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Abstract

Data warehouses as well as a wide range of other
databases exhibit a strong temporal orientation: it is im-
portant to track the temporal variation of data over sev-
eral months or years. In addition, databases often exhibit
append-only characteristics where old data is retained while
new data is appended. Performing joins efficiently on large
databases such as these is essential to obtain good over-
all query processing performance. This paper presents a
sort-merge-based incremental algorithm for time-oriented
data. While incremental computation techniques have
proven competitive in many settings, they also introduce a
space overhead in the form of differential files. For the tem-
poral data explored here, this overhead is avoided because
the differential files are already part of the database. In ad-
dition, data is naturally sorted, leaving only merging. The
incremental algorithm works in a partitioned storage en-
vironment and does not assume the availability of indices,
making it a competitor to sort-based and nested-loop joins.
The paper presents analytical as well as simulation-based
characterizations of the performance of the join.

1 Introduction

Many databases exhibit an append-only behavior [3].
This occurs when databases capture information about pro-
cesses. In data warehousing, business processes such as
sales or buys are often captured [8]. In scientific appli-
cations, physical, chemical, or, e.g., biological processes
are monitored [7]. Many applications, e.g., financial and
medical [14], are faced with accountability requirements
that translate into the requirement that all previously current
states of the database be retained, which, in turn, dictates an
append-only behavior. This paper concerns such databases.

A fundamental and costly operation in any large database,
e.g., in a data warehouse, is the join operation [13]. Its ba-
sic use is to meaningfully combine information distributed
over pairs of relations in the database. The cost of a join

is directly related to the size of the argument relations, and
even with sophisticated join algorithms and indexing tech-
niques, the worst-case cost isN �M , whereN andM are
the numbers of tuples in the argument relations.

Faced with an expensive operation and potentially very
large append-only relations, incremental computation tech-
niques deserve exploration. To compute a join, these tech-
niques assume the availability of the result of a previous
computation of the join as well as descriptions of the modifi-
cations to the argument relations in-between the time of the
previous computation and the current time. If these mod-
ifications are relatively small, incremental computation is
likely to be very efficient in comparison to recomputation
[9], [17], [16].

This paper presents two join algorithms for append-only
relations: a basic sort-merge-based algorithm and its incre-
mental version. The algorithms assume that the relations
have associated an interval-valued time attribute. Beyond
this distinguished attribute, no assumptions about the num-
bers of other attributes and their domains are made. For
example, additional time-valued attributes may be present.
The algorithms exploit the property that the relations in
many cases are sorted on their time attribute values. The
join predicate is the conjunction of an overlap predicate on
the time attribute values and any predicate on the remaining
attributes. Hence the only general competitor to our algo-
rithms is the nested-loop algorithm.

Incremental computation techniques have proven com-
petitive in many settings. However, they also introduce a
space overhead in the form of materialized results and differ-
ential files. For the append-only databases explored here, the
overhead of differential files is avoided because the differen-
tial files are already part of the database. Knowing the time
when the previously computed and stored result was com-
puted, the differential files can be extracted from the stored
relations. This makes incremental techniques particularly at-
tractive in our temporal setting. The incremental algorithm
works in a partitioned storage environment (e.g., [1], [23])
and does not assume the availability of indices.

The research on temporal joins can be characterized ac-
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cording to thereduction criteriaused in the algorithms and
by the techniques used for applying the reduction criteria.
The reduction criterion in a join is the aspect of the argu-
ment relations that is exploited to reduce the number of tu-
ple comparisons and thus to reduce the cost of the join. The
criteria are the transaction-time (TT), valid-time (VT), and
explicit join attributes (EA) of tuples, and their combina-
tions. Valid time captures when information is true in the
modeled reality, and transaction time captures when infor-
mation is current in the database [18]. The join techniques
include sort-merge, partition-based, nested-loop, and incre-
mental techniques [13]. Of these, the nested loop join ap-
plies no reduction criterion. Table 1 gives an overview of
research categorized by the above criteria.

Join Reduction criterion
technique TT VT VT+EA
Sort-Merge [12], this work, [6] [6] [21], [6]
Partition-based [20] [20],

[22], [11]
Nested Loop
Incremental this work

Table 1. Previous Work on Temporal Joins

Son and Elmasri [20] present partitioning-based algorithms
to compute the temporal Entity-join for valid and transac-
tion time. These algorithms utilize the Time index [5] to
partition the temporal relations to be joined. The algorithms
presented in this paper are not supported by performance
studies. Leung and Muntz [11] describe a partition-based
algorithm in a multiprocessor environment.

Soo et al. [22] introduce a partitioning-based algorithm
supporting valid time. Segev and Shoshani [21] present an
algorithm supporting valid time that assumes the argument
tuples to be sorted on their join attribute and then on the
start of their valid-time attribute, in that order. Both algo-
rithms are suitable for transaction time as well. However,
since the properties of transaction time are stricter than the
ones that apply to valid time, the algorithms tailored to valid-
time data generally leave room for improvement when used
for transaction-time data.

Leung and Muntz [12] present an algorithm that supports
transaction time. It is assumed that the relations are sorted
on the start of their transaction-time attribute. A partitioned
environment is not considered. Both Segev and Shoshani
[21] and Leung and Muntz [12] also describe their algo-
rithms in an abstract form without implementation details.
Performance studies are thus not reported.

Gunadhi and Segev [6] present sort-based algorithms for
joins of temporal relation with and without considering join
predicates on the non-temporal attributes. In this work, rela-
tions are sorted, depending on the type of join (i.e., only on
the temporal attribute, the explicit attribute, or both). Ana-

lytical cost formulas and performance studies are reported.
However, this work is limited to recomputation, does not
contend with partitioned storage, and does not consider the
special timestampnow.

