new index. The GR-tree,
although based on the R � -tree, exemplifies this approach.
The second approach is to transform now-relative bitempo-
ral data, in this way eliminating the variables UC and NOW
and obtaining static data, and then apply an existing “off-
the-shelf” spatial index. This paper explores the latter ap-
proach.

The main purpose of the data transformations employed
here is to render growing regions stationary. Transforma-
tions are used widely in indexing, but always with different
purposes.

4. The 4-R Index

In the 4-R index, we (1) divide bitemporal data regions
into four classes, (2) perform transformations of the regions
in each of the classes, thus eliminating any variables, and
(3) use separate R-trees for indexing the transformed data
regions of each class.

Section 4.1 describes the data transformation. In order
to use the index when answering queries, the queries must
also be transformed; Section 4.2 presents the query trans-
formation. Section 4.3 concerns the implementation of the
4-R index.

4.1. Data Transformations

In the interest of generality and for our purpose, it is ap-
propriate to model a bitemporal tuple as a pair of a bitem-
poral region and a tuple identifier. This corresponds to the
information captured at the leaf level of a secondary index
such as the R-tree.

The main goal of the transformation of now-relative
bitemporal data is to eliminate the variables UC and NOW,
so that the data can be indexed with R-trees. To this end, we
distinguish between four types of bitemporal data, depend-
ing on whether TT

�
is or is not equal to UC and whether

VT
�

is or is not equal to NOW. For each type, the trans-
formed data is variable-free. The bitemporal region of a
transformed, variable-free bitemporal tuple is always static.
Before defining the data transformation, we define the do-
main of bitemporal data and the domain of variable-free
bitemporal data.

Definition 4.1 Let the domain of timestamp values be �
and the domain of tuple identifiers be ID. We then define���

, the domain of bitemporal tuples, and
���

, the domain
of variable-free bitemporal tuples, as follows.

�����	��

TT ���
 TT

���
 VT ���
 VT
���
���� �����

������� � UC ����������� � NOW � � ID !
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�
TT
�� � UC � TT �� � TT

�������
VT
�� � NOW � VT �� � VT

���� �
� � ��� 


TT ���
 TT
���
 VT ���
 VT

�� 
 ��� � � �
� ������������� ID !
TT �� � TT

���� VT �� � VT
�� � �

The “r” subscripts are used to clearly separate the data rect-
angles from the query rectangles that will be introduced in
the next section.

The data transformation defined next transforms a bitem-
poral tuple into a variable-free bitemporal tuple augmented
by a transformation type.

Definition 4.2 Let � 	 � �
and define 
���
�� ��

� 
�� 
�� 
�� � . Then the 4-R data transformation ����� � ������ �����! #"%$'& is defined as follows.

� � � � � ��� � � � 
 TT �� 
 TT
���
 VT ���
 VT

���
 � � ��� � !

TT �� 
 TT

�� 
 VT �� 
 VT
�� 
���� ��� � � � 


where

� � � 
 TT �� 
 TT
�� 
 VT �� 
 VT

�� 
���� � � � �())))))))))* ))))))))))+



TT �� 
 TT �� 
 VT �� 
 VT �� 
���� � 
 � �,.-

TT
�� � UC � VT

�� � NOW

TT ���
 TT ���
 VT ���
 VT

���
���� � 
�� �,.-
TT
�� � UC � VT

��0/� NOW

TT ���
 TT

���
 VT ���
 VT ���
���� � 
�� �,.-
TT
�� /� UC � VT

�� � NOW

TT �� 
 TT

�� 
 VT �� 
 VT
�� 
���� � 
1� �,.-

TT
�� /� UC � VT

�� /� NOW �
Four trees, numbered R1 through R4, are created and

populated with result tuples according to their types. Fig-
ure 4, described next, illustrates the intuition behind the
mapping.

