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Abstract is directly related to the size of the argument relations, and
even with sophisticated join algorithms and indexing tech-
Data warehouses as well as a wide range of othemiques, the worst-case costié x M, whereN andM are
databases exhibit a strong temporal orientation: it is im- the numbers of tuples in the argument relations.
portant to track the temporal variation of data over sev-  Faced with an expensive operation and potentially very
eral months or years. In addition, databases often exhibitarge append-only relations, incremental computation tech-
append-only characteristics where old data is retained whileniques deserve exploration. To compute a join, these tech-
new data is appended. Performing joins efficiently on largeniques assume the availability of the result of a previous
databases such as these is essential to obtain good ovetomputation of the join as well as descriptions of the modifi-
all query processing performance. This paper presents &ations to the argument relations in-between the time of the
sort-merge-based incremental algorithm for time-orientedprevious computation and the current time. If these mod-
data. While incremental computation techniques havefications are relatively small, incremental computation is
proven competitive in many settings, they also introduce dikely to be very efficient in comparison to recomputation
space overhead in the form of differential files. For the temq9], [17], [16].
poral data explored here, this overhead is avoided because Thjs paper presents two join algorithms for append-only
the differential files are already part of the database. In ad-rg|ations: a basic sort-merge-based algorithm and its incre-
dition, data is naturally sorted, leaving only merging. The mental version. The algorithms assume that the relations
incremental algorithm works in a partitioned storage en- have associated an interval-valued time attribute. Beyond
vironment and does not assume the availability of indicesyhjs distinguished attribute, no assumptions about the num-
making it & competitor to sort-based and nested-loop joinspers of other attributes and their domains are made. For
The paper presents analytical as well as simulation-basegxample, additional time-valued attributes may be present.
characterizations of the performance of the join. The algorithms exploit the property that the relations in
many cases are sorted on their time attribute values. The
join predicate is the conjunction of an overlap predicate on
1 Introduction the time attribute values and any predicate on the remaining
attributes. Hence the only general competitor to our algo-

Many databases exhibit an append-only behavior [3]fithms is the nested-loop algorithm.
This occurs when databases capture information about pro- Incremental computation techniques have proven com-
cesses. In data warehousing, business processes suchpg$tive in many settings. However, they also introduce a
sales or buys are often captured [8]. In scientific appli-Space overhead in the form of materialized results and differ-
cations, physical, chemical, or, e.g., biological processegntial files. For the append-only databases explored here, the
are monitored [7]. Many applications, e.g., financial andoverhead of differential files is avoided because the differen-
medical [14], are faced with accountability requirementstia| files are already part of the database. Knowing the time
that translate into the requirement that all previously currenwhen the previously computed and stored result was com-
states of the database be retained, which, in turn, dictates dwted, the differential files can be extracted from the stored
append-only behavior. This paper concerns such databasetglations. This makes incremental techniques particularly at-

A fundamental and costly operationin any large databasdractive in our temporal setting. The incremental algorithm
e.g., in a data warehouse, is the join operation [13]. Its baworks in a partitioned storage environment (e.g., [1], [23])
sic use is to meaningfully combine information distributedand does not assume the availability of indices.
over pairs of relations in the database. The cost of a join The research on temporal joins can be characterized ac-
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cording to thereduction criteriaused in the algorithms and lytical cost formulas and performance studies are reported.
by the techniques used for applying the reduction criteriaHowever, this work is limited to recomputation, does not
The reduction criterion in a join is the aspect of the argu-contend with partitioned storage, and does not consider the
ment relations that is exploited to reduce the number of tuspecial timestampow.

ple comparisons and thus to reduce the cost of the join. The The outline of the paper is as follows. Section 2 defines
criteria are the transaction-time (TT), valid-time (VT), and the recomputation and join algorithms studied in the paper.
explicit join attributes (EA) of tuples, and their combina- Section 3 describes the cost of the algorithms using analyt-
tions. Valid time captures when information is true in theical formulas, whereas Section 4 presents simulation-based
modeled reality, and transaction time captures when inforstudies that characterize the performance of these join tech-
mation is current in the database [18]. The join techniquesiques. Finally, Section 5 gives conclusions and directions
include sort-merge, partition-based, nested-loop, and incrder future work.

mental techniques [13]. Of these, the nested loop join ap-

plies no reduction criterion. Table 1 gives an overview of 5 Temporal Joins

research categorized by the above criteria.

In this section we define the temporal join, introduce the

Join Reduction criterion ..
technique T VT VTEA partltloned storage scheme, angl then present a recpmputa-
Sort-Merge [12], this work [6] | [6] 211, [6] tion, soirt-base'd .algorlthm and its incremental version for
Partition-basefi [20] [20], computing the join.

[22], [11]
Nested Loop 2.1 Temporal Joins and Partitioned Storage
Incremental this work

. ) While many temporal aspects of data may be of interest
Table 1. Previous Work on Temporal Joins to various applications, we simply make the assumption that

) o ] relation schemas have at least one time-interval attribute. In
Son and Elmasri [20] present partitioning-based algorithms, ygition, we assume that the tuples are inserted in the or-

