©1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by
other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In
most cases, these works may not be reposted without the explicit permission of the copyright holder.

Supporting Imprecision in Multidimensional Databases Using Granularities

Torben Bach Pedersen Christian S. Jensen

Center for Health Informatics
Kommunedata, P. O. Pedersens Vej 2
DK-8200 Arhus N, Denmark
t bp@nd. dk

Abstract

On-Line Analytical Processing (OLAP) technologies are be-
ing used widely, but the lack of effective means of handling
data imprecision, which occurs when exact values are not
known precisely or are entirely missing, represents a ma-
jor obstacle in applying these technologies in many do-
mains. This paper develops techniques for handling impre-
cision that aim to maximally reuse existing OLAP modeling
constructs such as dimension hierarchies and granularities.
With imprecise data available in the database, queries are
tested to determine whether or not they may be answered
precisely given the available data; if not, alternative queries
unaffected by the imprecision are suggested. When process-
ing queries affected by imprecision, techniques are proposed
that take into account the imprecision in the grouping of the
data, in the subsequent aggregate computation, and in the
presentation of the imprecise result to the user. The ap-
proach is capable of exploiting existing OLAP query pro-
cessing techniques such as pre-aggregation, yielding an ef-
fective approach with low computational overhead and that
may be implemented using current technology.

1 Introduction

On-Line Analytical Processing (OLAP) [6] has attracted
much interest in recent years, as business managers attempt
to extract useful information from large databases in order to
make better informed management decisions. Recently, the
use of OLAP tools has spread to the medical world where
physicians use the tools to understand data associated with
patients. The use of OLAP tools in the medical domain
places additional emphasis on challenges that OLAP tech-
nology traditionally has not handled well, such as the han-
dling of imprecise data.

Traditional data models, including the ER model [4] and
the relational model, do not provide good support for OLAP
applications. As a result, new data models that support a
multidimensional view of data have emerged. These multi-

Curtis E. Dyreson
Department of Computer Science
Aalborg University, Fredrik Bajers Vej 7E
DK-9220 Aalborg @st, Denmark
{csj,curtis}@s. auc. dk

dimensional data models typically categorize data as being
measurable business facts (measures) or dimensions, which
are mostly textual and characterize the facts. For example,
in a retail business, products are sold to customers at cer-
tain times, in certain amounts, and at certain prices. A typ-
ical fact would be a purchase, with the amount and price
as the measures, and the customer purchasing the product,
the product being purchased, and the time of purchase being
dimensions.

If multidimensional databases are to be used for medical
OLAP applications, it is necessary to handle the “imperfec-
tions” that almost inevitable occur in the data. Some data
values may be missing, while others are imprecise to varying
degrees, i.e., in multidimensional database terms, they have
varying granularities. Varying granularities occur naturally
in some data, but may also arise when data from different
sources are combined. Current OLAP tools and techniques
assume that the data has a uniform granularity and that any
granularity variances are handled in the data cleansing pro-
cess, prior to admitting the data into the OLAP database. In
addition to not being realistic, this will introduce mapping
errors and obscure the true quality of the data. Thus, it is
very attractive to be able to handle all the occurring forms of
imperfect data in order to give as meaningful and informa-
tive answers as possible to OLAP queries.

The approach presented in this paper aims to maximally
reuse existing concepts from multidimensional databases
to also support imprecise data. The approach allows the
reuse of existing query processing techniques such as pre-
aggregation for handling the imprecision, resulting in an ef-
fective solution that can be implemented using current tech-
nology [15] such as SQL, which is important for the prac-
tical application of this research. It is shown how to test if
the underlying data is precise enough to give a precise result
to a query; and if not, an alternative query is suggested that
can be answered precisely. If the physician® accepts getting

1\We use the term “physician” for the user of the system throughout the
paper, although the approach presented is general and not limited to the
medical domain.

an imprecise result, imprecision is handled in the grouping
of data as well as in the actual aggregate computation.

While the area of “imperfect information” has attracted
much attention in the scientific literature [13, 8], surprisingly
little work has addressed the problem of aggregation of im-
precise data, this paper’s focus.

A number of approaches to imprecision exist that al-
low us to characterize this paper’s contribution. It is com-
mon [13] to distinguish between imprecision, which is a
property of the content of an attribute value, and uncertainty,
which concerns the degree of truth associated with an at-
tribute value. Our work concerns only imprecision. The
most basic form of imprecision is missing or applicable-null
values [5], which allow unknown data to be captured explic-
itly. Multiple imputation [16, 2] is a technique from statistics
where multiple values are imputed, i.e., substituted for miss-
ing values, allowing data with missing values to be analyzed
while retaining its natural variance. In comparison with our
approach, multiple imputation handles only missing values,
not imprecise values, and the technique does not support ef-
ficient query processing using pre-aggregated data. Next,
null values have been generalized to partial values, where
one of a set of possible values is the true value. Work has
been done on aggregation over partial values in relational da-
tabases [3]. Compared to our approach, the time complexity
of the operations is quite high, i.e., at least O(n5/?), where
n is the number of tuples, compared to the O(n log n) com-
plexity of our solution. Additionally, all values in a partial
value have the same weight, and the use of pre-aggregated
data is not studied.

Fuzzy sets [20] allows a degree of membership to be
associated with a value in a set, and can be used to han-
dle both uncertainty and imprecision. Work on aggregation
over fuzzy sets in relational databases [17] allows the han-
dling of imprecision in aggregation operations, but the time
complexity is exponential in the number of tuples, and pre-
aggregation has not been studied. The concept of granu-
larities [1] has been used extensively in temporal databases
for a variety of purposes, including the handling of impre-
cision in the data [9]. However, aggregation of imprecise
temporal data remains to be studied. In multidimensional
databases, only the work on incomplete data cubes [7] has
addressed the issue of handling imprecise information. In-
complete data cubes fix the granularity of the data at schema
level rather than at instance level, as here. Additionally, im-
precision is handled only in the grouping of data, not in the
aggregate computation.

To our knowledge, imprecision in the actual aggregate re-
sult for multidimensional databases has not been supported
previously, and the use of pre-aggregated data for speeding
up query processing involving imprecision has never been
studied. Also, the use of granularities in all parts of the ap-
proach, we believe is novel.

The paper is structured as follows. Section 2 motivates
our approach using a real-world clinical case study. Sec-
tion 3 defines the multidimensional data model and query
language used as the concrete context for the paper’s con-
tribution. Sections 4 and 5 show how to suggest alternative
queries if the data is not precise enough, how to handle im-
precision in the grouping of data and in the computation of
aggregate results, and how to present imprecise results to the
physician. Section 6 concludes and points to future research.

2 Motivation

This section presents a real-world case study on diabetes
treatment, then discusses the queries physicians would like
to ask and the problems that occur due to data imprecision.

The case study concerns data on diabetes patients from
a number of hospitals, including their associated diagnoses,
and their blood sugar levels. The goal is to investigate how
the blood sugar levels vary among diagnoses. An ER dia-
gram illustrating the underlying data is seen in Figure 1.

