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Abstract ceived less attention. Several researchers have pointed to this

lack in OLAP research, and it has been suggested to try to
On-Line Analytical Processing (OLAP) systems considerablyyombine the traditional OLAP virtues of performance with
ease the process of analyzing business data and have becoithe more advanced data model concepts from the fieddiof
widely used in industry. Such systems primarily employ mulentific and statistical databas¢g].

tidimensional data models to structure their data. However, A data model for OLAP applications should have certain

current multidimensional data models fall short in their abil- o .
. . characteristics in order to support the complex data found in
ities to model the complex data found in some real-world ap- : .
o : : X many real-world systems. We present nine advanced require-
plication domains. The paper presents nine requirements tg s : .
- . o .. _ments that a multidimensional data model should satisfy and
multidimensional data models, each of which is exemplified

by a real-world, clinical case study. A survey of the eXist_lllustrate the requirements using a real-world case study from

. . . the clinical world. We present an extended multidimensional
ing models reveals that the requirements not currently met in- . )

) : data model that addresses all nine requirements. The data
clude support for many-to-many relationships between facts

and dimensions, built-in support for handling change andmodel supports explicit hierarchies, multiple hierarchies, and

. . . on-strict hierarchies in dimensions. Dimensions and mea-
time, and support for uncertainty as well as different levels o . :

S . sures are treated symmetrically, and there is support for cor-
granularity in the data. The paper defines an extended mul- . X .
-~ . : . rect aggregation of data. The many-many relationships be-
tidimensional data model, and an associated algebra, whic . : :

! . ween facts and dimensions are captured directly, and data
address all nine requirements. L : :
with different levels of granularity may be recorded. Finally,
the model supports handling change over time and some as-
pects of uncertainty in the data. The model is equipped with

1 Introduction : .
an algebra that is closed and at least as strong as relational
On-Line Analytical Processing (OLAP) [4] has attracted zigebra with aggregation.

much interest in recent years, as business managers attempt ) .

to extract useful information from large databases in order Eight previously proposed data models, which are rep-
to make informed management decisions. Reports indicatgeSentative for the spectrum of multidimensional data mod-
that traditional data models, such as the ER model and th8!S: aré evaluated against the nine requirements, and it is
relational model, do not provide good support for OLAP ap_shown that no other model satisfies these requwements: Im-
plications. As a result, new data models based onuti-  Portantly, no other model supports many-to-many relation-
dimensionaliew of data have emerged. These multidimen-Ships _between facts and dlmen_5|ons, handling of uncertainty,
sional data models typically categorize data as beireg- and different levels of gran_ularlty at all, and_no other mod(_el
surable business fac(sneasures) odimensionswhich are ~ completely supports handling change and time or non-strict
mostly textual and characterize the facts. For example, in diérarchies.

retail businesgroductsare sold tacustomerst certairtimes The presentation is structured as follows. Section 2
in certainamountsat certainprices A typical fact would be  presents a real-world case study, describes the nine require-
a purchase with the amount and price as the measures, an¢hents to multidimensional data models, and evaluates previ-
the customer purchasing the product, the product being puigusly proposed models against the requirements. Sections 3
chased, and the time of purchase as the dimensions. In OLARnd 4 define the extended multidimensional data model and

research, most work has concentrated on performance issugfie associated algebra. Section 5 evaluates the model, sum-
and higher-level issues such as conceptual modeling have rgnarizes, and points to future directions.



2 Motivation

This section presents a healthcare case study; the requir
ments that a data model should satisfy, examplified by th
case study; and finally evaluates existing multidimensiona

data models according to the requirements.

* Name

* Name

* Name

groups of lower-level diagnoses. A diagnosis family consists

8f- 5-20 related low-level diagnoses. A diagnosis group con-
ists of 5-20 diagnosis families. In the standard classification
ierarchy, a lower-level item is part of exactly one item on the

nextlevel, making it strict, partitioninghierarchy. However,

to allow for more flexible grouping, aser-definedhierarchy

is introduced, where a lower-level item can be a member of

, zero or more higher-level items, making ihan-strict, non-
Area . County Region . . .
(1,1) \grouping partitioning hierarchy.
©n ID Name SSN Date of Birth
* Valid From 1 | John Doe| 12345678 25/05/69
* Valid To 2 | Jane Doe| 87654321 20/03/50
(1,1 Patient Table
* Code
Patient (o,no,n) Diagnosis \T,z,‘d From PatientlD | DiagnosisID | ValidFrom | ValidTo Type
" *Valid To 1 9 01/01/89 NOW Primary
iy * Valid From 2 3 23103175 | 24112175 | Secondary
“Date of Birth Yoo 1° 2 8 01/01/70 | 31/12/81| Primary
* (Age) v 2 5 01/01/82 | 30/09/82 | Secondary
D 2 9 01/01/82 | NOW Primary
? Has Table
;?;”"e"?' biagnosis Diagnosis ID | Code Text ValidFrom| ValidTo
gnosis Family Group .
(L) (@.n) (3.n) @.n) 3 P11 Diabetes, pregnancy | 01/01/70 | 31/12/79
* Valid From * Valid From 4 024 Diabetes, pregnancy | 01/01/80 | NOW
" Valid To :Va"d To 5 | 024.0 Ins. dep. diab., pregn. | 01/01/80 | NOW
Type Type 6 | 024.1 | Nonins. dep. diab., pregn, 01/01/80 | NOW
7 P1 Other pregnancy diseases 01/01/70 | 31/12/79
: ; : : D1 Diabetes 01/10/70 | 31/12/79
Figure 1. Patient Diagnosis Case Stud 8 _ .
9 9 y 9 E10 Insulin dep. diabetes 01/01/80 NOW
10 E11 Non insulin dep. diabetes| 01/01/80 | NOW
2.1 A Case Study 11| El Diabetes 01/01/80 | NOW
. . . .| 12 02 Other pregnancy diseases 01/10/80 | NOW
Thg case _study concerns the patients in a hospital, their Diagnosis Table
associated diagnoses, and their places of residence. The goal
is to investigate whether some diagnoses occur more often | ParentlD | ChildID | ValidFrom | ValidTo Type
in some areas than in others, in which case environmental or j 2 81;81;28 mgw VWVES
lifestyle factors _mlght b_e contnbutm_g to the_dlsgase pattern. = 3 o1/01/70 | 3112779 WHO
An ER diagram illustrating the case is seen in Figure 1. 8 3 01/01/70 | 31/12/79 | User-defined
The most important entities are tpatients for which we 9 5 01/01/80 | NOW | User-defined
record Name, Social Security Number (SSN), Date of Birth, 10 6 01/01/80 | NOW | User-defined
and Age (derived). Each patient can have one or nidre 1 9 01/01/80 | NOW WHO
Wi d the ti : | wh di . 11 10 01/01/80 | NOW WHO
agnoses We record the time interval where a diagnosis is P 7 01/01/80 1 NOW WHO