The outline of the paper is as follows. Section 2 defines
the recomputation and join algorithms studied in the paper.
Section 3 describes the cost of the algorithms using analyt-
ical formulas, whereas Section 4 presents simulation-based
studies that characterize the performance of these join tech-
niques. Finally, Section 5 gives conclusions and directions
for future work.

2 Temporal Joins

In this section we define the temporal join, introduce the
partitioned storage scheme, and then present a recomputa-
tion, sort-based algorithm and its incremental version for
computing the join.

2.1 Temporal Joins and Partitioned Storage

While many temporal aspects of data may be of interest
to various applications, we simply make the assumption that
relation schemas have at least one time-interval attribute. In
addition, we assume that the tuples are inserted in the or-
der of the start times of their intervals. This ordering oc-
curs naturally in many situations, e.g., in data warehousing
where business processes are captured over time and in sci-
entific and monitoring applications where chemical, nuclear,
or, e.g., biological processes are captured.

We use a common 1NF tuple-timestamped data model
for the representation of temporal data. Tuples in a tempo-
ral relation have a set of attribute values and a timestamp.
We assume the underlying time-line to be partitioned into
minimal-duration intervals, termed chronons. The times-
tamp of a tuple is represented as a single time interval, de-
noted by inclusive starting and ending chronons. We will
assume temporal relational schemasR andS of the format

R = (A1; :::; An;T) andS = (B1; :::; Bm;T);

where theAi andBi are the explicit attributes, andT is the
interval-valued timestamp. We will useT` andTa to denote
start and end times of values of T.

Examples of temporal relation schemas are DeptLocation
= (Dept, Floor, T) and EmpDepartment = (Emp, Dept, T).
DeptLocation locates departments at various floors, whereas
EmpDepartment assigns employees to departments. Table 1
shows instances of the two schemas. In the examples, we
usenowas a special chronon denoting the present time [2].

Among the temporal aspects that one may associate with
data, the aspects oftransaction timeandvalid timeare the
most prominent. The valid time of a tuple denotes when



deptLocation
Dept Floor T

Shoe 1 1 - 2
Shoe 2 2 - 3
Sports 5 3 - 5
Toy 1 4 - 6
Sports 2 6 - now
Shoe 4 7 - now
Toy 5 7 - now

empDepartment
Emp Dept T
Bill Toy 2 - 5
Dana Sports 4 - 6
Siggi Toy 5 - now
Fox Sports 6 - now
Edgar Sports 7 - now
John Toy 9 - now

Figure 1. Temporal Relations

the information recorded by the attribute values of the tu-
ple is true in the modeled reality. Transaction time, on the
other hand, is system-maintained and captures when tuples
are current in the database. Capturing transaction time of-
fers an ideal foundation for supporting accountability and
trace-ability requirements.

The transaction time of a tuple is recorded by assigning
the time, it is inserted into the database, as the start time of
its interval. The end time is the (growing) current time until
the tuple is deleted. When that occurs, the time of deletion
is assigned to the interval end time. As a result, transaction-
time databases satisfy the sequential arrival-order property.

In summary, we assume that the time attribute has the se-
quentiality property of transaction time, but not necessarily
the semantics of it. Rather, it might as well be the case that a
natural process, such as incoming bank transactions, creates
relations having the properties of transaction time, but the
semantics of valid time.

Now, considering the join of temporal relations, letr and
s be instances of schemasR andS, respectively. To compute
the join ofr ands, tuples inr ands have to satisfy the join
conditionP (snapshot join), and their time intervals have to
overlap. The attribute values of the tuple resulting from two
qualifying tuples are the explicit attributes of the two tuples
and the overlap of the time intervals. An expression for a
temporal join using tuple relational calculus follows.

r 1TP s = fzn+m+2 j 9x 2 r 9y 2 s(P (x; y)^
z[A1; :::; An] = x[A1; :::; An]^
z[B1; :::; Bm] = y[B1; :::; Bm]^
z[T] = x[T] \ y[T]^
x[T] \ y[T] 6= 0)g

From the expression above, we can see that our join algo-
rithm does not requireT` andTa to be thesole temporal
attributes of the relation. Any of the explicit attributes can
be temporal, too. Our algorithms will work for any kind of
join predicateP . The join defined above is a natural gener-
alization of the conventional join, with join predicateP , on
non-temporal relations, in that it is snapshot reducible [19]
to this join.

We partition each temporal relation into a current and an
old partition. Tuples that fulfill the criterionTa = now, i.e.,

are current, are placed in the current partition. Consider here
the relations shown in Figure 1, where tuples withT` =
now, e.g., tuple “(Sports, 2, 6 -now),” go into the current
partition. As mentioned earlier, deleting a tuple is done by
assigning an end-transaction time differentfromnow to the
tuple. Tuples that are logically deleted are placed in the old
partition.

With this partitioning scheme, tuples in the current par-
tition remain ordered by increasingT`, as new tuples with
later begin times are appended to the relation. Tuples in the
old partition are ordered by increasingTa, as tuples are ap-
pended to the old partition when they are logically deleted
from the current partition, and the time of deletion is as-
signed toTa.

Using partitioned relations, a temporal join is computed
as the union of the four joins of the current partition relations
rcur andscur, and the old partitions,rold andsold.

r 1TP s = rcur 1
T
P scur [ rcur 1

T
P sold [

rold 1
T
P scur [ rold 1

T
P sold

2.2 Temporal Join Recomputation

We proceed to give a recomputation algorithm for com-
puting the join just defined.