*SSN

(0.1) 6 (O.n)
* HbA1c%

* Precision D

1,1) @ (1.n)

Figure 1. ER Schema of Case Study

Patient Diagnosis

* Name

\J

Low-level
Diagnosis

Diagnosis
Family

The most important entities are the patients, for which
we record Name and Social Security Number (SSN). The
HbA1c% and Precision attributes are discussed later. Each
patient may have one diagnosis, which may be missing due
to incomplete registrations in the computer by hospital staff.
When determining diagnoses, physicians often use different
levels of granularity. For example, for some patients, some
physicians will use the very precise diagnosis “Insulin de-
pendent diabetes,” while the more imprecise diagnosis “Di-
abetes,” which covers a wider range of patient conditions,
corresponding to a number of precise diagnoses, will be used
for other patients.

In terms of the ER diagram, we model this by having
a relationship between patients and the supertype “Diagno-
sis.” This type has two subtypes, corresponding to different
levels of granularity, the low-level diagnosis and the diag-
nosis family. Examples of these are the above-mentioned
“Insulin dependent diabetes” and “Diabetes,” respectively.
The higher-level diagnoses are both (imprecise) diagnoses
in their own right, but also function as groups of lower-level

diagnoses. Thus, the diagnosis hierarchy groups low-level
diagnoses into diagnosis families, each of which consists of
2-20 related diagnoses. Each low-level diagnosis belongs
to exactly one diagnosis family. For example, the diagno-
sis “Insulin dependent diabetes” is part of the family “Dia-
betes.”

For diagnoses, we record an alphanumeric code and a de-
scriptive text, usually determined by a standard classification
of diseases, e.g., the World Health Organization’s Interna-
tional Classification of Diseases (ICD-10) [19].

One of the most important measurements for diabetes pa-
tients is HbA1c% [11], which indicates the long-time blood
sugar level, providing a good overall indicator of the pa-
tient’s status during recent months. However, sometimes
this value is missing in the data available for analysis. This
may be because the HbA1c% was not measured or not en-
tered into the computer. Furthermore, the HbA1c% is mea-
sured using two different methods at the hospitals. Over
time, the hospitals change the measurement method from
an old, imprecise method to a new and precise method. This
leads to a difference in the precision of the data. Thus, we
also record the precision of the data, as precise or impre-
cise. When the value is missing, we record the precision as
inapplicable.

In order to list some example data, we assume a standard
mapping of the ER diagram to relational tables, i.e., one ta-
ble per entity type and one-to-many relationships handled
using foreign keys. We also assume the use of surrogate
keys, named 1D, with globally unique values. As the two
subtypes of the Diagnosis type do not have any attributes of
their own, both are mapped to a common Diagnosis table.

The data consists of three patients and their diagnoses and
HbA1c% values; see Table 1.

ID Name SSN HbA1C% Precision
0 Jim Doe | 11111111 | Unknown | Inapplicable
1 | JohnDoe | 12345678 55 Precise
2 Jane Doe | 87654321 7 Imprecise
Patient Table
Patli)ntID Dlagn503|sID parentiD | ChildID
5 3
1 3
5 7 5 4
Has Table IsPartOf Table
ID | Code Text
3 E10 Insulin dependent diabetes
4 E11 | Noninsulin dependent diabetes
5 E1l Diabetes

Diagnosis Table

Table 1. Data for the Case Study

The physicians issue aggregation queries on this data in
order to obtain high-level information concerning the overall
state of the patient population. We use the case study to

illustrate the kind of challenges faced by the physicians and
addressed by this paper.

It is important to keep the HbA1c% as close to normal
as possible, as patients might collapse or get liver damage
if the HbA1c% is too low or high, respectively. Thus, a
typical query is to ask for the average HbA1c% grouped by
low-level diagnosis. This shows the differences in the blood
sugar level for the different patient groups, as determined
by the diagnoses, indicating which patients will benefit the
most from close monitoring and control of the Hb A1c%.

However there are some problems in answering this
query. First, Jim Doe is diagnosed with “Diabetes” (a di-
agnosis family), which is not precise enough to determine in
which group of low-level diagnoses Jim Doe belongs. Sec-
ond, the HbA1c% values themselves are imprecise. John
Doe has a value obtained with the new, precise measure-
ment method, Jane Doe has only an imprecise value, and
Jim Doe’s HbA1c% is unknown.

This imprecision must be communicated to the physi-
cians so that it may be taken into account when interpreting
the query results. This helps to ensure that the physicians
will not make important clinical decisions on a “weak” ba-
sis. We now proceed to describe our approach to handling
the imprecision.

3 DataMode and Query Language Context

This section defines the concepts needed to illustrate our
approach. Specifically, the necessary parts of an extended
multidimensional data model and algebra are defined [14],
in addition to some additional concepts that may be ex-
pressed in terms of the model.

The presented data model has been chosen over “stan-
dard” models, such as star or snowflake schemas, for sev-
eral reasons. First, the model allows for a precise, formal
definition of multidimensional concepts such as hierarchies
and granularities, as opposed to star and snowflake schemas,
which only defines these concepts informally. Second, the
model allows us to map facts directly to dimension values
at any level in a dimension hierarchy, a feature which our
approach uses to capture imprecision. This is not directly
possible in star or snowflake schemas, but can be emulated
in both of these models, as well as in other multidimensional
models. Thus, itis still possible to use our approach with ex-
isting multidimensional tools and techniques.

3.1 TheData Modd

For every part of the data model, we define the intension
and the extension, and give an illustrating example.

An n-dimensional fact schema is a two-tuple S = (F, D),
where F is a fact type and D = {7;,i = 1,..,n} is its
corresponding dimension types.

Examplel In the case study we will have Patient as the fact
type, and Diagnosis and HbA1c% as the dimension types.
The intuition is that everything that characterizes the fact
type is considered to be dimensional, even attributes that
would be considered as measures in other multidimensional
models.

A dimension type 7 is a four-tuple (C, <7, Tr, L71),
where C = {C;,j = 1,..,k} are the category types of 7,
<7 is a partial order on the C;’s, with T € Cand L7 € C
being the top and bottom element of the ordering, respec-
tively. Thus, the category types form a lattice. The intuition
is that one category type is “greater than” another if mem-
bers of the former’s extension logically contain members of
the latter’s extension, i.e., they have a larger element size.
The top element of the ordering corresponds to the largest
possible element size, that is, there is only one element in its
extension, logically containing all other elements.

We say that C; is a category type of 7, written C; € 7, if
C; € C. We assume a function Pred : C — 2€ that gives the
set of immediate predecessors of a category type C;.

Example2 Low-level diagnoses are contained in diagnosis
families. Thus, the Diagnosis dimension type has the fol-
lowing order on its category types: L p;agnosis = Low-level
Diagnosis < Diagnosis Family < T pjagnosis. We have that
Pred(Low-level Diagnosis) = {Diagnosis Family}. Precise
values of HbA1c% are contained in imprecise values (the
precise measurement method gives us results with one dec-
imal point, while the imprecise method gives us only whole
numbers), e.g., the precise value “5.3” is contained in the im-
precise value “5”, which covers the range of (precise) values
[4.5-5.4]. Thus, other examples of category types are Pre-
cise and Imprecise from the HbA1c% dimension type. Fig-
ure 2, to be discussed in detail later, illustrates the dimension
types of the case study.