to compute the temporal Entity-join for valid and transac-qer of the start times of their intervals. This ordering oc-
tion time. These algorithms utilize the Time index [5] 10 ¢yrs naturally in many situations, e.g., in data warehousing
partition the temporal relations to be joined. The algorithmshere husiness processes are captured over time and in sci-
presented in this paper are not supported by performancg,ific and monitoring applications where chemical, nuclear,
studies. Leung and Muntz [11] describe a parnuon—base%r, e.g., biological processes are captured.
algorithm in a multiprocessor environment. _ We use a common 1NF tuple-timestamped data model
Soo et al. [22] introduce a partitioning-based algorithmsoy the representation of temporal data. Tuples in a tempo-
supporting valid time. Segev and Shoshani [21] present apy) relation have a set of attribute values and a timestamp.
algorithm supporting valid time that assumes the argumenjye assume the underlying time-line to be partitioned into
tuples to be sorted on their join attribute and then on theninimal-duration intervals, termed chronons. The times-
start of their valid-time attribute, in that order. Both algo- tamp of a tuple is represented as a single time interval, de-
rithms are suitable for transaction time as well. Howevergted by inclusive starting and ending chronons. We will
since the properties of transaction time are stricter than thgssyme temporal relational schenfaands of the format
ones that apply to valid time, the algorithms tailored to valid-
time data generally leave room for improvement when used R=(Ai,...,A,,T)andS = (By, ..., By, T),
for transaction-time data.
Leung and Muntz [12] present an algorithm that supportsvhere thed; and B; are the explicit attributes, aril is the
transaction time. It is assumed that the relations are sorteigterval-valued timestamp. We will ug¢™ andT ™ to denote
on the start of their transaction-time attribute. A partitionedstart and end times of values of T.
environment is not considered. Both Segev and Shoshani Examples of temporal relation schemas are DeptLocation
[21] and Leung and Muntz [12] also describe their algo-= (Dept, Floor, T) and EmpDepartment = (Emp, Dept, T).
rithms in an abstract form without implementation details.DeptLocation locates departments at various floors, whereas
Performance studies are thus not reported. EmpDepartment assigns employees to departments. Table 1
Gunadhi and Segev [6] present sort-based algorithms fahows instances of the two schemas. In the examples, we
joins of temporal relation with and without considering join usenowas a special chronon denoting the present time [2].
predicates on the non-temporal attributes. In this work, rela- Among the temporal aspects that one may associate with
tions are sorted, depending on the type of join (i.e., only ordata, the aspects tfansaction timeandvalid timeare the
the temporal attribute, the explicit attribute, or both). Ana-most prominent. The valid time of a tuple denotes when



deptLocation empDepartment are current, are placed in the current partition. Consider here

Dept | Floor | T Emp | Dept T the relations shown in Figure 1, where tuples with =
Shoe | 1 1-2 Bil |Toy |2-5 e.g., tuple “(Sports, 2, 6 Row),” go into the current
Shoe | 2 2-3 Dana | Sports| 4-6 now, .., Up'e 1Sports, 2, » 9 .

— partition. As mentioned earlier, deleting a tuple is done by
Sports| 5 3-5 Siggi | Toy 5-now L . ; .
T assigning an end-transaction time differentfroowto the
oy 1 4-6 Fox Sports| 6 -now . .
Sports | 2 6 - now Edgar | Sports| 7 - now tuplg: Tuples that are logically deleted are placed in the old
Shoe | 4 7 -now John | Toy | 9-now| Partition. - '
Toy 5 7 - now With this partitioning scheme, tuples in the current par-

tition remain ordered by increasiriy, as new tuples with
Figure 1. Temporal Relations later begin times are appended to the relation. Tuples in the

old partition are ordered by increasiiy', as tuples are ap-

the information recorded by the attribute values of the U o geq to the old partition when they are logically deleted
ple is true in the modeled reality. Transaction time, on th

) =G %rom the current partition, and the time of deletion is as-
other hand, is system-maintained and captures when tupl ned toT".

are currgnt in the datgbase. Captur.ing transactioq 'time of- Using partitioned relations, a temporal join is computed
fers an ideal foundation for supporting accountability andas the unjon of the four joins of the current partition relations

trace-ability requirements. _ . Tewr aNdsey,, and the old partitions;,;; ands,q.
The transaction time of a tuple is recorded by assigning

the time, it is inserted into the database, as the start time of r XL s = reyr XE S0y Urewr XE 550 U
its interval. The end time is the (growing) current time until Totd X5 Seur UTora X5 S04
the tuple is deleted. When that occurs, the time of deletion
is assigned to the interval end time. As a result, transactior2.2  Temporal Join Recomputation
time databases satisfy the sequential arrival-order property.
In summary, we assume that the time attribute has the se- \We proceed to give a recomputation algorithm for com-
quentiality property of transaction time, but not necessarilyputing the join just defined.
the semantics of it. Rather, it might as well be the case thata The recomputation algorithm for the join comprises four
natural process, such as incoming bank transactions, creatégh-join algorithms. The basic idea behind the sub-joins is
relations having the properties of transaction time, but theo exploit the orderings of the tuples with respect to their
semantics of valid time. time attribute values. This is similar to sort-merge joins
Now, considering the join of temporal relations,#ednd  when relations are pre-sorted. However, the sub-joins dif-
s be instances of schem&sandS, respectively. To compute fer from sort-merge algorithms in that the predicate on the
the join ofr ands, tuples inr ands have to satisfy the join  time attribute values is interval intersection, not equality.
conditionP (snapshot join), and their time intervals have to  Figure 2 visualizes the four sub-joins of the temporal join.
overlap. The attribute values of the tuple resulting from twoThe tuples of the partitions are represented by their time in-
qualifying tuples are the explicit attributes of the two tuplestervals. Time proceeds from left to right, and the dotted line
and the overlap of the time intervals. An expression for asymbolizes the current time. Tuples are appended at the bot-

temporal join using tuple relational calculus follows. tom. In the joins, the tuples are always read from the bottom
to the top.
r XL s ={zntm*2 | Jp er Iy e s(P(z,y)A In the pseudo-code for the algorithms that follonBNL
z[Ay, ., Ap] = 2[Ar, ., Ap]A loop” denotes the basic loop in a block-based nested loop
2[By, ..., By]) = y[B1, ..., Bp]A  join [13], [4], with the additional property that conditions
z[T] = z[T] Nny[T]A may be added that express the skipping of tuples in the read-
z[T]Nny[T] #0)} ing of the relations. This abstraction concisely conveys the

