
464 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  11,  NO.  3,  MAY/JUNE  1999

Temporal Entity-Relationship
Models—A Survey

Heidi Gregersen and Christian S. Jensen, Senior Member, IEEE

Abstract—The Entity-Relationship (ER) model, using varying notations and with some semantic variations, is enjoying a
remarkable, and increasing, popularity in both the research community£the computer science curriculum£and in industry. In step
with the increasing diffusion of relational platforms, ER modeling is growing in popularity. It has been widely recognized that
temporal aspects of database schemas are prevalent and difficult to model using the ER model. As a result, how to enable the ER
model to properly capture time-varying information has, for a decade and a half, been an active area in the database-research
community. This has led to the proposal of close to a dozen temporally enhanced ER models. This paper surveys all temporally
enhanced ER models known to the authors. It is the first paper to provide a comprehensive overview of temporal ER modeling and
it, thus, meets a need for consolidating and providing easy access to the research in temporal ER modeling. In the presentation of
each model, the paper examines how the time-varying information is captured in the model and presents the new concepts and
modeling constructs of the model. A total of 19 different design properties for temporally enhanced ER models are defined, and each
model is characterized according the these properties.

Index Terms—Conceptual modeling, Entity-Relationship models, database design, temporal databases, temporal data models,
design criteria for temporal ER models, time semantics.

——————————�F�——————————

1 INTRODUCTION

HE Entity-Relationship (ER) model [2], in its different
versions, with varying syntax and with some semantic

variations, is enjoying a remarkable, and increasing, popu-
larity in both the research community and in industry. The
model is easy to comprehend and use. An ER diagram pro-
vides a good overview of database design, and the model’s
focus on the structural aspects of database schemas,
as opposed to their behavioral aspects, also appears to
match the levels of ambition for documentation adopted
by many users.

The ER model may be used for different but related pur-
poses, namely for analysis—i.e., for modeling a mini-
world—and for design—i.e., for describing the database
schema of a computer system. As a third alternative, the ER
model may be supported directly by a DBMS. In that case,
it may be used as an implementation model. However, al-
though graphical and textual ER query languages have
been proposed by the research community, the ER model is
rarely used as an implementation model. Rather, the typical
use seems to be one where the model is used primarily for
design, with the design diagrams also serving as analysis
diagrams, and where the constructed diagrams are mapped
to a relational platform. In step with the increasing diffu-
sion of relational platforms in industry, ER modeling is
growing in popularity.

The use of ER modeling is supported by a wealth of
textbook material. For example, most introductory database

textbooks (e.g., [10], [27], [3],) contain chapters on ER mod-
eling, and several complete books exist (e.g., [1], [34]) that
are devoted entirely to ER modeling.

Companies either develop their own ER diagrams from
scratch, or they purchase and modify generic, standard
diagrams.1 Indeed, generic diagrams for a variety of types
of applications are commercially available, e.g., the FSDM
from IBM.

Some companies build ER diagrams using only simple
drawing tools. Other companies use one of the many com-
mercially available tools that are more sophisticated and
better support the building of diagrams and also map dia-
grams to implementation platforms. Such tools are either
stand-alone, e.g., SmartER from Knowledge Based Systems,
Inc., and ER/1 from Embarcadero Technologies, or are inte-
grated parts of larger CASE tools, e.g., Teamwork/IM SQL
from Cayenne Software, Inc., and Visible Analyst Work-
bench from Visible Systems Corporation. Typical imple-
mentation platforms include those provided by major SQL-
based database systems.

In the research community, as well as in industry, it has
been recognized that temporal aspects of database schemas
are both prominent and difficult to capture using the ER
model. Put simply, when modeling fully the temporal as-
pects, the temporal aspects tend to obscure and clutter oth-
erwise intuitive and easy-to-comprehend diagrams. As a
result, some industrial users simply choose to ignore all
temporal aspects in their ER diagrams and supplement the
diagrams with phrases such as “full temporal support.”
The result is that the mapping of ER diagrams to relational

1. In industry, ER diagrams are typically termed ER models. This is in
contrast to common usage in the research community and the usage in this
paper, where a data model is a modeling notation and a diagram is a de-
scription using some notation.

1041-4347 / 99$10.00 © 1999 IEEE

²²²²²²²²²²²²²²²²

�� H. Gregersen and C.S. Jensen are with the Department of Computer
Science, Aalborg University, Fredrik Bajers Vej 7E, DK–9220 Aalborg Ø,
Denmark. E-mail: {gregori, csj}@cs.auc.dk.

Manuscript received 1 Oct. 1996; revised 25 Mar. 1998.
For information on obtaining reprints of this article, please send e-mail
to: tkde@computer.org, and reference IEEECS Log Number 104373.

T

©1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or

redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE."

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this

information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.



GREGERSEN AND JENSEN: TEMPORAL ENTITY-RELATIONSHIP MODELS—A SURVEY 465

tables must be performed by hand; and the ER diagrams do
not document well the temporally extended relational da-
tabase schemas used by the application programmers.

The research community’s response has been to develop
temporally enhanced ER models, and 10 such models have
been reported in the research literature. Their informative
names include the Temporal Enhanced Entity Relationship
model [12], [11], the Temporal Entity Relationship model
[33], and the Relationship, Attribute, Keys, and Entities
model [13], to name but a few.

Two general, orthogonal temporal aspects have received
widespread attention, namely valid time and transaction time
[16]. The valid time of a database fact is the time when the
fact is true in the miniworld. (We use the term “mini-
world” for the part of reality that the database under con-
sideration stores information about.) Thus, all database
facts have an associated valid time. Different time types
may be used when modeling the valid-time aspect, e.g.,
single time instants, intervals, or sets of intervals.

Perhaps more importantly, the valid time may or may
not be captured explicitly in the database—this is the choice
of the database designer. In ER models, unlike in the rela-
tional model, a database is not structured as a collection of
facts, but rather as a set of entities and relationships with
attributes. Thus, the valid times are associated only indi-
rectly with facts. As an example, consider an Employee en-
tity “E1” with a Department attribute. A valid time of June
1996 associated with value “Shipping” does not say that
“Shipping” is valid during June 1996, but rather that the
fact “E1 is in Shipping” is valid during June 1996. Thus,
when valid time is captured for an attribute such as Depart-
ment, the database will record the varying Department val-
ues for the Employee entities. If it is not captured, the data-
base will record only one department value for each Em-
ployee entity.

Orthogonal to valid time, the transaction time of a data-
base fact is the time when the fact is current in the database
and may be retrieved. Unlike valid time, transaction time
may be associated with any structure stored in a database,
not only with facts. Still, all structures stored in a database
have a transaction-time aspect. And again, this aspect may
or may not, at the designers discretion, be captured in the
database. The transaction-time aspect has a duration: from
insertion to (logical) deletion.

In addition to valid and transaction time, a data model
may support arbitrary time attributes with no built-in se-
mantics in the data model. For employee entities, such at-
tributes could record birth dates, hiring dates, etc. A data
model that supports such time attributes is said to support
user-defined time.

In summary, facts stored in a database have a valid time
and a transaction time, although those times may not be
explicitly recorded [16]. We say that a data model supports a
temporal aspect, i.e., valid or transaction time, if it provides
built-in means for indicating where in an ER diagram this
aspect should be captured.

The temporal ER models attempt to more naturally and
elegantly model the temporal aspects, such as valid and
transaction time, of information by changing the semantics

of the ER model or by adding new constructs to the model.
The models take quite different approaches to adding built-
in temporal support to the ER model.

This paper is the first to survey all known (to the
authors!) temporal ER models. In addition, the paper pro-
vides a comprehensive list of possible properties of tempo-
ral ER models, and it characterizes the models according to
those properties. With nine models having been proposed
over the past 15 years, such a survey is in order. It consoli-
dates in a single and easy-to-access source the central ideas,
concepts, and insights achieved in temporal ER modeling.
The survey makes it easier for future research and devel-
opment to maximally build on, benefit from, and extend
past results. Thus, the survey is aimed at researchers and
practitioners interested in temporal data modeling and data
model design.

Four studies are somewhat related to or complement the
study reported here:

1)�Theodoulidis and Loucopoulos [36] describe and
compare nine approaches to specify and use time in
conceptual modeling, here viewed as both semantic
data modeling and requirement specification, of in-
formation systems. Their study includes only two of
the ER models surveyed here. The comparison of the
models fall in three parts and classifies the models in
terms of time semantics, model semantics, and tem-
poral functionalities. Our criteria also characterize the
models in terms of user-friendliness. The primary fo-
cus of their paper is the examination of the ontology
and properties of time in the context of information
systems, whereas our focus is the examination of how
the extensions of the ER model into temporal ER
models are shaped.

2)�McKenzie and Snodgrass [23] survey and evaluate
twelve different temporal extensions of the relational
algebra. They evaluate the algebras against 26 design
criteria. These criteria are mainly concerned with the
properties of the data objects—temporal relations and
their components—that the algebras manipulate and
with the properties of the algebraic operators them-
selves. While their survey concerns internal algebras,
our survey concerns notations for conceptual model-
ing. In addition, our focus is on the properties of the
structural aspects of the temporal ER models.

3)�Without coauthors, Snodgrass has also conducted a
critical comparison of temporal object-oriented data
models [30]. While ER models do incorporate some
structural object-oriented features, our study does not
consider object-oriented models; for that, we instead
refer the reader to Snodgrass’ study. Also unlike our
study that emphasizes structural aspects, Snodgrass’
study focused on the models’ query languages, i.e., on
behavioral aspects.

4)�Roddick and Patrick [26] survey the progress of in-
corporating time in various data models at the con-
ceptual and, primarily, logical level of database mod-
eling, and in artificial intelligence. The work describes



466 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  11,  NO.  3,  MAY/JUNE  1999

nine different properties of temporal modeling sys-
tems, but unlike our survey they do not evaluate the
models against the properties described. Their broad
study briefly covers two of the temporal ER models in
our study.

The descriptions in the literature of the different models
use diverse and, at times, incompatible and conflicting ter-
minology. In this survey, we adopt the coherent terminol-
ogy of the temporal database glossary [16] when possible.
In addition, the original definitions of the models are often
informal and rely on the reader’s intuition. In part also to
achieve a homogeneous survey of a manageable size, we
will give informal descriptions of some aspects. Further, we
will emphasize the common core of features of the temporal
ER models: the use of ER modeling to capture the structural
aspects of a database schema. We will not cover behavioral
aspects such as query and rule languages in detail.

The paper is structured as follows: Section 2 provides
an overview of all temporal ER models known to the
authors. Section 3 then identifies a set of 19 evaluation
criteria and evaluates each model according to these crite-
ria. Finally, in Section 4, a conclusion and a discussion of
future work is given.

2 EXISTING MODELS

This section describes each existing ER model separately
and in turn. Initially, an overview is provided that explains
the structuring of the descriptions and introduces a running
example that will be used for exemplification throughout.

2.1 Overview
This section describes all the temporal ER models that we
are aware of. We will assume that the reader is familiar with
Chen’s standard ER model [2] and the various extensions of
that model, e.g., subtyping (see, e.g., [10]).

The models are presented in chronological order of their
first publication. The description of the models all have,
with a few exceptions, the same basic layout. First, a short
introduction of the model is given. Second, we describe
how the model captures time. Third, we give an example
diagram built using the model’s notation. For each model,
the sample diagram models the same miniworld, to be de-
scribed shortly. In order to keep the diagrams simple and
still be able to reach into the corners of the different mod-
els, we deviate in some places slightly from the descrip-
tion below. This way, it is possible to more concisely pres-
ent the special features of the models. When we do devi-
ate, we will state this explicitly. Finally, a short summary
of the model is given.

Mappings of ER diagrams to implementation platforms
for the models will only be explained if they are described
in the papers and differ substantially from the typical map-
pings from the EER model to relational platforms.

The miniworld that we describe next concerns a com-
pany divided into different departments. Each department
has a number and a name and is in charge of a number of
projects. A department keeps track of the profits it makes
on its projects. Because the company would like to be able

to make statistics on its profits, each department must rec-
ord the history of its profits.

Each project has a manager and some employees work-
ing on the project. Each project has an ID, and a budget.
Each project is associated with a department which is re-
sponsible for the project. Employees belong to a single de-
partment. Once an employee is assigned to a department,
the employee works for this department for as long as the
employee is with the company. For each employee, the
company registers the ID, the name, the date of birth, and
the salary. The departments would like to keep records of
the different employees’ salary histories.

Employees work on one project at the time, but employ-
ees may be reassigned to other projects, e.g., due to the fact
that a project may require employees with special skills.
Therefore, it is important to keep track of who works for
what project at a given time and what time they are sup-
posed to finish working on their current project.

Some of the employees are project managers. Once a
manager is assigned to a project, the manager will manage
the project until it is completed or otherwise terminated.
Fig. 1 presents the ER diagram describing the database de-
sign corresponding to this miniworld.

Fig. 2 provides an overview of the surveyed models,
along with their main citations, the models on which they
are based, and the identifiers we will be using in the rest
of the paper.

It is important that the presentation (and definition!) of a
model is precise and complete. The descriptions of the sur-
veyed models range from very formal and detailed to
vague and abstract.

The models we have found to be described the best are
TERM and TERC+, which in [18], [39] are described in great
detail. models MOTAR, ERT, and TER are presented in arti-
cles dedicated to this single purpose, but their descriptions
are not as detailed and comprehensive as that of TERM.
models RAKE, TEER, and STEER are also presented in arti-
cles only concerning the presentation of the models, but
their descriptions are less comprehensive. The descrip-
tion of TempEER is somewhat incomplete. For example,
the description of the mapping algorithm supposed to
translate TEER diagrams to relational schemas does not
cover time-varying aspects. The description of TempRT
is also incomplete, primarily because this model is not
yet fully developed.

2.2 The Temporal Entity-Relationship Model
TERM, the Temporal Entity-Relationship model, was the
first temporally extended ER model to be proposed [18],
[19]. The main motivation for TERM was “to provide data-
base designers with a model for data definition and data
manipulation that allows a general and rigorous treatment
of time” [18]. To accomplish this, TERM most notably in-
troduces the notion of a history, which is a function from a
time domain to some value domain. Histories are then used
for the modeling of time-varying aspects. For example, the
(time-varying) value of an attribute of an entity becomes a
history, rather than a simple value.

Unlike all the other temporal ER models, TERM does not
have a graphical syntax, but has a Pascal-like syntax.



GREGERSEN AND JENSEN: TEMPORAL ENTITY-RELATIONSHIP MODELS—A SURVEY 467

2.2.1 The Representation of Time
In its outset, TERM makes a strict distinction between a
real-world phenomenon and its ER-model representation.
For example, TERM distinguishes between “time” and the
representation of time—there is one “time,” but many pos-
sible representations of time. This distinction extends to the
other modeling constructs, e.g., values and histories. We
focus on the representations.