considered to be valid for a patient. We also recordtytpe

of diagnosis to show whether a diagnosis is considered to
be primary or secondary A patient may have only one pri- Table 1. Data for the Case Study

mary diagnosis at any one point in time. When registering For example, a low-level diagnosis can be part of several
a diagnosis of a patient, physicians often use different levdiagnosis families, e.g., the “Insulin dependent diabetes dur-
els of granularity. Some will use the very precise diagnosisng pregnancy” diagnosis is part of both the “Diabetes dur-
“Insulin dependent diabetes,” while others will use the moreing pregnancy” and the “Insulin dependent diabetes” family.
imprecise diagnosis “Diabetes,” which covers a wider rangdProperties of the hierarchies will be discussed in more detail
of patient conditions, corresponding to a number of more prein Section 3.4. For diagnoses, we record an alphanumeric
cise diagnoses. To model this, the relationship from patientode and a descriptive text. The code and text are usually
to diagnoses is to the supertype “Diagnosis.” The Diagnodetermined by a standard classification of diseases, e.g., the
sis type has three subtypes, corresponding to different leveM/orld Health Organization’s International Classification of
of granularity, thdow-level diagnosisthediagnosis family = Diseases (ICD-10) [12], but we also allow user-defined diag-
and thediagnosis groupThe higher-level diagnoses are both noses. As the diagnosis classification changes over time, we
(imprecise) diagnoses in their own right, but also function asalso record the time intervals where the diagnoses are “valid,”

Grouping Table



i.e., can be used when diagnosing patients. recorded.
We also record the place of residence for the patients alon
with the period of residence to capture movement over time.g'3 Related Work

We record the place of residence at the granularity cfrag, Next, we evaluate data models that have previously been
which is part of exactly oneounty which in turn is part of  proposed for data warehousing according to the requirements
exactly onaegion, yielding astrict, partitioninghierarchy. in the previous section. We consider the models of Rafanelli

In order to list some example data, we assume a stan& Shoshani [6], Agrawal et al. [5], Gray et al. [2], Kim-
dard mapping of the ER diagram to relational tables, and wéall [3], Li & Wang [10], Gyssens & Lakshmanan [9], Datta
use surrogate keys, namé#dl, with globally unique values. & Thomas [13], and Lehner [11]. The results of evaluating
Dates are written in the format dd/mm/yy. For the “Valid the eight data models against our nine requirements are seen
To” attribute, we use the special, continously-growing valuein Table 2, where /" denotesfull, “p” denotespartial, and
“NOW" that denotes the current time [20]. As the three sub-"-" denotesno support for a requirement. It can be seen that
types of the Diagnosis type do not have any attributes of theithe models generally provide full or partial support for most
own, all three are mapped to a common Diagnosis table. Thef requirements 1-4. Requirement 5 (non-strict hierarchies)
“is part of” and “grouping” relationships are also mapped to ais partially supported by three of the models, while require-
common “Grouping” table. The data consists of two patientsment 7 (handling change and time) is only partially supported
four diagnoses made for the patients, and 10 diagnoses inky Kimball [3]. Requirements 6, 8, and 9 are not supported
hierarchy. On January 1, 1980, a new, more detailed classPy any of the models. Further discussion of these issues may
fication with a new coding scheme is introduced. The resultbe found in the full paper [21]. The model proposed in this
ing tables are shown in Table 1 and will be used in examplepaper aims to support all nine requirements.

throughout the paper. 11213]4alsl6l718|9
2.2 Requirements for Data Analysis izg\:f;lll [[56]] ‘p/ VARV, \/ E — 1

This section describes the features that a data model Gray [2] -V e - -] -]
should possess in order to fully support our sample case and Kimball[3] | - | - |V | P |-|-|P]| -] -
other advanced uses. Current multidimensional models are  Li [10] pl-|VIip|-]-]-|-1-
evaluated against these features in the next section. There- Gyssens[9]| - |V |V | P |- |- |- |- -
quirements are the following: 1) there shouldélicit hi- Datta [13] | - [V |V | - |p|-]-]-1-
erarchies in dimension® aid the user in navigation, e.g., the Lehner[2] | /| - [ - [V | -|-1-]-1-

hierarchyarea < county < region should be captured; 2)
thetreatment of dimensions and measures should be symmet- Table 2. Evaluation of the Data Models
ric, e.g., the Age attribute could be used for average computa-

tions as well as defining age groups; 3) the model should suB3 The Data Model

portmultiple hierarchies in a dimensidno allow for different
aggregation paths; e.g., with a time dimension on the Dat
of Birth attribute, days could roll up into weeks months;
4) the model should suppodorrect aggregationof data,
closely related taummarizability[6, 7], so data is not dou-
bly counted, and non-additive data is not added; e.g., wh
counting patients in different diagnosis groups, we should3.1 The Basic Model