Diagnosis Name SSN HbAlc%
0 0 o
Diagnosis Imprecise
Family P

Low-level Diagnosis = [

Name =0 SSN =0 Precise = 0

Patient
Figure 2. Schema of the Case Study

A category C; of type C; is a set of dimension values e.
A dimension D of type 7 = ({C;}, <7, T, L7) is a two-
tuple D = (C, <), where C' = {Cj;} is a set of categories

C; such that Type(C;) = C; and < is a partial order on
U;C;, the union of all dimension values in the individual
categories.

The definition of the partial order is: given two values
e1,es thene; < eq if ey islogically contained in e;. We say
that C; is a category of D, written C; € D, if C; € C. For
a dimension value ¢, we say that e is a dimensional value of
D, writtene € D, ife € U;Cj.

We assume a partial order < on the categories in a di-
mension, as given by the partial order <+ on the correspond-
ing category types.

The category L p in dimension D contains the values
with the smallest value size. The category with the largest
value size, T p, contains exactly one value, denoted T. For
all values e of the categories of D, e < T. Value T is simi-
lar to the ALL construct of Gray et al. [10]. We assume that
the partial order on category types and the function Pred
work directly on categories, with the order given by the cor-
responding category types.

Example 3 In our Diagnosis dimension we have the follow-
ing categories, named by their type. Low-level Diagnosis =
{3, 4}, Diagnosis Family = {5}, and T piagnosis = {T}.
The values in the sets refer to the ID field in the Diagnosis
table of Table 1. The partial order < is given by the IsPartOf
table in Table 1. Additionally, value T is greater than, i.e.,
logically contains, all the other diagnosis values.

Let F' be a set of facts, and D = ({C}}, <) a dimen-
sion. A fact-dimension relation between # and D is a
set R = {(f,e)}, where f € Fand e € U;C;. Thus
R links facts to dimension values. We say that fact f is
characterized by dimension value e, written f ~» ¢, if
des € D ((f,en) € RAer < e). We require that
Vf € F (3e € U;C; ((f,e) € R)); thus we do not allow
missing values. The reasons for disallowing missing values
are that they complicate the model and often have an unclear
meaning. If it is unknown which dimension value a fact f
is characterized by, we add the pair (f, T) to R, thus in-
dicating that we cannot characterize f within the particular
dimension.

Example4 The fact-dimension relation R links patient
facts to diagnosis dimension values as given by the Has table
from the case study. We get that R = {(0,5), (1,3), (2,4)}.
Note that we can relate facts to values in higher-level cate-
gories, e.g., fact 0 is related to diagnosis 5, which belongs to
the Diagnosis Family category. Thus, we do not require that
e belongs to L piagnosis, s do other multidimensional data
models. This feature will be used later to explicitly capture
the different granularity in the data. Had no diagnosis been
known for patient 1, we would have added the pair (1, T) to
R.

A multidimensional object (MO) is a four-tuple M =
(S, F, D, R),where § = (F,D = {7;}) is the fact schema,

F = {f} is a set of facts f where Type(f) = F, D =
{D;,i =1, ..,n}is a set of dimensions where Type(D;) =
Ti;,and R = {R;,i = 1,..,n} is a set of fact-dimension
relations, such that Vi((f,e) € R; = f € FAIC; € D;
(e € Cy).

Example5 For the case study, we get a four-dimensional
MO M = (8, F, D, R), where § = (Patient, {Diagnosis,
HbAlc%})and F' = {0, 1,2}. The definition of the diagno-
sis dimension and its corresponding fact-dimension relation
was given in the previous examples. The HbA1c% dimen-
sion has the categories Precise, Imprecise, and T gp41.%.
The Precise category has values with one decimal point
as members, e.g., “5.5,” while the Imprecise category has
integer values. The values of both categories fall in the
range [2-12]. The partial order on the HbA1c% dimension
groups the values precise values into the imprecise in the
natural way, e.g., 4.5 < 5 and 5.4 < 5 (note that < de-
notes logical inclusion, not less-than-or-equal on numbers).
The fact-dimension relation for the HbA1c% dimension is:
Ry = {(0,7T),(1,5.5),(2,7)}. The Name and SSN dimen-
sions are simple, i.e., they just have a | category type, Name
respectively SSN, and a T category type. We will refer to
this MO as the Patient MO. Its schema is seen in Figure 2.

To summarize, facts are objects with separate identity.
They can be tested for equality, but do not have an ordering.
The combination of the dimension values that characterize
the facts in an MO do not constitute a “key” for the MO.
There may be “duplicate values,” in the sense that several
facts may be characterized by the same combination of di-
mension values. But the facts of an MO is a set, so we do
not have duplicate facts in an MO.

As few additional definitions are needed. For a dimen-
sion value ¢ such that e € C;, we say that the granularity
of e is Cj. For a fact f such that (f,e) € R; and e € Cj,
we say that the granularity of f in the dimension is C;. Di-
mension values in the L category are said to have the finest
granularity, while the value in the T category has the coars-
est granularity.

Next, for dimension D = (C, <), we assume a function
Gp : D — (| that gives the granularity of dimension val-
ues. Foran MO M = (S, F, D, R), where D; = (C;, <;),
we assume a family of functions G, : F'— C;, i = 1,..,n,
each giving the granularities of facts in dimension D;.

3.2 TheAlgebra

When handling imprecision, it is not enough to record the
imprecision of the data itself. We also need to handle impre-
cision in the queries performed on the data. Thus, we need
a precise specification of the queries that can be performed
on the data. To this end, we define an algebraic query lan-
guage on the multidimensional objects just defined. The fo-
cus of this paper is on aggregation, so we will only give the

definition of the operator used for aggregation. The other
operators of the algebra are close to the standard relational
algebra operators, and include selection, projection, rename,
union, difference, and identity-based join [14]. The algebra
is at least as powerful as Klug’s [12] relational algebra with
aggregation functions [14].

For the aggregation operator definition, we need a pre-
liminary definition. We define Group that groups together
the facts in an MO characterized by the same dimen-
sion values. Given an n-dimensional MO, M = (S, F,
D = {D;},R = {R;}),i = 1,..,n, a set of categories
C ={C; | C; € D;},i = 1,..,n, one from each of the
dimensions of M, and an n-tuple (eq, .., e,), Where e; €
Ci,i = 1,..,n, we define Group as: Group(ey,..,e,) =
{FIfeFNf~1ea ALAfonen).

The aggregate formation operator is used to compute ag-
gregate functions on the MQO’s. For notational convenience
and following Klug [12], we assume the existence of a fam-
ily of aggregation functions g that take some k-dimensional
subset{D;,, .., D;, } of the n dimensions as arguments, e.g.,
SUM ; sums the 7’th dimension and SUM ;; sums the ’th
and j’th dimensions.