Domains are termed structures. A time domain is thus a
time structure. With TERM, the designer may define time
structures, but TERM also includes a predefined time
structure of Gregorian dates. These dates are equipped with
a variety of predicates, termed structure relations, e.g., “be-
fore_date” and “is_in_leap” (is the argument date in a leap
year?), and operators, e.g., “next-day” and “least-recent.”
Fig. 3 illustrates two value structures, one for employee
names and one for generic identifiers. It also provides a
(partial) time structure, termed “date,” with one relation.

A history is a mapping h : T � V where T is a time
structure and V is a value structure. Histories are used for
capturing the variability of time-varying aspects, as we
shall see in the next section. Attributes of entities and roles
of relationships have atomic histories while, e.g., entire
entities have composite histories, i.e., histories composed of
atomic and composite entities. All composite histories are
sets of histories: An entity (relationship) history consists
of an existence history and the set of all its attribute
(role) histories.

The (atomic) history h is represented by the history struc-
ture 2T�V, i.e., by a set of (time, value) pairs. To achieve a
finite history structure in situations were time structure
T represents continuous time, it is possible to introduce
as part of the history structure a derivation function that
uses the stored (time, value) pairs to compute values for
additional times.

Fig. 1. ER diagram describing the running example.

Fig. 2. Short presentation of the surveyed models.



468 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  11,  NO.  3,  MAY/JUNE  1999

Fig. 4 exemplifies histories. First, a generic existence
history for entities and relationships is defined as a history
structure with two variables t and v and a somewhat com-
plex condition. The domain of the variable t is date, and the
domain of the variable v is Boolean/Kleenean. This domain
consists of the values false, true, and unknown. The condition
involving the three universally quantified variables “s1,”
“s2,” and “s” disallows holes in existence histories. To the
right, a salary history, sal_history, is defined that uses a
step-wise constant derivation function, deriv_sal
(least_recent_date, when applied to a pair of a set of dates
and a date “z,” returns the largest date in the set that is not
larger than “z”).

All data items within a database will not change at the
same time. Moreover, for some database items, only the
current value is of interest, whereas for others, only some
values in the past may be known, while still other items
require a history of the entire past. For these reasons, histo-
ries are applied to individual database items instead of to
the database as a whole.

2.2.2 The Model Components
The next step is to consider the association of histories with
time-varying database items.

The basic modeling constructs of TERM are those of
the ER model. Entities model the interesting objects from
the miniworld; values model the properties of the mini-
world objects. The values are associated with the entities
via attributes.

If an attribute has no history, that is, if the value of an
attribute never changes once it is assigned, it is referred
to as a constant attribute; otherwise it is variable. Con-
stant attributes are represented by a (attribute, value)
pair, and variable attributes are represented by a (attrib-
ute, history) pair.

Entity types are declared by a name and a set of
(constant and variable) attributes. The attribute named
existence is mandatory and describes the existence of
the entity type. If the existence attribute is specified
as constant, the attribute has Boolean/Kleenean as its do-
main. A variable existence attribute has an associated
Boolean/Kleenean-valued history.

Two or more entities can enter into a relationship in which
each entity plays a role. Like attributes of entity types, roles
of relationship types are represented by values, now entity
references, or by histories, now entity-reference valued.

Relationship types are declared by a name, an existence
description, a set of roles, and a set of attributes. Binary
relations may be declared to express participation con-
straints such as 1:1, 1:N, and N:1, where the constraints are
enforced for each database state in isolation. Writing a one
after the role name restricts participation to at most one (at
a time). By placing a total after a role name, total participa-
tion is indicated.

A TERM schema consists of a set of entity type defini-
tions and a set of relationship type definitions. Fig. 5 shows
the two entity types, Project and Employee, and the rela-
tionship type, Works_for, between them.

Fig. 3. Sample value and time structures.

Fig. 4. TERM history definitions [19].



GREGERSEN AND JENSEN: TEMPORAL ENTITY-RELATIONSHIP MODELS—A SURVEY 469

A general bottom-up procedure for designing TERM
schemas has been provided. There are four steps. The first
step is to define all nonstandard component value sets.
Fig. 3 exemplifies this step. As illustrated by the date
structure, it is possible to express constraints on the values
of the value sets. A so-called relation is also shown that
determines whether or not a given date is in a leap year.
The next step is to define histories. As illustrated, in part,
by Fig. 4, histories have a name, a time structure, a value
structure, an optional list of predicates for restricting the
set of pairs forming a history, a list of relations, and a list
of operations. The third step is to define patterns. A pat-
tern is a value structure together with at least one asser-
tion, at most one derivation function, and zero or more ap-
proximation functions, or it is a history structure together
with at most one derivation function and zero or more ap-
proximation functions. The sal_history shown at Fig. 4 is an
example of the latter. The final step is to define entity and
relationship types. These consist of a name and a list of
components. The components are specified as either exis-
tence, attributes, or roles. Fig. 5 give an example of this
step.

2.2.3 Summary
TERM was the first temporal ER model and has a Pascal-
like syntax. It allows database designers to model tempo-
ral aspects through the use of history structures as values
of attributes and relationship-type roles. In addition, his-
tories are employed to model the existence of entities and
relationships.

2.3 The Relationships, Attributes, Keys, and Entities
Model

The Relationships, Attributes, Keys, and Entities (RAKE)
model [13] was developed in 1984 as part of a project at the
U.S. Federal Reserve Board. One of the tasks in the project
was to design a database to “store data on the history, at-
tributes, and interrelationships of American and foreign
financial institutions,” and the model was developed to
provide better support for this work than the ER model.

RAKE fundamentally adopts the ER model, but re-
places some of the ER model’s modeling constructs with
new ones and adds entirely new constructs. Most promi-
nently, RAKE introduces so-called key fields in diagrams:
Key attributes of entity types are places in “key boxes” in

the upper-left corners of the entity-type rectangles. This
explicit representation of the entity-keys was unexpectedly
found to also be useful when modeling time-varying data,
to record multiple states of entities and relationships in
the same application.

All new constructs are defined in terms of their mapping
to relational tables and in terms of existing ER constructs.
Following a discussion of the representation of the time
domain in RAKE, we consider in turn the modeling of time-
varying relationships and attributes.

2.3.1 The Representation of Time
The time type used in RAKE corresponds to the type '$7(
(or 7,0(67$03) supported by, e.g., various SQL imple-
mentations of relational DBMSs. This type is used for mod-
eling of valid time and user-defined time, but it could also
be used to capture transaction time.

It is noted that the history of entities and relationships
consists of series of states succeeding one another in time.
The series are punctuated by events that transform one
state into another. The states have duration while the events
do not. The valid times of states are thus modeled using a
pair of time attributes, BEGINstamp and ENDstamp, and
the valid times of events are modeled using an attribute
Tstamp. Next, we shall see how these time attributes are
used in RAKE diagrams.

2.3.2 The Model Components
As usual, entity types are represented by rectangles. The
primary key of an entity type is placed, in a so-called key-
box, in the upper-left corner of its rectangle. Weak entity
types are also represented by rectangles. For these, the par-
tial key is placed in the keybox, and the primary keys of the
identifying relationships are stacked on top of the keybox.

Nonprimary-key attributes of entity types are represent-
ed by circles that, as usual, are linked to the entity types. If
an attribute circle is enclosed by a square (also a rectan-
gle), this means that the attribute may be treated as an
entity type. As in the ER model, relationship types are rep-
resented by diamonds. As for attributes, if a relationship-
type diamond is enclosed by a rectangle, this implies that
the relationship type may also be treated as an entity type.

In nontemporal databases, only the current, or last-
known, state of entities and relationships are stored. When

Fig. 5. Sample TERM entity and relationship types.



470 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  11,  NO.  3,  MAY/JUNE  1999

recording multiple states, entities, and relationships are
identified differently. Entities are identified by nonreusable
identifiers (e.g., serial numbers). In contrast, RAKE distin-
guishes between different relationships—that are instances
of the same relationship type—solely by their timestamps.
Below, we delve into these and other temporal aspects.

Modeling Time-Varying Relationships. When changing a
binary relationship type where only a single state is re-
corded, to record multiple states, the relationship type turns
ternary. To see this, consider Fig. 1. The Responsible_for
relationship type consists of a set of pairs of Department
and Project entities, with the entities being represented
by their primary-key values. In contrast, because we
want to record project assignments for different times, it
is necessary for Works_for to be ternary: Only with a
third work_period entity is it possible to represent
project assignments of the same employee to the same
project, at different times.

Thus, the ternary relationship type in Fig. 6a is the cor-
rect way to represent a temporal relationship between two
entities in RAKE. To avoid cluttering the diagrams with
time-period rectangles, RAKE eliminates this notation and
instead introduces the semantically equivalent notation in
Fig. 6b. In this way, RAKE represents temporal relation-
ship types as weak entity types owned by a time-period
entity type that is not explicitly represented in the dia-
grams (pp. 282–283 in [13]). Together with the primary
keys of the other entity types participating in the relation-
ship type, the ENDstamp, which is part of the key of the

owner entity type, is sufficient to uniquely identify in-
stances of the relationship type. The BEGINstamp, also a
part of the owner entity type, is therefore simply treated
as an ordinary attribute.

Modeling Time-Varying Attributes. The use of a circle for
representing an attribute may be seen as a shorthand for a
relationship between a set of entities and a domain of at-
tribute values. With this view, the domain of attribute val-
ues becomes an entity type, and the technique for modeling
temporal relationship types may be used for modeling
temporal attributes as well. Fig. 7a illustrates this corre-
spondence. When applying the transformation technique
from relationship types, we arrive at Fig. 7b. Again, by
having made the entity attribute relationship explicit, the
relationship is treated as a weak entity with an implicit time
period as owner. This, in turn, is abbreviated to Fig. 7c,
where the BEGINstamp attribute is made implicit. This is
how RAKE models temporal attributes. Although the
BEGINstamp attribute is implicit in diagrams, the attribute
is not eliminated, but is assumed to be implicitly present.
The BEGINstamp thus reappears when diagrams are
mapped to relational schemas.

Next, observe that the approach here is to use attribute-
value timestamping. Each attribute is treated in isolation.
RAKE also has special provisions for timestamping sets of
attributes of an entity type. Assume that the Salary and
Address of Employee are both temporal and that we want
to timestamp them together. Fig. 8 illustrates how this is
accomplished. Fig. 8b illustrates the new construct, and

Fig. 6. The representation of time-varying relationship types in RAKE.

         (a) (b)       (c)

Fig. 7. Modeling time-varying atributes in RAKE.



GREGERSEN AND JENSEN: TEMPORAL ENTITY-RELATIONSHIP MODELS—A SURVEY 471

Fig. 8a shows the equivalent old construct. When mapping
the two diagrams to a relational database schema, Fig. 8a
would be mapped to two relation schemas, while Fig. 8b
would only be mapped to a single table. These database
schemas have different advantages. Indeed, this is the ra-
tionale for permitting both modeling constructs.

Finally, it is also possible to timestamp attributes and
relationships with time points, to model temporal events.
This is done simply be using an attribute Tstamp in place
of ENDstamp and omitting BEGINstamp from temporal
relationships.

2.3.3 Summary
RAKE retains most of the constructs of the ER model, with
their usual semantics, but modifies the handling of primary
keys by introducing special keyboxes on entity types and
weak entity types. RAKE also introduces special constructs
for modeling temporal relationship and attribute types.
These are modeled as weak entity types owned by implicit
time-period entity types. The new constructs of RAKE are
defined in terms of their mapping to the relational model
and of existing ER constructs.

2.4 The Model for Objects with Temporal Attributes
and Relationships

The motivation for the development of the model for Objects
with Temporal Attributes and Relationships (MOTAR) [24]
was to integrate database research in areas such as object-
oriented databases, knowledge-based systems, and tempo-
ral databases. MOTAR database schemas, termed Data
Model Diagrams (DMDs), are graphical and extend the ER
model with temporal relationships and attributes, and with
rules. A tool for building DMDs is provided, as is a map-
ping of DMDs to relation schemas.

2.4.1 The Representation of Time
MOTAR provides built-in features for describing the tem-
poral aspects of a database application, both at the concep-
tual and the logical level.

MOTAR concentrates on the modeling of the valid-
time aspect of data. If the application at hand requires
transaction-time support in the database, the approach is
to simply add time columns (a single column, registration

time, is suggested) to the appropriate relational schemas
that result from mapping the DMD to the implementa-
tion schema.

At the conceptual level, explicit notation is added to
describe the temporal aspects of a miniworld and data-
base design. With this notation, valid-time timestamps
become implicit.

The meaning of the new modeling constructs follows
from their mapping to logical-level relational schemas. For
every temporal aspect described at the conceptual level,
corresponding timestamp attributes are added to the rela-
tional tables by the mapping algorithm. At the logical level,
valid-time is modeled using SQL '$7( columns; details
will be given when the temporal constructs are discussed in
the following.

2.4.2 The Model Components
MOTAR includes four kinds of data types:

1)� regular entity types,
2)� relationship types (nonprocedural relationship types),
3)�attribute types, and
4)� rules (procedural relationship types).

The model provides separate notations for temporal attrib-
ute types and temporal relationship types. When describing
these constructs in the following, we will use the DMD in
Fig. 9 for exemplification.

Entity and Relationship Types. Entity types are repre-
sented by circles and may be primitive or composite. Com-
posite entity types are built from primitive and composite
entity types. In Fig. 9, Employee is a primitive entity type.
Entity type Department is, as we shall see next, related to
Project by means of a Component-Composite relationship.
Department entities thus contain Project entities, and De-
partment is a composite entity type.

MOTAR proposes a wider definition of relationship
types than do the usual ER models. This more general no-
tion of relationship is introduced to make MOTAR general
enough to support a wider variety of applications.

MOTAR relationship types are procedural (rules) or
nonprocedural. Briefly, the former operate on attribute val-
ues of entities or relationships, and they produce results

Fig. 8. Modeling time-varying attributes together in RAKE.



472 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  11,  NO.  3,  MAY/JUNE  1999

that may update the attribute values of the same entity or
relationship, or the attribute values of other sets of entities
or relationships.

There are three kinds of nonprocedural relationship
types, each of which is illustrated in Fig. 9 and ex-
plained next.

�� Superclass-Subclass (SS) Relationship Types. These
are represented by linking two entity types with a
dashed line, with an arrow pointing from the super-
class to the subclass. In SS relationship types, the in-
stances of the subclass are of the same type as the in-
stances of the superclass, but additional information
is needed for instances of the subclass. In the figure,
Manager is a subclass of Employee.

Inheritance of attributes is supported. Thus in-
stances of the subclass has the same attributes as in-
stances of the superclass, in addition to the attributes
specified for the subclass. This inheritance is built into
the mapping of SS relationship types to relational ta-
bles. For example, the Employee-Manager relation-
ship generates the following table.

EMP_SUBCLASS_MGR(EMP_ID, MGR_ID)

Each tuple in this table links information about a
manager, in a Manager table, with information, stored
in an Employee table, about the manager. Joining this
table with an Employee table on EMP_ID and then
with a Manager table on MGR_ID will retrieve all the
attributes of a manager.

�� Component-Composite (CC) Relationship Types. These
are represented by linking two entity types with a
solid line, with an arrow pointing from the composite
to the component.