only count the same patient once per group, even though that An n-dimensional fact scheniga two-tuples = (F, D),
patient may have several diagnosesnéih-strict hierarchies whereF is afact typeandD = {Ti,i = 1,..,n} is its c’orre-
as found in many real-world situations, e.g., the user-define pondingdimension types ’ Y

diagnosis hierarchy, should be supported; 6) the oft—occurin% ) )
many-to-many relationships between facts and dimension&Xa@mple 1 In the case stu_y from Section 2.1 we will have
e.g., between patients and diagnoses, should be handled B?t"?”tas the fact type, andiagnosis, Residence, Age, Date
the model; 7) thehange in data over time.g., the changes ©! Birth (DOB), Name and Social Security Number (SSN)
in the diagnosis hierarchy, should be supported directly by?S the dimension types. The intuition is tieserythingthat
the model; 8) theincertaintyoften associated with data, e.g., characterizes t.he fact typedﬁne.nswnaleven attributes that
a physician may be only 90% certain when diagnosing a pavould be considered aseasuresn other models.

tient, should also be handled directly by the model; 9) the A dimension typeT is a four-tuple(C, <7, T+, L7),
model should allow data witllifferent levels of granular- whereC = {C;,j = 1,..,k} are thecategory type®f T,
ity, e.g., the more or less precise diagnoses of patients, to b€ is a partial order on thé;’s, with T € Cand Ly € C

In this section we define our model. For every part of the
Fnodel, we define thintension the extension and give an
illustrating example. To avoid unnecessary complexity, we
first define the basic model and then in turn define extensions
eEor handling time and uncertainty.



being the top and bottom element of the ordering, respecExample 3 In the case study, we hawvkggtype(Low-level
tively. Thus, the category types form a lattice. The intuition Diagnosis) = ¢ Aggtype(Age) =, andAggtype(DOB) =.
is that one category type is “greater than” another category A di - -

. . : ) mensionD of type 7 = L < Tr,Ly)is a
type if members of the former’s extension logically Conta'ntwo-tupI)IeD |: C <)y5threC (:{C’{él—}’fg aTs,et g%ci’:\te-
members of the latter’s extension, i.e., they have a larger el joriesC; such tha[til_"y;;e(cj) s and]< is a partial order

ment size. The top element of the ordering corresponds to th nU,C;, the union of all dimension values in the individual

largest possible element size, that is, there is only one elemeegtegories A categorg; of typeC; is a set ofdimension
in its extension, logically containing all other elements. ' / /

; . . valuese such thatType(e) = C;. The definition of the partial
We say that; is a category type of, writtenC; € T, if

s c ) orderis: given two values,, e; thene; < e, if e; islogically
Cj € C. We assume a functiofired : C — 2" thatgives the  coniained ine,. We say that; is a category oD, written
set of immediate predecessors of a category fype

C; € D,if C; € C. For a dimension value, we say that

Example 2 Low-level diagnoses are contained in diagnosist.'S & dimensional value b, writtene € D, if e € U;C;.

families, which are contained in diagnosis groups. Thus, thérhe cr_:ltegory typeL7 in dlmen_5|on typeT contains the v_aI—
Diagnosisdimension type has the following order on its cat- ues with the smallest value size. The category type with the

. — ; - : largest value sizeT 1, contains exactly one value, denoted
egory types: L piagnosis = LOW-level Diagnosis< Diagno- ! ’
sis Familiy < Diagnosis Group< T piqgnosis- WWe have that T. Forall values: of the category types db, e < T. Value

Pred(Low-level Diagnosis = {Diagnosis Family. Other T is similar to theALL construct of Gray et al. [2].
examples of category types akgeandTen-year Age Group Example 4 In our Diagnosisdimension we have the follow-
from the Age dimension type, arldOB and Yearfrom the  ing categories, named by their typd.ow-level Diagnosis
DOB dimension type. Figure 2, to be discussed in detail later= {3, 5,6}, Diagnosis Family= {4,7,8,9,10}, Diagnosis
illustrates the dimension types of the case study. Group = {11,12}, and T piagnesis = {T}. The values in
the sets refer to thED column in the Diagnosis table of Ta-
Many types of data, e.g., ages or sales amounts, can g 1 The partial ordex is given by the first two columns in

added together to produce meaningful results. This data hgge Grouping table in Table 1. Additionally, the top valtie
an ordering on it, so computing the average, minimum, ang

) ogically contains all the other diagnosis values.
maximum values make sense. For other types of data, e.g.,

dates of birth or inventory levels, the user may not find it e say that the dimensiop’ = (C",<') is a subdi-
meaningful in the given context to add them together. How-mensionof the dimensionD = (C,<) if ¢' C C and
ever, the data has an ordering on it, so taking the average, 6t < €2 < 3C1,C; € C'(e1 € Ci Aex € Gy Ney < ),
computing the maximum or minimum values do make sensehat is, D' has a subset of the categories/dfand <' is the

Some types of data, e.g., diagnoses, do not have an orderifigstriction of< to these categories.

on them, and so it does not make sense to compute the avatxample 5 We obtain a subdimension of the Diagnosis di-

age, etc. Instead, the only meaningful aggregation is to coutthension from the previous example by removing Hosv-

the number of occurrences. level Diagnosisand Diagnosis Familycategories, retaining
We can support correct aggregation of data by keepingnly Diagnosis GroumndT piggnosis-

track of what types of aggregate functions can be applied to

what data. This information can then be used to either pre- It i'rsl ?hesrlr:ab:s o d:lztl?r?wrsh ?S\fwr(lader‘?nthr?n dlfpt?]nstlz\:l val-
vent users from doing “illegal” calculations on the data com-Y&3 EmsSelves a € real-wo ames: that we use

pletely, or to warn the users that the result might be “Wrong,”LOr them. Tr&? names might charll_ge otrhthe same vglude nr1]|ght
e.g., the same patient is counted twice, etc. In line with thi ave more than oné hame, making thé name a bad cholice