The recomputation algorithm for the join comprises four
sub-join algorithms. The basic idea behind the sub-joins is
to exploit the orderings of the tuples with respect to their
time attribute values. This is similar to sort-merge joins
when relations are pre-sorted. However, the sub-joins dif-
fer from sort-merge algorithms in that the predicate on the
time attribute values is interval intersection, not equality.

Figure 2 visualizes the four sub-joins of the temporal join.
The tuples of the partitions are represented by their time in-
tervals. Time proceeds from left to right, and the dotted line
symbolizes the current time. Tuples are appended at the bot-
tom. In the joins, the tuples are always read from the bottom
to the top.

In the pseudo-code for the algorithms that follows, “BNL
loop” denotes the basic loop in a block-based nested loop
join [13], [4], with the additional property that conditions
may be added that express the skipping of tuples in the read-
ing of the relations. This abstraction concisely conveys the
principles at play in the actual Java implementation used in
the simulation studies to be described in Section 4.

BNL, rcur 1TP scur

Two tuples qualify for the join result if they satisfy the join
predicateP and if their time intervals overlap. When test-
ing two tuples from the current partitions, the overlap test is
omitted. As is customary, the smaller relation is the outer
relation in the algorithm (given below). We assume a buffer
of sizemax+2 blocks. One block is used for output, one is
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Figure 2. Partitioned Temporal Join

used for the inner relation, and the remainder is used for the
outer relation. Tuple variablestinner andtouter range over
the inner and outer relations, respectively.

bnlf
allocate
relouter = smaller relation;relinner = larger relation;
bu�erouter = max; bu�er inner = 1;

BNL loop
if P (touter; tinner) then add to result;

END; g

TupleSkip, rcur 1TP sold, rold 1TP scur

The algorithm computing the join of a current partition with
an old partition exploits the ordering of the current partition
on its interval start timeT`

cur and of the old partition on its
end timeTa

old. The current partition is the outer relation
and the old is the inner. The algorithm is given next and
explained in the following.

tupleSkipf
allocate
relouter = current relation;relinner = old relation;
bufferouter = 1; bufferinner = max;

BNL loop
if (P (touter; tinner) ^ overlap(touter [T]; tinner[T])) then

add to result;
if (touter[T`] > tinner [T

a]) then
skip rest of tuples inrelinner ;
(*proceed with the nextt 2 relouter*)

if (size(tuples read) > bu�er inner) then
allocate

bufferouter = max;bufferinner = 1;
END; g

The algorithm uses an aggressive buffer allocation strat-
egy and allocates the maximum buffer size for the inner re-
lation. The reason is that the part of the old partition that is
relevant for the join might fit in the buffer, even if the whole
relation does not. If, during the computation, further tuples
of the inner relation have to be read, the algorithm allocates
the maximum memory-size for the outer relation, thus re-
verting to normal nested-loop behavior.

For each tuple in the outer relation, the algorithm scans
the inner relation for matching tuples. As soon asT`

cur >
Ta

old is true, the scan continues at the beginning of the inner
relation for the next tuple in the outer relation. If for the last
tuple in the outer relation, the above condition is true, the
algorithm stops.

Consider the following example of the TupleSkip join.

Sports 2 6 - now
Toy 5 7 - now
Shoe 4 7 - now

1
T

P

Bill Toy 2 - 5
Dana Sports 4 - 6

Table 2 shows the reduction of the join load with this al-
gorithm. Tuple pairs that are inspected are marked by the
letter “i”, and pairs that join are marked by the letter “j”.
Unmarked pairs that are neither inspected nor join represent
the reduction over a nested loop join. (The join proceeds
from the bottom right towards the top left.)

deptLocationcur[T] empDepartment
old

[T]
2 - 5 4 - 6

6 - now i i, j
7 - now i
7 - now i

Table 2. Load Reduction with TupleSkip

BlockSkip, rold 1TP sold

The algorithm given next computes the join of two old par-
titions based on the ordering of the relations onTa.

blockSkipf
allocate
relouter = smaller relation;relinner = larger relation;
bufferouter = max;bufferinner = 1;

BNL loop
if (P (touter; tinner) ^

overlap(touter[T]; tinner [T])) then
add to result;

if (8touter 2 blockouter(touter [T
`] > tinner [T

a])) then
skip rest of tuples inrelinner ;
(*read the next block ofrelouter*)

END; g

The maximum buffer is allocated for the smaller outer re-
lation. Now, for each block in the outer relation, we read



through the inner relation. The algorithm proceeds with the
next block of the outer relation if a tuple read from the inner
relation precedesall tuples currently in the buffer from the
outer relation. The algorithm differs from the previous one,
for which the tuples in the outer relation are ordered onT`,
and the value ofTa is constant, i.e.,now.

As for the TupleSkip join, we consider an example of the
BlockSkip join.

Bill Toy 2 - 5
Dana Sports 4 - 6 1

T

P

Shoe 1 1 - 2
Shoe 2 2 - 3
Sports 5 3 - 5
Toy 1 4 - 6

Table 3 shows the reduction of the join load with this algo-
rithm. The block size for the outer relation is two tuples, and
the i’s and j’s have the same meaning as before.

empDepartmentold[T] deptLocationold[T]
1 - 2 2 - 3 3 - 5 4 - 6

2 - 5 i i i i, j
4 - 6 i i, j i

Table 3. Load Reduction with BlockSkip

The three algorithms described here allow us to compute
the four sub-joins and thus the temporal join. The three al-
gorithms also constitute the components of the incremental
temporal join algorithm.