The notation allows for specifying different con-
straints. Components being optional is indicated by
using a double, solid line for linking the component
and the composite. If the composite entities may

contain multiple occurrences of the component entity
type, the line linking the entity types is given a small
circle at the component end. This is exemplified in
Fig. 9 by letting Project be a component of Depart-
ment (this is a deviation from the running example).
The CC relationship type between Department and
Project results in the following relational table being
generated.

DEP_COMPONENT_PROJ(DEP_NUM, PROJ_ID)

If the composite only contains at most one occurrence
of the component, the key of the above relational table
will be reduced to the composite identifier only.
Whether the component object is optional or not does
not matter to the mapping algorithm.

�� General Relationship (GR) Types. These are relation-
ships between entity types that are neither of type
SS nor type CC. They are represented by linking the
involved entity types to a diamond with solid lines.
N-ary GR types are allowed.

Each entity type that participates in a GR type has
a cardinality ratio that can be either 1 or N. A cardi-
nality ratio of 1 is represented by linking the entity
type to the diamond with a solid line, as mentioned
before. A cardinality ratio of N is represented using a
solid line ending with a small circle at the diamond
side. The meanings of the cardinality radios are as
usual. The DMD in the figure indicates that a depart-
ment may have more than one employee, but that one
employee belongs to at most one department. The
meaning of cardinality ratios for time-varying GRs is
not given.

All GR types have one reference entity type that
indicates to which entity type the attributes of the GR
type refer. The reference entity type is determined
from the semantics of the GR type. Fig. 9 exemplifies
this: because hours/week is meant to describe how
many hours per week an employee is working on a

Fig. 9. Describing the running example using MOTAR.



GREGERSEN AND JENSEN: TEMPORAL ENTITY-RELATIONSHIP MODELS—A SURVEY 473

project, Employee is the reference entity type of the
relationship type Works_for. A reference entity type of
relationship is indicated with a small line perpen-
dicular to the line connecting the entity type to the
diamond; see the figure.

Using special time-varying GR types, it is possible
to describe relations that vary over time, such as proj-
ect assignments of employees and marriages. Time-
varying GRs are represented by double diamonds. In
Fig. 9, the relationship type Works_for is time vary-
ing, stating that employees may be reassigned to
other projects. The meaning of time-varying GRs is
revealed by their mapping to relational tables in
which '$7( type attributes Start_date and End_date
are introduced. Specifically, the Works_for relation-
ship type will be mapped to the following two tables.

REL_WORKS_FOR(EMP_ID, PROJ_ID)

WORKS_FOR(EMP_ID, PROJ_ID,
EMP_Hours/week, EMP_Start_date,
EMP_End_date)

From the second table, it can be seen that employees
may only work for the same project once because the
key of the relation WORKS_FOR only consists of
EMP_ID and PROJ_ID. Almost all the attribute names
are prefixed with EMP because Employee is the refer-
ence entity type of Works_for.

Attributes. There are four types of attributes in the model.
They are initially divided into identifiers and simple attrib-
utes; and simple attributes are either regular, aperiodic, or
periodic. Identifiers are represented by rectangles and are
considered time-invariant. For example, ID is the identifier
of, e.g., the entity type Project. Regular attributes do not
change over time and are thus nontemporal. They are rep-
resented by squares. For example, as departments’ names
are not expected to change, Name of Department in Fig. 9 is
modeled as a simple, regular attribute.

Aperiodic attributes are expected to change over time, at
irregular intervals. A double square without a letter inside
represents an aperiodic attribute. Attribute Salary of Em-
ployee is an example of an aperiodic attribute; it is mapped
to the following table.

EMP_Salary(EMP_ID, Salary_date, Salary)

This mapping, with only one time attribute, results in sev-
eral interpretations of the meaning of aperiodic attributes.
For example, aperiodic attributes may be assumed to be
step-wise constant. For example, the value of a salary re-
mains constant between updates. The Salary_date value of
a tuple then indicates when the tuple’s Salary value takes
effect. Another interpretation is that aperiodic attributes are
assumed to be discrete. For the Salary attribute, this means
that a tuple’s Salary value is valid only at the time indicated
by the value of its Salary_date attribute. The intended
meaning is not clear from the description of the model.

Periodic attributes are expected to change over time
within specific intervals, e.g., monthly or weekly. A double
square with a letter inside represents a periodic attribute.

The letter indicates the intervals with which the attribute is
monitored. Two periodic attributes, Profits, are used for
recording departments’ profits. One is sampled monthly,
and the other is sampled annually. Rule-1 computes the
annual profits, taking the monthly profits as input. Entity
type Department is mapped to the following tables.

DEP(DEP_NUM, Name)
DEP_Annual_Profit(DEP_NUM, Profit_Year,
Annual_Profit)

DEP_Monthly_Profit
(DEP_NUM, Profit_Month, Profit_Year,
Monthly_Profit)

From this it can be seen that it is possible to specify a
granularity for periodic attributes.

Rules. The notion of rules as known from knowledge-based
systems is used for the modeling of procedural relation-
ships. Narasimhalu [24] provides argumentation for why
rules are thought of as data in MOTAR. Rules are repre-
sented using an arrow head that points from the condition
of the rule to its conclusion. In Fig. 9, Rule-1 exemplifies
this; for further details, see [24].

2.4.3 Summary
MOTAR provides the database designer with new model-
ing constructs for describing time-varying attributes, both
periodic and aperiodic, and for describing time-varying
relationships. These constructs “hide” the time attributes
that would otherwise be necessary.

2.5 The Temporal EER Model
The motivation for developing the Temporal EER (TEER)
model [12], [11] was that its authors believe that it would be
more natural to specify temporal data and temporal queries
in a conceptual, entity-oriented model than in a tuple-
oriented relational data model. TEER does not add new
syntactical constructs to the EER model; instead, it gives
new meaning to the existing EER modeling constructs
making them temporal.

2.5.1 The Representation of Time
The time representation is similar to that proposed by
Gadia and Yeung [14] for the relational model, but is
adapted to the requirements of the ER model. A time inter-
val, denoted by [t1, t2], is defined to be a set of consecutive
equidistant time instants, where t1 is the starting instant
and t2 the ending instant. The distance between two con-
secutive time instants can be adjusted based on the granu-
larity of the application to be equal to months, days, or
other suitable time units. A temporal element is a finite union
of time intervals denoted by, {I1, I2, ¡, In} where Ii is an in-
terval in [0, now]. A temporal database stores historical infor-
mation for a time interval [0, now] where 0 represents the
starting time, of the database miniworld application, and now
represent the current time which is continuously expanding.

The authors state that the TEER model has no limitations
regarding support of time dimensions, but due to space
limitations, the articles consider only valid time.



474 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  11,  NO.  3,  MAY/JUNE  1999

2.5.2 The Model Components
The TEER model extends the EER model [10] to include
temporal information on entities, relationships, superclass/
subclasses, and attribute. Since the graphical representation
of TEER model components is similar to that of the EER
model presented by Elmasri and Navathe [10], we will not
explain it in detail. Instead, we will concentrate our atten-
tion on the new meaning given to the syntactical constructs
of the EER model.

Entities and Entity types. In the TEER model, each entity
e of entity type E is associated with a temporal element
T(e) ² [0, now] that gives the lifespan of the entity. The
lifespan of an entity can be a continuous time interval, or it
can be the union of a number of disjoint time intervals. In
TEER, each entity type has a system-defined SURROGATE
attribute whose value is unique for every entity in the data-
base. The value of this attribute is hidden from the user and
does not change throughout the lifespan of the entity. The
temporal element of the SURROGATE attribute of entity e
defines the lifespan T(e) of the entity.

The temporal properties of weak entities are similar to
those of regular entities, except that the temporal element
T(e) of each weak entity must be a subset of the temporal
element of its owner entity.

Attributes and Keys. The attribute types of the TEER
model are the same as those of the EER model, although
they are all temporal. The temporal value of each attribute Ai

of e, denoted by Ai(e), is a partial function Ai(e) : T(e) �
dom(Ai). This is also referred to as a temporal assignment. The
subset of T(e) in which Ai(e) is defined and denoted by
T(Ai(e)) is called the temporal element of the temporal assign-
ment. It is assumed that Ai has the value NULL or UN-
KNOWN during the time intervals T(e) - T(Ai(e)).

To give an example of the above, consider the database
described by Fig. 10, and assume that the chosen granular-
ity of time is a day. A particular EMPLOYEE entity e with
lifespan T(e) = [7/1/90, now] may have the temporal attrib-
ute values given in Fig. 11.

The following constraint apply to attributes and keys in
the TEER model. Simple single-valued attributes have at
most one atomic value for each entity at each time instant
[t]. Multivalued attributes can have more that one value for
an entity at a given time instant [t]. For a given time instant
[t], the value of a composite attribute of an entity is the con-
catenation of the values of its components. The temporal
element of a temporal assignment of a composite attribute
is the union of the temporal elements of the temporal as-
signments of its components. A key attribute is an attribute
of an entity type with the constraint that at any time instant
[t] in [0, now], no two entities will have the same value for
this attribute. TEER allows updates of key attributes since
each entity is uniquely identified by its system-defined
SURROGATE.

Relationship Types. Like entities of entity types, each rela-
tionship instance r is associated with a temporal element

Fig. 10. A TEER schema modeling the running example.

Fig. 11. Example of a lifespan of an entity.



GREGERSEN AND JENSEN: TEMPORAL ENTITY-RELATIONSHIP MODELS—A SURVEY 475

T(r) that defines the lifespan of the relationship instance. A
constraint states that T(r) must be a subset of the intersec-
tion of the temporal element of the participating entities.
That is, T(r) ² (T(e1) > T(e2) > ¡ > T(en)) where T(ei) is the
lifespan of the ith entity participating in r. Relationship at-
tributes are treated similarly to entity attributes; the tempo-
ral value Ai(r) of each simple attribute Ai is a partial func-
tion Ai(r) : T(r) � dom(Ai) and its temporal element T(Ai(r))
must be a subset of T(r). The cardinality ratios of the par-
ticipating entity types have not been given any new
meaning.

The TEER model also offers user-defined and predicate-
defined superclass/subclass relationships. An entity e of a
superclass E will belong to a predicate-defined subclass C
throughout all time intervals where the defining predicate
evaluates to true for that entity. For a user-defined sub-
class, the user specifies when the entity is to be a member
of the subclass. In either case, the entity will have a tem-
poral element T(e/C) that specifies the time intervals
during which it is a member of the subclass C. The con-
straint T(e/C) ² T(e) on temporal elements must hold. At-
tributes of a subclass are treated similarly to other attrib-
utes; the temporal elements of their temporal assignments
must be subsets of T(e/C).

2.5.3 Summary
TEER does not add any new syntactical constructs to the
EER model, but changes the semantics of all the standard
EER constructs, making them temporal. TEER do not pro-
vide any mapping from TEER diagrams to any implemen-
tation model.

2.6 The Semantic Temporal EER Model
The Semantic Temporal EER model (STEER) [8], [9] was
developed in order to compensate for a lack of considera-
tion of the semantics associated with time in previous re-
search that had concentrated on temporal data models and
query languages in the context of the relational model and
not so much in the context of conceptual data models.
STEER introduces a new classification concept for temporal
and conceptual objects and provides guidelines for identi-
fying objects as conceptual or temporal.

2.6.1 The Representation of Time
The representation of time in STEER is very similar to
the representation of time in the TEER model just sur-
veyed. Actually, the only difference is that the time do-
main T of the database application is expanded from T =
{t0, t1, t2, ¡, tnow} to T = {t0, t1, t2, ¡, tnow, tnow+1, ¡}. That
is, it is now possible to reference future time points.
NULL is used to represent the unknown time point, and
tnow is used to represent the current time point. STEER
only supports valid time.

2.6.2 The Model Components
The STEER model distinguishes between conceptual and
temporal entities. A conceptual entity is treated as an object
with permanent existence. That is, once an entity is created
in the database, it can be referenced at any future point in
time. A temporal entity—also called an entity role because
it models one of the several roles that a conceptual entity

can participate in over time—on the other hand, has a spe-
cific lifespan describing its existence. STEER distinguishes
between temporal and nontemporal attributes, and it dif-
ferentiates between temporal and conceptual relationships
as well. It also defines temporal constraints among entity
roles and conceptual and temporal relationships.

Conceptual Entities and Their Entity Roles. To understand
the idea behind the distinction between conceptual entities
and entity roles, consider an example. Initially, note that
entities from the modeled miniworld need to be repre-
sented in the database when they become of interest. For
example, students exist in the miniworld as persons. How-
ever, they do not become of interest to a university before
they have been accepted at the university. At that point, the
university might want to record previous information
about the students. Then, when students leave the univer-
sity, they often remain of interest to the university for some
time. So the conceptual existence of an entity does not di-
rectly correspond to the birth, dead, or change of the entity.
In this example, persons are modeled as conceptual entities,
and (persons in their roles as) students are modeled as en-
tity roles.

Conceptual entities describe the conceptual aspects of
the real world. A conceptual entity type is a set of concep-
tual entities of the same type. Conceptual entity types are
represented by rectangles in STEER diagrams; in Fig. 12,
Employee is an example.

The temporal aspects of the real world are described by
temporal entities which are also called entity roles because
they represent the active roles a conceptual entity can par-
ticipate in. A role type is a set of entity roles of the same
type. Each role type is associated with a single entity type
called its owner entity. A role type is represented by a filled
rectangle and connected to its owner entity type.
W_Employee in Fig. 12 is an example. W_Employee models
all the employees currently employed by the company.

Each conceptual entity e is associated with an existence
time, ET. The start time point ST of the existence time re-
fers to the time when the entity was recorded in the da-
tabase. The end time point of an existence time is infinity
because an entity once created never ceases to exist.
Hence, ET = [ST, �[.

Each entity role ro of a role type RO is associated with a
temporal element T(ro) ± [t0, �[ that gives the lifespan of
the entity role. The lower bound (start time) tl of a lifespan
[tl, tu] of an entity role must be closed; tl cannot be NULL
because the start time of an entity role cannot be unknown;
nor can it be tnow, since the current time is a dynamic con-
cept. The upper bound (end time) tu can either be closed or
open; tu can be tnow if tl � tnow or NULL if tl > tnow.

The association between a conceptual entity and its en-
tity roles can be viewed as some sort of superclass/subclass
relationship with mutual inheritance of attributes and rela-
tionship instances. The following set of rules clarify this
relationship.

1)�A role type has exactly one entity type as owner.
2)�The start time of the lifespan of en entity role must

be greater than or equal to the start time of the
owner entity.



476 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  11,  NO.  3,  MAY/JUNE  1999

3)�A role type can only have temporal attributes.
4)�Attributes of a role type are “public” to the owner en-

tity type, and attributes (temporal and nontemporal)
of the owner entity type are “public” to all the associ-
ated role types.

5)�An entity role can access all relationship instances of
relationship types in which the owner entity partici-
pates, and, reversely, an entity can access all relation-
ship instances of relationship types in which the asso-
ciated entity roles participates.