reasoning and previous work [11, 17], we distinguish be!_;for identifying an value. In common database terms, this is

tween three types of aggregate functions: applicable to ;hetargument fopbjiﬁt ;dsortsurrog?tes To support this
data that can be added togethgrapplicable to data that can cature, we require that a ca egcﬁy as one or moreep-

be used for average calculations, andapplicable to data resentations A representatlomep is a bijective function
that is constant, i.e., it can only be counted. Considering."? Dom(C) ¢ Dompep, i.€., a value of a representa-
only the standard SQL aggregation functions, we have tha on uniquely identifies a single value of a category and vice
S — {SUM, COUNT, AVG, MIN, MAX}, ¢ = ,{COUNT versa, thus making the representation an “alternate key.” We
AVG, MIN, MAX }, ande = {COUNT}. The aggregation US€ the notatiodiep(e) = v to denote the mapping from
types are ordered,C ¢ C ¥, so data with a higher aggrega- dimension values to representation values.

tion type, e.g.X, also possess the characteristics of the loweExample 6 A diagnosis value has two representatiddsde
aggregation types. For each dimension tgpe= (C, <7), andText Using the ID’s from the Diagnosis table to identify
we assume a functioAggtype : C = {X, ¢, c} that gives  the values, we hav@odg3) = “O24"” andTex{(3) = “Diabetes
the aggregation type for each category type. during pregnancy.”



Let F' be a set of facts anfd = ({C;}, <) a dimension. into five-year and ten-year groups, e.g., 10-14 and 10-19.
A fact-dimension relatiorbetweenF and D is a setR = The Date-of-Birth dimension has two hierarchies in it: days
{(f,e)}, wheref € F ande € U;C;. ThusR links facts  are grouped into weeks, or days are grouped into months,
to dimension values. We say that fatis characterized by with the further levels of quarters, years, and decades. We
dimension value, written f ~» e, if 3e; € D ((f,e1) € will refer to this MO as the “Patient” MO. A graphical illus-
RAei <e). Werequirethat/f € F (e € U;C; ((f,e) €  tration of the schema of the “Patient” MO is seen in Figure 2.
e e e 21 A collcton of mulidnensional object, possbly wih

. . . éhared subdimensions, is calledrailtidimensional object

and often have an unclear meaning. If it is unknown which

. . : ; " family. The shared subdimensions can be used to “join” data
dimension value a fact is characterized by, we add the pair from separate MO’s.

(£, T) to R, thus indicating that we cannot characterize To summarize our model, the facts are objects witiejp-

within the particular dimension. arate identity Thus, we can test facts for equality, but we
Example 7 The fact-dimension relatioft links patientfacts  do not assume an ordering on the facts. The combination of
to diagnosis dimension values as given by the Has table in Tagimensions values that characterize the facts of a fact set is
ble 1. Leaving out the temporal aspects for now, we get thagot a “key” for the fact set. Thus, we may have “duplicate
R =1{(1,9), (2,3), (2,5), (2,8), (2,9) Note that we canrelate yaJues,” in the sense that several facts may be characterized
facts to values in higher-level categories, e.g., fact 1 is relategly the same combination of dimension values. But, the facts

to diagnosis 9, which belongs to tBBagnosis Familycate-  of an MO are aset so we do not have duplicafactsin an
gory. Thus, we do not require thatbelongs toL p;sgnosis. MO.

as do the existing data models. If no diagnosis is known for

patient 1, we would have added the pdiyT) to R. 3.2 Handling Time

A multidimensional objec{MO) is a four-tupleM = We proceed to build temporal support into the model.
(S,F,D,R), whereS = (F,D = {T;}) is the schemal’ = Consistently with the vast majority of temporal data mod-
{f} is a set offacts f where Type(f) = F, D = {D;,i = els [14] and the SQL standard [15], we assume a time domain

1,..,n} is a set ofdimensionswvhere Type(D;) = T;, and  thatis discrete and bounded, i.e., isomorphic with a bounded
R = {R;,i = 1,..,n} is a set of fact-dimension relations, subset of the natural numbers. The values of the time domain
such tha¥i((f,e) € R; = f € FAIC; € Di(e € C))). are calledchronons They correspond to the finest granular-
ity in the time domain [19]. We leT’, possibly subscripted,

Age Diagnosis Date of Birth Residence  Name  SSN
denote a set of chronons.
O O O u] O O . . . .
‘ Thevalid timeof a statement is the time when the state-
Diagnosis Dec‘ade ment is true in the modeled reality [1]. Valid time is very im-
TZ':OVUZM Group Year  Region portant to capture because the real world is where the users re-
‘ Quarter side, and wallow the attachment of valid time to the data, but
Fveyear  Diagnosis /| o do not require it. If valid time is not attached to the data, we
group FaT"y assume the data to béwaysvalid. If valid time is attached to
‘ an MO, we call it avalid-timeMO. In general, valid time may
Age =0 LL Diagnosis =0 Day =0 Area =[] Name =[JSSN = [J

be assigned to anything that has a truth value. In our model,

this is the partial order between dimension values, the map-

ping between values and representations, the fact-dimension
Patient relations, and the membership of values in categories. It is

important to be able to capture all these aspects.

We add valid time to the dimension partial orderby
adding T, the set of chronons during which the relation
Example 8 For the case study, we get a six-dimensional MOholds, to each relation between two values. We write that
M = (S,F,D,R), whereS = (Patient {Diagnosis, DOB, e; <r, ey if e; < e during each chronon if,. The partial
Residence, Name, SSN, ApandF' = {1,2}. The defini- order<r, has the following property; <7, exA ez <7,
tion of the diagnosis dimension and its corresponding factes = e; <7, n7,, es. Similarly, we write Rep(e) =1, v
dimension relation were given in the previous examples. Dugo denote that the representatiBap of the valuee has value
to space constraints, we do not list the contents of the other div during each chronon iff,,. For each fact-dimension rela-
mensions and fact-dimension relations, but just outline theition between a facf and a dimension value, we capture
structure. The Name and SSN dimensions are simple, i.ethe set of chronon%, when the two are related. We write
they just have & category type, Name respectively SSN, and(f,e) €7, R when(f,e) € R during each chronon iff,.
aT category type. The Age dimension groups ages (in years)Ve use the notatiofi ~, ewhen(f,e') €5, RAe’ <7, e.