Given an n-dimensional MO, M, a “result” dimension
D41 of type 7,41, an aggregation function, g : 27 —
Dy, 41 (function g “looks up” the required data for the facts
in the relevant fact-dimension relations, e.g., SUM ; finds its
data in fact-dimension relation R;), and a set of grouping
categories C; € D;,i = 1, .., n, we define aggregate forma-
tion, «, as follows.
a[Dny1,9,Ch, .., Cpl(M) = (8", F', D', R"), where

S = (F, D), F = 27,

D’ {7/, i=1,..,n}U{Th41},

7} = (€, <7, 17, 77,

Ci ={Cij € T; | Type(Ci) <71, Cij }, <7, = <730 5

Ly = Type(Ci), T4 = T, ’
F' = {Group(ey,..,en) | (e1,..,€n) € C1 x .. x Cy
AGroup(ey, ..,en) £ 0},

D' = {D;,i=1,.,n}U{Dpyp1}, D; = (C},Z5),

Ct = {Cl; € Di| Type(Cly) € 1}, <t = <,y

R = {R},i=1,.,n}U{R, 1},

R, = {(f',el) | 3(e1,..,en) € C1 x .. x CYy

(f' = Group(er, ..,en) N f' € F' Ne; = €})}, and

R;L+1 = Uley,..en)eC x..xCy {(GTOUP(el, - en)a

g(Group(ey, .., e,))) | Group(e,..,e,) # 0}.
Thus, for every combination (eq, .., e,) of dimension val-
ues in the given grouping categories, we apply ¢ to the set of
facts { f}, where the f’s are characterized by (ey, .., e,), and
place the result in the result dimension D,, 1. The new facts
are of type sets of the argument fact type, and the argument
dimension types are restricted to the category types that are
greater than or equal to the types of the given “grouping”
categories. The dimension type for the result is added to

the set of dimension types. The new set of facts consists
of sets of the original facts, where the original facts in a
set share a combination of characterizing dimension values.
The argument dimensions are restricted to the remaining cat-
egory types, and the result dimension is added. The fact-
dimension relations for the argument dimensions now link
sets of facts directly to their corresponding combination of
dimension values, and the fact-dimension relation for the re-
sult dimension links sets of facts to the function results for
these sets.

Example6 We want to know the number of patients in
each diagnosis family. To do so, we apply the aggregate-
formation operator to the “Patient” MO with the Diagno-
sis Group category and the T categories from the other di-
mensions. The aggregate function g to be used is SetCount,
which counts the number of members in a set. The resulting
MO has five dimensions, but only the Diagnosis and Re-
sult dimensions are non-trivial, i.e., the remaining three di-
mensions contain only the T categories. The set of facts is
F = {{0,1,2}}. The Diagnosis dimension is cut, so that
only the part from Diagnosis Family and up is kept. The
result dimension groups the counts into two ranges: “0-2”
and “>2”. The fact-dimension relation for the Diagnosis
dimension links the sets of patients to their corresponding
Diagnosis Family. The content is: Ry = {({0,1,2},5)},
meaning that the set of patients {0, 1, 2} is characterized by
diagnosis family 5. The fact-dimension relation for the re-
sult dimension relate the group of patients to the count for
the group. The contentis: Rs = {({0, 1,2}, 3)}, meaning
that the result of ¢ on the set {0, 1,2} is 3. A graphical il-
lustration of the MO, leaving out the trivial dimensions for
simplicity, is seen in Figure 3.

Diagnosis Result
dimension dimension
O O
0-2 >2 Range
Diagnosis
Count

Family 5 012 3"

{O,i,2} Set-of-Patient

Figure 3. Result MO for Aggregate Formation

4 Handling Imprecision

We now describe our approach to handling imprecision
in multidimensional data models. We start by giving an
overview of the approach, and then describe how alternative
queries may be used when the data is not precise enough to
answer queries precisely, i.e., when the data used to group
on is registered at granularities coarser than the grouping
categories.

4.1 Overview of Approach

Along with the model definition, we presented how the
case study would be handled in the model. This also showed
how imprecision could be handled, namely by mapping facts
to dimension values of coarser granularities when the infor-
mation was imprecise, e.g., the mapping to T when the diag-
nosis is unknown. The HbA1c% dimension generalizes this
approach, as several precise measurement values are con-
tained in one imprecise measurement value. In turn, several
imprecise values are contained in the T (unknown) value.
Thus, the approach uses the different levels of the granular-
ity already present in multidimensional data models to also
capture imprecision in a general way.

The approach has a nice property, provided directly by
the dimensional “imprecision” hierarchy described above.
When the data is precise enough to answer a query, the
answer is obtained straight away, even though the underly-
ing facts may have varying granularities. For example, the
query from Example 6 gives us the number of patients di-
agnosed with diagnoses in the Diabetes family, even though
two of the patients have low-level diagnoses, while one is
diagnosed directly with a Diabetes family. In this case, the
data would not be precise enough to group the patients by
Low-level Diagnosis.

Our general approach to handling a query starts by testing
if the data is precise enough to answer the query, in which
case the query can be answered directly. Otherwise, an al-
ternative query is suggested. In the alternative query, the
categories used for grouping are coarsened exactly so much
that the data is precise enough to answer the (alternative)
query. Thus, the alternative query will give the most detailed
precise answer possible, considering the imprecision in the
data. For example, if the physician was asking for the patient
count grouped by low-level diagnosis, the alternative query
would be the patient count grouped by diagnosis family.

If the physician still wants to go ahead with the original
query, we need to handle the imprecision explicitly. Exam-
ining our algebra [14], it can be seen that imprecision in the
data will only affect the result of two operators, namely se-
lection and aggregate formation (the join operator tests only
for equality on fact identities, which are not subject to im-
precision). Thus, we need only handle imprecision directly
for these two operators; the other operators will just “pass
on” the results containing imprecision untouched. However,
if we can handle imprecision in the grouping of facts, ordi-
nary OLAP style “slicing/dicing” selection is also handled
straightforwardly, as slicing/dicing is just selection of data
for one of a set of groups. Because our focus is on OLAP
functionality, we will not go into the more general problem
of imprecision in selections, but refer to the existing litera-
ture [13].

Following this reasoning, the general query that we must
consider is «[C1, .., Cp, Dpy1,9](M), where M is an n-

dimensional MO, C1,..,C,, are the grouping categories,
D,, 41 isthe result dimension, and g is the aggregation func-
tion. The evaluation of the query proceeds (logically) as fol-
lows. First, facts are grouped according to the dimension
values in the categories C1, .., C, that characterize them.
Second, the aggregate function ¢ is applied to the facts in
each group, yielding an “aggregate result” dimension value
in the result dimension for each group. The evaluation ap-
proach is given by the pseudo-code below.

Procedure Evallmprecise(Q, M)
if PreciseEnough(Q@, M) then Eval(Q, M)
else @' = Alternative(Q, M)
if @ is accepted then Eval(Q’,M)
else Handle Imprecision in Grouping
Handle Imprecision in Aggregate Computation
Return Imprecise Result
end if
end if

Our overall approach to handling the imprecision in all
phases will be to use the granularity of the data, or measures
thereof, to represent the imprecision in the data. This allows
for a both simple and efficient handling of imprecision.

4.2 Alternative Queries

The first step in the evaluation of a query is to test whether
the underlying data is precise enough to answer the query.
This means that all facts in the MO must be linked to cat-
egories that are “less-than-or-equal” to the grouping cate-
gories in the query, e.g., if we want to group by Low-level
Diagnosis, all fact-dimension relations from patients to the
Diagnosis dimension must map to the Low-level Diagnosis
category, not to Diagnosis Family or T.