Nontemporal and Temporal Attributes. Nontemporal
attributes can only be properties of conceptual entity
types. The value of a nontemporal attribute of an entity
holds over the entire existence time of the entity. Non-
temporal attributes are represented with circles in dia-
grams. An example is the nontemporal attribute ID of
Employee in Fig. 12.

Each entity is provided with a system-defined nontem-
poral SURROGATE attribute whose value is unique for
every entity in the database. The value is not visible to the
user and is never altered.

Each entity type E or role type RO may have a set of
temporal attributes TA1, TA2, ¡, TAn, and each temporal

attribute TAi is associated with a domain of values,
dom(TAi). In STEER diagrams, temporal attributes are rep-
resented by ellipses; an example is the temporal attribute
profit of Act_Department in Fig. 12.

The next definitions are very similar to those presented
in Section 2.5. For entity roles, the temporal value of each
attribute TAi of ro, referred to as TAi(ro) is a partial function
from T(ro) to dom(TAi). The subset of T(ro) in which TAi(ro)
is defined is denoted by T(TAi(ro)). It is assumed that TAi
has NULL or UNKNOWN as its value during the intervals
T(ro) - T(TAi(ro)). The similar definitions apply to entities,
the only difference being that T(ro) is replaced by ET(e) (i.e.,
the lifespan of entity e).

The partial function that describes the value of a tempo-
ral attribute is also called a temporal assignment. The sub-
set of time points during which a temporal attribute is de-
fined is called the temporal element of the temporal as-
signment. The different types of temporal attributes are
similar to those of the TEER model. For nontemporal at-
tributes of an entity, the temporal element of the temporal
assignment is equal to the existence time of the entity.

For an example of the above, consider the database de-
scribed in Fig. 12 and assume that the chosen granularity of
time is a day. A particular Employee entity e with existence

Fig. 12. The running example modeled using the STEER model.

Fig. 13. Temporal attribute values of the entity e.



GREGERSEN AND JENSEN: TEMPORAL ENTITY-RELATIONSHIP MODELS—A SURVEY 477

time ET(e) = [7/1/90, � [ may have the temporal attribute
values shown in Fig. 13.

Conceptual and Temporal Relationships. A conceptual
relationship type R of degree n has n participating entity
types E1, E2, ¡, En. Conceptual relationship types cannot
have role types as participants. Each relationship instance
r in R is an n-tuple  Æe1, e2, ¡, enÖ with ei ³ Ei. Each rela-
tionship instance r in R has an existence time ET. The start
time must be greater or equal to the start time of the exis-
tence time of each of the n participating entities, i.e., ST(r)
� ST(ei) for all ei. Conceptual relationships are represented
by diamonds in STEER diagrams. Worked_for in Fig. 12 is
an example.

A temporal relationship type TR of degree n has n par-
ticipating entity types or role types O1, O2, ¡, On where Oi
is either an entity type or a role type. Thus, each temporal
relationship instance tr in TR is a n-tuple  Æo1, o2, ¡, onÖ with
oi ³ Oi. Temporal relationships are represented by filled
diamonds, and an example in Fig. 12 is Belongs_to. Each
temporal relationship instance tr is associated with a tem-
poral element T(tr) that give the lifespan of the temporal rela-
tionship instance. This lifespan must be a subset of the inter-
section of the lifespans of the involved entity roles and entities.

As for entities and entity roles, the association between a
conceptual relationship type and a temporal relationship
type can be seen as some sort of superclass/subclass rela-
tionship. Two constraints are enforced on temporal and
conceptual relationships.

First, there is the R-existence Constraint. This constraint,
denoted by R/TR, holds between a conceptual relationship
type R and temporal relationship type TR where all the
participating object types are role types if for each tri =
 Æro1, ro2, ¡, ronÖ in TR, the following two conditions hold.

�� There exists a corresponding conceptual relationship
ri =  Æe1, e2, ¡, enÖ in R such that owner(roj) = ej for each
roj in tri.

�� The start time of the lifespan of tri must be greater
than or equal to the start time of the existence time of
the corresponding conceptual relationship ri.

Second, there is the R-lifespan Constraint, denoted by
TR/R. This constraint holds between a temporal relation-
ship type TR where all the participating objects are role
types and a conceptual relationship type R if for each ri =
 Æe1, e2, ¡, enÖ in R, the following two conditions hold.

�� There exists a corresponding temporal relationship tri
=  Æro1, ro2, ¡, ronÖ in TR such that ej = owner(roj) for
each ej in ri.

�� The start time of the existence time of the conceptual
relationship ri must be greater than or equal to the
start time of the lifespan of the corresponding tempo-
ral relationship tri.

The R-lifespan constraint is used to model the cases
where a conceptual relationship cannot exist until after a
temporal relationship has started. For, example students
cannot get transcript entries for courses until after they have
enrolled. R-existence and R-lifespan constraints are repre-
sented in STEER diagrams by placing an oval with an e an a
l, respectively, on the line connecting the involved relation-
ship types.

Superclass/Subclass Relationships. Like the EER model,
STEER supports the concepts of subclasses and super-
classes and the related concepts of specialization and gen-
eralization. A class is any set of entities; hence, an entity
type is also a class.

A member entity of a conceptual subclass represents the
same real-world entity as some member entity in its con-
ceptual superclass. Thus, an entity cannot exists in the da-
tabase as a member of a subclass without also being a
member of the superclass. This implies that an entity that is
a member of a subclass will have the same existence time as
the corresponding entity in its superclass.

Attributes of a superclass are inherited by its subclasses.
A subclass entity also inherits all relationship instances in
which its corresponding entity in the superclass partici-
pates. The graphical notation for superclass/subclass rela-
tionships is similar to that of the EER model [10]. However,
one should notice that when converting a nontemporal EER
diagram into an STEER diagram, many or most of the sub-
classes are likely to become role types. An example of this is
given in Fig. 14, where the nontemporal EER schema to the
left is converted to the STEER diagram to the right. This is
also the reason why no conceptual entity type Manager
exists in Fig. 12 and why the nontemporal attribute Rank
has to be moved to Employee.

When role types participate in superclass/subclass rela-
tionships, two temporal constraints may be indicated. An
existence constraint holds between two role types ROi (su-
perclass) and ROj (subclass) if for all roles rojk in ROj, there
exists a role roil in ROi such that rojk � roil. Next, a lifespan
constraint holds if the lifespan of any entity role rojk in ROj
is a subset of the lifespan of the entity role roil in ROi with
rojk � roil. Notice that the lifespan constraint implies the ex-
istence constraint, but not vice versa. In STEER diagrams
existence and lifespan constraints are represented the same
way as R-existence and R-lifespan constraints. Fig. 12 con-
tains an example of a lifespan constraint between
W_Employee and W_Manager is shown. The l in the oval is
replaced by an e if an existence constraint is to be indicated.

2.6.3 Summary
STEER is a semantic temporal model where conceptual en-
tities are considered to exist forever (or more precisely, from
when they become of interest to the application), whereas
the roles they participate in, i.e., the temporal entities, have
lifespans to determine their existence. The same distinction
holds for relationships. A general set of constraints for pre-
serving temporal consistency is presented.

2.7 The Entity-Relation-Time Model
The Entity-Relation-Time (ERT) model exists in two ver-
sions, the original version [35], [37], and a recent refinement
[22]. We survey first the original model and then discuss the
refinements at the end.

The motivation for the development of the original ERT
model was to meet the need for conceptual models of en-
hanced system functionality. In ERT, this need is addressed
through the use of a conceptual modeling formalism that
caters for the modeling of business rules, time, and complex
objects. This formalism is supported at the database level by



478 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  11,  NO.  3,  MAY/JUNE  1999

an extension of the relational model with temporal seman-
tics and an execution mechanism that provides active-
database functionality.

In the description of ERT, the term class is used instead
of the term type. We will follow the description. The basic
structures of ERT are those of the binary Entity-
Relationship model, with the exception that it regards any
association between objects as a relationship. Specifically,
the distinction between “attributeships” and relationships
is avoided. The ERT model extends the ER model both in
its semantics and graphical notation in two directions: the
modeling of time-varying information; and the modeling of
complex objects.

In the ERT model, the term time-varying information re-
fers to pieces of information where the modeler wants to
keep track of their evolution, i.e., wants to record their
variation over time.

2.7.1 The Representation of Time
Time is introduced in the ERT model via a distinguished
entity class, the time period class, and the time period is con-
sidered the most primitive temporal notion in the model. A
time period starts and ends in a tick and also has a duration
expressed in ticks, i.e., a tick is defined as the smallest unit
of time permitted in ERT. Each time-varying entity class
and relationship class is timestamped with a time period
class. That is, a time period with a specified granularity is
assigned to every time-varying piece of information that
exists in an ERT schema.

When a time period class is associated with an entity
class, it models the lifespans of the entities in the class. The
lifespan of an entity is also referred to as its existence period.
When a time period class is associated with a relationship
class, it models the time period during which a relationship
is valid. This is referred to as the validity period of a relation-
ship instance and models the period in time that the rela-
tionships holds. This latter time notion thus corresponds to
valid time.

A number of assumptions were made in order to in-
crease the feasibility and practicality of the proposed ap-
proach, including the following:

1)�System-generated surrogates are used for unique
identification of entities.

2)�Reincarnation of entities is permitted, i.e., if an en-
tity no longer is in the database, meaning that the
existence period of the entity ends in a tick less than
the current time, it can return using the same surro-
gate. This implies that entities keep their identity
through time.

3)�Existence and validity periods should always be
mapped onto the calendar axis, i.e., they should be
specified in absolute terms. That is,

�� if the existence period of a timestamped entity is
not specified explicitly as an absolute value, then
the current time is taken as start point of the exis-
tence period, and

�� if the validity period of a timestamped relationship
is not specified explicitly as an absolute value, then
the most recent starting point of the existence times
of the involved entities is taken as start point of the
validity period of the relationship.

4) Nontimestamped entities and relationships are as-
sumed to always exist, i.e., they exist from the system
start-up time until the current time.

2.7.2 The Model Components
The most central concept of the ERT model is that of a class,
defined in the usual way. This means that the most primi-
tive data abstraction is classification of individual objects.
Thus, in ERT schemas, entity classes, value classes, complex
entity classes, complex value classes, and relationship
classes are specified.

Simple Entity Classes and Simple Value Classes. A simple
object cannot be decomposed into other objects and hence
has independent existence—it is irreducible. The simple

Fig. 14. Mapping nontemporal superclass/subclass relationships to the TEER model.



GREGERSEN AND JENSEN: TEMPORAL ENTITY-RELATIONSHIP MODELS—A SURVEY 479

objects classes of the ERT model are divided into two
groups: simple entity classes and simple value classes.

A simple entity class is represented by a rectangle, and if
the entity class is time-varying, the rectangle is expanded
with a “time box.” An example of a time-varying, simple
entity class is Employee (shown in Fig. 15), and an example
of nontimestamped entity class is Project.

A simple entity class can be derived. This implies that its
instances are not stored by default, but can be obtained dy-
namically when needed, by using derivation formulas. A de-
rived entity class is represented by a dashed rectangle. De-
rived entity classes can be time-varying as well. For each
derived entity class, there is exactly one derivation formula
that gives the members of that entity class at any time. If
the derived entity class is not timestamped, the corre-
sponding derivation formula instantiates this entity class at
all times; whereas if the entity class is timestamped then the
derivation formula obtains instances of this class together
with their existence periods.

A simple value class is represented by a rectangle with
a black triangle placed in the bottom right corner. Simple
value classes cannot be time-varying. An example of a
simple value class is Name in Fig. 15. A simple value class
can, like a simple entity class, be derived and is then rep-
resented by a dashed rectangle with a black triangle
placed as before.

Complex Entity Classes and Complex Value Classes. A
complex object is an object that can be decomposed into
other objects, and thus its existence depends of the exis-
tence of its component objects. The relationship between
the complex object and its component objects is modeled
using IS_PART_OF relationships. The complex object
classes, like the simple objects classes, are divided into two
groups, complex entity classes and complex value classes.

Complex value classes are represented by a double rec-
tangle with the black triangle placed (as usual) in the inner
rectangle. Complex value classes can only have complex
value classes or simple value classes as components, and
hence a complex value class cannot be time-varying. An
example of a complex value class is Name in Fig. 15. The
IS_PART_OF relationship cannot be seen at this level of
abstraction; an example of unfolding a complex class will
be given later.

A complex entity class is represented by a double rectan-
gle, and if it is time-varying, the “time box” is added to the
inner rectangle. The components of a complex entity class
can be both simple and complex, and they can be of value
class and entity class type. The time semantics of timestam-
ped complex objects will be explained in detail after the
explanation of the IS_PART_OF relationship.

In the presentation of MOTAR, Project was described as
a component of the composite entity type Department. This
could also have been done in ERT by making Department a
complex entity class, but then it would not have been pos-
sible to describe the relationship between Project and, e.g.,
Employee.

Relationships Classes. In ERT there are four kinds of rela-
tionship classes. There are the user-defined relationship
classes, the IS_PART_OF relationships between complex
objects and their composite objects, the ISA relationships
between subclasses and their super classes, and the objecti-
fied relationships. We explain each in turn.

User-defined relationship classes are binary and are rep-
resented by small filled rectangles; if they are time-varying,
a “time box” is added. There are two constraints on the va-
lidity periods of a relationship class’ instances. First, the
intersection of the existence periods of the participating
entities must be nonempty. Second, the validity period of

Fig. 15. ERT schema description of the running example.



480 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  11,  NO.  3,  MAY/JUNE  1999

the relationship instance must be a subperiod of the inter-
section of the existence periods of the involved entities.

An instance of a user-defined relationship class is
viewed as a named set of two (entity or value, role) pairs,
where each role expresses the way that a specific entity or
value is involved in the relationship. These two named
roles are called relationship involvements and are required in
a ERT schema for completeness reasons. In addition to the
relationship involvements, a cardinality constraint is re-
quired to be specified for each entity class participating in
the relationship class. Each cardinality constraint is a pair
(a, b ) where a indicates the minimum and b the maximum
number of times that an entity or value can participate in a
relationship. The cardinality constraints are also used to
specify whether the involvement is optional or mandatory. If
the involvement is mandatory then a = 1, whereas if a = 0,
the involvement is optional.

As an example, see the relationship class between Em-
ployee and Department shown in Fig. 15. The two relation-
ship involvements are “belongs_to” and “employs.” The
two corresponding cardinality constraints state that each
Employee instance is related to (i.e., belongs_to) precisely
one Department instance, yielding a uniqueness constraint on
Employee; and each Department instance is related to (i.e.,
employs) from one to N Employee instances. If both the
cardinality constraints of a relationship class between a en-
tity class and a value class are (1, 1), this corresponds to the
notion of a key in database theory.

User-defined relationship classes can, like simple entity
classes, be derived and are then represented by dashed,
nonfilled rectangles; and they can be time varying. As for a
derived timestamped entity class, the derivation formula of
a derived timestamped relationship class specifies a valid-
ity period for each instances of the class.