Figure 2. Schema of the Case Study



Finally, we add valid time to the membership of dimensionwe useT; to denote the set of chronons when data is current
values in categories, writing €7, C whene € C during inthe database. We u§é x T, to denote sets of bitemporal
each chronon iff,. chronons.

The set of chronons that is attached to a piece of data is
the maximalset of chronons when the data is valid, so the3.3 Handling Uncertainty
data is alw?ys coales_ced [,,1]' Thus, we da not have the Uncertainty in the data can also be handled in the model.
sroblem of value—e(qlu!valent.iaé:.iﬁ[l, 18].’ where thﬁ Sdam?The basic idea is to add probabilitipsto the parts of the
eataeap<peares ?r:/de(ara <t|mees WvI\}herIeTe r?tiftlmlizvig\?gri o IFhodel where it makes sense. This is for the partial order on
. 'g'l’. ! t.—Tl d2 @ L _I'ng 2 bl ; f2'.t tach ,dty dimension values and for the fact-dimension relations, with
|mp|;a2)rjli aa'i valid for ani/ SUDSEL Ot IS attached time,, o notationg; <, e; and(f,e) €, R;, respectively. The
€051 C 2 Aer s e = e Sy e probabilities are also handled by the algebra. Due to space
Example 9 In examples, we use interval notation f&y, constraints, we will not give a detailed description of the ap-
with a chronon size of Day. For the fact-dimension rela-Proach here, but refer to the full paper [21].
tion, we have(2,3) €[23/03/75-24/12/75) R. For the cate- .
gory membership, wé h/avée) e[of/of/g(])_mw] Diagnosis 3-4 Properties of the Model
Family. For the partial order on the Diagnosis dimension, We  The model has several important properties that relate to
have7 <io1/01/70-31/12/79) 3. For the representation, we he yse of pre-computed aggregates. The first important con-
have Code(8) =(o1/01/70-31/12/70) D1. cept issummarizabilitywhich intuitively means that one set

To sum up, by extending the dimension partial orderwithOf aggregate results can be combined directly to produce
’ other, higher-level aggregate results.

links between dimension values that represent the “same
thl_ng across change, we .have afoundauonf_or handl_mg anabefinition 1 Given a typeT’, a setS = {S;,j = 1,..k},
ysis across changes. This allows us to obtain meaningful re-

. . - WwhereS; € 27, and an aggregate functign: 27 — T', we
sults when we analyze data across changes in a dlmen5|on.say thatg is summarizabldor S if g({g(S1),..,g(Sk)}) =

Example 10 When looking at the data from the current point ¢(S1 U .. U Si.). The set of arguments on the left side of the
in time, we want to count the patients diagnosed with the olg@quation is a multi-set, or bag, i.e., the same result value can
“Diabetes” diagnosig¢ID = 8) together with those diagnoses occur multiple times.

with the new “Diabetes” diagnos{gD = 11) when we look S ) o )
at diagnoses made from 1970 to the present. This is done Summarizability is an important concept as it is a condi-
by defining tha8 <1 /01/80-~vow)] 11, i.€., from 1980 up tion for the flexible use of pre-computed aggregates. With-

till now, we consider diagnosis 8 to be logically contained in out summarizability, lower-level results generally cannot be
diagnosis 11. directly combined into higher-level results. This means that

we cannot choose to pre-compute only a relevant selection of

In addition to valid time, it is also interesting to capture the possible aggregates and then use these to compute higher-
when statements are present in the database, as the timdesel aggregates on-the-fly. Instead, we have to pre-compute
statement is present in the database almost never corresporntle total results for all the aggregations that we need fast an-
to the time it is true in the real world. We need to know whenswers to, while other aggregates must be computed from the
data are present in the database for accountability and tracease data. It has been shown that summarizability is equiv-
ability purposes. alent to the aggregation function beidtgstributive all paths

Thetransaction timeof a statement is the time when the beingstrict, and the hierarchies beirpartitioningin the rel-
statement is current in the database and may be retrieved [ldvant dimensions [7]. If data with time attached to it is aggre-
Generally, transaction time can be attached to anything thajated such that data for one fact is only counted for one point
valid time can be attached to. The addition of transactiorin time, this result extends to hierarchies that an@pshot
time is orthogonal to the addition of valid time. Additionally, strictandsnapshot partitioningThese concepts are formally
transaction time can be added to data that does not havedefined below. In the definitions, we assume a dimension
truth value. In our model, we could record when facts, e.g..D = (C, <).
patients, are present in the database. We do not think that this
is very interesting in itself, as facts are only interesting wherDefinition 2 If VC,,Cs € C(e1,es € C1 Aes € Ca Aea <
they participate in fact-dimension relations. Thus, we do nok; A e2 < e3 = e; = e3) then the mapping betweet}
record this. If transaction time is attached to an MO, we callandC, is strict. Otherwise, it immon-strict The hierarchy in
it atransaction-timeMO. If both valid and transaction time is dimensionD is strictif all mappings in it are strict; otherwise,
attached to an MO, we call itlBitemporalMO. If no time is it is non-strict Given a categor¢’; € D;, we say that there
attached to an MO, we call itsnapshoMO. In our notation,  is astrict pathfrom the set of factd” to C; iff Vf € F(f ~



et Nf~eNe € CijNhey € Cj = e = e2)l. The  selection: Given a predicatep on the dimension types
hierarchy in dimensioD is snapshot strictif at any given D = {7;}, we define the selection as: o[p|(M) =
timet, the hierarchy is strict. (S',F',D',R"), where§S’ = S, F' = {f € F |3e; €