In order to perform the test for data precision, we need
to know the granularities of the data in the different dimen-
sions. For this, for each MO, M, we maintain a separate
precision MO, M,,. The precision MO has the same number
of dimensions as the original MO. For each dimension in the
original MO, the precision MO has a corresponding “gran-
ularity” dimension. The i’th granularity dimension has only
two categories, Granularity; and Tp,. There is one value
in a “Granularity” category for each category in the corre-
sponding dimension in M. The set of facts F' is the same as
in M, and the fact-dimension relations for A/, map a fact f
to the dimension value corresponding to the category that f
was mapped to in M. The determination of whether a given
query can be answered precisely is dependent on the actual
data in the MO, and can change when the data in the MO is
changed. Thus, we need to update the precision MO along
with the original MO when data changes.

Formally, given an MO, M = (S, F, D, R), where § =
(f,D), D={7;,i=1,.n}T; = (CZ', ST,)i C; = {Cij},

D={D;,i=1,.,n},and R, = {Rp,,i = 1,..,n}, we
define the precision MO, M,,, as follows.

M, =(Sp, Fp, Dy, R,), Where S, = (F,,D,), Fp = F,
D, =A{7,,,i=1,.,n},T,, = {Granularity;, T,,},

FP = FJ DP = {Dpi:i: 1: ":n}: D i (Cpmgpz):

Cp, = {Granularity,, T,,},

Granularity; = {Gp,(e) | e € D;}, Tp, ={Ti},

e1 <p, €2 & (e1 = €2) V (e1 € Granularity; Nes = T;),
and Ry, = {(f,Gp,()) | (F.e) €).

Example7 The MO from Example 5 has the precision MO
M, = (S,, Fp, Dy, R,), where the schema S, has the fact
type Patient and the dimension types Gran piagnosis and
Grangpaicy. The dimension type Gran piagnosis has the
category types Granularitmegmsis and T granDiagnosis-
The dimension type Gran gya;.% has the category types
Granularity gy s 1.9 aNd T Granmsascs. The set of facts
is the same, namely F, = {0,1,2}. Following the di-
mension types, there are two dimensions, Gran p;agnosis
and Granppascn. The Gran piagnosis dimension has the
categories Granularity piggnosis and T granDiagnosis- The
values of the Granularityp;,g,.s Category is the set of
category types { Low-level Diagnosis, Diagnosis Family,
T Diagnosis}- The Grangya.y dimension has the cate-
gories Granularity gy s ;.0 aNd T GranmHpa1c%. The val-
ues of the Granularityy, . Category is the set { Pre-
cise, Imprecise, T gya1.%}. The partial orders on the two
dimensions are the simple ones, where the values in the
bottom category are unrelated and the T value is greater
than all of them. The fact-dimensions relations R; and
R, have the contents R; = {(0, Diagnosis Family), (1,
Low-level Diagnosis), (2, Low-level Diagnosis)} and R, =
{(0, Trpazren), (1, Precise), (2, Imprecise)}. A graphical
illustration of the precision MO is seen in Figure 4.

Gran Gran
Diagnosis

HbA1c%

u}]

Low-level Diagnosis

. X X Impreci
Diagnosis Family ;iﬂec €

DDiagnosis

Precise

UhHbALco%

Patient o 1 2
Figure 4. Precision MO

The test to see if the data is precise enough to an-
swer a query @ can be performed by rewriting the query
Q = a[C1,..,Cn, Dpy1, g](M) to a “testing” query Q, =
a[G1, .., Gn, Gpt1, SetCount](M,), where G; is the cor-
responding “granularity” component in D, if C; # T,.
Otherwise, G; = T,;. Thus, we group only on the gran-
ularity components corresponding to the components that

the physician has chosen to group on. The dimension
Gn41 is used to hold the result of counting the members
in each “granularity group.” The result of the testing query
shows how many facts map to each combination of gran-
ularities in the dimensions that the physician has chosen
to group on. This result can be used to suggest alterna-
tive queries, as it is now easy to determine for each dimen-
sion D; the minimal category C! that has the property that
Type(ci) <7 Type(cz{) A YCij (f e FA (f, 6) € R;
A e € Ciyj = Type(Cyj) <7, Type(C})), ie., in each
dimension we choose the minimal category greater than or
equal to the original grouping category where the data is pre-
cise enough to determine how to group the facts. We can also
directly present the result of the testing query to the physi-
cian, to inform about the level of data imprecision for that
particular query. The physician can then use this additional
information to decide whether to run the alternative query or
proceed with the original one.

Example8 The physician wants to know the average
HbA1c% grouped by Low-level Diagnosis. The query
asked is then @ = «[Low-level Diagnosis, T gpa:c%, D3,
AVG,](M), thus effectively grouping only on Low-
level Diagnosis, as the T gya;.% component has only
one value. The testing query then becomes @, =
alGranularity piagn > T Granisa1c%, D3, SetCount](Mp),
which counts the number of facts with the different Di-
agnosis granularity levels. The result of @,, described
by the fact-dimension relations, is Ry = {({1,2},
Low-level Diagnosis), ({0}, Diagnosis Family)}, R, =
{HL2}, Teranmsaien), (10}, T Granmbazen)}, and Rs =
{{({1,2},2), ({0}, 1)}. This tells us that 2 patients have a
low-level diagnosis, while 1 has a diagnosis family diagno-
sis. Thus, the alternative query will be @Q = «[Diagnosis
Family, Tapaic%, D3, AVG2](M), which groups on
Diagnosis Family rather than Low-level Diagnosis.

5 Handling Imprecision in Query Evaluation

If the physician wants the original query answered, even
though the data is not precise enough, we need to handle im-
precision in the query evaluation. This section shows how to
handle imprecision in the grouping of data and in the com-
putation of aggregate functions, followed by presenting the
imprecise result to the physician.

5.1 Imprecisionin Grouping

We first need the ability to handle imprecision in the data
used to group the facts. If a fact maps to a category that is
finer than or equal to the grouping category in that dimen-
sion, there are no problems. However, if a fact maps to a
coarser category, we do not know with which of the under-
lying values in the grouping category, it should be grouped.

To remedy the situation, we give the physician several an-
swers to the query. First, a conservative answer is given that
includes in a group only data that is known to belong to that
group, but discards the data that is not precise enough to
determine group membership. Second, a liberal answer is
given that includes in a group all data that might belong to
that group. Third, a weighted answer is given that also in-
cludes in a group all data that might belong to it, but where
the inclusion of data in the group is weighted according to
how likely the membership is. Any subset of these three
answers can also be presented if the physician so prefers.
These three answers give a good overview of how the im-
precision in the data affects the query result and thus provide
a good foundation for making decisions taking the impreci-
sion into account. We proceed to investigate how to compute
the answers.

The conservative grouping is quite easy to compute. We
just apply the standard aggregate formation operator from
the algebra, which by default groups only the facts that are
characterized by dimension values having a granularity finer
than or equal to the granularity of the grouping components
in the respective dimensions. The rest of the facts are dis-
carded, leaving just the conservative result.