2.3 Incremental Join Computation

Computing a join incrementally is possible if the result
of a previous computation of the same join is available. The
incremental strategy is most attractive if the join is costly
to recompute and if the changes to the underlying argument
relations since the most recent computation are small. For
example, this may apply to data warehouses, which are typ-
ically temporal and contain very large numbers of tuples,
making join computation expensive.

The goal when designing an incremental algorithm is to
maximize reuse of the previously computed result. Since we
do not physically delete tuples, all the tuples of the outdated
result will also appear in the newly computed one.

In the following, we describe the updates to an outdated
join result that are necessary to obtain the up-to-date result.
Figure 3(a) shows the joins necessary to recompute the join
resultres of the argument relationsr ands. The resultres
comprises the current partitionK and the old partitionI .

Figure 3(b) shows the operations necessary to incremen-
tally compute the new up-to-date join resultres 0 on the argu-
ment relationsr0 ands0, by maximally reusing the old result,
res. We first explain how the relationsr ands evolve intor0

ands0, then explain the computation ofres 0.
As time progresses, new tuples are added to the relations

r ands. The shaded parts of the boxes representing the rela-
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Figure 3. Overview of Incremental Join

tions in Figure 3(b) show the changes between the two com-
putations (at timest0 andt1). For relationr0, we see that the
tuple setse andg are added to the old partition. The sete
contains the tuples that were current att0, but were logically
deleted betweent0 andt1. The setg contains the tuples that
were inserted aftert0, and logically deleted betweent0 and
t1. Furthermore tuple setG0 is added to, and sete is deleted
from, the current partition. SetG0 contains the tuples that
were inserted aftert0 and remain current att1. The changes
described above apply similarly tos0.

Considering now the composition of the resultres 0, simi-
lar explanations apply. The resultres 0 comprises the current
partsK 0 andL0, as well as the outdated partsI 0 andJ 0. Part
K 0 represents the part of the result already computed att0,
which isK minus the set of tuplesk. This set consists of
all the tuples inK that derived from the setse andf of now



outdated tuples. PartL0 derives from the newly added tuples
in the argument relations. PartI 0 is identical toI , the old
partition of the outdated result. PartJ 0 derives from tuples
logically deleted aftert0.

Below, we derive the expression to computeres 0, reusing
the resultres. The naming of relations and parts of relations
is as depicted in Figure 3. The partitioned join of two re-
lationsr0 ands0 comprises four individual joins and can be
written as follows.

r0
1
T

P s0 = (r0

old [ r
0

cur) 1
T

P (s0

old [ s
0

cur)

= (r0

old 1
T

P s
0

old) [ (r0

old 1
T

P s
0

cur) [ (r0

cur 1
T

P s
0

old)| {z }
res0

old

[

(r0

cur 1
T

P s
0

cur)| {z }
res0cur

The objective is to transform this expression forres into an
equivalent expression that maximally reuses the components
of the outdated resultres 0. To separate these preexisting
components from the updated parts, we substituteA0 [ C 0

for r0old,E0 [G0 for r0cur,B
0 [D0 for s0old, andF 0 [H 0 for

s0cur (cf. Figure 3(b)). With each argument now consisting
of four partitions, we obtain sixteen joins. These are shown
in the first “column” in the derivation given next. The sec-
ond “column,” between the braces, gives equivalent reduced
expressions. The expressions after the braces to the right (in
the third “column”) provide some of the key properties used
in deriving the reduced expressions.

r0
1
T

P s0 =

(A0
1
T

P B0)[
	

= A 1T

P B
�
A0 = A;B0 = B

(A0
1
T

P (f [ h))[
(A0

1
T

P F 0)[
(A0

1
T

P H 0)[

9=
; = A 1T

P F

8<
:

F = F 0 [ f
(A0

1
T

P h)[
(A0

1
T

P H 0) = ;

((e [ g) 1T

P B0)[
(E0

1
T

P B0)[
(G0

1
T

P B0)[

9=
; = E 1

T

P B

8<
:

E = E0 [ e
(g 1T

P B0)[
(G0

1
T

P B0) = ;

(C0
1
T

P D0)[

(C0
1
T

P F 0) [ (C0
1
T

P H 0)[
	
= C0

1
T

P s0

cur

(E0
1
T

P D0) [ (G0
1
T

P D0)[
	
= r

0

cur 1
T

P D
0

| {z }
res0

old

(E0
1
T

P F 0)[
	

= (E 1
T

P F ) n k

8>>><
>>>:

E = E0 [ e
F = F 0 [ f
k = (e 1T

P F 0)[
(E0

1
T

P f)[
(e 1T

P f)

(E0
1
T

P H 0)[

(G0

1
T

P F 0) [ (G0

1
T

P H 0)
	
= G

0

1
T

P scur| {z }
res0cur

Using the reduced expressions above, six joins compute the
updated old partition,res 0old, and three joins compute the
updated current partition,res 0cur. In the derivation below,
we isolate the parts from these partitions already available
from the outdated result,res.