Da-'an Dn 7-'77’l/\ /\/\ n “*n ’
Definition 3 If VO, € C(Cy # Tp Aer € Cy = 30, ¢ D6 € Dn(pler, e A f ~orer f oo en))

0 D' =D, R = {R}},andR; = {(f'.e) € R; | f' € F'}.
Pred(c.l)(HEZ € Ca(er <)), i€, |f_every non-top Valt_je Thus, we restrict the set of facts to those that are character-
has a direct parent, we say that the hierarchy in dimenBion

: titioning: otherwise. it i itionina The hi ized by values wherg evaluates to true. The fact-dimension
IS partiioning; otherwise, 1t Isnon-partiioning The hierar- g 3455 are restricted accordingly, while the dimensions and
chy in dimensionD is snapshot partitioningf at any given

. . : N the schema stay the same.
timet, the hierarchy is partitioning. o _ _
projection:  Without loss of generality, we assume that the

Example 11 The hierarchy in the Residence dimension isprojection is over thé: dimensionsD, .., D;. We then de-
strict and partitioning. The hierarchy in the Diagnosis di-fine projectionr as: n[D1,..,Dy](M) = (S',F',D',R'),
mension is non-strict and partitioning, but could have beenyheresS’ = (F,D", F' = F, D' = {T1,..,Ti}, F' =
non-partitioning. The sub-hierarchy of the Diagnosis dimen-g p’ = {Di,..,D:}, andR' = {Ry,..,R;}. Thus, we
sion obtained by restriction to the standard classification igetain only thek specified dimensions, but the set of facts

snapshot strict and snapshot partitioning. stays the same. Note that we do not remove “duplicate val-
ues.” Thus the same combination of dimension values may
4 The Algebra be associated with several facts.
This section defines an algebra on the multidimensionafename: Given an MO, M = (S,F,D,R), and fact

objects just defined. In line with the model definition, we schemaS’ = (F',D"), such thatD is isomorphic withD’,
first define the basic algebra and then define the extension fQe define the renamg as: p[S'](M) = M', where M’ =

handling time. The extension to Uncertainty is described ir(S” F. D, R) We see that rename just return the contents
the full paper [21]. of M with the new schem&’, which has the same structure
as the old schem&. Rename is used to alter the names of

4.1 Fundamental Operators ; ; : . .
dimensions so that dimensions with the same name, e.g., re-
The fundamental operators are close to the standard relayting from a “self-join,” can be distinguished.

tional algebra operators. For unary resp. binary operators, . . . . ,
we assume a multidimensional objetf = (S,F,p = YMon- Given two n-dimensional MO'sMy, = (S, F,

(D;},R = {R;}),i = 1,..,n with schemaS = (F,D) D,?,Rk),k =1,2, sulch Eha?l = So, We delfine the unilobj
and multidimensional objectsVf;, = (Si, Fy, Dy = as: M, UM% = (S, F, DR )3 whereS" = 5, FI -
{Dii, }, Be = {Ri, }),k = 1,2. The representations of Uk, D = {D1,Up D2;yi = 1,.,n}, and R ':h
the categories in the resulting MO’s are the same as in the aiRli U Ry,,é = 1,..,n}. In words, given two MO's wit
gument MQO’s; thus we do not specify the representations fopommon schemas, we take the set union .Of the facts and the
the resulting MO’s. The aggregation types are only Changeﬁct—dlmensmn r_elatlons. Thg,, operator is used to com-
by the aggregate formation operator, so they are not specifie ne the dimensions.
for the other operators. difference: Given two n-dimensional MO's,M; =
For the operator definitions, we need some auxilary func{Sk, Fx, Dy, Ry),k = 1,2, such thatS; = S,, we define
tions. First, we definegiroup that groups the facts charac- the difference\ as: M, \ M> = (S',F', D', R'), where
terized by the same dimension values together. Given an S’ = S1, F' = Fi \ F», D' = D\, R' = {R},i = 1,..,n},
dimensional MOM = (S,F,D = {D;},R = {R;}),i = With B = {(f',e) | f' € F' A(f',e) € Ry,. Thus, given
1,..,n, aset of categorie§ = {C; | C; € D;},i =1,...,n, two MO’s with common schemas, we take the set difference
one from each of the dimensions @ff, and an n-tuple of the facts, the dimensions of the first argument MO are re-
(e1,..,en), Wheree; € Cy,i = 1,..,n, we defineGroup as:  tained, and the fact-dimension relations are restricted to the
Group(ey,...,en) ={f| fEFANf~1eiAN..Af~p,e,}. newfact set. Note that we do not take the set difference of
Next, we define ainion operator on dimensions, which the dimensions, as this does not make sense.
performs union on the categories and the partial orders. Giveyentity-based join: Given two MO’s, M; andM>, and a
two dimensionsD; = (C,<;) andD> = (Cz, <>) of type  predicatep(fi, fo) € {f1 = fa, fi # fo,true}, we define
T, whereCy = {Cy;},k = 1,2, j = 1,..,m, we define the  the identity-based joitt as: M; My, M = (S', F', D', R'),
urluon opera’Eor on 9|m9n3|on§JD, als: DiUpDs = (C'y  where(S' = (F',D'), F' = Fi x Fa, D' = Dy U Dy,
<), whereC” = {C3},j = 1,..,m, Cj = C1; U Gy, Where ' = {(fy, /o) | f1 € FiA f> € A p(fi, [2)}, D' = D1V
U denotes set union, ard <’ es < e1 <1 e3 Ve <s ea. Dy, R = {R\i=1,..n +no}, andR. = {(f,e)|f' =
INote that the paths from the set of fadisto the T categories are  (f1, f2) A f" € F' A ((i < n1 A (fi1,e) € Ry,) V (i >
always strict. niA(fa2,e) € Ry,_, ))}. TheX operator is used to combine




information from several MO’s. It works as follows. The dimension types are restricted to the category types that are
new fact type is the type gfairs of the old fact types, and greater than or equal to the types of the given “grouping” cat-
the new set of dimension types is the union of the old setsegories. The dimension type for the result is added to the set
The set of facts is the subset of the cross product of the oldf dimension types. The new set of facts consists of sets of
sets of facts where the join predicatdolds. Forp equalto  facts, where the facts in a set share a combination of char-
fi = fa, fi # fo, andtrue, the operation is aequi-join, acterizing dimension values. The argument dimensions are
non-equi-join and Cartesian productrespectively. For the restricted to the remaining category types, and the result di-
instance, the set of dimensions is the set union of the old setsension is added.