Tree R1 indexes the regions that, before the transforma-
tion, had non-fixed valid- and transaction-time end values.
Knowing that such regions extend to the current time in
transaction time (TT

�
� UC) and to the line VT = TT

(VT
�
� NOW), it suffices to represent the regions by two-

dimensional points


TT ���
 TT ���
 VT ���
 VT �� � , represented in

turn by (TT � , VT � ) in the index.
Next, tree R2 indexes regions that had fixed valid-time

end values, but non-fixed transaction-time end values prior
to the transformation. Because such regions are rectangles
that grow in transaction time and extend to the current time
in this dimension (TT

�
� UC), we can represent these re-

gions by two-dimensional intervals


TT ���
 TT ���
 VT ���
 VT

�� � ,
represented in the index as (TT � , VT � , VT

�
).

Tree R3 is devoted to regions that, before the transfor-
mation, had fixed transaction-time end values, but non-
fixed valid-time end values. These regions are all stair-
shapes that extend to the line VT = TT (VT

�
� NOW).

These may be represented by two-dimensional intervals

TT ���
 TT

���
 VT ���
 VT �� � , captured in the index as (TT � ,
TT
�

, VT � ).
Finally, tree R4 accommodates originally static data re-

gions for which there is no need for transformation.
The next step is to explore search in the four trees of the

4-R index that accommodate the transformed data. Queries
must be transformed as well.

4.2. Query Transformations

We investigate the most common type of index query,
namely the rectangular intersection query (denoted by “-
//R/R” in the terminology of Tsotras et al. [24]). This
type of query includes point queries as well as the dif-
ferent kinds of range queries supported by the valid- and
transaction-time timeslice operators frequently present in
temporal query languages. Let



TT �2 
 TT

�2 
 VT �2 
 VT
�2 � �

�����	� ��� � denote the argument rectangle of an inter-
section query, where � is the domain of timestamps. We
will make the reasonable assumptions that TT �2 � TT

�2 ,
VT �2 � VT

�2 , and TT
�2 � CT, where CT is the value of the

current time. The following definition gives the result of an
intersection query on bitemporal data.

Definition 4.3 Define


TT ��13 
 TT

��13 
 VT ���3 
 VT
���3 ��4 
 TT ���5 


TT
��65 
 VT ��65 
 VT

��65 � by
�
TT ��13 � TT

���5 ��� � TT
��1387 TT ���5 �9��

VT ���3 �
VT
��65 �:� �

VT
��13;7 VT ���5 � . Also let < �


TT �2 
 TT
�2 
 VT �2 
 VT

�2 � and �=	 ��� . Then an intersection
query Intersect

�
on � with query rectangle < and current

time value CT as parameters is defined as follows.

Intersect
�?> < 
 CT @ � � � �� ��� � ! 
 TT ���
 TT

���
 VT ���
 VT
���
���� � � � � ����

TT
�� � UC � VT

�� � NOW �
TT
�2 7 VT �2 � < 4 
 TT �� 
 CT 
 VT �� 
 CT � � ��

TT
�� � UC � VT

�� /� NOW �< 4 
 TT �� 
 CT 
 VT �� 
 VT
�� � � ��

TT
�� /� UC � VT

�� � NOW �
TT
�2 7 VT �2 � < 4 
 TT �� 
 TT

�� 
 VT �� 
 TT
�� � � ��

TT
��0/� UC � VT

��0/� NOW �< 4 
 TT ���
 TT
���
 VT �� 
 VT

�� � �1� � �
The first line restricts result tuple identifiers to be in the

argument tuples. As for Definition 4.2, each of the next
four disjuncts is devoted to one type of bitemporal region.
The first disjunct identifies the subset of qualifying growing
stair-shapes, the second identifies qualifying growing rect-
angles, the third, static stair-shaped regions, and the fourth,
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Figure 4. Data Storage in the Four Trees of the 4-R Index

static rectangles. In cases of stair-shaped regions, in addi-
tion to checking the intersection between the bounding rect-
angle of a region and a query rectangle, it is specified that
the lower-right corner of a query must be below or on the
VT = TT line (condition TT

�2 7 VT �2 ).
Similarly to Definition 4.3, we next define the rectangu-

lar intersection query on variable-free bitemporal data. The
result of this query is independent of the current time.