ISA relationship classes are first divided into two groups,
partial and total, that are further subdivided into overlap-
ping and disjoint, yielding four types of ISA relationship
classes. The partial ISA relationship class is represented by
a nonfilled circle with arrows flowing from the subclass to

the circle and an arrow flowing from the circle to the super-
class. The total ISA relationship class is represented by a
filled circle. If there is more than one subclass and more
than one arrow is pointing into the circle, the relationship
class is disjoint; otherwise the relationship class is overlap-
ping. The existence time of a specialized entity should be a
subperiod of the existence time of the corresponding parent
entity.

IS_PART_OF relationship classes are used to specify the
relationships between the components of a complex object
and the complex object itself. Each directly subordinate ob-
ject class is IS_PART_OF-related to the complex object class,
which in turn is HAS_COMPONENT-related to the com-
posite object class. This composition mechanism does not
make any distinction between aggregation and grouping,
but is rather general. Whether the HAS_COMPONENT
involvement is one of aggregation or grouping can be indi-
cated using cardinality constrains. That is, if the cardinality
is one of (1, 1) or (0, 1), the component is an aggregate,
whereas if it is (0, N) or (1, N) the component is a set.
Fig. 16 gives an example.

In ERT, complex objects can be used to model both logical
part hierarchies, where the same component can be part of
more that one complex object, and physical part hierarchies,
in which an object cannot be part of more than one complex
object at the same time. To achieve this, four different
IS_PART_OF relationship classes are defined using combi-
nations of two orthogonal types of constraints, namely de-
pendency and exclusiveness. The dependency constraint de-
pendent states that when a complex object ceases to exist, all
its components also cease to exist (dependent composite
reference), and the dependency constraint independent states
that if a complex object ceases to exist, this does not imply
that the components cease to exist (independent composite
reference). The exclusiveness constraint exclusive states that
a component object can be part of at most one complex
object (exclusive composite reference) at a time, and the
exclusiveness constraint shared states that it can be part
of more than one complex object at a time (shared com-
posite reference).

Fig. 16. Unfolding a complex entity class.



GREGERSEN AND JENSEN: TEMPORAL ENTITY-RELATIONSHIP MODELS—A SURVEY 481

No specific notation is introduced for these constraints.
Rather, they are given by the cardinality constrains of the
IS_PART_OF relationship. That is, assume that the cardi-
nality constraint of the IS_PART_OF relationship is (a, b).
Then a = 0 implies independent dependency, a � 0 implies
dependent dependency, b = 1 implies exclusive exclusive-
ness, and b  �  1 implies shared exclusiveness.

Timestamping in a time-varying IS_PART_OF relation-
ship of a complex object is subject to different time con-
straints depending on whether it has dependent or inde-
pendent dependency semantics and exclusive or shared
exclusiveness semantics. The dependency constraint de-
pendent in time-varying IS_PART_OF relationships implies
that the existence time of the complex object and the com-
ponent object should end at the same time as does the va-
lidity period of the IS_PART_OF relationship. The exclu-
siveness constraint exclusive implies that if an object A is
part of objects B and C, then the period during which A is
part of B should have empty intersection with the period
during which A is part of C.

In ERT, only binary relationship classes can be specified.
Thus attributes cannot be attached to relationship classes
since this would make the relationship class “ternary.” As
illustrated in Fig. 17a, this may yield problems. If we want
to add the class GRADE to this schema, we will face the
problem of where to add it. Specifically, GRADE has to be
attached to either STUDENT or SUBJECT, both of which are
problematic. There is thus a need to model ternary relation-
ships. To achieve this, ERT permits relationship classes to
participate in relationships. This is called nominalization,
and the particular construct in which a relationship class is
viewed as an entity class is called an objectified relationship.
An objectified relationship must include the two corre-
sponding involvements. The relationship class that is ob-
jectified should always be many to many (the cardinality
constraints on both of the involvements must be (1, N)). The
status of an objectified relationship is that of an entity class.
As such, it may participate in any relationship except that
of an ISA relationship. Also, the existence periods of the

objectified timestamped relationship class’ instances are the
same as the validity periods of the corresponding nomi-
nalized relationship class instances. The graphical notation
of objectified relationships is depicted in Fig. 17b.

2.7.3 Refining the Original ERT Model
The original ERT model has recently been refined [22] in
two respects. First, the definitions of temporal objects (enti-
ties or relationships) are given mathematically, by specify-
ing what constraints are placed on the existence or validity
periods of an object when a temporal marking is applied to it.
Second, temporal markings are used to represent temporal
variation of object with respect to each other. In particular,
the period in which a relationship involvement can exist is
related to the period in which the associated entities exist,
and the periods in which entity subclasses exist are related
to the period in which their superclass exists. Two distinct
aspects of the temporal nature of relationship involve-
ments, called historical perspective and temporal variation, are
identified. As a precursor to delving further into this, we
consider a refinement of ERT’s time periods.

A notation for describing the ticks when an instance of a
temporal entity class exists or a temporal relationship class
holds is introduced. The period over which an instance of
a temporal entity class or temporal relationship class x
exists/holds is a set Ix = {ta, tb, ¡, tz} where ta, tb, ¡, tz are
the ticks at which x exists/holds. Since the series of ticks
usually is continuous, Ix is called an interval although what
actually has been defined is a set of intervals [22]. This
definition of “intervals” allows for the use of the usual
set operators. To ensure a discrete bounded model, the
possible ticks of an interval are limited to the finite set of ¥
= {0 … t }, and for all x, the interval Ix will satisfy Ix ² ¥.

In the original ERT model, a relationship class could
only be marked with a T-mark indicating that the relation-
ship was time-varying. The temporal marking is refined in
[22] to include H-marks and TH-marks. In the following,
interval i.e., ranges over all intervals associated with entity

Fig. 17. Objectified relationship.



482 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  11,  NO.  3,  MAY/JUNE  1999

class E; and the properties of intervals that we give must
hold for all instances of the entity class. Thus stating IE ² ¥
means that for all entities e in E, Ie ² ¥.

If a relationship involvement exists for a subset of the
ticks for which both the entities it associates exist, and
only associate entities which exist at the same time tick,
then the relationship is said to undergo temporal variation
with respect to the entities it associates, and the relation-
ship is T-marked.

If a relationship involvement exists at certain ticks be-
tween entity E1, which exists at those ticks, and a entity E2,
which exists at other ticks, then the relationship is said to
have historical perspective, and the relationship is H-marked.
Note that such relationships are asymmetric, since at any
tick only E1 is required to exist; the inverse relationship
(from E2 to E1) may not hold at the same tick.

The above-mentioned terms can be combined. Saying
that a historical perspective has temporal variation means
that that one of the entities involved does not have the per-
spective for its entire existence.

Four constraints on the validity period of an instance of
a relationship class results. Initially, let IE1

 and IE2
 be the

intervals for which entity classes E1 and E2 exist. First, if IR

is the interval over which the instances of E1 and E2 are in-

volved in an unmarked relationship, then IR = IE1
 > IE2

.

Second, if IR is the interval over which the instances of E1

and E2 are involved in a T-marked relationship class, then IR

² IE1
 > IE2

. Third, assume that instances of entity classes E1

and E2 are related by R. If the instances of E1 and E2 are in-
volved in R over period IE1

 and IE2
, respectively, and the

relationship class R is H-marked, then IE1
 � IE2

 is allowed.

To exemplify an H-marked relationship class, consider the
grandparent/grandchild relationship between persons.
Here, related persons need not exist simultaneously for any
tick; a grandparent may die before the birth of a grandchild.
As we shall see next, the historical perspective of a relation-
ship has a temporal direction. An H-marked relationship
class R relating E1 and E2 is described as

�� past, if E2 holds at ticks before the ticks at which
E1 holds,

�� current, if E2 holds at the same ticks for which E1
holds, and

�� future, if E2 holds at ticks after the ticks at which
E1 holds.

Finally, Boolean combinations of the above are possible. It
follows that an unmarked relationship class is merely a cur-
rent historical perspective relationship class. In the above
example the temporal direction could be past and current

(depending on what is E1 and E2). The characteristics of H-
marked relationships can be described using derived entity
classes, for details see [22]. Fourth, assume that instances of
E1 are involved in R over period IE R1

 ² IE1
 and instances of

E2 are involved in the same relationship instance for IE2

and relationship R is TH-marked. Then, IE R1
 � IE2

 is al-

lowed. This TH-mark can be used to model that we do not
want the grandparent to be related to the grandchild before
the grandchild is actually born.

2.7.4 Summary
The data model ERT extends a binary Entity-Relationship
model with complex entity classes and complex value
classes. ERT provide the users with temporal markings of
time-varying entity and relationship classes, and instances
of these classes are timestamped with time periods. The
temporal markings of classes have later been refined.

2.8 The Temporal ER Model
The Temporal ER model (TER) [33] has it origin in the ER
model. Most centrally, TER replaces the ordinary cardinal-
ity constraints with snapshot and lifetime cardinality con-
straints. This permits a refinement of the classification of
relationship types, thereby obtaining a total of six different
classes of relationship types; and it leads to a refinement of
the optionality of relationship participation.

Designing a database using the TER model includes
three steps. First, a TER diagram is constructed that uses
the two new types of constraints for describing the time-
varying aspect of relationship types. No time attributes are
included. Then, based on how often historic data is ex-
pected to be accessed, a particular algorithm that translates
TER diagrams into traditional ER diagrams is applied,
leading to a diagram with only regular cardinality con-
straints and with explicit time attributes. Third, the ER
diagrams is translated into relational tables using a stan-
dard mapping.

2.8.1 The Model Components
The key differences between TER and the (binary) ER
model are the inclusion of snapshot and lifetime cardinality
constraints, and the intermediate step of transforming TER
diagrams to ER diagrams. Time is thus implicit in TER dia-
grams. The TER diagram describing the running example is
shown in Fig. 18. In the remainder of this subsection, we
consider the cardinalities; the next subsection considers the
intermediate step.

The modeling of time-varying information is improved
in TER by replacing the traditional cardinality constraints
by two new types of constraints, the lifetime cardinality,
denoted by L[minL, maxL], and the snapshot cardinality,
denoted by S[minS, maxS]. For an example, consider the
relationship type between entity types Department and
Project in Fig. 18. Relationship types have two directions,
with each direction having a source and a target. In TER
diagrams, the cardinality constraints are with respect to a
direction of a relationship type, and they are placed next to
the target entity type, by the relationship type.

A lifetime cardinality constraint L[minL, maxL] states that
the minimum and maximum number of instances of the
target entity related to one instance of the source entity
over all of time is minL and maxL, respectively. Similarly, a
snapshot cardinality constraint S[minS, maxS] states that the



GREGERSEN AND JENSEN: TEMPORAL ENTITY-RELATIONSHIP MODELS—A SURVEY 483

minimum and maximum number of instances of the tar-
get entity related to one instance of the source entity at
any single point in time is minS and maxS, respectively.
Below, the conditions that define any valid combination
of cardinalities for any given relationship direction in
TER are defined:

0 < maxS and 0 < maxL
0 � minS � maxS � maxL
0 � minS � minL � maxL

In the relationship type between Department and Proj-
ect, a Department instance (a “department”) may have from
1 to n associated Project instances (“projects”) during its
lifetime, but it may have at most 10 associated projects at
any single point in time. A project is associated with pre-
cisely one department at any single point in time; and a
project is associated with precisely one department
throughout its lifetime. Thus, projects cannot be reassigned
from one department to another.

As it is the case for cardinality constraints in the ER
model, cardinality constraints in the TER model can also
express connectivity. Thus, a set of connective values of re-
lationship type directions are defined as follows.

one for (maxS =) maxL = 1
oneT for maxS = 1 and maxL > 1
many for maxS > 1

The introduction of the new connective value oneT (“one
at a time”) leads to a refined classification of relationship
types. Traditionally, there are three distinct and exhaustive
classes of relationship types: one-to-one, one-to-many, and
many-to-many. While still disjoint, these classes are no
longer exhaustive when snapshot and lifetime cardinality
constraints are used, as the classes no longer cover all
valid combinations of values for minS and minL in both

directions. Therefore, three new relationship classes are
added to the before mentioned three, namely one-to-oneT,
oneT-to-oneT, and oneT-to-many.

Up until now, the optionality of a relationship-type direc-
tion has been implicit. It has been assumed that if minS = 0
in a direction, this implies that participation is optional in
that direction. But given the definitions of snapshot and
lifetime cardinalities, the notion of optionality can be re-
fined. A relationship-type direction is snapshot optional
(optS) if minS = 0; otherwise, it is snapshot mandatory
(mandS). A relationship-type direction is lifetime optional
(optL) if minL = 0; otherwise, it is lifetime mandatory (mandL).
The refinement implies that columns in the relational tables,
that result from snapshot mandatory directions of relation-
ship types are not allowed to have null values. The follow-
ing holds for the refined optionalities:

optL implies optS
mandS implies mandL
mandS and optL are incompatible

In TER diagrams such as that in Fig. 18, the entity
types do not include attributes that make is possible to
distinguish different states of entities. For example, there
are no means of recording different states of Employee
entities. These means are implicit, and they are brought
out by the mapping of TER diagrams to ER diagrams, as
described next.

2.8.2 Mapping TER Diagrams to ER Diagrams
One consequence of introducing the temporal aspects of
relationships into TER is that there now exists a basis for
the semiautomatic incorporation of time-varying data in
relational tables. How applications are to deal with time-
varying data largely depends on the volume of such data,
the frequency of access to it, etc. TER provides three general
approaches of dealing with time-varying data. They are
based on the frequency of access to noncurrent data.

Fig. 18. A TER diagram of the running example.



484 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  11,  NO.  3,  MAY/JUNE  1999

Never If there is no interest in the noncurrent
data, there is no reason for storing it. No
provisions for retaining noncurrent data
are needed; old data is simply overwrit-
ten by new.

Occasional If the noncurrent data is accessed infre-
quently, it would be rather inefficient to
store it together with the much more fre-
quently accessed current data. Thus, sepa-
rating the current data from the noncur-
rent data at the conceptual level simplifies
the design process.

Frequent If the noncurrent data is anticipated to be
accessed almost as frequently as the cur-
rent data, it is most efficient to store them
together.

TER then provides three different algorithms for trans-
lating TER diagrams into ER diagrams, one for each cate-
gory. Fig. 19 shows the result of using the algorithms on a
fraction of the running example.

The mappings only provide means of recording multiple
states of time-varying TER relationship types; while not
documented, it should be straightforward to extend them to
also provide means of recording multiple states of time-
varying entities and attributes. Note how lifetime and
snapshot constraints are replaced with appropriate regular
cardinality constraints.

2.8.3 Summary
The TER model provides means for better time-varying
data modeling. Specifically, ordinary cardinality constraints

are replaced with snapshot and lifetime cardinality con-
straints. Using these, TER redefines the classification of re-
lationships and the notion optionality. Specifically, a new,
oneT cardinality is introduced. Time is implicit in TER dia-
grams, but the temporal aspects are made explicit through
the mapping of TER diagrams to ER diagrams.

2.9 The TempEER Model
The motivation behind TempEER2 [21] is to be able to cap-
ture temporal information in a conceptual model (specifi-
cally, the EER model) and then, via an appropriate map-
ping, in the relational data model.