of dimensions, and the fact-dimension relations relate a pair The fact-dimension relations for the argument dimensions
to a value if one member of the pair was related to that valueow link sets of facts directly to their corresponding combi-
before. nation of dimension values, and the fact-dimension relation

aggregate formation: The aggregate formation operator is for the result dimension links sets of facts to the function re-
i sults for these sets. If the functigns distributive, the paths

used to compute aggregate functions on the MO’s. For nota- . . . :
tional convenience and following Klug [16], we assume the"P to the grouping categories are strict, and the hierarchy up

existence of d@amily of aggregation functiong that take o the 9,“’“'“'”9 categories Is partitioning, 1.¢.s ‘summa-
some k-dimensional subsetD, D,,} of the n dimen- rizable,” then the aggregation type for the bottom category in
sions as arguments, e.§UM ; Zslljm’s tﬁ'a"th dimension and the result dimension is the minimum of the aggregation types
SUM. surgs thez"tr; a.néi j,tr’] dimensions. We assume a for the bottom categories in the dimensions thates as ar-
functign Args(q) = {j | g uses dimensioﬁ as argumert guments; otherwise, the aggregation type.igor the higher
that returns the arqument dimensions of categories, the minimum of the aggregation types given in the
Given an n—dir?‘nensional MOM @a dimensionD result dimension and the bottom category’s aggregation type
with type T. a functior? ) ’2F D snut:lh is used. Thus, aggregate results that are “unsafe” in the sense
that yg ”“ (Aggt ' ‘%J_' )), and a ’;:; of cat- that they contain overlapping data cannot be used for further
egor?es o ménle)Args(_g) 1 99 gp f/ve léié fir;e aggregate forma aggregation. This prevents the user from getting incorrect re-
i (2 - 5 ey 1hy =

tion operatora as: a[Dus1,g,Cryo. Cal(M) = (S, F" sults by accidentally “double-counting” data.
. n ) ) AR ) n - ) )

D', R'), whereS' = (7',D'), 7' = 27, D' = {7}, Diagnosis Result

i = 10} U{Toni b, 71 = (G, <7, L7, T), € = dimension dimension

{Cij € Ti | Type(Ci) <7; Cij}, <7 = <71 17 =

Type(Ci), T = T, F' = {Gmup(el,..,enl) | (e1,. N -

wen) € Cp x .. x Cp A Group(ey,..,en) # 0}, A

D' = {Dli = 1,.,n} U {D,1}, D) = (C}, <), 01 >1  Range
Ci = {C}; € D; | Type(C};) € Ci}, <i = <y, Diagnosis AN

R = {R,i = 1.n}U{R, .}, B = {(fle) |  Coup 1% 1 01 2™ Count

A(er,.,en) € C1 x .. x Cp, (f' = Group(ey,..,e,n) A
fle F'he = e;)}, andR;L+1 = Uler,...en)€C1 x..xC
{(Group(ey,..,en), g(Group(ey, ..,en))) | Group(es,..,
en) # 0}. The aggregation types for the remaining parts {2t {1.2 Set-of-Patient
of the argument dimensions are not changed. The aggre-
gation types for the result dimension is given by the fol-

'°V.V'”9 rule. If 91 dlstr.|but|ve, the paths t@’,, ’C” are Example 12 We want to know the number of patients in each
strict, and the hierarchies up @, .., C),, are partitioning, . ; .
then Aggtype(Lp. ) = min; (Aggtype(Lp ) diagnosis group. To_do S0, we _apply t_he agg_regate—formatlon
/ nl j€Args(g) /)" operator to the “Patient” MO with thBiagnosis Groupcat-
Otherwise, Aggtype(Llp,.,) = c. For the higher . i .
) . ntl/ : , egory and theT categories from the other dimensions. The
categories in the result dimensiondggtype(C;,) = . : .
min({ Aggtype(Cn), Aggtype(Lp. .. )}) aggregatefunctlogto.be used |set—coun,FWh|ch counts the .
Thus. for eve;n éombinatio(e nl ) of dimension val- number of members in a set. The resulting MO has seven di-
i tﬁ ven ,Yr ing” th.-r’ien W Ito th ¢ mensions, but only the Diagnosis and Result dimensions are
g??acts ?g vsher% ?ﬁgf’sgaf:cer?:raitsérizzgpp Jo the se non-trivial, i.e., the remaining five dimensions contain only
and Iaée}t,he result in the new dimensib bﬁeTlh'é’ feggt's the T categories. The set of facts is sl = {1,2}. The
are (fft esetsof the araument fact tvpe Zzé the ar umentDiagnosis dimension is cut so that only the part frbmag-
yp 9 ype, 9 nosis Groupand up is kept. The result dimension groups the
2The functiong “looks up” the required data for the facts in the relevant COUNtS into two ranges: “0-1" and>1". The fact-dimension
fact-dimension relations, e.g5,UM ; finds its data in the relatioR; . relation for the Diagnosis dimension links the sets of patients