Definition 4.4 Let < � 

TT �2 
 TT

�2 
 VT �2 
 VT
�2 � and � 	� �

. Then an intersection query Intersect
�

on � with a
query rectangle < as a parameter is defined as follows.

Intersect
� > <'@ � � � �� ��� � ! 
 TT ���
 TT

���
 VT ���
 VT
���
 ��� � � � � �< 4 
 TT �� 
 TT

�� 
 VT �� 
 VT
�� � � �

With Definitions 4.3 and 4.4 in place, we are now in a po-
sition to define the 4-R query transformation, � 2 , that goes
with the data transformation given in the previous section.

The transformation maps an intersection query on the orig-
inal data to two or four corresponding queries on the trans-
formed data.

Definition 4.5 Initially define:

� 	 ���� � � � � � ���� � � 
 TT �� 
 TT
�� 
 VT �� 
 VT

�� 
 � � ��� !

TT ���
 TT

���
 VT ���
 VT
���
 � � � 
 � � � � � 
�� � � 
�� 
1� 
��<	� 
 TT �2 
 TT

�2 
 VT �2 
 VT
�2 �<�� � 
�� 
 TT

�2 
 � 
 VT
�2 �<�� � 
�� 
 TT

�2 
 VT �2 
 VT
�2 �<�	 � 
�

��� �

TT �2 
 VT �2 � 
 TT
�2 
 � 
 VT

�2 �<�� � 
 TT �2 
 TT
�2 
 VT �2 
 VT

�2 �
Then the query transformation � 2 � > � ��� � � ID @ �> � ������������� � � ID @ is defined as follows.

� 2 � Intersect
�?> < 
 CT @ � � � � ���� ��� ��� � � 	 � � Intersect

�9> <�� @ � ��� � ,.-
TT
�2 7 VT �2� ����� � � Intersect

�9> < � @ � � � � ,.-
TT
�2"! VT �2 �
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Figure 5. Search in the Four Trees of the 4-R Index

The search spreads to two or four trees and is performed
differently in each tree. Figures 5 and 6 illustrate the orig-
inal search rectangle and the corresponding transformed
search rectangle in each tree. A discussion of the search
in each of the four trees follows Theorem 4.1 that states that
the combination of the 4-R query and 4-R data transforma-
tion yields perfect precision and recall, i.e., is correct. The
proof is given in the extended version of the paper [4].

Theorem 4.1 For each < � 

TT �2 
 TT

�2 
 VT �2 
 VT
�2 � and

each data set � 	 � � ,

Intersect
� > < 
 CT @ � � � � � 2 � Intersect

� > < 
 CT @ � � � � � � ���
	 �
Searching tree R1, the argument search rectangle is en-

larged to cover the space spanned from the origin of the
transaction and valid time to the argument rectangle’s top-
right corner. Tree R1 contains no data points above the line
VT = TT because the original regions encoded by the points
in this tree extend only to the line VT = TT. Thus, the trans-
formed search rectangle could also be reduced to not extend

above the line VT = TT without affecting correctness. But
because the area avoided by this reduction contains no data,
we simply use the unreduced rectangle.

When searching tree R2, we should look not only for
data intervals overlapping with the original search rectan-
gle, but also for intervals to the left of the search rectangle.

The search-rectangle transformation in tree R3 is similar,
but now the argument search rectangle is extended down-
wards instead of to the left, and there is a subtle complica-
tion. When part of a search rectangle is below the line VT
= TT and another part is above, only the part below this line
should be extended downwards; extending the entire rect-
angle would yield “false drops” and would thus jeopardize
precision. This is illustrated in Figure 6, where extending
the entire search rectangle would yield one false drop. In
Definition 4.5, function “



���
” handles this case.