. o principles at play in the actual Java implementation used in
From the expression above, we can see that our join alggne simulation studies to be described in Section 4.
rithm does not requird™ andT™ to be thesoletemporal

attributes of the relation. Any of the explicit attributes can
be temporal, too. Our algorithms will work for any kind of
join predicateP. The join defined above is a natural gener- Two tuples qualify for the join result if they satisfy the join
alization of the conventional join, with join predicak® on  predicateP and if their time intervals overlap. When test-
non-temporal relations, in that it is snapshot reducible [19]ng two tuples from the current partitions, the overlap test is
to this join. omitted. As is customary, the smaller relation is the outer
We partition each temporal relation into a current and arrelation in the algorithm (given below). We assume a buffer
old partition. Tuples that fulfill the criteriof ™ = now, i.e.,  of sizemax +2 blocks. One block is used for output, one is

BNL: Teur Ng Scur



The algorithm uses an aggressive buffer allocation strat-

o < Sy — egy and allocates the maximum buffer size for the inner re-
— lation. The reason is that the part of the old partition that is
[timg  now relevant for the join might fit in the buffer, even if the whole
_— — relation does not. If, during the computation, further tuples
— i H of the inner relation have to be read, the algorithm allocates
L Four " p Sold the .maximum memory-size for the puter relation, thus re-
verting to normal nested-loop behavior.
For each tuple in the outer relation, the algorithm scans
— the inner relation for matching tuples. As soonHBs,,. >
i F oid N; Seur — T}, is true, the scan continues at the beginning of the inner
e — relation for the next tuple in the outer relation. If for the last
tuple in the outer relation, the above condition is true, the
i 1 algorithm stops.
— H Consider the following example of the TupleSkip join.
— I old N; Sog H—— 9 P P PJ
Sports| 2 | 6-now , Bil Toy 575
Toy 5| 7-now | Xp
. . . Dana | Sports| 4-6
Figure 2. Partitioned Temporal Join Shoe | 4 | 7-now

used for the inner relation, and the remainder is used for théable 2 shows the reduction of the join load with this al-
outer relation. Tuple variabl€s,,.., andt,.;., range over gorithm. Tuple pairs that are inspected are marked by the

the inner and outer relations, respectively. letter “i", and pairs that join are marked by the letter “j".
Unmarked pairs that are neither inspected nor join represent

bk the reduction over a nested loop join. (The join proceeds
allocate from the bottom right towards the top left.)

relyuier = Smaller relationyel;, .- = larger relation;

buffer ,ier = max; buffer,, ... = 1; deptLocation,, .[T] || empDepartment,;,[T]
BNL loop 2.5 1-6

if P(touter, tinner) then add to result; 6 - now [ i
END; } 7 - now i

7 - now i

TupleSkip, reur ME Sota: Tota Mp Scur Table 2. Load Reduction with TupleSkip

The algorithm computing the join of a current partition with
an old partition exploits the ordering of the current partition
on its interval start timd", . and of the old partition on its
end timeT},. The current partition is the outer relation The algorithm given next computes the join of two old par-
and the old is the inner. The algorithm is given next andtitions based on the ordering of the relationslbh

explained in the following.

BlockSKip, 7ota X5 Sotd

blockSkip{
tupleSkig{ allocate
allocate reluier = SMaller relationyel;, ..., = larger relation;
relouter = Current relationtel; ., = old relation; buffer, ., = max;buffer, ... =1;
buffer ... = 1; buffer,,,,,.,. = max; BNL loop
BNL loop if (P(touter,tinner) A
if (P(touter, tinner) A Overlap(touter[T]; tinner[T])) then overlap (touter [T], tinner[T])) then
add to result; add to result;
|f (touter[TF] > tinneT[TA]) then |f (Vtouter € blOCkouter(touter[TF] > tinneT[TA])) then
skip rest of tuples imel;nner; skip rest of tuples imel;pner;
(*proceed with the next € relyyier*) (*read the next block ofel,yier*)
if (size(tuples reayl> buffer;,,,.,) then END; }
allocate
buffer = max;buffer, =1; The maximum buffer is allocated for the smaller outer re-

outer inner

END; } lation. Now, for each block in the outer relation, we read



through the inner relation. The algorithm proceeds with the
next block of the outer relation if a tuple read from the inner
relation precedeall tuples currently in the buffer from the
outer relation. The algorithm differs from the previous one,
for which the tuples in the outer relation are orderedon E Cur
and the value o is constant, i.e now.
As for the TupleSkip join, we consider an example of the \ / Join
BlockSkip join. res

Shoe

Bill Toy 2-5 + | Shoe
X

Dana | Sports| 4-6 P | Sports

Toy

I old I = (AMB)U (A F)U (B¢ B)

NGNS

K Cur K= (ExF)

Table 3 shows the reduction of the join load with this algo-
rithm. The block size for the outer relation is two tuples, and (a) partitioned temporal join &
the i's and j's have the same meaning as before.

r;\¢1 S:\d
empDepartment,;;[T] deptLocation,;;[T] A=A A o B B=8B
1-2]2-3[3-5[4-6 old
- - - — D D' =fuh
2-5 i [ i i, J C=eug C :
4-6 i ij i — e
****** e —F F = F\f
. . . E=Ee \E'|------F----- Cur
Table 3. Load Reduction with BlockSkip cr | == P
) N Uihis] (RSt H'  H=aHh
G =sG\g G'|------=-----
The three algorithms described here allow us to compute am
the four sub-joins and thus the temporal join. The three al- s6] N\ »Z Join
gorithms also constitute the components of the incremental res,
temporal join algorithm. | o
Old
2.3 Incremental Join Computation 7 = (C'uD) U(C'XF) U(C'"H) U
(E'’XD") U(G'® D)
Computing a join incrementally is possible if the result res.,
of a previous computation of the same join is available. The k[T b s k= K e L @ U (8¢ 1)
incremental strategy is most attractive if the join is costly Cur
to recompute and if the changes to the underlying argument o L'=(G'xF) U(G' mH) U(E xH)
relations since the most recent computation are small. For (b) incremental join at,
example, this may apply to data warehouses, which are typ-
ically temporal and contain very large numbers of tuples, Figure 3. Overview of Incremental Join

making join computation expensive.