The three joins that form partI 0 of res 0old are already
available as partI . The remaining three joins in partJ 0

must be computed. The current partitionres 0cur is composed
of the partsK 0 andL0. PartK 0 is contained in the already
availableK = E 1

T
P F . To reuseK, we deriveK 0 by sub-

tracting the components of partk from K. For partL0 we
need to perform two join operations.

r0 1TP s0 =

(A 1TP B) [ (A 1TP F ) [ (E 1
T
P B)[

	
= I = I 0

(C 0
1
T
P D0) [ (C 0

1
T
P s0cur) [ (r0cur 1

T
P D0)[

	
= J 0| {z }

res0
old

(E 1
T
P F ) n k[

	
= K 0 = K n k

8<
:

k = e 1TP F 0[
E0
1
T
P f[

e 1TP f

(E0
1
T
P H 0) [ (G0

1
T
P scur)

	
= L0

| {z }
res0

cur

To incrementally compute the temporal joinr0 1TP s0, we
thus need to perform a total of eight joins. At first sight, this
might seem to be no improvement over the four joins nec-
essary to recompute the result. However, in the incremen-
tal computation, we reuse the old result, slightly updating
it. Depending on the outdatedness of the available outset,
each of the eight joins will involve at most one large rela-
tion. Such joins are efficient to compute.

Next, for the computation of the eight joins, we need not
read the entire stored relationsr0 ands0, but parts of them.
Relationsr ands are updated tor0 ands0, respectively, in
such a way that all parts used in the incremental compu-
tation, namelyC 0, D0, rcur, scur, E0, F 0, G0, andH 0 are
contained in blocks of tuples newly added to the stored re-
lations. Thus, if we know the timet0 at which the outdated
resultres was computed (which we do), we can obtain the
relations necessary to compute the new resultres 0 as parts
of stored relations by using conditional read operations. The
tuples ofe andf are mixed into theE0 andF 0 blocks in the
relationsr0cur ands0cur.

For the computation of the eight joins, we make use of
the algorithms described in the previous section. Below we
show a simplified algorithm for the incremental computation
of a temporal join.

incrf
add(I, BlockSkip(C 0

1
T
P D0));

add(I, TupleSkip(scur 1TP C 0));
add(I, TupleSkip(rcur 1TP D0));
subtract(K, TupleSkip(e 1TP F 0));
subtract(K, BNL(E0

1
T
P f ));

subtract(K, BNL(e 1TP f ));
add(K, BNL(E0

1
T
P H 0));

add(K, BNL(G0
1
T
P scur)) g;



The functionsubtract(set1, set2) deletes all elements from
set1 that also occur in set2, whereasadd(set1, set2) appends
all elements of set2 to set1. Thesubtractoperation can be
seen as an additional join operation, for which the result con-
sists of tuples in set1, but not in set2.

Having completed the design of the recomputation and
incremental temporal join algorithms, the next step is to gain
an understanding of their performance characteristics.

3 Analytical Cost Formulas

This section presents formulas for estimating the costs
of the algorithms presented in the previous section. Specif-
ically, the two following subsections give formulas for the
cases of recomputation and incremental computation. First,
some general assumptions are made.

In general, the cost of the joinr 1TP s consists of the cost
of input/output (IO) operations,CIO, plus the CPU cost,
CCPU . We focus on the IO cost and omit for simplicity
the CPU cost. Next, the IO cost includes the cost of read (R)
and write (W) operations,CR andCW , respectively. Again
for simplicity, we do not distinguish between sequential and
random IO operations. We expect most IO operations to be
sequential for all the algorithms. The costCW for writing
to disk is typically assumed to be identical for algorithms
computing the same results and is thus frequently ignored
when comparing the costs of different join algorithms. But
when comparing recomputation and incremental computa-
tion, this assumption does not hold, and we consequently
consider this cost.

3.1 Recomputation

We give formulas forCR, the disk read cost of the tem-
poral join algorithms, based on data characteristics including
tuple lifespans and relation lifespans. Thetuple lifespanof a
tuple is the duration of the tuple’s time interval. Therelation
lifespanof a relation is the duration of the interval from the
earliest start time of a tuple in the relation to the latest end
time of a tuple in the relation.

We assume tuples in the old partition of a relation have
the same (standard) lifespan and also the lifespans to beuni-
formly distributedover the lifespan of the partition. For the
current partition of a relation, where tuples end at the special
chrononnowand thus are still growing, these assumptions
imply that there are as many tuples inserted as there are tu-
ples deleted, and that the lifespan of the current partition is
identical to the standard tuple lifespan.

With these assumptions, we can develop a precise ana-
lytical cost formula that will serve as a good approximation
for more general cases. For example, the standard lifespan
may represent well a situation with an average lifespan and
tuples randomly distributed over the relation.

The cost of a temporal join for partitioned storage is the
sum of the costs of the four individual joins,rcur 1TP scur,
rcur 1

T
P sold, rold 1TP scur, androld 1TP sold.

The following formulas estimate the tuple readsCR in
blocks, wherem is the size of the main-memory buffer in
blocks, andjrj is the size of relationr in blocks. The func-
tions sel1(relold, relold) and sel2(relcur, relold) represent
the selectivity of the BlockSkip and the TupleSkip algo-
rithm, respectively.

CR = jrcurj+
jrcurj

m
jscurj+

jrcurj+
jrcurj

m
jsoldj � sel2(rcur ; sold) +

jroldj+
jroldj

m
jscurj � sel2(scur; rold) +

jroldj+
jroldj

m
jsoldj � sel1(rold; sold)

The cost of a partitioned computation without the selectivity
factors is in the range ofjrj to jrj + jsj higher than the cost
of the regular nested loop computation without partitioned
storage because we have to perform four joins instead of one
and thus also have to read each partition of the outer relation
twice. The cost isjrj higher in the case none of the relations
completely fit in the buffer, and isjrj+ jsj higher in the case
a relation (r or s) fits entirely. However, by exploiting the
orderedness properties of the relations, we can reduce the
costs of three of the four joins. This reduction is expressed
by the selectivity factors sel1 and sel2 in the cost formula.