Since tree R4 indexes untransformed bitemporal rectan-
gles, transformation of the argument search rectangle is un-
necessary.
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Several noteworthy special cases occur when querying
the four trees. In trees R1 and R3, the indexed points and
intervals reside only below the line VT = TT, and the re-
gions encoded by these points or intervals also do not ex-
tend above this line. Thus, search in these trees is only per-
formed when at least some part of a search rectangle goes
below VT = TT.

Another special case is the current-time transaction-
timeslice query (TT �2 = TT

�2 = CT), which is expected to
occur frequently in practice. Current data resides only in
trees R1 and R2, so this timeslice query may be restricted
to these two trees. If, in addition, a current time transaction-
timeslice query is above the VT = TT line, the only tree to
be searched is R2. As a final special case, if such a current-
time transaction timeslice has no constraints on valid time,
all tuples indexed by trees R1 and R2 should simply be re-
turned, and no search is required.

4.3. Implementation

An important advantage of the 4-R index is that it may
reuse preexisting and efficient R-tree-based indexes such as
the R � -tree without any modifications because only points,
intervals, and rectangles are indexed—there are no growing
bitemporal regions. This means that the 4-R index may be
implemented in a layer on top of any DBMS that supports
R-trees, with no need for extending the DBMS’s query op-
timizer and recovery and concurrency control subsystems.
This renders the index a very practical one.

In addition, the data transformation of bitemporal shapes
into intervals and, especially, points may positively impact
performance because these simpler shapes take less space
and thus lead to trees with higher fanouts. The query trans-
formation, where argument rectangles are always enlarged,
may have the reverse effect on the performance.

The layer implementing the 4-R technique on top of four
R*-trees is responsible for three main tasks.

insertions The layer determines into which of the four
trees a new data region has to be inserted, and it passes
the correct insertion statement to the appropriate tree.

deletions The layer determines the tree that may index a
given data region, and it passes the correct deletion
statement to that tree.

queries The layer translates queries into four correspond-
ing queries, each of which is passed to the appropriate
tree; and the layer returns the combined result obtained
from searching the four trees.

Update is modeled as a deletion followed by an insertion.
The algorithms implemented by the layer follow the theory
developed earlier in this section and are outlined in Figure 7.
Although somewhat dependent on the specific underlying
DBMS, the efforts required to implement these algorithms
are quite small.

5. Performance Experiments

In this section, we compare the performance of four in-
dices: the 4-R index, the GR-tree, the R-tree, termed 1-R,
and the 2-R index, with the latter two using the maximum-
timestamp approach. We first consider data and query gen-
eration, then discuss the performance results.

5.1. Data and Query Generation

The four indices were implemented using the General-
ized Search Tree Package, GiST [8]. The numbers of I/O
operations are measured using simulation. The page size is
set to 1024 bytes, and one tree node is stored in one page.
Thus, one node read or write corresponds to one page ac-
cess (one I/O operation). A buffer of 100 pages is allocated
for each index2. Omitting a buffer may lead to quantita-
tively and qualitatively incorrect conclusions [14]. The root
is always kept in the buffer; for the other nodes, the least-
recently-used page replacement policy is employed. If a
node is changed during an insertion or a deletion, its page
is changed in the buffer and marked as “dirty.” Dirty pages
are written to disk at the end of the operation or when they
have to be removed from the buffer.