The goal when designing an incremental algorithm is totions in Figure 3(b) show the changes between the two com-
maximize reuse of the previously computed result. Since weutations (at timeg, andt,). For relation”’, we see that the
do not physically delete tuples, all the tuples of the outdateduple setse andg are added to the old partition. The set
result will also appear in the newly computed one. contains the tuples that were currentatbut were logically

In the following, we describe the updates to an outdatedleleted betweety andt,. The sey contains the tuples that
join result that are necessary to obtain the up-to-date resulvere inserted aftef,, and logically deleted betweep and
Figure 3(a) shows the joins necessary to recompute the joif. Furthermore tuple s&t’ is added to, and setis deleted
resultres of the argument relationsands. The resultres  from, the current partition. Se&’ contains the tuples that

comprises the current partitidid and the old partitiord. were inserted aftef, and remain current @ . The changes
Figure 3(b) shows the operations necessary to incremerlescribed above apply similarly 6.
tally compute the new up-to-date join restdt’ on the argu- Considering now the composition of the restit’, simi-

ment relations’ ands’, by maximally reusing the old result, lar explanations apply. The resuits’ comprises the current
res. We first explain how the relationsands evolve intor’ partsK’ andL’, as well as the outdated paftsand./’. Part
ands’, then explain the computation ods’. K' represents the part of the result already computegl, at

As time progresses, new tuples are added to the relationghich is K minus the set of tuples. This set consists of
r ands. The shaded parts of the boxes representing the relall the tuples inK that derived from the setsand f of now



outdated tuples. Paft derives from the newly added tuples ~ The three joins that form patt’ of res!,, are already
in the argument relations. Pait is identical tol, the old available as parf. The remaining three joins in past
partition of the outdated result. Paft derives from tuples must be computed. The current partities’. . is composed
logically deleted aftet,. of the partsK’ andL’. PartK' is contained in the already

Below, we derive the expression to comput€, reusing  availableK = E XL F. To reusek’, we deriveK’ by sub-
the resultres. The naming of relations and parts of relationstracting the components of partfrom K. For partL’ we
is as depicted in Figure 3. The partitioned join of two re-need to perform two join operations.

lationsr’ ands’ comprises four individual joins and can be

written as follows. r' XL s =
T, Ng "= (T(I)lduréur) Mg (s;lduslcur) (A N; B)U(A Ng F)U(E N; B)U } :I:I’
= \(T:)ld N; s;ld) U (T:)ld N; Sz:ur) U (Téur Mg si)ld) U N (Cl N; DI) U (Cl N; Slcur) U (Téur N; DI)U } = ‘]IJ
T "ot Te;’:nld
(Téur I><]P S,cur) k =€ Ng FIU
%,—/
(EWEF)\kU } =K' =K\k{  B'ME fU
o . : . eXp f
The objective is to transform this expression fesinto an (B' W5 H') U (G XL 5. } — I
equivalent expression that maximally reuses the components P P g _
of the outdated resultes’. To separate these preexisting res’,,
components from the updated parts, we substitite) C’
forrg,, E' UG forr,,., B"U D' for s, andF" U H' for To incrementally compute the temporal joinx% ', we

scyr (CF. Figure 3(b)). With each argument now consisting ihs need to perform a total of eight joins. At first sight, this
of four partitions, we obtain sixteen joins. These are Showr?night seem to be no improvement over the four joins nec-

in the first “column” in the derivation given next. The sec- : :
ond “column,” between the braces, gives equivalent reduce ssary to regompute the result. However, n the Incremen-
ﬁl computation, we reuse the old result, slightly updating

expressions. The expressions after the braces to the right (

the third “column”) provide some of the key properties used!l: Depending on the outdatedness of the available outset,
in deriving the reduced expressions. each of the eight joins will involve at most one large rela-

tion. Such joins are efficient to compute.
Next, for the computation of the eight joins, we need not
read the entire stored relation'sands’, but parts of them.

r' XE s =
A'™E B')U } =AXE B { A=A B =B

(
(A" Xp (fUR)U F=FUf Relationsr ands are updated te’ ands’, respectively, in
(4’ M% F')u =AM F (A Ng h)u such a way that all parts used in the incremental compu-
(A" 5 H')U (A"Xp H') =0 tation, namelyC’, D', 7eur, Seur, E', F', G', andH' are
((eU g) X5 B')U E=EUe contained in blocks of tuples newly added to the stored re-
(E' X} B')U =ENX}, B (9 X% B")U lations. Thus, if we know the tim& at which the outdated
(G" X5 B')U (G'™p B) =1 resultres was computed (which we do), we can obtain the
(C' X3 D')U relations necessary to compute the new resusit as parts
(C"XE F)U(C'WE H)U | =C" XE s, of stored relations by using conditional read operations. The
(E' X3 D')U(G'XE D)W } =rl,, Xp D' tuples ofe and f are mixed into theZ’ andF” blocks in the
b ~ relationsr’,,,. ands’,,,..
ot , For the computation of the eight joins, we make use of
E=F Ue . . . h .
F=FUf the algor.lthm.s_ descrlb(_ed in the previous section. Below_we
(E' X5 F')U } —(EXL F)\k{ k= (exE F')U showa3|mpl|f.|e_d algorithm for the incremental computation
(E' ¥% f)u of a temporal join.
(e b f)
(E' ™% H')U incr{
(G'ME FYU(G'XEH') } =G Mp seur add(l, BlockSkip(C’ M}, D'));
~ ~- g add(l, TupleSkip6 ... X5 C"));
reSeur add(l, TupleSKip(cur X5 D));