In achieving this, TempEER does not add new syntacti-
cal constructs to the EER model, but assumes a temporal
dimension to the existing EER constructs. The mapping to
the relational-model level, adds two attributes, ValidTime
and TransTime, to all the relation schemas that a conven-
tional mapping algorithm yields. It is an underlying as-
sumption that the TempEER model is a design model only
and that the implementation platform is relational.

2.9.1 The Representation of Time
TempEER captures both valid and transaction time, both of
which are assumed to have discrete domains, and different
granularities may be specified for both of these domains.
Time intervals are used as valid-time values, and time in-
stants are used as transaction-time values.

Valid-time intervals are a subset of [0, UNTIL], with
UNTIL being a time value greater than or equal to the

2. The authors gave their model the same name as the TEER already pro-
posed by Elmasri et al. We adopt the name “TempEER.”

Fig. 19. Mappings of TER diagrams to ER diagrams.

Fig. 20. The relational representation of an Employee entity.



GREGERSEN AND JENSEN: TEMPORAL ENTITY-RELATIONSHIP MODELS—A SURVEY 485

current time. Thus, the time domain for valid times extends
beyond that used in the TEER model (Section 2.5). Transac-
tion times never exceed the current time.

2.9.2 The Model Components
The TempEER model does not add any new syntactical
constructs to the EER model; rather, the temporal aspects
are implicit in TempEER diagrams. The TempEER dia-
gram of the running example is therefore identical to that
of Fig. 10.

Entities and Entity Types. In TempEER diagrams, each
entity of an entity type is associated with a lifespan captur-
ing the valid time of the entity. The lifespan can be a time
interval or a temporal element.

When mapped to a relational platform, an entity is rep-
resented by a set of tuples where each tuple describes one
state of the entity over time. An entity type is mapped to a
relation schema with the attributes dictated by a standard
mapping and with an interval-valued ValidTime attribute.
Thus, any change to an attribute of an entity results in the
creation of new tuple capturing the new state of the entity.
The lifespan of an entity is then the union of the ValidTime
intervals in the set of tuples that represent the entity. In
addition to the ValidTime attribute, each tuple has a
TransTime attribute that records the insertion time of the
tuple, making it possible to capture the transaction time
of each tuple.

To exemplify, let us reconsider the entity described by
the example given in Fig. 11. This entity has lifespan T =
[7/1/90, UNTIL] and is represented at the relational level
by the two tuples in Fig. 20.

The temporal information of weak entity types is stored
exactly as for ordinary entity types. The constraint that the
lifespan of a weak entity must be a subset of the lifespan of
its owner entity is enforced (the interaction with transaction
time is not considered).

Attributes. The attribute types of TempEER are those of the
EER model, with the exception that their changing values
over time are retained.

A single-valued attribute has one atomic value for any
point in time; multivalued attributes can have more that
one value at a given point in time; and the value of a com-
posite attribute at a given point in time is the concatenation
of the values of its components at that point in time.

The valid time associated with an attribute value can
be deduced from the tuples at the relational level repre-
senting the entity. For example, the temporal element asso-
ciated with the attribute value Johnson in Fig. 20 is [7/1/90,
UNTIL], whereas the temporal element associated with the
value 20K is [7/1/90, 6/30/92]. The temporal element of an
attribute value of an entity must be a subset of the lifespan
of the entity.

Relationships Types. Each relationship instance of a rela-
tionship type is associated with a lifespan defined in the
same way as for entities. The lifespan of a relationship in-
stance must be a subset of the intersection of the lifespans
of the participating entities.

Finally, TempEER also has superclass/subclass relation-
ships. The lifespan of a subclass entity must be a subset of
the lifespan of its superclass entity.

2.9.3 Summary
The sparsely documented TempEER model does not
add any new syntactical constructs to the EER model,
but instead changes the meaning of the existing con-
structs. TempEER diagrams are mapped to tuple-
timestamped bitemporal relation schemas. Temporal con-
straints are introduced.

2.10 The TempRT Model
In a working paper, Kraft [20] proposes TempRT3 that incor-
porates valid time support into a binary ER model. To mo-
tivate his approach, he first considers capturing valid time
using explicit timestamp attributes, which is unattractive.

In his approach, valid time is captured through temporal
relationships, temporal entities, and temporal attributes.
The basic temporal construct is the temporal relationship
type. While ER diagrams are usually translated to relational
schemas, in this model there is an extensional level with is
own graphical notation associated with the ER diagrams. In
this notation, nodes represent the instances of entities and
the edges represent relations between instances.

The valid time domain employed is discrete, but is not
otherwise described.

2.10.1 The Model Components
The model is based on a binary ER model, and Fig. 21 ex-
emplifies the notation. In this model only entity types, de-
scribed by rectangles, and relationship types, described by
“crows’ feet,” may be specified. The attributes in Fig. 21 are
actually shorthand for one-to-many relationship types be-
tween an entity type with all possible values of some value
domain as instances and the entity type having the attrib-
ute. Two diagonal lines are used to indicate that a construct
is temporal. For example, the relationship type between
Employee and Emp_Proj is marked as temporal. The tem-
poral markings of Employee and Emp_Proj are deviations
from the running example.

Temporal Relationship Types. The basic temporal struc-
ture is the temporal relationship. The semantics of a tempo-
ral relationship is an extension of the semantics of an ordi-
nary relationship.

In Fig. 22a, on the left-hand side, the nontemporal rela-
tionship between Employee and Department is repeated,
and on the right-hand side, some instances are shown. The
meaning of the relationship is that every instance of Em-
ployee must at any point in time be related to one and only
one instance of Department, and every instance of Depart-
ment may be related to zero or more instances of Employee.
Only one (the current) department assignment of an em-
ployee is recorded. Thus, if an employee is reassigned to a
new department, the previous assignment is lost.

In Fig. 22b, the relationship type is considered to be
temporal. The semantics of the temporal relationship type
is almost the same as for the nontemporal relationship type.

3. The author has not given the model a name. To clearly identify the
model, we adopt the name “TempRT.”



486 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  11,  NO.  3,  MAY/JUNE  1999

Every Employee instance still has to be related to one and
only one instance of Department at any point in time. The
difference is that temporal relationships are timestamped
and retained. As an illustration of this, the right-hand side
of Fig. 22b gives the employment history of Alice. At time
t1, Alice becomes associated with Sales, and at time t2
she is associated with Development. Then at t3 she is at-
tached to Administration, and lastly, at time t4 she returns
to Sales. The union of all the timestamps of a temporal

relationship between two instances describes the lifespan
of the relationship.

Temporal Entity Types and Attributes. Entity types do
not have to be temporal. A nontemporal entity that par-
ticipates in a temporal relationship cannot ever be changed
or deleted. If this consequence is unwanted, the concept
of lifespans has to be added to the instances, making
them temporal.

Fig. 21. TempRT diagram modeling the running example.

Fig. 22. Temporal relationships.



GREGERSEN AND JENSEN: TEMPORAL ENTITY-RELATIONSHIP MODELS—A SURVEY 487

The lifespan of an instance is modeled through temporal
relationships. Specifically, a universal entity type U with
only one instance is introduced. This entity type is con-
nected, using a temporal relationship type, with the entity
type we want to be temporal. Fig. 23a illustrates this. The
time in which an Employee instance references the U in-
stance gives the lifespan of the Employee instance. Fig. 23b
shows the shorthand used in the model.

Temporal attributes are also defined using temporal
relationships. As mentioned, a (nontime-varying) attribute
is a shorthand for a regular many-to-one relationship be-
tween an entity with all possible values of some value
domain as instances and the entity having the attribute. In
order to make an attribute temporal, the ordinary rela-
tionship between the entity having the attribute and the
entity modeling the value domain is replaced by a tempo-
ral relationship.

2.10.2 Summary
The TempRT model makes it possible to specify temporal
relationships, temporal entities, and temporal attributes.
The temporal entities and attributes are defined by tempo-
ral relationships.

2.11 TERC+
The motivation for the development of TERC+ [39] was to
provide users with a temporal conceptual model better
suited for the design of temporal application than the tem-
poral relational data models described in the literature.

TERC+ is a temporal extension of the ERC+ model [25],
and it is part of a methodology for developing temporal
applications.

2.11.1 The Representation of Time
TERC+ adopts a linear and discrete model of time, and time
points are called instants. TERC+ also defines intervals and
temporal elements: an interval is represented by a pair of
instants, and a temporal element is a union of disjoint in-
tervals. The model support different granularities, e.g.,
year, day, hour, and minute, but supports valid time only.

The meaning of the new modeling constructs of TERC+
follow from their mapping to corresponding ERC+ model-
ing constructs, making explicit the information implied by
the new modeling constructs. ERC+ diagrams may be fur-
ther mapped to the relational model.

2.11.2 The Model Components
TERC+ includes four kinds of modeling constructs, each
with a temporal counterpart: attribute types, entity
types, relationship types, and dynamic relationships
types. The model provides new notations for the tempo-
ral counterparts of these construct. When describing
these constructs in the following, we use the diagram in
Fig. 24 for exemplification.

Attributes. There are two types of attributes in the model:
simple and complex (composite) attributes. Both types of at-
tributes can be either single-valued or multivalued, and the
presence of an attribute value can be mandatory (nonnull)

        (a)     (b)

Fig. 23. Temporal entity types.

Fig. 24. Describing the running example using TERC+.



488 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  11,  NO.  3,  MAY/JUNE  1999

or optional (null allowed). This is expressed by static cardi-
nality constraints in the diagrams. A static cardinality con-
straint for an attribute is expressed by the lines connecting
the attribute to its entity/relationship type, and the syntax
is given in Fig. 25. The meaning is given by the pairs of
numbers in parentheses to the right of the lines. The first
integer indicates if the attribute value is mandatory (1)
or optional (0). The second integer indicates if the attrib-
ute is single-valued (1) or multivalued (n). A static cardi-
nality constraint for an attribute has to hold at any point in
time. The same notation is used to express static participa-
tion constraints for the participation of entity types in rela-
tionship types.

Identifiers (key attribute values) of entity types cannot
ever be reused, e.g., once an employee entity is assigned a
value of the ID attribute, this value cannot be assigned to
another employee entity, not even if the entity is deleted.
Key attributes are underlined in the diagrams.

Attributes can be temporal, which is indicated by plac-
ing a clock symbol behind the attribute names. For
example, the Salary attribute of the Employee entity type in
Fig. 24 is temporal. This means that the valid time of the
attribute is captured. For this purpose, each value of a tem-
poral attribute is associated with a temporal element re-
cording the times during which the value is valid. It is as-
sumed that the attribute value is undefined (unknown or
inapplicable) for points in time that are not included in its
temporal elements.

For temporal attributes, a temporal cardinality, h(max),
can be specified, limiting the number of values an attribute
can have over the life-time of its entity. The default tempo-
ral cardinality is h(n) and is omitted from the diagrams. For
a complex attribute, the temporality may be attached at any
level. That is, a nontemporal, complex attribute may have
temporal components.

The meaning of the temporal attributes are defined in
terms of composite attributes in the ERC+ model where the

temporal information becomes explicit. The translation
from TERC+ diagrams to an equivalent ERC+ diagram is
very simple. Fig. 26 shows the transformation for temporal
attributes.

Entity and Relationship Types. Entity types are repre-
sented by rectangles and may be regular or composite.
Composite entity types are built from regular and compos-
ite entity types. In Fig. 24, Employee is a temporal regular
entity type. Entity type Department is related to Project by
means of an aggregation link (part-of-relationship, de-
scribed in the following). Department entities thus contain
Project entities, and Department is a composite entity type.

Both regular and composite entity types can be tempo-
ral. A temporal entity has associated a life cycle that en-
codes three possible states that an entity can be in. Each
state is associated with a temporal element that records
the time the entity is in that particular state. The three
states are: active, e.g., an employee is active in the company;
suspended, e.g., an employee is on sabbatical, and dead (de-
leted), e.g., an employee is no longer with the company.
That is, a life cycle consists of up to three different (state,
temporal element) pairs.

The meaning of a temporal entity type as shown in
Fig. 27. The temporal information is made explicit by
adding a multivalued composite attribute, called life-
cycle, to an entity type in a ERC+ diagram.

TERC+ supports dynamic and traditional relationship
types. Briefly, the former are used to describe interobject
behavior. There are four types of dynamic relationship
types. Transition relationships express that entities may
change their classification, e.g., a student graduates and
becomes an alumni. Generation relationships express the gen-
eration of entities by others, e.g., a land parcel may be split
into several smaller parcels. Timing relationships describe
temporal relations between entities, e.g., before or after.
For example, a Storm may precede a Landslide. Finally,
Time-based aggregations link entities to their snapshots, that
is, the composite entity type is temporal while the compo-
nent (the snapshot) is not. For further description of the
dynamic relationship types, see [39].

There are three kinds of traditional relationship types,
each of which is illustrated in Fig. 24 and is explained next:

1)� Is-a Relationships. These are represented by linking
two entity types with a solid line, with an arrow

Fig. 25. The static cardinality constraints for attributes and relation-
ship types.

Fig. 26. Transforming temporal attributes to ERC+ diagrams [39].



GREGERSEN AND JENSEN: TEMPORAL ENTITY-RELATIONSHIP MODELS—A SURVEY 489

pointing from the subclass to the superclass. In an is-a
relationship, the instances of the subclass represent
the same real-world instances as the instances of
the superclass. In Fig. 24, Manager is a subclass of
Employee.

Inheritance of attributes and temporal specifica-
tions are supported. Thus instances of the subclass
have the same attributes and temporal support as the
instances of the superclass, in addition to the attrib-
utes specified for the subclass. A subclass cannot be
nontemporal if the superclass is temporal.

2) Relationship Types. These are relationships between
entity types and are represented by linking the par-
ticipating entity types to a rectangle with rounded
corners. The lines linking the entity types and the re-
lationship type express the static participation con-
straints that apply, as discussed for attributes. n-ary
relationship types are allowed.

Relationship types can be specified as temporal,
and the instances of temporal relationship types are
associated with a life cycle in the same manner as in-
stances of temporal entity types. For temporal rela-
tionship types, as for temporal attributes, a temporal
cardinality may be specified for each entity type par-
ticipating in the relationship type, stating how many
relationships an entity is allowed to participate in
during the life cycle of the entity. For example, the
h(10) in Fig. 24 is limiting the number of projects an
employee can work on over his/her employment to
10. Only temporal entity types can participate in tem-
poral relationship types. The meaning of a temporal
relationship type is captured in the same manner as
for temporal entity types.

3) Aggregation Links. These are special, directed binary
relationships linking two entity types, also known as
part-of relationships. Aggregation links are repre-
sented by linking the component entity type to a rela-
tionship type with an arrow pointing towards the

component entity type, and the usual participation
constraint linking the composite entity type to the re-
lationship type. To further indicate that the relation-
ship type is an aggregation link, the relationship type
is marked with a small diamond. In Fig. 24, the rela-
tionship type Responsible_for is an aggregation link.