To fairly compare the search and update performance of
the four indices, the same data has to be inserted into the
indices, and the same queries have to be run on them. We
use so-called workloads to simulate the construction and us-
age of an index for a certain period—the index life-time. In

2For the 4-R, 4 buffers of 25 pages are allocated, and for the 2-R, 2
buffers of 50 pages are allocated.
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Figure 7. Algorithms for Insertion, Deletion, and Search in the 4-R Index

our experiments, a workload typically contains 60,000 up-
date operations. An update operation is either an insertion
or a (logical) deletion. First, 4000 consecutive insertions
are performed, and at each later point in time an insertion
occurs with probability Ins and a deletion occurs with prob-
ability � �
	��
� .

Several parameters are used for generating the data to be
inserted into the indices. The valid-time interval length is
uniformly distributed between 0 and the maximum valid-
time interval length, VL. Alternatively, the valid-time end
can be NOW. The percentage of data to be inserted into an
index and having valid-time end equal to NOW is denoted
as PNow. We choose the valid-time begin to be strongly
bounded to the data-insertion time. Specifically, it is nor-
mally distributed with a mean equal to the insertion time
and with some deviation Dev that specifies how densely re-
gions inserted into the trees are distributed around the � ���
axis. If Dev is big and the valid-time end is fixed, the regions
are scattered throughout the valid-time universe. Dev in-
fluences how far below the � ��� axis the stair-shapes can
start. In the experiments reported here, we use value 5000
for Dev.

A workload also contains queries intermixed with the up-
date operations. We perform bitemporal range, timeslice,
and point queries. Parameter Qcur denotes the percentage

of “current” queries, i.e., current timeslice and point queries
or bitemporal range queries that extend to the current time.
Parameters Qrange, Qslice, and Qpoint denote the percent-
ages of, respectively, bitemporal range, timeslice, and point
queries that will be run. Parameter QmaxI denotes the max-
imum valid-time range for bitemporal range queries and
timeslice queries, and the maximum transaction-time range
for bitemporal range queries.

We use overlap as the query predicate, meaning that re-
gions that overlap with the given query window qualify for
the result.

The data and query generation parameters described
above are termed workload parameters and are summarized
in Table 2. In different experiments, the values of these pa-
rameters are varied. The values used are given together with
the description of each concrete experiment. If the value of
some parameter is omitted, the “standard” value is used.

We intermix queries with update operations in the
workload with the aim of measuring search performance
throughout the entire index life-time. In the experiments,
for each used workload we compute the average I/O cost of
update and search operations present in that workload. In
each experiment, we also compute pagination, overlap, and
dead space in the trees.

The pagination is the percentage of the allocated space
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Parameter Description Values used “Standard” value

PNow percentage of data with valid-time end equal to NOW 0, 20, 40, 60, 80, 100 60
Ins percentage of insertions 50, 60, 70, 80, 90, 100 70
VL maximum valid-time interval length 50, 100, 500, 1000, 3000, 5000 500

Qcur percentage of current queries 0, 25, 50, 75, 100 65
Qrange percentage of range queries 25, 100 25
Qslice percentage of timeslice queries 50, 100 50
Qpoint percentage of point queries 25, 100 25
QmaxI maximum valid- and transaction-time intervals given in a query 1, 100, 300, 500, 1000, 3000 300

Table 2. Workload Parameters

that is utilized for data, i.e., it is the percentage of each
node’s space that on the average is filled with entries. The
dead space of a node is the difference between the area of
the minimum bounding region of that node and the area of
the union of the minimum bounding regions of all entries of
that node. The dead space of a tree level is the sum of the
dead space of each node at that level. The overlap in a node
is the difference of the sum of all areas of that node’s en-
tries and the area of the union of all the entries in the node.
The overlap in a tree level is the sum of the overlap values
of all nodes in that level. The measurement units for dead
space and overlap are quadratic time-points, i.e., the same
as those for the simple area of a bitemporal region.

5.2. Comparison of the Four Bitemporal Indices

In this section, we first discuss general issues in addition
to specifics of the four indices that influence their perfor-
mance. Then we present the results of concrete experiments
with the bitemporal indices. For each experiment, the work-
load parameters are given, search and update performance
results are illustrated, and discussions are offered that cover
also index pagination, dead space, and overlap.