To aid in estimating the selectivity factors for the Block-
Skip and TupleSkip algorithms, Figure 4 gives graphical il-
lustrations of the situations for these two algorithms. The
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Figure 4. (a) BlockSkip and (b) TupleSkip Joins

relations at the top of the figure are the outer relations in the
loops. In our case, those are the relationsrold andrcur. The
inner relations, in both casessold, are scanned sequentially
for each tuple in the outer relation.



The derivation of the cost formulas is based on propor-
tions using similar triangles. The sides of the triangles we
relate to each other are, horizontally, a time interval, and,
vertically, a measure for the number of tuples. We use these
proportions to illustrate the correspondence between time
and number of tuples, i.e., for a given time intervalI, start-
ing atnowand reachingx chronons into the past, we want to
know how many time intervals of the relation, and thus with
how many tuples,I overlaps. In the extended version of the
paper [15] we derive a formula that computes the number of
tuples that start before a given time point. Consider now the
time intervaltrtuple in the relationsold of Figure 4(a). This
interval overlaps with(trtuple)=(t

s
rel � tstuple) � jsoldj tuples

of sold. Using these proportions, we derive in the follow-
ing sections cost formulas for the selectivity factors sel1 and
sel2.

3.1.1 sel1, BlockSkip

Figure 4(a) shows two relationsrold andsold to be joined.
For each tuple inrold, all tuples fromsold that satisfyTa

s >
T`
r have to be read. In Figure 4(a), the right-most dotted

line shows this condition for the newest tuple inrold. Once a
tuple fromsold is read that does not satisfy this condition, the
remainder ofsold can be skipped for the tuple inrold. The
cost of the algorithm is given below. The formula is derived
in [15]. For relationsrold andsold, we denote the lifespans
of the relations bytrrel andtsrel, and the tuple lifespans by
trtuple andtstuple, respectively.

sel1 = 0:5 � (1 +
trtuple

tsrel � tstuple
) �

tsrel � tstuple � trtuple
trrel � trtuple

+

trrel � tsrel + tstuple + trtuple
trrel � trtuple

The formula is the sum of two parts. The first quantifies the
selectivity for the tuples 1 to(tsrel � tstuple � trtuple) in rold.
The last tuple is the first for which we have to read all tuples
in sold. In Figure 4(a), the left-most dotted line shows the
link between the end of the last tuple insold and the begin-
ning of the first overlapping tuple inrold. The second part
of the formula computes the “selectivity” of the remaining
tuples inrold, for which we have to read all tuples insold.

Assuming that both relations have identical tuple lifes-
pans,trtuple = tstuple = ttuple, and thatttuple � tsrel, the
expression for sel1 can be simplified to the following.

sel1 = (trrel + 2ttuple � 0:5 � tsrel)=(t
r
rel � ttuple)

As an example, assumetrrel = tsrel = 100 chronons and
ttuple = 1 chronon. These numbers mean that the relations
have equal lifespans and the tuple lifespan is small compared
to the relation lifespan. In this case, sel1 approaches 0.5. In
general, the shorter the tuple lifespanttuple compared to the

relation lifespantrrel, the smaller is sel1 and thus the cost for
computingrold 1TP sold.

3.1.2 sel2, TupleSkip

In the following we give the selectivity for the join of a cur-
rent partitionrcur and an old partitionsold using the Tu-
pleSkip algorithm (cf. Figure 4(b)). For the old partition
sold, we denote the lifespan of the relations bytsrel, and the
lifespan of a tuple bytstuple. In the case of the current rela-
tion, however, the tuple lifespan equals the relation lifespan,
denoted bytr. The formula below is derived in [15].

sel2 = (0:5 � tr)=(tsrel � tstuple)

To exemplify, lettr = tstuple = 10 chronons, andtsrel = 100
chronons. These numbers mean that the tuple life spans are
one tenth of the relation lifespan. In this casesel2 = 1

18
. In

general, the smallertr in relation totsrel, the smaller is sel2.
In the extreme case, sel2 approaches values close to 0.

3.2 Incremental Computation

The costs of reading (CR) and writing (CW ) tuples for the
incremental join algorithm (Section 2.3) stem from the costs
associated with the computations of the eight constituent
joins, in addition to the costs of adding and subtracting these
join results to and from the stored relations. The incremen-
tal join algorithm reuses the join algorithms that we have
considered.

For all eight joins, at least one of the joining relations
is expected to be small, thus yielding a relatively low cost
of computing each join. The cost of the add operations is
simply that of writing the tuples to file. The incremental al-
gorithm also incorporates the deletion of tuples (partk) from
the current partition of the old result (partK). This deletion
can be computed as a join with a predicate that returns tuples
that are inK, but not ink.

4 Performance Study

This section first explains the overall design and objec-
tives of the study, including data generation. It then pro-
ceeds to compare the recomputation algorithms and finally
compares recomputation with incremental computation. A
summary of the findings is included at the end.

4.1 General Considerations

Using the implementations of the join algorithms de-
scribed earlier in the paper, this section reports on
simulation-based experiments aiming at understanding the
performance characteristics of the proposed algorithms.

The studies aim to obtain insight on a total of three as-
pects. First, it is of interest to understand how the perfor-
mance of the nested-loop (NL) versus the sort-merge-based



(SMB) joins relate for varying main-memory sizes. Sec-
ond, the characteristics of the NL and SMB joins for varying
kinds of argument data are of interest. In particular, it is of
interest to learn for what kinds of data, the NL join outper-
forms the SMB join and vice versa. Third, it is relevant to
learn under what circumstances recomputation outperforms
incremental computation, and vice versa.