Aggregation links can be specified as temporal;
and as for temporal relationship types, only temporal
entity types can participate in temporal aggrega-
tion links.

2.11.3 Summary
TERC+ provides the database designer with new modeling
constructs for describing temporal attributes, temporal en-
tities, and temporal relationships. Furthermore, TERC+
provides notation for describing interobject behavior.

3 DESIGN CRITERIA AND EVALUATION OF THE
MODELS

In Section 2.3 to Section 2.11, we described all temporal ER
models known to us. It is a common characteristic that few
or no specific requirements to the models were given by
their designers. To compare and better understand the
models, this section defines a comprehensive set of design
criteria for temporal ER models and evaluates the models
against these criteria. We have chosen to also evaluate the
EER model against the criteria. When doing so, the model
will be treated as a temporal model, capturing time through
timestamp attributes.

We have identified a total of 19 design criteria covering
time semantics, model semantics, temporal functionality,
and user-friendliness. The criteria are numbered C1 to C19.
With each criterion defined, we indicate its source, if possi-
ble. We have attempted to only include criteria that have an
objective basis for being evaluated. Together, the criteria
identify important aspects of designing a temporal ER model.
The possible outcomes of an evaluation of a model with

Fig. 27. Transforming temporal entity and relationship types to ERC+ diagrams [39].



490 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  11,  NO.  3,  MAY/JUNE  1999

respect to each criterion will be stated explicit together with
the definition of each criterion, unless the possible out-
comes are N.A., Yes, and No.

Fig. 28, Fig. 29, and Fig. 30 present the results of the
evaluations of evaluating the models with respect to criteria
C1–C3, C4–C13, and C14–C19, respectively. (This grouping
of the criteria into three tables is purely pragmatic.)

C1—Time Dimensions With Built-In Support. Valid and
transaction time are general—rather than application spe-
cific—aspects of all database facts. As such, they are prime
candidates for being built into a temporal ER model that is
to be used for both analysis and database design. Being
orthogonal and independent aspects of database facts, it is
possible to support the two times independently. Support
for these times may take different shapes and may be more

or less elaborate. Another kind of time exists, namely the
so-called user-defined time (UDT). This refers to “support”
for temporal aspects with no built-in support in the model.
User-defined times are supported when time-valued attrib-
utes are available. These are then employed for giving tem-
poral semantics—not captured in data model, but only ex-
ternally, by the database designer—to the the ER diagrams.
We will say that a time is supported simply if some support
has been documented. The possible outcomes of evaluating
a model against this criterion are UDT, VT, TT, and N.A.
(and combinations of VT and TT).

For a model to be considered temporal, at least one time
dimension must be supported. Almost all the models sup-
port valid time. The only model that does not is the EER
model that only supports user-defined time. All the models

Fig. 28. Evaluation of criteria C1, C2, and C3.

Fig. 29. Evaluation of criteria C4 to C13.

Fig. 30. Evaluation of criteria C14 to C19.



GREGERSEN AND JENSEN: TEMPORAL ENTITY-RELATIONSHIP MODELS—A SURVEY 491

support user-defined time. Transaction time is supported by
only TempEER. That is, the valid-time aspect of a database
application seems to be regarded as the most interesting
aspect to support, thereby aiming at high-fidelity modeling
of the miniworld.

C2—New Temporal Constructs. Two general approaches to
providing temporal support exist. With implicit temporal
support, explicit timestamp attributes are “hidden” in the
temporal semantics of the modeling constructs. For exam-
ple, no timestamp attributes are necessary on a temporal
relationship type to indicate that the instances of the type
record their variation over time. With this approach, it is
possible to obtain a temporal ER model without adding any
new syntactical constructs to the ER model. Rather, the ex-
isting ER constructs are simply made temporal by changing
their semantics. For example, ordinary relationship types
are given temporal semantics, making their instances rec-
ord variation over time, rather than just single states. It is
also possible with this approach to retain the existing ER
constructs and their semantics and add new temporal con-
structs to capture the time-varying information. The new
notation for a temporal relationship type in MOTAR is an
example. The extent of the changes made to the ER model
may range from minor changes to a total redefinition of
the model.

With explicit temporal support, the semantics of the ex-
isting ER constructs are retained. With this approach, time-
stamp attributes are explicit. Any new modeling constructs
are notational shorthands introduced to make the modeling
of temporal aspects more convenient.

Nearly all the models have added new temporal con-
structs. Some of the models have changed the semantics of
the ordinary ER model constructs entirely. These models
are TEER and TempEER. Other models have retained the
old ER constructs and have added new temporal con-
structs. These models include TERM, MOTAR, ERT, TER,
TempRT, and TERC+. RAKE does not add any new con-
structs to the ER model; instead, it introduces notational
shorthands for certain patterns made up of ordinary ER
constructs. However, we will consider these notational
shorthands to be temporal constructs. One model has both
changed the semantics of the ER constructs and added new
temporal constructs, namely STEER. The specific names
of the added constructs can be seen in the third column of
Fig. 28 (they are mentioned in the order in which they are
introduced in this paper). The EER model has not added
any new constructs—it captures time solely through time-
stamp attributes.

C3—Mandatory vs. Optional Use of Temporal Constructs.
The extent of changes made to the notation of the ER model
determines whether the use of the temporal constructs
added to the model are mandatory or optional. If all the
original ER modeling constructs have simply been made
temporal, the original constructs are no longer available.
Mandatory use of the temporal constructs means that the
designer cannot use nontemporal constructs in diagrams.
Optional use of the temporal constructs provides the desig-
ner with the possibility of mixing temporal and nontemporal

constructs in the same diagram. The possible outcomes of
evaluating the models against this criterion are N.A., Man-
datory, and Optional.

The models with mandatory use of the temporal con-
structs are TEER, STEER, TempEER, and TER. TEER and
TempEER have changed the semantics of all the original ER
model constructs to be temporal. STEER has—besides
making the original ER constructs temporal—added new
temporal constructs to the model. Since TER has replaced
the ordinary cardinality constraints with two new ones, and
it is mandatory to specify the constraints, it becomes man-
datory to use the temporal constructs, even if the users later
decide to only record a single state of data.

The models that have retained the ordinary ER con-
structs and have added new temporal construct have op-
tional use of temporal constructs. Thus, it is possible to mix
temporal and nontemporal constructs in these models that
include MOTAR, ERT, TempRT, and TERC+. TERM has
optional use of history structures and history patterns since
all attributes (inclusive the existence and roles attributes)
can be declared as constant. RAKE also has optional use of
the temporal constructs since these are notational short-
hands for patterns made up of ordinary ER constructs.
Since the EER model has not added new constructs, N.A. is
the result of evaluating the model against this criterion.

C4—Data Types Supported for Valid Time. Different data
types for implicit or explicit timestamps may be used for
indicating the valid time of an object, e.g., an attribute value
or a relationship. Possible time data types include instants,
intervals, and temporal elements. For example, one option
is to associate valid-time intervals with attribute values of
entities. Another option is to timestamp attribute values
with valid-time elements, finite unions of intervals. An at-
tribute value may also be defined as a function from a time
domain to a value domain. In this way, an attribute may
associate a value with a set of time instants. We will con-
sider this element timestamping, and we will also consider
the timestamping with sets of instants and intervals as be-
ing element timestamping. Since all models surveyed adopt
a discrete model of time, we will not distinguish between
support for closed versus open or half-open intervals.

A data model may provide the database designer with a
choice of data types. This may increase the utility of the
model. Possible outcomes include N.A., instant, interval,
and temporal element. All three data types mentioned may
encode validity for durations, and the instant data type
may also encode validity for single instants of time. In the
former case, instants have associated interpolation func-
tions (see Criterion C8). The impact of which data types are
available is dependent on whether the model under consid-
eration is used solely as a design model or is also used as an
implementation model, complete with database instances
and a query language.

The models that timestamp with instants include RAKE
(events), TERM, MOTAR, and TER. The models RAKE,
TERM, ERT, TempEER, and TempRT timestamp with inter-
vals. The models TEER, STEER, and TERC+ timestamp with
temporal elements. Finally, this criterion is not applicable to
the EER model, since it does not support valid time.



492 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  11,  NO.  3,  MAY/JUNE  1999

C5—Data Types Supported for Transaction Time. As valid
and transaction time have different semantics, the time-
stamp types available for the two times may differ. The
possible outcomes are as for valid time. TempEER is the
only model that supports transaction time. The timestamp
used for transaction time in TempEER is instants (that en-
code durations). N.A. is indicated in the figure for all the
other models.

C6—Support for Multiple Granularities. It may be that the
temporal variability of different objects in the miniworld
are captured using times of different granularities [38], [6].
They should then also be captured in the database using
these different granularities. For example, the granularity of
a minute may be used when recording the actual working
hours of employees, while the granularity of a day may be
used when recording the department assignments of em-
ployees. Notice that this criterion relates to valid time.

There are three models in which it is possible, at the
conceptual level, to specify the granularity of the time-
stamps. In MOTAR, the user is allowed to specify the fre-
quency of the recording of periodic attributes. In TERM,
atomic histories can have different time domains. In
TERC+ the authors state that the granularity of time-
stamps has to be specified but does not explain how this is
done. The rest of the models only briefly state that the
granularity of the timestamps should be suitable for spe-
cific applications and hence postpone the choice of
granularity to the logical design phase.

C7—Support for Temporal (Im-) Precision. The temporal
variability of different objects in the miniworld may be
known with different precisions [18], [4], [7], [5]. Although
some imprecision may be captured using multiple granu-
larities, granularities are not a general solution. For exam-
ple, the variability of an attribute may be recorded using
timestamps with the granularity of a second, but the vary-
ing values may only be known to the precision of ±5 secs of
the recorded value. This phenomenon may be prevalent
and important to capture in scientific and monitoring ap-
plications that store measurements made by instruments.

The only model which support temporal precision is
TERM, where it is possible to specify precision on the time-
stamps (and also the values of attributes).

C8—Temporal Interpolation Functions. Temporal inter-
polation functions derive information about times for
which no data is explicitly stored in the database (see, e.g.,
[18] and (pp. 35–40 of [17]). For example, it is possible to
record times when new salaries of employees take effect
and then define an interpolation function (using so-called
step-wise constant interpolation) that gives the salaries of
employees at any time during their employment. In the
scientific domain, interpolation is particularly important,
e.g., when variables are sampled at different rates.

User-definable temporal interpolation functions are sup-
ported by TERM, MOTAR, and ERT. In TERM, functions
handle both incomplete and not-explicitly-stored data,
while the derivation functions in ERT only handle data not
explicitly stored. In MOTAR, rules can be considered as

some sort of derivation functions. The other models do not
consider how to handle incomplete and not-explicitly-
stored data.

C9—Lifespans of Entities. The lifespan of an entity is the
time over which the entity exists in the miniworld. Entities
may exist beyond the times when their attributes have
(nonnull) values, making it impossible to infer lifespans
from the assignments of timestamps to attribute values. If
the concept of lifespan of entities is supported, this means
that the model has built-in support for capturing the times
when entities exist.

Five models support the concept of lifespan for all entity
types, namely TERM, RAKE, TEER, ERT, and TempEER.
The lifespans for the entity types with constant existence in
TERM and the lifespans for nontimestamped entity types in
ERT are given implicitly as the lifespan of the database.
Some models support selective specification of lifespans of
entity types, indicated by an Yes+, thus letting the database
designer decide whether or not to capture the lifespan of an
entity type. These models are STEER, TempRT, and TERC+.
The models that do not support lifespans of entity types
include MOTAR, TER, and EER.

C10—Lifespans of Relationships. The concept of lifespan
is also applicable to relationships, with the same meaning
as for entities. When a model provides a built-in notion of
relationship lifespans, it may also enforce certain temporal
constraints that involve these lifespans. For example, it
does not make sense for an entity to have an attribute value
at a time when the entity does not exist.

The models that support lifespans for all relationship
types include TERM, TEER, ERT, and TempEER. STEER,
TempRT, and TERC+ support selective specification of
lifespan of relationship types—for these, a Yes+ is indi-
cated. The models that do not support lifespans of Relation-
ship types include RAKE, MOTAR, TER, and EER.

C11—Temporal Constraints. A temporal data model may
include built-in temporal constraints and facilities for user-
definable temporal constraints. If built-in temporal con-
straints are not present, then the possibility of having illegal
data is present. For example, a (binary) relationship be-
tween two entities can usually not exist if the entities do not
exist. The presence of an appropriate set of (built-in) con-
straints on the built-in temporal constructs is thus of es-
sence. Next, it should be possible for the database designer
to specify additional temporal constraints. For example, we
have seen that the TER model (Section 2.8) supports two
types of temporal constraints on relationship types, namely
snapshot and lifetime cardinality constraints.

Temporal constraints are supported by TERM, TEER,
ERT, STEER, TER, TempEER, and TERC+ while the models
RAKE, MOTAR, TempRT, and EER do not support tempo-
ral constraints.

C12—User-Specifiable Temporal Support. A temporal ER
model offers user-specifiable temporal support if it is up to
the database designer to decide which temporal aspects of
data to capture. For example, a temporal ER model may
provide built-in support for both valid and transaction



GREGERSEN AND JENSEN: TEMPORAL ENTITY-RELATIONSHIP MODELS—A SURVEY 493

time, but a specific application may only require support
for transaction time. It should then be possible to omit sup-
port for valid time.

The models RAKE, MOTAR, ERT, TempRT, and TERC+
partly satisfy this criterion. In RAKE, MOTAR, ERT,
TempRT, and TERC+ the temporal support is valid time,
but only if the database designer uses the temporal con-
structs of the models. So does TER, but not at the concep-
tual level—only when translating the TER diagram to ER
diagrams. If the designer wants to record the variations of
data, the temporal dimension supported is valid time; and
if no access is wanted, no temporal support is given. This
criterion is not applicable to the EER model which supports
only user-defined-time. The remaining models have en-
forced temporal support.

C13—Upward Compatibility. A temporal ER model is up-
ward compatible with respect to the conventional ER model
if any legal conventional ER diagram is also a legal ER dia-
gram in the temporal model and if the meanings of the dia-
gram in the two models is the same. Upward compatibility
is very important because it enables legacy ER diagrams to
be used immediately in the new temporal model. Invest-
ments in legacy systems are protected, and a basis for a
smooth transition to a temporally enhanced ER model is
provided [32].

When evaluating a model against this criterion, we will
evaluate whether the model is upward compatible with
respect to the ER model that it extends, if specified; other-
wise, we will use Chen’s ER model [2] for models without
superclass/subclass relationships and the EER model [10]
for models with superclass/subclass relationships.

Six models—RAKE, MOTAR, ERT, TempRT, and TERC+
—are upward compatible with respect to their basic mod-
els. In these models, no syntactical constructs from the basic
models have been given new semantics. The EER is also
upward compatible with itself; this holds trivially true.
TERM is not upward compatible since its existence attrib-
utes have to be specified for all entity and relationship
types. TEER and TempEER are not upward compatible with
respect to the EER model because these models have
changed the semantics of the existing EER modeling con-
structs. STEER has both changed the semantics of the origi-
nal model and added new syntactical constructs. Due to the
change of semantics of the original model, STEER is not
upward compatible with the EER model. TER is not up-
ward compatible with the ER model since it has replaced
the ordinary cardinality constraints with the snapshot and
lifetime cardinality constraints.