5.2.1. General Observations

The number of I/O operations performed during a search
depends on index pagination, dead space, and overlap. If
nodes are poorly filled, many nodes have to be accessed to
retrieve a number of entries. Dead space leads to access-
ing nodes in vain, eventually finding no qualifying entries.
Overlap between nodes leads to I/O-incurring branching of
search into several subtrees.

In the 1-R and 2-R, dead space and overlap are excessive
because they depend on the maximum-timestamp value,
which must be very large in order to exceed any fixed time
value used throughout the existence of an index.

As mentioned earlier, for some queries, only two trees
in the 4-R need to be searched. In addition, several special
cases of the 4-R occur for specific values of the workload
parameters. If the value of the parameter Ins, the percentage
of insertions, is 100%, regions will never be deleted, and

thus trees R3 and R4, devoted to non-current data, will be
empty. If the value of the parameter PNow, the percentage
of data with valid-time end equal to NOW, is 100%, trees R2
and R4 will be empty because they are devoted to data with
fixed valid-time intervals. If PNow is 0% then trees R1 and
R3 will be empty. Thus, it is appropriate to perform specific
experiments to investigate properties of the individual trees
of the 4-R index.

5.2.2. Experiments With Various Data

First, experiments were conducted to find out how varying
percentages of data having valid-time end equal to NOW
influence search and update performance in the four indices.
Different workloads were constructed with varying values
of parameter PNow. The search and update performance
of the four indices with such data are given in Figures 8(a)
and 9(a), respectively.

In general, the GR-tree has the best search performance.
The 4-R index does not loose much and even outperforms
the GR-tree when PNow is 100%, while the two maximum-
timestamp-approach-based indices are clearly worse. The
problem of the latter two is the big overlap and dead space
caused by the huge rectangles representing growing bitem-
poral regions. One of the reasons why the GR-tree is bet-
ter than the 4-R index is that its pagination (65%) is better
than the pagination of the 4-R trees (50% in R3 and 60% in
the other trees). Another reason is tree R2 in the 4-R index.
This tree indexes data with non-fixed transaction-time inter-
vals (i.e., current data) by physically storing only “vertical
lines.” Because of the sequential nature of transaction time,
the R*-tree algorithms in many cases fail to group these
vertical lines into nodes with quadratic minimum bound-
ing rectangles. Often minimum bounding rectangles of the
nodes in R2 are long in the valid-time direction. On the
other hand, the transformed queries for R2 are not very long
in the valid-time direction, but extend to the very beginning
of transaction time. Such queries access a lot of nodes with
minimum bounding rectangles that are long in valid time,
but not many entries (some times none at all) from these
nodes qualify for the answer.

However, when PNow is near 100%, the 4-R starts to
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Figure 9. Update Performance, (a) Varying PNow, (b) Ins, and (c) VL

outperform the GR-tree. First, when PNow is large, data is
concentrated in trees R1 and R3, and the bad performance of
the poorly populated R2 does not seriously affect the over-
all 4-R index performance. Second, with 65% of current
queries (we use this number as our standard), the majority
of the qualifying data is “current” data that resides in R1
and R2. Since R2 is poorly populated, the major part of the
qualifying data is retrieved from R1. Tree R1 of the 4-R in-
dex has very good selectivity, i.e., usually almost all entries
of retrieved nodes qualify for the answer. Consequently,
almost the minimal number of nodes have to be accessed
during a search, and thus tree R1 significantly contributes
to the good performance of the 4-R index.

When PNow is low, 1-R outperforms 2-R. One of the
reasons is the worse pagination of the 2-R (55%, opposed

to 65% of the 1-R).
When PNow is large, the 2-R outperforms the 1-R. Then

the majority of the rectangles in the 1-R extend to the max-
imum valid-time value; and to the maximum transaction-
time value if data is current. The rectangles representing
not current data (“short” in the transaction-time direction),
however, are mixed with “current” ones in the tree nodes.
Thus the selectivity in the 1-R when answering a current
query (for which only current rectangles qualify) is not very
high. The storing of old and current data in separate trees in
the 2-R index shows the advantage.