For the liberal grouping, we need to additionally capture
the data that are mapped directly to categories coarser than
the grouping categories. To allow for a precise definition of
the liberal grouping, we change the semantics of the aggre-
gate formation operator. In the full paper [15], we discuss
how to get the same result using only the standard aggregate
formation operator, thus maintaining the ability to imple-
ment the approach without the need for new operators. We
change the semantics of the aggregate formation operator so
that the facts are grouped according to dimension values of
the finest granularity coarser than or equal to the grouping
categories available. Thus, either a fact is mapped to di-
mension values in categories at least as fine as the grouping
categories, i.e., the data is “precise enough,” or the fact is
mapped directly to dimension values of a coarser granular-
ity than the grouping categories. The formal semantics of the

modified aggregate formation operator is given by replacing

the original definitions with the ones given below.

F' = {Group(e1,..,en) | (e1,..,€n) € D1 x .. X Dy
AType(Ch) <7, Gi(e1) A .. A Type(Cp) <71, Gplen)
AGroup(ey, ..;en) Z OA (Vi (—3e} (e} <; €

AGroup(eq, .., €5, ... en) C Group(ei, .., €i, .., €n))))}

Ry ={(f,e}) | Ie1,..,en) € D1 x .. X Dy,

(f' = Group(eq, ...,en) N f' € F' Ne; = ¢€})}

Thus, we allow the dimension values to range over the cate-

gories that have coarser or the same granularity as the group-

ing categories. We group according to the most precise val-
ues, of a granularity at least as coarse as the grouping cate-
gories, that characterize a fact.

Example9 If we want to know the number of patients,
grouped by Low-level Diagnosis, and project out the other
three dimensions, we will get the set of facts F/ =
{{0}, {1}, {2}}, meaning that each patient goes into a sepa-
rate group, one for each of the two low-level diagnoses and
one for the Diabetes diagnosis family. The fact-dimension
relations are R; = {({0},5), ({1},3),({2},4)}and Ry =
{({0}, 1), ({1}, 1),({2},1)}. We see that each group of
patients (with one member) is mapped to the most pre-
cise member of the Diagnosis dimension with a granularity
coarser than or equal to Low-level Diagnosis, that character-
ize the group. The count for each group is 1.

We can use the result of the modified aggregate forma-
tion operator to compute the liberal grouping. For each
group characterized by values in the grouping categories,
i.e., the “precise enough” data, we add the facts belong-
ing to groups characterized by values that “contain” the
precise values, i.e., we add the facts that might be char-
acterized by the precise values. Formally, we say that
Groupl(el, wven) = Ueisiey et>,e, Group(el, .. ey),
where the Group(ef, .., el,)’s are the groups in the result of
the modified aggregate formation operator. Thus, the liberal
(and conservative) grouping is easily computed from the re-
sult of the modified aggregate formation operator.

Example 10 If we want the number of patients, grouped
liberally by Low-level Diagnosis, we will get the set of
facts I/ = {{0,1},{0,2}}, meaning that patient O goes
into both of the two low-level diagnosis groups. The fact-
dimension relations are R, = {({0, 1}, 3), ({0,2},4)} and
R> = {({0,1},2),({0,2},2)}. We see that each patient is
mapped to all the low-level diagnoses that might be true for
the patient. The count for each group is 2, meaning that for
each of the two low-level diagnoses, there might be two pa-
tients with that diagnosis. Of course, this cannot be true for
both diagnoses simultaneously.

The liberal approach overrepresents the imprecise values
in the result. If the same fact ends up in, say, 20 different
groups, it is undesirable to give it the same weight in the
result for a group as the facts that certainly belong to that
group, because this would mean that the imprecise fact is
reflected 20 times in the overall result, while the precise facts
are only reflected once. It is desirable to get a result where
all facts are reflected at most once in the overall result.

To do so we introduce a weight w for each fact f in a
group, making the group a fuzzy set [20]. We use the no-
tation f €, Group(ey,..,e,) to mean that f belongs to
Group(ey, .., e,) With weight w. The weight assigned to
the membership of the group comes from the partial or-
der < on dimension values. For each pair of values ey, €5
such that e; < eo, We assign a weight p, using the notation
e1 < (p) ea, meaning that e should be counted with weight
p when grouped with e;. Normally, the weights would be

assigned so that for a category C' and a dimension value e,
we have that ¥ ccone, <(p)e P = 1, 1.6, the weights for one
dimension value w.r.t. any given category adds up to one.
This would mean that imprecise facts are counted only once
in the result set. However, we do not assume this, to allow
for a more flexible attribution of weights.

Formally, we define a new Group function that also
computes the weighting of facts: Group”(ey,..,en) =
Uel>1(p1)er, el > n(pn)en Group(el,..,el), where the
Group(e},..,el)’s are the groups from the result of the
modified aggregate formation operator. The weight as-
signed to facts is given by the group membership as: f €
Group(el, ..,e5) = [€comb(py,...pn) Group®(e1, .., en),
where the ¢;’s, the e’s, and the p;’s come from the
Group™ definition above. The function Comb combines
the weights from the different dimensions to one, overall
weight. The most common combination function will
be Comb(p1,..,pn) = p1 - .. pn, but for flexibility, we
allow the use of more general combination functions, e.g.,
functions that favor certain dimensions over others. Note
that all members of a group in the result of the modified
aggregate formation operator get the same weight, as they
are characterized by the same combination of dimension
values. The idea is to apply the weight of facts in the
computation of the aggregate result, so that facts with low
weights only contribute little to the overall result. This is
treated in detail in the next section, but we give a small
example here to illustrate the concept of weighted groups.

Example11 We know that 80% of Diabetes patients have
insulin-dependent diabetes, while 20% have non-insulin-
dependent diabetes. Thus, we have that 3 < (.8) 5 and
4 < (.2) 5, i.e., the weight on the link between Dia-
betes and Insulin-dependent diabetes is .8 and the weight on
the link between Diabetes and Non-insulin-dependent Di-
abetes is .2. The weight on all other links is 1. Again,
we want to know the number of patients, grouped by Low-
level Diagnosis. The Group® function divides the facts into
two sets with weighted facts, giving the set of facts F/ =
{{0.s,11},{02,21}. Using subscripts to indicate mem-
bership weighting, the result of the computation is given
in the fact-dimension relations R} = {({0s, 11}, Insulin-
dependent Diabetes), ({0 1, 21 }, Non-insulin-dependent Di-
abetes)} and R, = {({0s,1:1},1.8),({02,21},1.2)},
meaning that the weighted count for the group containing
the insulin-dependent diabetes patients 0 and 1 is 1.8 and
the count for the non-insulin-dependent diabetes patients 0
and 2is 1.2.

5.2 Imprecision in Computations

Having handled imprecision when grouping facts during
aggregate formation, we proceed to handle imprecision in
the computation of the aggregate result itself. The overall

idea is here to compute the resulting aggregate value by “im-
puting” precise values for imprecise values, and carry along
a computation of the imprecision of the result “on the side.”