Using the reduced expressions above, six joins compute theubtrac{K, TupleSkipe XL F'));
updated old partitionres!,,, and three joins compute the subtrac{K, BNL(E’ XL £));
updated current partitiones’.,.. In the derivation below, subtrac{K, BNL(e X% £));

we isolate the parts from these partitions already availabladdK, BNL(E' XL H'));

from the outdated resultes. add(K, BNL(G' XL s...)) };



The functionsubtrac{setl, set2) deletes all elements from  The cost of a temporal join for partitioned storage is the

setl that also occur in set2, whereaisl(set1, set2) appends sum of the costs of the four individual joins,,,. X% s...,

all elements of set2 to setl. Tkabtractoperation can be 7., Mg Solds Told N}TD Seur, @Ndryg Mg Sold-

seen as an additional join operation, for which the result con- The following formulas estimate the tuple reads in

sists of tuples in setl, but not in set2. blocks, wherem is the size of the main-memory buffer in
Having completed the design of the recomputation andlocks, andr| is the size of relatiom in blocks. The func-

incremental temporal join algorithms, the next step is to gairtions selltel,q, reloq) and sel2fel.cy,, relyq) represent

an understanding of their performance characteristics. the selectivity of the BlockSkip and the TupleSkip algo-

rithm, respectively.

. Tcu
3 Analytical Cost Formulas Cr = |rear|+ | ;;” |Seur| +
This section presents formulas for estimating the costs Fewr| + |7 cur] 1501 - SE12(Feur, Sord) +
of the algorithms presented in the previous section. Specif- cur old curs Sold
ically, the two following subsections give formulas for the To
y g g |7lold| + | ld| |Scur| . SelZ(Scur, Told) +

cases of recomputation and incremental computation. First,
some general assumptions are made. |7 o1l
In general, the cost of the joinX% s consists of the cost [roral +

of inputioutput (I0) operations(ro, plus the CPU cost, The cost of a partitioned computation without the selectivity
Ccpy. We focus on the 10 cost and omit for simplicity factors is in the range df| to |r| + |s| higher than the cost
the CPU cost. Next, the IO cost includes the cost of read (Rt the regular nested loop computation without partitioned
and write (W) operations,/r andCy, respectively. Again  storage because we have to perform four joins instead of one
for simplicity, we d'o not distinguish between Seque;n'ﬂaI andang thus also have to read each partition of the outer relation
random .IO operations. We expect most 10 operations to bfyice. The cost igr| higher in the case none of the relations
sequential for all the algorithms. The cdsjy for writing  completely fit in the buffer, and is| + |s| higher in the case

to disk is typically assumed to bg identical for algorlthmsa relation ¢ or s) fits entirely. However, by exploiting the
computing the same results and is thus frequently ignoregjeredness properties of the relations, we can reduce the
when comparing the costs of different join algorithms. Butcosts of three of the four joins. This reduction is expressed
when comparing recomputation and incremental computagy the selectivity factors sell and sel2 in the cost formula.
tion, this assumption does not hold, and we consequently” 1q aid in estimating the selectivity factors for the Block-

consider this cost. Skip and TupleSkip algorithms, Figure 4 gives graphical il-
lustrations of the situations for these two algorithms. The

|Sotal - sell(Toa, Sotd)

3.1 Recomputation )
t(uple t:d - t{up\e
———

We give formulas foiCg, the disk read cost of the tem-
poral join algorithms, based on data characteristics including

r s r
tre - tha +luplet tiupe

tuple lifespans and relation lifespans. Thple lifesparofa o T e el

tuple is the duration of the tuple’s time interval. Tile¢ation 5 - e T r

lifespanof a relation is the duration of the interval from the -t t 1 Lupte

earliest start time of a tuple in the relation to the latest end }tit Faal ey %

time of a tuple in the relation. . . o
We assume tuples in the old partition of a relation have Lipe e~ Lupie Luge 1ia - tumls

the same (standard) lifespan and also the lifespansuaibe
formly distributedover the lifespan of the partition. For the s '
current partition of a relation, where tuples end at the special } e [0l
chrononnow and thus are still growing, these assumptions
imply that there are as many tuples inserted as there are fo-
ples deleted, and that the lifespan of the current partition is
|dent.|cal to the standarq tuple lifespan. ' Figure 4. (a) BlockSkip and (b) TupleSkip Joins

With these assumptions, we can develop a precise ana-
lytical cost formula that will serve as a good approximationrelations at the top of the figure are the outer relations in the
for more general cases. For example, the standard lifespdaops. In our case, those are the relatigng andr.,,.. The
may represent well a situation with an average lifespan anéner relations, in both cases;;, are scanned sequentially
tuples randomly distributed over the relation. for each tuple in the outer relation.

r
tmple

[time] now past [time] now

(@) roia Ng Sold (0) rewr N; Sold



The derivation of the cost formulas is based on propor+elation lifespart’,, the smaller is sell and thus the cost for
tions using similar triangles. The sides of the triangles wecomputingr,.s X% s,4.
relate to each other are, horizontally, a time interval, and,
vertically, a measure for the number of tuples. We use thesg.1.2 sel2, TupleSkip
proportions to illustrate the correspondence between time . ) o o
and number of tuples, i.e., for a given time interyadtart-  In the fol!qwmg we give the select|.v'|ty for the'Jom of a cur-
ing atnowand reaching chronons into the past, we want to "€nt partitionr,, and an old partitions,;4 using the Tu-
know how many time intervals of the relation, and thus with PleSkip algorithm (cf. Figure 4(b)). For the old partition
how many tuples], overlaps. In the extended version of the Sotd; We denote the lifespan of the relations#y,, and the
paper [15] we derive a formula that computes the number ofiféspan of a tuple by;, .. In the case of the current rela-
tuples that start before a given time point. Consider now thdion, however, the tuple lifespan equals the relation lifespan,
time intervalt” , in the relations,;y of Figure 4(a). This denoted by". The formula below is derived in [15].

tuple

interval ovgrlaps witk(t{uple)/.(tfud - tfuple)' : |§Old| tuples sel2 = (0.5 7)) (E0) = Eupie)
of s,iq. Using these proportions, we derive in the follow-
ing sections cost formulas for the selectivity factors sell ando exemplify, lett” = ¢, ;. = 10 chronons, and,, = 100

sel2. chronons. These numbers mean that the tuple life spans are
one tenth of the relation lifespan. In this cas® = f—s In
3.1.1 sell, BlockSkip general, the smallef in relation tot?,;, the smaller is sel2.