As the performance measure, we use the number of in-
put/output (IO) operations. The read operations encom-
pass random as well as sequential reads, with random reads
weighted with a factor of 10. For the comparisons of re-
computation algorithms, such as the NL and our SMB al-
gorithm, we do not consider write operations. However,
when comparing incremental computation with recomputa-
tion, the number of write operations will differ among algo-
rithms and are thus included in the performance measure.

The simulations in the study use different settings for var-
ious parameters, includingmain-memory sizeanddata char-
acteristics. The data characteristics considered include the
percentage of long-lived tuplesand thetuple length, both of
which affect the selectivity and thus the cost of a temporal
join. Table 4 presents the parameters, their units of mea-
surement, and their settings. Standard settings are indicated
using bold face. The first three parameters in the table are
fixed throughout the performance studies at their standard
values. For the remaining parameters, the setting are varied
in the experiments. (In experiments, if these are not men-
tioned, their standard settings are used.)

Parameter Unit Settings
Relation size tuples 20,000
Relation lifespan chronons 75,000
Distribution of uniform
intervals
Buffer size fraction of 1/1, 1/2, 1/4,

relation size 1/8,1/16, 1/32, 1/64
Tuple lifespan chronons 1.6k, 3.2k, 6.4k

12.8k, 25.6k
Number of long % of tuples 0, 10, 20, 30,
lived tuples 40, 60, 80
Outdatedness of chronons 0, 5, 15, 25, 35,
old result (incr.) from now 45, 55, 65

Table 4. Performance Study Parameters

To keep the experiments manageable while still obtain-
ing realistic results, we use relatively small relations of size
20,000 tuples, but then compensate by also assuming a small
block size, where one block corresponds to one tuple. Fol-
lowing these decisions, all sizes are reported in numbers of
tuples.

For the experiments we generate data using the TimeIT
software [10]. TimeIT is a system for testing temporal
database algorithms, and it contains a database generator
that generates interval timestamped temporal relations. Both

the positions of timestamps within the lifespan of a rela-
tion, as well as the duration of the timestamps can be se-
lected from several distributions, including uniform, nor-
mal, constant, and percentage breakdowns. As an exam-
ple of the latter, 25% of the timestamps’ start times may
be determined by a uniform distribution between 1000 and
10000 chronons, and 75% might then be normal distributed
with 5000 chronons as the mean; the durations of the tu-
ples would be specified by separate distributions. Explicit
attributes may be specified with similar distributions.

4.2 Comparing Recomputation Algorithms

In this section, we compare the SMB algorithm to a ver-
sion of its competitor, the nested-loop (NL) join. The NL
algorithm is not based on partitioned storage, so we do not
impose the cost of reading partitioned relations on the algo-
rithm. These experiments should show under what circum-
stances the partition-based algorithm (SMB) can outperform
the non-partitioned competitor (NL). We compare the algo-
rithms under varying parameter settings, specifically, using
varying main memory buffer sizes, varying percentages of
long-lived tuple timestamps, and varying timestamp lengths.

4.2.1 Sensitivity to Main Memory Buffer Size

An important performance factor is the size of the main
memory available for the join. In the present experiment
we compare the NL and SMB joins under varying main-
memory buffer sizes. The buffer sizes are specified in frac-
tions of the size of one relation. We use 1/1, 1/2, 1/4, 1/8,
1/16, and 1/32 as main memory buffer sizes in the experi-
ment. All other parameters assume their standard values, as
shown in Table 4. Figure 5 presents the results.

Figure 5. NL Versus SMB Join for Varying
Buffer Sizes

The experiments show that the SMB join yields better
performance for small main-memory sizes. In these cases,



the SMB join’s reduction criteria are effective. However,
when one relation fitting entirely in memory, the NL join
performs better due to the additional reading cost for a join
in a partitioned storage environment (cf. Section 3.1).

4.2.2 Effects of Long-Lived Tuples

An aspect of data that typically affects the performance of
a temporal join is the fraction of tuples with an untypically
long interval timestamp. For our experiments, we choose a
duration of 10 times the average of standard tuples for long-
lived tuples. Figures 6(a) and (b) show the performance of
the NL and SMB join under varying percentages (10% to
80%) of long-lived tuples. In addition, we conducted these
experiments with two different buffer sizes.

(a) buffer size 1/16 of relation size

(b) buffer size 1/2 of relation size

Figure 6. NL Versus SMB Join for Varying Per-
centages of Long-Lived Tuples

The results show that the performance of the SMB al-
gorithm degrades with increasing percentage of long-lived
tuples, whereas the NL algorithm remains unaffected. The
effect of long-lived tuples on the degradation of the join per-
formance seems weaker in the case of large buffer sizes. In-
creasing the tuple lifespan means that the algorithm is forced
to read more tuples. The IO cost associated with this be-

comes relatively smaller as the buffer size increases. Thus,
with a large buffer available, an increased number of long-
lived tuples has a much smaller effect on the join perfor-
mance.

4.2.3 Effects of Varying Tuple Lifespans

In the previous section, we varied the number of long-lived
tuples relative to the total number of tuples in the relation.
Another possibility is to vary the lifespan of all tuples. The
results obtained when doing this are shown in Figure 7.