For most MQ’s, it only makes sense to the physician
to perform computations on some of the dimensions, e.g.,
it makes sense to perform computations on the HbA1c%
dimension, but not on the Diagnosis dimension. For di-
mensions D, where computation makes sense, we assume a
function £ : D — 1 p that gives the expected value, of the
finest granularity in the dimension, for any dimension value.
The expected value is found from the probability distribution
of precise values around an imprecise value. We assume that
this distribution is known. For example, the distribution of
precise HbA1c% values around the T value follows a nor-
mal distribution with a certain mean and variance.

The aggregation function ¢ then works by “looking up”
the dimension values for a fact f in the argument dimen-
sions, applying the expected value function, £, to the di-
mension values, and computing the aggregate result using
the expected values, i.e., the results of applying £ to the di-
mension values. Thus, the aggregation functions need only
work on data of the finest granularity. The process of substi-
tuting precise values for imprecise values is generally known
as imputation [16]. Normally, imputation is only used to
substitute values for unknown data, but the concept is eas-
ily generalized to substitute a value of the finest granularity
for any value of a coarser granularity. We term this process
generalized imputation. In this way, we can use data of any
granularity in our aggregation computations.

However, using only generalized imputation, we do not
know how precise the result is. To determine the precision
of the result, we need to carry along in the computation a
measure of the precision of the result. A granularity com-
putation measure (GCM) for a dimension D is a type CM
that represents the granularity of dimension values in D dur-
ing aggregate computation. A measure combination func-
tion (MCF) for a granularity computation measure CM is a
function h : CM x CM — CM, that combines two granu-
larity computation measure values into one. We require that
an MCF be distributive and symmetric. This allows us to
directly combine intermediate values of granularity compu-
tation measures into the overall value. A final granularity
measure (FGM) is a type FM that represents the “real” gran-
ularity of a dimension value. A final granularity function
(FGF) for a final granularity measure FM and a granularity
computation measure CM is a function £ : CM — FM that
maps a computation measure value to a final measure value.
The reason to distinguish between computation measure and
final measures is only that this allows us to require that the
MCEF is distributive and symmetric. The choice of granular-
ity measures and functions is made depending on how much
is known about the data, e.g., the probability distribution,
and what final granularity measure the physician desires.

Example 12 The level of a dimension value, with 0 for the
finest granularity, 1 for the next, and so on, up to n for the
T value, provides one way of measuring the granularity of
data. A simple, but meaningful FGM is the average level
of the dimension values that were counted for a particular
aggregate result value. As the intermediate average values
cannot be combined into the final average, we need to carry
the sum of levels and the count of facts during the computa-
tion. Thus the GCM is CM = N x A/, the pairs of nat-
ural numbers, and the GCM value for a dimension value
e is (Level(e),1). The MCF is h((n1,n2),(ns, n4)) =
(n1 + ng,ng + ng). The FGM is R, the real numbers, and
the FGF is k(n1,n2) = na/ny. In the case study, precise
values such as 5.5 have level 0, imprecise values such as 5
have level 1, and the T value has level 2.

Example 13 The standard deviation o(X) of a set of val-
ues X from the average value e(X) is a widely used esti-
mate how much data varies around e. Thus, it can also be
used as an estimate of the precision of a value. Given the
probability distribution of precise values p around an impre-
cise value i, we can compute the standard deviation of the
p’s from E(7) and use it as a measure of the granularity of
i. However, we cannot use o as a GCM directly because
intermediate o’s cannot be combined into the overall . In-
stead we use as GCM the type CM = A/ x R x R, and
perform the computation using the count of values, the sum
of values, and the sum of squares of values, as the GCM val-
ues. For a value z, the GCM value is (1, z, z?). The MCF
is h((ny,z1,y1), (n2, 22,y2)) = (n1 + na,x1 + 2,91 +
y2). This choice of MCF means that the MCF is distribu-
tive and symmetric [18]. The FGM is FM = R, which
holds the standard deviation, and the FGF is k(n, z,y) =
V(y—a2)/(n—1). For values of the finest granularity,
only data for one X is stored. For values of coarser gran-
ularities, we store data for several X values, chosen accord-
ing to the probability distribution of precise values over the
imprecise value. In the case study, we would store data for
1 X value for precise values such as 5.5, for 10 X values
for imprecise values such as 5, and for 100 X values for the
T value. This ensures that we get a precise estimate of the
natural variation in the data as the imprecision measure, just
as we would get using multiple imputation [16, 2].

For both the conservative and the liberal answer, we use
the above technique to compute the aggregate result and its
precision. All facts in a group contribute equally to both
the result and the precision of the result. For the weighted
answer, the facts in a group are counted according to their
weight, both in the computation of the aggregate result and
in the computation of the precision. We note that for aggre-
gation functions g whose result depend only on one value in
the group it is applied to, such as MIN and MAX, we get the
minimum/maximum of the expected values.

Diagnosis Result Diagnosis
dimension dimension dimension
O 0 0
5 ‘5 T T 5
i 5';4:11{5.5--7.0 5o
{1} {2} {0.1} {02}

Conservative result

Liberal result

Result Diagnosis Result
dimension dimension dimension
O O 0
TT 7 5 TT 7 .
54 55 7.0 i a4 54 5570
{01} {02}

Weighted result

Figure 5. Resulting MO'’s for the Conservative, Liberal, and Weighted Answers

Example 14 We want to know the average HbA1c% for pa-
tients, grouped by Low-level Diagnosis, and the associated
precision of the results. As granularity measures and func-
tions, we use the level approach described in Example 12.
We discuss only the weighted result. As seen in Example 11,
the resulting set of facts is F/ = {{0s,11},{0,2:}, and
the SetCount is 1.8 for the first group and 1.2 for the sec-
ond. When computing the sum of the HbA1c% values, we
impute 7.0 and 6.0 for the imprecise values 7 and T, respec-
tively. For the first group, we multiply the values 6.0 and 5.5
by their group weights .8 and 1, respectively, before adding
them together. For the second group, 5.5 and 6.0 are multi-
plied by 1 and .2, respectively. Thus, the result of the sum
for the two groups is 10.3 and 6.7, giving an average result
of 5.7 and 5.6, respectively.

The computation of the precision proceeds as follows.
The level of the values T, 5.5, and 7 is 2, 0, and 1, re-
spectively. The weighted sum of the levels for each group
is found by multiplying the level of a value by the group
weight of the corresponding fact, yielding 1.6 for the first
group and 1.4 for the second. The weighted count of the
levels is the same as that for the facts themselves, namely
1.8 and 1.2. This gives a weighted average level of .9 for
the Insulin-dependent Diabetes group and 1.2 for the Non-
insulin-dependent diabetes group, meaning that the result for
the first group is more precise. The relatively high weighted
average level for the first group is mostly due to the high
weight (.8) that is assigned to the link between Diabetes and
Insulin-dependent Diabetes. If the weights instead of .8 and
.2 had been .5 and .5, the weighted average levels would
have been .7 and 1.3.

5.3 Presenting the Imprecise Results

The final step is to present the imprecision in the result to
the physician. We have several alternatives for this step. The
most straightforward approach is to present the result val-
ues along with their corresponding final granularity measure
values. This gives a very precise estimate of the precision of
a result value.