In the extreme case, sel2 approaches values close to 0.
Figure 4(a) shows two relations;; ands,;4 to be joined.
For each tuple im,;4, all tuples froms,;; that satisfyT’,! > 3.2 Incremental Computation
T have to be read. In Figure 4(a), the right-most dotted

line shows this condition for the newest tuple-jp;. Once a The costs of readindiz) and writing Cw) tuples for the

: : . - incremental join algorithm (Section 2.3) stem from the costs
tuple froms,;4 is read that does not satisfy this condition, the : : . . .
P Sold fy associated with the computations of the eight constituent

remainder ofs,;; can be skipped for the tuple in;;. The =77 . . .
cost of the algoorithm is giveﬁpbelow. The foF;muIa is deriveg/®ins; in addition to the costs of adding and subtracting these
in [15]. For relations-,,; ands,.s, we denote the lifespans join results to and from the stored relations. The incremen-

of the relations by, and:,,, and the tuple lifespans by tal join algorithm reuses the join algorithms that we have

, s e considered.
upte BN, FESPECIivEly. For all eight joins, at least one of the joining relations
_ ruple trer = thupte — thuple is expected to be small, thus yielding a relatively low cost
sell = 0.5-(1+ s, —t ) o, —tr + of computing each join. The cost of the add operations is
s :Lets uietr " e sim.ply that of writing the tuples to file. The incremental al-
rel rel | ‘tuple | tuple gorithm also incorporates the deletion of tuples (p@ftom
tret = tupte the current partition of the old result (pdt®). This deletion

. , o n m join with a predi hat return I
The formula is the sum of two parts. The first quantifies the o be computed as a jo th apredicate thatreturns tuples

- . hat are inK’ not ink.
selectivity for the tuples 1 6], — 7,70 — thupie) IN Totd- that are Ink, but not ink
The last tuple is the first for which we have to read all tuples f
in s,q. In Figure 4(a), the left-most dotted line shows the4 Performance Study

link between the end of the last tupledn. and the begin- This section first explains the overall design and objec-
ning of the first overlapping tuple in,s. The second part tives of the study, including data generation. It then pro-
of the formula computes the “selectivity” of the remaining ceeds to compare the recomputation algorithms and finally

tuples inr,,4, for which we have to read all tuplesinis.  compares recomputation with incremental computation. A
Assuming that both relations have identical tuple lifes-symmary of the findings is included at the end.

pans,t; =t = truple, and thatt,,,. < t5,,, the

tuple tuple ] o rel?
expression for sell can be simplified to the following. 4.1 General Considerations
sell = (17, 4 2tsupte — 0.5 - 15.,)/ (tner — trupic) Using the implementations of the join algorithms de-

scribed earlier in the paper, this section reports on
As an example, assuntg,, = t7, = 100 chronons and simulation-based experiments aiming at understanding the
tiupte = 1 chronon. These numbers mean that the relationperformance characteristics of the proposed algorithms.
have equal lifespans and the tuple lifespan is small compared The studies aim to obtain insight on a total of three as-
to the relation lifespan. In this case, sell approaches 0.5. Ipects. First, it is of interest to understand how the perfor-
general, the shorter the tuple lifespar,;,. compared to the mance of the nested-loop (NL) versus the sort-merge-based



(SMB) joins relate for varying main-memory sizes. Sec-the positions of timestamps within the lifespan of a rela-
ond, the characteristics of the NL and SMB joins for varyingtion, as well as the duration of the timestamps can be se-
kinds of argument data are of interest. In particular, it is oflected from several distributions, including uniform, nor-
interest to learn for what kinds of data, the NL join outper-mal, constant, and percentage breakdowns. As an exam-
forms the SMB join and vice versa. Third, it is relevant to ple of the latter, 25% of the timestamps’ start times may
learn under what circumstances recomputation outperformise determined by a uniform distribution between 1000 and
incremental computation, and vice versa. 10000 chronons, and 75% might then be normal distributed
As the performance measure, we use the number of inwith 5000 chronons as the mean; the durations of the tu-
put/output (10) operations. The read operations encomples would be specified by separate distributions. Explicit
pass random as well as sequential reads, with random readtributes may be specified with similar distributions.
weighted with a factor of 10. For the comparisons of re-
computation algorithms, such as the NL and our SMB al-4.2 Comparing Recomputation Algorithms
gorithm, we do not consider write operations. However,
when comparing incremental computation with recomputa-  In this section, we compare the SMB algorithm to a ver-
tion, the number of write operations will differ among algo- Sion of its competitor, the nested-loop (NL) join. The NL
rithms and are thus included in the performance measure. algorithm is not based on partitioned storage, so we do not
The simulations in the study use different settings for varimpose the cost of reading partitioned relations on the algo-
jous parameters, indudin‘gain-memory sizenddata char- rithm. These experiments should show under what circum-
acteristics The data characteristics considered include th&tances the partition-based algorithm (SMB) can outperform
percentage of long-lived tuplemd thetuple length both of ~ the non-partitioned competitor (NL). We compare the algo-
which affect the selectivity and thus the cost of a temporalithms under varying parameter settings, specifically, using
join. Table 4 presents the parameters, their units of mea@rying main memory buffer sizes, varying percentages of
surement, and their settings. Standard settings are indicaté@ng-lived tuple timestamps, and varying timestamp lengths.
using bold face. The first three parameters in the table are
fixed throughout the performance studies at their standarg 1 Sensitivity to Main Memory Buffer Size
values. For the remaining parameters, the setting are varied
in the experiments. (In experiments, if these are not menAn important performance factor is the size of the main