Concerning updates, the 4-R and 2-R indices achieve
better performance than one-tree indices.

Another set of experiments was carried out to investigate
how the percentage of “current” data influences search and
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update performance in the four indices. In this study, work-
loads generated with different values of parameter Ins were
used. Results of the study are given in Figures 8(b) and 9(b).

When the Ins value increases, regions are more rarely
deleted, current data remains current for a long period, and
the amount of current data increases over time. Thus with
65% as the average percentage of current queries (meaning
that mostly current data is of interest), when Ins increases,
more data is retrieved from the indices, resulting in an in-
creasing cost of a search. Overall, the GR-tree has the best
performance, but the 4-R is quite close. The difference be-
tween the GR-tree and the 4-R index is more visible when
Ins is close to 100%; the GR-tree then achieves better pagi-
nation (70%).

The 4-R and 2-R indices achieve the best update perfor-
mance also in this study.

Experiments were also performed varying VL (see Fig-
ures 8(c) and 9(c)). All of the experiments show that 1-R
and 2-R indices, although being simpler than 4-R, cannot
compete with it in search performance for any workloads
where PNow is not close to 0.

5.2.3. Experiments With Various Queries

For a database where the amount of current data increases
over time (using Ins equal to 70%, this is the case), the later
in the database lifetime a query is issued, the more results
are retrieved, which in turn requires more I/O operations.
We already noticed the impact of the current queries in the
previous sections. In this section, we experiment with var-
ious kinds of queries. First, we experiment with different
types of queries varying Qcur, the percentage of current

queries. The results for range and point queries are shown in
Figures 10(a) and 10(b). It can be seen that the performance
of the 1-R, 2-R, and 4-R indices drops as expected with an
increasing amount of current queries. The GR-tree, on the
contrary, performs better as the number of current queries
increases. Investigating this “phenomenon,” we found out
the following about the four indices.

The GR-tree nodes containing current data have better
pagination than nodes containing non-current data. This is
due to the sequential nature of transaction time. “Current”
nodes are filled up by continuously arriving new entries,
while new entries are rarely inserted into the “old” nodes,
which are left half-full after node splits (the GR-tree split
algorithm usually separates older and newer entries). Thus,
although the number of retrieved entries increases with an
increasing amount of current queries, the qualifying (cur-
rent) entries are packed into a smaller number of nodes.

In the 4-R index, while the pagination of the trees that
contain current data (R1 and R2) is higher than the pagina-
tion of trees R3 and R4, the performance is advertly affected
by the bad performance of R2, which in turn is caused by the
geometry of the minimum bounding rectangles in this tree
(see Section 5.2.2). 2-R performs better than 1-R when the
percentage of current queries increases, because current and
old data are mixed in the nodes of the 1-R, and the percent-
age of qualifying entries from each node is low for current
queries.

The kind of queries used (range, timeslice, or point
queries) practically does not change the results.

The influence of the size of timeslice and range queries
was also tested (Figure 10(c) and 11(a)). As can be ex-
pected, bigger queries lead to more entries being retrieved,
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thus requiring more efforts to perform. This is more pro-
nounced for range queries, which can be expanded to any
size in two directions, than for timeslice queries, which can
be expanded only in the valid-time direction.

5.2.4. Experiments With Specialized Data

We experimented with specialized data to understand the
properties of the four trees in the 4-R index. We have al-
ready observed in the previous sections that tree R1 of the
4-R index has very good selectivity, and, in contrast, tree
R2 has quite low selectivity.