Example 15 For the previous example, this would present
the (Low-level Diagnosis, AVG(HbA1c%), AVG(Level))
tuples from the conservative, the liberal, and the
weighted answers. For the conservative answer, the re-
sult is (Insulin-dependent diabetes, 5.5, 0), (Non-insulin-
dependent Diabetes, 7,1). For the liberal answer, the
result is (Insulin-dependent diabetes, 5.8, 1), (Non-insulin-
dependent Diabetes, 6.5, 1.5). For the weighted answer, the
result is (Insulin-dependent diabetes, 5.7, .9), (Non-insulin-
dependent Diabetes, 5.6, 1.2).

The other alternative for presenting the imprecision is one
which follows our overall approach of using the granularity
itself as an estimate of the precision of data. We use the
imprecision of a result value to convert (coarsen) the value
into a value of a granularity corresponding to the impreci-
sion. A value coarsening function (VCF) for a dimension
D and a FGM MM is a functionec : Lp x M — D, where
c(e) = ey such that e < e;. Thus, the VCF maps values
of the finest granularity into “containing” values of a possi-
bly coarser granularity, determined by the imprecision. The
VCF and the granularities of the result dimension are chosen
so that the granularity of the result gives a good overview of
the true precision.

Example16 We choose the HbA1c% dimension, with the
original granularities, as the result dimension. As the VCF
we choose r(z) = wv such that 2 < v A Level(v) =
Ceiling(z), i.e., for a number z, we choose the value that
“contains” z and has the level of the least natural number
greater than or equal to , e.g., »(.9) = 1 and r(1.2) = T.
A graphical illustration of the resulting MQO’s for the conser-
vative, liberal, and weighted results are seen in Figure 5. We
note that the liberal and weighted answers are identical, sug-
gesting that this is closer to the truth than the conservative
answer in this case. The result value for AVG(HbA1c%) is
T in both the liberal and the weighted answer for the Non-
insulin-dependent group because half of the input data is
unknown, rendering the resulting average value very impre-
cise.

6 Conclusion and Future Work

Motivated by the increasing use of OLAP technology for
medical applications, we investigate how to solve a common
problem with medical and other data, namely data impre-
cision, using pre-existing concepts from multidimensional
data models used in OLAP systems.

The adopted approach generally uses the concept of data
granularity to handle imprecision in the data. As the con-
crete context for presenting its contribution, the paper uses
a multidimensional data model and an algebraic query lan-
guage that facilitate formal definition of the concepts used.
Data imprecision is handled by first testing if the data is
precise enough to answer a query precisely. If this is not
the case, an alternative query that might be answered pre-
cisely is suggested. If the physician asking the query elects
to proceed with the original query, the imprecision in the
data is reflected in the grouping of the data, as well as in
the aggregate computation. The physician is presented with
three results, a conservative, a liberal, and a weighted re-
sult. These include what is known to be true, everything
that might be true, and a weighted combination of these ex-
tremes, respectively. Along with the aggregate computation,
a separate computation of the precision of the result is car-
ried out, and it is shown how to present the imprecise result
to the physician. It is possible to use pre-aggregated data for
more efficient query processing, and the approach may be
implemented using SQL [15].

This work improves on previous approaches to handling
imprecision by showing how existing concepts and tech-
niques from multidimensional databases, such as granular-
ities and pre-aggregation, can be maximally reused to also
support imprecision in aggregate queries, covering both the
grouping of data and the aggregate computation itself. The
result is an effective approach that can be implemented using
current technology.

In future work, it would be interesting to pursue a more
theoretical investigation of how to implement the technique
using special-purpose data structures and algorithms, to
achieve optimal concrete complexity. A further investiga-
tion of the issues related to “single-value” aggregation func-
tions such as MIN and MAX in relation to data granularity
is also interesting. Unlike other aggregation functions, these
are not readily sensitive to weighting. We have shown how
to present data imprecision in the result using granularities,
but it would be very interesting to explore other means of
graphically presenting imprecision in the result. Other is-
sues for future research include presenting the user with the
data that prevented a query from being precisely answerable
and developing precise measures for determining when (in
terms of data quality) the approach is useful.

Acknowledgements

This research was supported in part by the Danish Techni-
cal Research Council through grant 9700780, by the Danish
Academy of Technical Sciences, contract no. EF661, and by
a grant from the Nykredit corporation.

References

[1] C. Bettini et al. A Glossary of Time Granularity Concepts.
In Temporal Databases: Research and Practice, pp. 406-413.
LNCS 1399, Springer-Verlag, 1998.

[2] S.vanBuuren etal. Routine Multiple Imputation in Statistical
Databases. In Proceedings of SSDBM, pp. 74-78, 1994.

[3] A. L. P. Chen et al. Evaluating Aggregate Operations over
Imprecise Data. IEEE TKDE, 8(2):273-284, 1996.

[4] P. P-S. Chen. The Entity-Relationship Model — Toward a
Unified View of Data. ACM TODS, 1(1):9-36, 1976.

[5] E.F. Codd. Extending the Data Base Relational Model to Cap-
ture More Meaning. ACM TODS, 4(4):397-434, 1979.

[6] E.F. Codd. Providing OLAP (on-line analytical processing) to
user-analysts: An IT mandate. E. F. Codd and Assoc., 1993.

[7] C.E. Dyreson. Information Retrieval from an Incomplete Data
Cube. In Proceedings of VLDB, pp. 532-543, 1996.

[8] C. E. Dyreson. A Bibliography on Uncertainty Management
in Information Systems. In [13], pp. 413-458, 1997.

[9] C. E. Dyreson and R. T. Snodgrass. Supporting Valid-time
Indeterminacy. ACM TODS, 23(1):1-57, 1998.

[10] J. Gray et al. Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab and Sub-Totals. DMKD,
1(1):29-54, 1997.

[11] K.J.Isselbacher et al. Principles of Internal Medicine, Ninth
Edition. McGraw-Hill, 1980.

[12] A. Klug. Equivalence of Relational Algebra and Rela-
tional Calculus Query Languages Having Aggregate Func-
tions. JACM, 29(3):699-717, 1982.

[13] A. Motro and P. Smets (eds.). Uncertainty Management in
Information Systems - From Needs to Solutions. Kluwer Aca-
demic Publishers, 1997.

[14] T.B.Pedersenand C. S. Jensen. Multidimensional Data Mod-
eling for Complex Data. In Proceedings of ICDE, pp. 336—
345, 1999. Extended version available as TimeCenter Report
TR-37, <www.cs.auc.dk/TimeCenter>, 1998.

[15] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson. Supporting
Imprecision in Multidimensional Databases Using Granular-
ities. TR R-99-5003, Comp. Sci. Dept., Aalborg University,
<www.cs.auc.dk/~thp/articles/R995003.ps>, 1999.

[16] D. B. Rubin. Multiple Imputation for Nonresponse in Sur-
veys. Wiley, 1987.

[17] E. Rundensteiner and L. Bic. Evaluating Aggregates in Pos-
sibilistic Relational Databases. DKE, 7(3):239-267, 1992.
[18] S.-C. Shao. Multivariate and Multidimensional OLAP. In

Proceedings of EDBT, pp. 120-134, 1998.

[19] World Health Organization. International Classification of
Diseases (ICD-10). Tenth Revision, 1992.

[20] L. Zadeh. Fuzzy Sets. Inf. and Control, 8:338-353, 1965.