tioned, their standard settings are used.) memory available for the join. In the present experiment
we compare the NL and SMB joins under varying main-
Parameter Unit Settings memory buffer sizes. The buffer sizes are specified in frac-
Relation size tuples 20,000 tions of the size of one relation. We use 1/1, 1/2, 1/4, 1/8,
Relation lifespan| chronons 75,000 1/16, and 1/32 as main memory buffer sizes in the experi-
Distribution of uniform ment. All other parameters assume their standard values, as
intervals shown in Table 4. Figure 5 presents the results.
Buffer size fraction of 1/1, 1/2, 1/4,
relation size| 1/8,1/16, 1/32, 1/64 S
Tuple lifespan chronons 1.6k, 3.2k, 6.4k ik
12.8k, 25.6k (DX i
Number of long | % of tuples | 0, 10, 20, 30, il - T
lived tuples 40, 60, 80 __'I' 1
Outdatedness of| chronons 0, 5, 15, 25, 35, — EL00
old result (incr.) | fromnow | 45, 55, 65 gl . "
LG LR
Table 4. Performance Study Parameters AR LR 4 .
To keep the experiments manageable while still obtain- 100 | Al i Il
ing realistic results, we use relatively small relations of size g}
20,000 tuples, but then compensate by also assuming a sm - " " i3 I
block size, where one block corresponds to one tuple. Fol LI
lowing these decisions, all sizes are reported in numbers ol '
tuples. Figure 5. NL Versus SMB Join for Varying

For the experiments we generate data using the TimelT pgyffer Sizes
software [10]. TimelT is a system for testing temporal
database algorithms, and it contains a database generatorThe experiments show that the SMB join yields better
that generates interval timestamped temporal relations. Botherformance for small main-memory sizes. In these cases,



the SMB join’s reduction criteria are effective. However, comes relatively smaller as the buffer size increases. Thus,
when one relation fitting entirely in memory, the NL join with a large buffer available, an increased number of long-

performs better due to the additional reading cost for a joirived tuples has a much smaller effect on the join perfor-

in a partitioned storage environment (cf. Section 3.1). mance.

4.2.2 Effects of Long-Lived Tuples 4.2.3 Effects of Varying Tuple Lifespans

An aspect of data that typically affects the performance of" the previous section, we varied the number of long-lived

a temporal join is the fraction of tuples with an untypically tuplers] relatlvgbt_? th_e total nunr:b(i]rc of tuplefs ':? thel rela_lt_lrc])n.
long interval timestamp. For our experiments, we choose nother possibility is to vary the lifespan of all tuples. The

duration of 10 times the average of standard tuples for Iongr-eSUItS obtained when doing this are shown in Figure 7.
lived tuples. Figures 6(a) and (b) show the performance of

the NL and SMB join under varying percentages (10% to P00y S DU I .
80%) of long-lived tuples. In addition, we conducted these
experiments with two different buffer sizes. 300,000 1
350,000 §' 250,000
77777 Ak —— — — —h — — — — — A —— — — — A . SMB
330,000 200,000 = —« NL
310,000
= —=— SMB 150,000 ‘ ‘ ‘ ‘
o —+NL 1 2 4 8 16

290,000 -

270,000 ,///4/'/

tuple length [mult. of simple length]

Figure 7. NL Versus SMB Join for Varying Tu-

250,000 T T T T ] i
10 20 30 40 60 80 ple LlfeSpanS
long:lived tuples [%] It can be seen that the performance of the SMB join de-
grades with increasing tuple lifespan. This result matches
(a) buffer size 1/16 of relation size the analytical studies in Section 3 that show that the selec-
80,000 tivity factors sell and sel2 approach 1 as the tuple lifespan
increases. In the case that the number of outdated tuples is
73,000 ¢ - rather large compared to the number of current tuples, the
70000 | cost of the Wholg join operatipn is mostly qletermined by Fhe
= BlockSkip algorithm. Thus, if the selectivity factor for this
S 65,000 :il\LdB join, sell, converges to 1, the cost of the whole join con-
verges to the cost of the equivalent NL join.
60,000 = ————— —————— e —————— ——— 4
4.3 Incremental Computation Versus Recomputa-
55,000 . . . ! ) tion
10 20 30 40 60 80
long:lived tuples [%)] The experiments reported here aim to explore the break-
even point between the incremental and SMB joins. The
(b) buffer size 1/2 of relation size degree of outdatedness of the outset for an incremental join

fundamentally affects the relative performance of the two,
so we adopt the outdatedness of the outdated result used in
the incremental computation as the parameter that is varied.

The results show that the performance of the SMB al\We assume that the incremental join (and the recomputation
gorithm degrades with increasing percentage of long-livedoin) take place at the currenttime. In Figure 8, fhaxis in-
tuples, whereas the NL algorithm remains unaffected. Thelicates the outdatedness of the outdated result by giving the
effect of long-lived tuples on the degradation of the join per-time at which the outdated result was computed in numbers
formance seems weaker in the case of large buffer sizes. If chronons before the current time where the incremental
creasing the tuple lifespan means that the algorithmis forcedomputation is performed. We conducted our experiments
to read more tuples. The 10 cost associated with this befor buffer sizes of 1/1, 1/8, and 1/16 of the relation size.