Figure 7. NL Versus SMB Join for Varying Tu-
ple Lifespans

It can be seen that the performance of the SMB join de-
grades with increasing tuple lifespan. This result matches
the analytical studies in Section 3 that show that the selec-
tivity factors sel1 and sel2 approach 1 as the tuple lifespan
increases. In the case that the number of outdated tuples is
rather large compared to the number of current tuples, the
cost of the whole join operation is mostly determined by the
BlockSkip algorithm. Thus, if the selectivity factor for this
join, sel1, converges to 1, the cost of the whole join con-
verges to the cost of the equivalent NL join.

4.3 Incremental Computation Versus Recomputa-
tion

The experiments reported here aim to explore the break-
even point between the incremental and SMB joins. The
degree of outdatedness of the outset for an incremental join
fundamentally affects the relative performance of the two,
so we adopt the outdatedness of the outdated result used in
the incremental computation as the parameter that is varied.
We assume that the incremental join (and the recomputation
join) take place at the current time. In Figure 8, thex-axis in-
dicates the outdatedness of the outdated result by giving the
time at which the outdated result was computed in numbers
of chronons before the current time where the incremental
computation is performed. We conducted our experiments
for buffer sizes of 1/1, 1/8, and 1/16 of the relation size.



Figure 8. Recomputation Versus Incremen-
tal Computation Using Varying Outdatedness
and Buffer Sizes

In the performance measurements, we encountered the
situation that the outdated current partition (K) of the result
(cf. thesubtract() operation in Section 2.3) did not contain
any current tuples, and thus was completely moved to the
old partition of the result.

The break-even point between incremental computation
and recomputation in Figure 8 is at about 37,000, 50,000,
and 60,000 chronons for the buffer sizes of 1/1, 1/8, and
1/16, respectively. This means when an old result was com-
puted at a time corresponding to chronon 38,000, 25,000,
and 15,000, respectively, or later, incremental computation
is better than recomputation.

Viewing these results in the light of the experiments in
Section 4.2.1, one might expect incremental computation to
always be better than recomputation. This is not always
so. To incrementally compute a join we need to compute
eight individual joins, and the results of these joins need to
be added to or subtracted from existing relations (cf. Sec-
tion 2.3). The costs of these operations can be higher than
the cost of recomputation.

Increasing the buffer size also disfavors the incremental
computation, since larger buffer size generally yields a lower
join cost (cf. Section 4.2.1).

4.4 Summary of Performance Study

The sort-merge based (SMB) algorithm outperforms the
nested-loop (NL) algorithm, except when main memory is
so large that an entire relation fits in memory.

The temporal relation parameters of tuple lifespan and
percentage of long-lived tuples generally have a smaller im-
pact on the performance of the SMB algorithm than does the
main-memory buffer size.

We compared the performance of the SMB algorithm to
its incremental version, varying both the outdatedness of the

argument join result in the incremental computation and the
buffer size. The studies favor the incremental algorithm for
the cases of low to modest outdatedness. The degree of
outdatedness necessary to competitively perform an incre-
mental computation varies with the main memory size. The
smaller the buffer size, the more outdated a result can be
while incremental computation being superior to recompu-
tation. Generally, the results suggest that incremental com-
putation may be applied in many situations where recompu-
tation would be a waste of resources.

5 Conclusions and Future Work

The paper formally defines a temporal join of two tem-
poral relations and extends this definition to apply also to a
partitioned storage environment. The paper then proceeds
to define and study the characteristics of two new join algo-
rithms for temporal relations with append-only characteris-
tics, namely a sort-merge based algorithm and its incremen-
tal version.

The algorithms assume that the relations have associated
an interval-valued time attribute. Beyond this distinguished
attribute, no assumptions about the numbers of other at-
tributes and their domains are made. The join predicate is
the conjunction of an overlap predicate on the time attribute
values and an arbitrary predicate on the remaining attributes.
The algorithms work in a partitioned-storage environment,
which is realistic for very large relations. That is, current
and outdated tuples of a temporal relation are stored sepa-
rately in a current and an old partition, respectively.

The paper includes analytical cost formulas for the joins
and also reports on simulation-based performance studies.
The performance studies show the sort-based algorithm to
be an improvement over the only existing join algorithm
that contends with the same class of predicates, namely the
nested-loop join. Only in the case of large buffer sizes is the
nested-loop algorithm competitive. This is due to the addi-
tional reading cost for the join of partitioned relations (four
sub-joins), as opposed to the nested-loop join of unparti-
tioned relations (one join). This indicates that the sort-based
algorithm is an overall good replacement for the nested loop
algorithm for the data considered in this paper.

The included evaluation of the performance of the incre-
mental algorithm with respect to the recomputation algo-
rithm shows the incremental algorithm to be superior when
the available outset for the computation is outdated to a
low or modest degree. The maximum degree of outdat-
edness possible, while still having the incremental algo-
rithm be competitive, grows with decreasing main mem-
ory size. While incremental computation techniques have
proven competitive in many settings, they also introduce a
space overhead in the form of differential files. For the tem-
poral data explored here, however, this overhead is avoided



because the differential files are already part of the database.
This research points to several directions for future re-

search. When performing incremental computation, previ-
ous join results must be cached for future use. Assuming
that only limited disk space is available for caching, caching
should be selective. Additional research in caching policies
and cache replacement policies is warranted. Next, spa-
tiotemporal data in many cases arrive at the database in a
time-ordered fashion, thus meeting the assumptions made in
this paper. Extending the join algorithms proposed here to
better support spatiotemporal data, or devising entirely new
algorithms, is a relevant and interesting direction. The lack
of good spatiotemporal indices adds to the relevance of this
direction. Finally, the result of an incremental computation
is sorted if it is cached for use in a later join computation.
The optimal integration of this sorting into the algorithms
remains to be explored.
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