When Ins is 100% (data is never deleted) and PNow
is 0% (valid-time intervals are fixed), regions representing
transformed bitemporal data are solely indexed by tree R2
in the 4-R. The low selectivity in this tree explains why the
4-R index is worse not only than the GR-tree, but also than
the R-tree (1-R) (see Figure 11(b)). Note that results of the
2-R index and the 4-R index are the same because the front
tree of the 2-R is the same as tree R2 of the 4-R index, since
there is no data with now-relative valid-time intervals. The
pagination in both the 2-R and the 4-R is 63%, while it is
74% in the GR-tree and 71% in the 1-R.

When Ins is 100% (data is never deleted) and PNow is
100% (valid-time end is always equal to NOW), regions
representing transformed bitemporal data are indexed solely
by tree R1 in the 4-R. In tree R1, a rectangle of the trans-
formed query covers a huge area and therefore, during a
search, most of the accessed entries qualify for the result.
But tree R1 has low pagination (54%) and therefore the 4-R
index looses to the GR-tree which has a pagination of 71%
(see Figure 11(c)).

6. Conclusions

Almost none of the proposed indices for temporal data
support both now-relative valid time and transaction time,
which are accommodated by most of the temporal data
models and are natural and meaningful for many kinds of
applications. The straightforward R-tree based solution
to indexing now-relative bitemporal data, the maximum-
timestamp approach, is not effective. Another R-tree based
index, the GR-tree, employs a special structure and algo-
rithms to contend with now-relative valid time and transac-
tion time. Although having good performance, the GR-tree
is not currently available in any existing DBMSs.

This paper shows how efficient indexing of now-relative
bitemporal data can be achieved with little effort by imple-
menting a layer on top of a DBMS supporting R-trees. To
enable the use of R-trees, the proposed technique applies
transformations to bitemporal data regions. Four types of
bitemporal regions are distinguished, and the transformed
counterparts of the bitemporal regions of each of the four
types are stored in separate R � -trees. Each query is also
transformed into (up to) four separate queries, one for each
tree.

The proposed index, the 4-R index, may be seen as a
generalization of the 2-R index [12], where transformation
is used to support now-relative transaction time. In another
sense, the 4-R index is a special case of the GR-tree. The
insertion algorithm of the GR-tree separates bitemporal data
regions of different types into different nodes, achieving a
tree with groups of nodes storing bitemporal data regions of
the same kind. Thus, the 4-R index is an extreme special
case of the GR-tree, where such groups of nodes form four
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different trees.
Detailed performance experiments show that the search

performance of the 4-R index is comparable to that of the
GR-tree, in most cases not differing more than 25% from
the GR-tree. On the other hand, the 4-R index shows very
good, steady update performance, surpassing the GR-tree’s
update performance.

The performance experiments also offer insight into pos-
sible improvements of the 4-R index. Minimum bounding
rectangles in tree R2 that are unproportionally long in the
valid-time direction adversely affect its performance. In
contrast, because the transformed queries in R2 have rel-
atively long transaction-time extents, the same kind of ge-
ometry for minimum bounding rectangles should result in
less I/O during searches. The same observations hold for
tree R3.

One approach to achieving the desired minimum bound-
ing rectangles is to modify the split algorithms of the R � -
tree, but this would mean that “off-the-shelf” implemen-
tations of the R � -tree cannot be used. To preserve the
reusability of “off-the-shelf” technology, we are instead de-
veloping and experimenting with a number of the many
possible variations of the data and query transformations
presented in this paper, e.g., the transformation of the two-
dimensional intervals from trees R2 and R3 into three-
dimensional points and the accompanying query transfor-
mation.

The performance experiments used synthetically gener-
ated workloads to investigate the behavior of the indexing
techniques under different, controlled conditions, defined
by a number of controlled parameters. Experiments with
real-world workloads may shed new light on the relative
performance of the indices. In addition, the use of the in-
dexing techniques in data warehousing and mining scenar-
ios is a topic of future research.
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