Figure 6. NL Versus SMB Join for Varying Per-
centages of Long-Lived Tuples



T ) argument join result in the incremental computation and the

 Bacm | - buffer size. The studies favor the incremental algorithm for
THL D) i - aedow the cases of low to modest outdatedness. The degree of
e 11 - o outdatedness necessary to competitively perform an incre-

150000 i Recung, 104 . mental computation varies with the main memory size. The
= + . " . . . N smaller the buffer size, the more outdated a result can be

B " - T anone while incremental computation being superior to recompu-
* . - | — - o tation. Generally, the results suggest that incremental com-

5000 il i putation may be applied in many situations where recompu-

. tation would be a waste of resources.
I 15 M) Pl L1 1] L e ] 15 [FHI hon L | I S | ] 5 COI’]C|USIOI’]S and Future Work

sibdaletivess [l

Figure 8. Recomputation Versus Incremen- The paper formally defines a temporal join of two tem-

tal Computation Using Varying Outdatedness poral relations and extends this definition to apply also to a
and Buffer Sizes partitioned storage environment. The paper then proceeds

to define and study the characteristics of two new join algo-

In the performance measurements, we encountered tH§Ms for temporal relations with append-only characteris-
situation that the outdated current partitidn)(of the result ~ ticS: namely a sort-merge based algorithm and its incremen-
(cf. the subtract) operation in Section 2.3) did not contain @l version. - _ .
any current tuples, and thus was completely moved to the The algorithms assume 'that the relat|0n§ haye.assgmated
old partition of the result. an !nterval-valued tlmg attribute. Beyond this distinguished

The break-even point between incremental computatioﬁtt”b“te' no assumptions about the numbers of other at-

and recomputation in Figure 8 is at about 37,000, 50’Ooot,ributes and their domains are made. The join predicate is
and 60.000 chronons for the buffer sizes of 1/1. 1/8 andhe conjunction of an overlap predicate on the time attribute

1/16, respectively. This means when an old result was Com\4alues and an arbitrary predicate on the remaining attributes.
puted at a time corresponding to chronon 38,000, 25,000The algorithms work in a partitioned-storage environment,

and 15,000, respectively, o later, incremental computatioHVhiCh is realistic for very large relations. That is, current
is better than recomputation and outdated tuples of a temporal relation are stored sepa-

rately in a current and an old partition, respectively.

The paper includes analytical cost formulas for the joins
nd also reports on simulation-based performance studies.
he performance studies show the sort-based algorithm to

Viewing these results in the light of the experiments in
Section 4.2.1, one might expect incremental computation to
always be better than recomputation. This is not alway

so. To incrementally compute a join we need to comput . N .
e an improvement over the only existing join algorithm

eight individual joins, and the results of these joins needtth t contends with th | f oredicat v th
be added to or subtracted from existing relations (cf. Sec- at contends wi € Same class ot predicates, namely the

tion 2.3). The costs of these operations can be higher tharIJ]ested-Ioopjoin. Only in the case of large buffer sizes is the
the cost of recomputation nested-loop algorithm competitive. This is due to the addi-

Increasing the buffer size also disfavors the incrementaﬁ'onal reading cost for the join of partitioned relations (four

computation, since larger buffer size generally yields a Iowefgggg'?;{a’t%iso(e&?% qn;OTFEZ %ZS.EZ?(;E?hpai?Lne cs)grl:_nbpairgé
join cost (cf. Section 4.2.1). ' ' join). 1his Indi

algorithm is an overall good replacement for the nested loop
algorithm for the data considered in this paper.
The included evaluation of the performance of the incre-
mental algorithm with respect to the recomputation algo-
The sort-merge based (SMB) algorithm outperforms theithm shows the incremental algorithm to be superior when
nested-loop (NL) algorithm, except when main memory isthe available outset for the computation is outdated to a
so large that an entire relation fits in memory. low or modest degree. The maximum degree of outdat-
The temporal relation parameters of tuple lifespan anddness possible, while still having the incremental algo-
percentage of long-lived tuples generally have a smaller imrithm be competitive, grows with decreasing main mem-
pact on the performance of the SMB algorithm than does thery size. While incremental computation techniques have
main-memory buffer size. proven competitive in many settings, they also introduce a
We compared the performance of the SMB algorithm tospace overhead in the form of differential files. For the tem-
its incremental version, varying both the outdatedness of thporal data explored here, however, this overhead is avoided

4.4 Summary of Performance Study



because the differential files are already part of the databasg.1] T.Y. C. Leung and R. R. Muntz. Temporal Query Processing
This research points to several directions for future re-  and Optimization in Multiprocessor Database Machines. In
search. When performing incremental computation, previ-  Proceedings of the VLDB Coppages 383-394, August 1992.
ous join results must be cached for future use. Assumingl2] T.Y.C.Leung and R. R. MuntzStream Processing: Tempo-
that only limited disk space is available for caching, caching  ral Query Processing and Optimizatiolm A. U. Tansel et al.
should be selective. Additional research in caching policies ~ (€ds.), Temporal Databases: Theory, Design, and Implementa-
and cache replacement policies is warranted. Next, spa- U0N Chapter 14, pages 329-355. Benjamin/Cummings, 1993.
tiotemporal data in many cases arrive at the database in[&3] P- Mishra and M. H. Eich. Join Processing in Relational
time-ordered fashion, thus meeting the assumptions made in  DatabasesiCM Comp. Survey4(1):63-113, March 1992.
this paper. Extending the join algorithms proposed here td14] T. B. Pedersen and C. S. Jensen. Research Issues in Clinical
better support spatiotemporal data, or devising entirely new Data Warehousing. IRroceedings of the SSDBM Cardfages
algorithms, is a relevant and interesting direction. The lack ~ 43-52, July 1998.
of good spatiotemporal indices adds to the relevance of thifl5] D. Pfoser and C. S. Jensen. Incremental Join of Time-
direction. Finally, the result of an incremental computation ~ Oriented Data. TimeCenter Technical Report TR-34, Aalborg
is sorted if it is cached for use in a later join computation. ~ University, 1998.
The optimal integration of this sorting into the algorithms [16] X-L. Qian and G. Wiederhold. Incremental Recomputation

remains to be explored. of Active Relational ExpressiontEEE TKDE 3(3):337-341,
1991.
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