Figure 3. Result MO for Aggregate Formation




to their corresponding Diagnosis Groups. The content ischange the time attached to the resulting MO’s. For the union
Ry = {({1,2},11),({2},12)}, meaning that the sets of pa- operator, time attachments for the resulting MO are computed
tients {1,2} and {2} are characterized by diagnosis groupsusing to the following rule¥ (f,e) €r, Ri, A (f,e) €,
11 and12, respectively. The fact-dimension relation for the Ry, = (f,e) €run Rj, e1 <ip ex Aer <op €3 =
result dimension relates each group of patients to the county <7, 7, e2, Repi(e) =7, v A Repa(e) =1, v =
for the group. The contentis®; = {({1,2},2),({2},1)},  Rep'(e) =n,ur, v, e €1,, CjANe €2, Cj = e €77, Cj.
meaning that the results gfon the setq1, 2} and{2} are2 Thus, we simply take the union of the chronon sets for data
and1, respectively. A graphical illustration of the MO, leav- that occur in both MQ's; otherwise, we just use the original
ing out the trivial dimensions for simplicity, is seen in Fig- time. For the difference operator, the following rules apply.
ure 3. Note that each patient is only counted once for eaclif,e) €1, R;, A(f,e) €1, Ri, ATI\T> # 0 = (f,€) Erp\n,
diagnosis group, even though patiertasseveraldiagnoses R, F' =(\,_, . {f|3(f,e:) € R; ((f,e:) € RiAT" #
in each group. ?)}. Thus, the time for a pair in a fact-dimension relation
Other common OLAP and relational operators, such ador the first MO i; cut by the timg that the corresponding pair
value-based join, duplicate removal, SQL-like aggregation,h3§ in t.he fact-dimension relation for the sgcond MO. Only
star-join, drill-down, and roll-up can easily be defined in Pairs with non-empty chronon sets are retained. The facts in

terms of the fundamental operators [21]. The algebra satidthe resulting MO are those that participate in all the resulting

fies the following two properties [21]. fact_-dimension relations during a non-empty set of _chron(_)ns.
As in the non-temporal case, we do not alter the dimensions
Theorem 1 The algebra is closed. of the first MO.

The identity-based join operator does not change the time
attached to the dimensions of the resulting MO. For the fact-
dimension relations, the following rule is us€dy, ex) €,

H H H Rknk: 172/\p(f17f2) = ((fl;fQ),ek) eTk R;’-‘,—(k—l)nl'
4.2 Handling Time in the Algebra Thus the pair(fi, f2) inherits its time attachment from the

Itis a requirement to be able to view data as it appearegyct-dimension relation of the relevant argument MO, i.e,
at a given point in time, in the database or in the real world, (¢, £,) ¢) €, R! getsT from (fi,e) €r Ry, if i < m
9 ) 1 ] i =

and to do analysis related to time, including analysis acrosgng from( f,,e) €7 Ry, if i > ny.

times of change in the data. We note that the operators do not The aggregate formation operator does not change the
introduce any “value-equivalent tuples”; thus the data staygime attached to the remaining parts of the argument di-
coalesced. First, we consider valid-time MO's. To be able toyensjons or to the result dimension. The time attached to
view data as they appeared at any given point in time in thgnhe fact-dimension relations between the facts and the ar-
real world, we introduce thealid-timeslice operatof1]. gument dimensions is given by the following rule. Given

valid-timeslice operator: Given a chronort and an MO, @ tuple of dimension valueg,, ..,e,) from the grouping

M = (S, F, D, R), we define the valid-timeslice operatgr ~ categories,(Group(e, ..,en),ei) €17 R;, whereT] =

as: 7,(M,t) = (S',F',D',R'), whereS' = S, F' = F,  Nfccroup(er,..e){ts | f ~1, ei}. Thus, the time at-

D' ={D}},i=1,.,n D, = (C,<}),Cl ={e|eer tached to the fact-dimension relation between a set of facts

1) —1

Cint €T} e <\ ey (e <ip esAt €T), R = and a dimension value is the intersection of the time attached

{R},i=1,..,n,andR; = {(f,e) | (f,e) €r Ri At € T}. to the relations between the individual facts and the dimen-

For a representatioRep of a category typ€;, we have that sion value. The fact-dimension relation for the result di-
Rep(e) = v & (Rep(e) =r V At € T). Thus, the valid- mension is given by the following rule. Given a tuple of
timeslice operator returns the parts of the MO that are valiglimension valueges, ..,e,) from the grouping categories,
at timet, with no valid time attached.e., the valid-timeslice ~ (Group(e, ...en), g(Group(es, .,en)) €77, Ry 11, where
operator changes the temporal type of the MO from valid-T;,,, = ﬂfeg,"oup(el,__,en)JeAms%g){tf,-_ | [ o~y et
time or bitemporal to snapshot or transaction-time, respecthus, the time attached to the fact-dimension relation be-
tively. tween a set of facts and the resultgobn that set is the in-

To support analysis related to time, we allow predicates tersection of the time attached to the relations between the

and functiong to be used in selections and aggregate forma_individual facts and the dimension values for the dimensions

tions that refer to time. We will not go deeper into the struc-tNatg USes as arguments. _
ture of temporal predicates and functions; for a full treatment, FOF transaction time support, we can define tt@@sac-
see, e.g., the TSQL2 language [18]. tion-timeslice operatqrz, in the same way as the valid-

The last step is to define how the basic algebra operationéMeslice operator. Given a transaction-time or bitemporal

deal with the tim@j attaChed to MO’s. Neither the selection” sgypscript7; denotes time for the first argument MO, il for the
operator, the projection operator, nor the rename operataecond.

Theorem 2 The algebra is at least as powerful as Klug’s
[16] relational algebra with aggregation functions .




MO, this operator returns a snapshot or valid-time MO, re-Academy of Technical Sciences, contract no. EF661, and by
spectively. The operators in the algebra support transactioa grant from the Nykredit corporation.
time in the same way as valid time.
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