C14—Snapshot Reducibility of Attribute Types. Temporal
ER models that add temporal support implicitly may in-
clude temporal counterparts of the ordinary attribute types,
i.e., provide temporal single valued, temporal multivalued,
temporal composite, and temporal derived attribute types.
These temporal attribute types may be snapshot reducible
[28] with respect to their corresponding snapshot attribute
types. This occurs if snapshots of the databases described
using the temporal ER diagram constructs are the same as
databases described by the corresponding snapshot ER

diagram where all temporal constructs are replaced by their
snapshot counterparts. For example, a temporal single-
valued attribute is snapshot reducible to a snapshot single-
valued attribute if the temporal single-valued attribute is
single valued at each point in time.

Generalizing snapshot constructs this way yields a natu-
ral temporal model that is easily understood in terms of the
conventional ER model.

The models that have snapshot reducible attribute types
are RAKE, TERM, MOTAR, TEER, STEER, TempEER,
TempRT, and TERC+. RAKE has only single-valued attrib-
ute types. These are snapshot reducible since the temporal
attributes are modeled through relationships treated as
weak entity types owned by time-period entity types,
thereby having ENDstamp as part of the key. This structure
cannot have more than one value at any point in time.
TERM has only single-valued attributes, and all variable
attributes have a atomic history structure to ensure that the
attribute only have one value at a time. The temporal at-
tributes of MOTAR are also snapshot reducible since the
mapping algorithm ensures that timestamps are made part
of the key in the relations representing the attributes. TEER,
STEER, TempEER, and TERC+ all have temporal single-
valued, multivalued, and composite attribute types. TEER,
STEER, and TempEER have the mutually same semantics
for these attribute types, and the semantics state that they
are snapshot reducible. The semantics of the static cardi-
nality constraints for TERC+ ensure that the attributes of
this model are snapshot reducible. TempRT only has single-
valued attribute types, and since the temporal attributes of
this model are defined using the temporal relationship that
is snapshot reducible, see the next criterion, the temporal
attributes must be snapshot reducible. Because ERT, TER,
and EER do not have temporal attributes, this concept is
inapplicable to these models.

C15—Snapshot Reducibility of Relationship Constraints.
Snapshot reducibility also applies to the various constraints
that may be defined on relationship types, including
specialized relationship types such as ISA (superclass/
subclass) and PART-OF (composite/component) rela-
tionships. For example, the temporal cardinality constraint
1 – N on a binary temporal relationship type is snapshot
reducible to the snapshot cardinality constraint 1 – N on a
binary snapshot relationship type if at any single point in
time, the 1 – N snapshot constraint applies to the possible
instances of the temporal relationship type.

Only four models have snapshot reducible relationship
constraints:

1)�TER, by virtue of the semantics of the snapshot cardi-
nality constraint;

2)�TempRT, due to the semantics given to its temporal
relationships (these semantics explicit states that the
cardinality constraints given by the relationship
should hold at any point in time);

3)�TERC+, by the semantics which explicit state that the
static cardinality constraints hold at any point in time;
and

4)�EER, trivially, because it does not propose any addi-
tional types of relationships and constraints.



494 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  11,  NO.  3,  MAY/JUNE  1999

The models RAKE, TERM, MOTAR, TEER, ERT, and
TempEER do not describe what the meaning of the differ-
ent relationship constraints that can be specified are in a
temporal database. This is the reason for the question
marks in Column C15 of Fig. 30. The STEER model does not
include cardinality constraints on relationship types, mak-
ing this criterion inapplicable.

C16—Mapping Algorithms Available. A mapping algo-
rithm translates an arbitrary ER diagram in a temporal ER
model into a corresponding database schema in another
data model. The temporal ER models are typically consid-
ered to be design models. Upon designing an ER diagram,
the diagram is accordingly mapped to a schema of an
available DBMS, i.e., is mapped to an implementation
platform. The most popular type of mapping is to the re-
lational model (or the platform of a specific relational
product). The benefit of a mapping algorithm for a tempo-
rally extended ER model to the relational model is that a
single mapping algorithm controls the resulting relational
database schema. As an alternative, it is also possible to
map temporal ER diagrams to conventional ER diagrams.
The benefit of this approach is that the wide selection of
mappings from the conventional ER model to the rela-
tional model may be exploited.

Most of the models provide mappings to regular ER dia-
grams or the relational model. The only model where tem-
poral ER diagrams can be mapped into both ER diagrams
and the relational model is RAKE. The TER model provide
an algorithm that transforms TER diagrams into ER dia-
grams, which may then be transformed into relational
schemas by a standard algorithm. It is demonstrated how to
transform TERC+ diagrams into ERC+ diagrams. The mod-
els that provide an algorithm for translation into a rela-
tional schema include MOTAR, ERT, and TempEER. models
TERM, TEER, STEER, and TempRT do not specify any
mappings of their diagrams. One good reason for an ab-
sence of mappings is that the models themselves may be
considered implementation models, see the discussion of
the next criterion.

C17—Query Language Provided. As an alternative to
mapping ER diagrams to the schema of a separate imple-
mentation platform, another approach is to assume a sys-
tem that implements the ER model directly. With this ap-
proach a mapping to an implementation platform is not
required. Instead, a query language should be available for
querying ER databases.

No query languages is provided for the following
models: RAKE, TERM, MOTAR, TER, TempRT, and
TERC+. A temporal extension of the query language
GORDAS is provided as query language for the models
TEER and STEER. The ERT model is provides with a
query language called the External Rule Language. As
query language for the TempEER model, a temporal ex-
tension of SQL is proposed.

C18—Graphical Notation Provided. While it is usually
assumed that a graphical notation is available for describ-
ing ER diagrams, this needs not be so. It is also possible to

provide only a textual notation for describing ER diagrams.
It is generally believed that ER models with a graphical
notation have an advantage over ER models with a pro-
gramming language-like notation. Graphical notations tend
to be easier to learn, and we believe that the simplicity of
the graphical ER notation is one of the main reasons for
its success.

The only model that does not have a graphical notation
is the TERM model, which has a Pascal-like syntax.

C19—Graphical Editor Available. If the notation of a
model is graphical, then the presence of an editor support-
ing the model is very important if the model is to be
used widely. Potential users should have the opportunity to
try and use at least some prototype of an editor supporting
the model.

Two models, namely TER and ERT, come with an
editor to support their use. The editor for TER is called
MODELLER [33] and is a commercially available product;
and the editor for ERT is called the ERT-TOOL. The
authors of the TERC+ model states that an editor for
the model is currently under development and for this
reason Yes in parentheses has been indicated for this
model. Models TEER and TempEER can use editors that
supports the EER model for schema design, but not for
mapping to their implementation models. Thus, a Yes in
parentheses has been indicated for these models. Editors
for EER exist in the public domain. No other model is ac-
companied by an editor.

4 CONCLUSIONS AND RESEARCH DIRECTIONS

This section first concludes on the paper, then discusses
research directions.

4.1 Conclusions
This paper has surveyed ten proposals for extending the ER
model to better capture the temporal aspects of data. Al-
though the detailed motivation for the development of each
proposal varies, it is a general observation that while tem-
poral aspects of data are prevalent, the basic ER (and EER)
model in itself does not provide adequate support for ele-
gantly and concisely capturing these aspects.

The survey has emphasized the common aspect of the
temporal ER models, namely their use as design models
that are employed to capture, in a conceptual model, a da-
tabase design that is implemented in a separate data model,
typically the relational model. This yields a focus on struc-
tural aspects, rather than on ER query languages.

The proposed extensions are based on quite different
approaches. One approach is to devise new notational
shorthands that replace some of the patterns that occur fre-
quently in ER diagrams when temporal aspects are being
modeled. One example is the pattern that occurs when
modeling a time-varying attribute in the ER model. An-
other approach is to change the semantics of the existing
ER model constructs, making them temporal. In its ex-
treme form, this approach does not result in any new
syntactical constructs—all the original constructs have



GREGERSEN AND JENSEN: TEMPORAL ENTITY-RELATIONSHIP MODELS—A SURVEY 495

simply become temporal. With this approach, it is also
possible to add new constructs. Yet another approach is to
retain the existing ER constructs.

Many of the models assume that their schemas are
mapped to schemas in the relational model that serves as
the implementation platform. The algorithms that map the
schemas of these models to the relational model are con-
structed to add appropriate time-valued attributes to the
relation schemas. This corresponds to how the ER model is
(currently) used in industry. In contrast, three of the models
we have examined are themselves implementation models
and provide a query language for the model.

We have identified a total of 19 design properties that are
relevant for the evaluation of temporal ER models and
should be taken into consideration when designing a tem-
poral ER model. None of the 19 design properties are in-
compatible—they can all be simultaneously fulfilled. We
have evaluated the 10 models against the design properties,
and while no single model satisfies all the properties, the
models collectively provide good coverage of the design
space. The models illustrate different ways of conven-
iently capturing the temporal aspects of data at the con-
ceptual level, and it is our contention that all the temporal
ER models, to varying degrees, have succeeded in more
naturally capturing the temporal aspects of data than does
the ER model.

In our work with the models, we have come to the con-
clusion that the approach where all existing ER model con-
structs are given a temporal semantics is attractive. The
database designers are likely to be familiar with the existing
ER constructs. So, upon understanding the principle at
work when making these constructs temporal, the design-
ers are ready to work with, and benefit from using, the
temporal ER model. However, this approach is not totally
without problems. This approach rules out the possibility of
designing nontemporal databases or databases where some
part of a database is nontemporal and the rest is temporal.
Another problem is that old (legacy) ER diagrams become
invalid when introducing the temporal ER model—while
their syntax is valid, their semantics have changed, and
they therefore no longer describe the existing relational
database schemas.

The models that retain the existing constructs with their
old semantics and introduce new temporal constructs have
their problems and advantages. If their extensions are com-
prehensive, they are likely to be more difficult for the data-
base designers to learn and understand. The larger initial
investment in training that this induces may prevent a
model from being accepted in industry. On the other hand,
since the semantics of the existing ER constructs are re-
tained with this approach, the models following this ap-
proach avoid the problem of legacy diagrams that, with
their new semantics, no longer describe the existing rela-
tional database. This is important for industrial users with
many legacy diagrams. It is also possible to design non-
temporal databases as well as databases where some parts
are nontemporal and others are temporal.

As stated, most of the models rely on another data
model as an implementation model: their schemas are

mapped to schemas in these other models, and it is these
other schemas that are subsequently populated and que-
ried. The relational model is the implementation model
of choice. Temporal ER diagrams are either mapped to
relation schemas directly, or they are mapped to regular ER
diagrams that are then mapped to relation schemas. The
time-valued attributes that result from mapping ER dia-
grams to relation schemas are not interpreted by the rela-
tional model, i.e., they have no built-in semantics in the
relational model. As a result, queries on time-varying data
are often hard to formulate in SQL [31].

None of the models have one of the many time-extended
relational models proposed [29] as their implementation
model. The temporal relational models have data-definition
and query-language capabilities that better support the
management of temporal data and would thus constitute
natural candidate implementation platforms.

4.2 Research Directions
A number of topics are the subjects of ongoing research or
are candidates for future research.

First, the set of criteria is not necessarily complete, and it
may be feasible to include additional criteria for evaluating
and comparing temporal ER models. This indicates that a
taxonomy of evaluation criteria that charts the design space
of temporal extensions and thus may be used for indicating
areas with missing criteria would be very desirable. With
such a taxonomy, it becomes possible to ensure that we
evaluate all important properties of temporally extended
ER models.

Second, most of the criteria may be applied to exten-
sions of the ER model other than temporal ones. In this
paper we have described the criteria in the specific context
of temporal extensions for concreteness. It is an interesting
next step to explore the application of the criteria to other
types of ER extensions, such as spatial [15], spatio-
temporal, multimedia, or security ER models. Another
promising direction deserving attention is the application
of the criteria to extensions of modeling notations other
than the ER model.

Third, the systematic use of the criteria for the design of
a temporally extended ER model is a very relevant re-
search direction. We recommend that designers of future
temporally extended ER models consciously consider
their ER extension with respect to each criterion. The ideal
temporal ER model is easy to understand in terms of the
ER model; does not invalidate legacy diagrams and data-
base applications; and does not restrict database to be
temporal, but rather permits the designer to mix temporal
and nontemporal parts.

Fourth, since most DBMSs used in industry are rela-
tional, temporal ER models should ideally include map-
pings to several implementation platforms: the relational
model (in the various dialects of the different DBMS prod-
ucts), temporal relational models, and emerging models
(e.g., SQL3). It is a challenge of high practical relevance to
design mappings that maximally exploit these and other
candidate implementation platforms.



496 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  11,  NO.  3,  MAY/JUNE  1999

Fifth, we believe that it would be of interest to design a
“standard” textual representation of different types of ER
diagrams. This representation could serve a as a middle
form: ER-model designers could provide mappings to this
representation, while others could independently provide
mappings to the various implementation platforms in use.

ACKNOWLEDGMENTS

This work was supported by Grants 9701406 and 9502695
from the Danish Natural Science Council and the Danish
Technical Research Council, respectively; and by a grant
from the Nykredit Corporation.

REFERENCES

[1]� S. Ceri, S.B. Navathe, and C. Batini, Conceptual Database Design, An
Entity-Relationship Approach, Benjamin/Cummings, 1992.

[2]� P.P.-S. Chen, “The Entity-Relationship Model£Toward a Unified
View of Data,” ACM Trans. Database Systems, vol. 1, no. 1, pp. 9–
36, Mar. 1976.

[3]� C.J. Date, An Introduction to Database Systems, vol. I, Systems Pro-
gramming Series, fifth ed., Addison-Wesley, 1990.

[4]� C.E. Dyreson and R.T. Snodgrass, “Valid-Time Indeterminacy,”
Proc. Ninth Int’l Conf. Data Eng., pp. 335–343, 1993.

[5]� C.E. Dyreson and R.T. Snodgrass, “Temporal Granularity and
Indeterminacy: Two Sides of the Same Coin,” Technical Report TR
94-06, Univ. of Arizona, Dept. of Computer Science, Feb. 1994.

[6]� C.E. Dyreson and R.T. Snodgrass, “Temporal Granularity,” R.T.
Snodgrass, ed., TSQL2 Temporal Query Language, ch. 19, pp. 347–
383, Kluwer, 1995.

[7]� C.E. Dyreson and R.T. Snodgrass, “Temporal Indeterminacy,” R.T.
Snodgrass, ed., TSQL2 Temporal Query Language, ch. 18, pp. 327–
346, Kluwer, 1995.

[8]� R. Elmasri, I. El-Assal, and V. Kouramajian, “Semantics of Tempo-
ral Data in an Extended ER Model,” Proc. Ninth Int’l Conf. Entity-
Relationship Approach, pp. 239–254, Oct. 1990.

[9]� R. Elmasri and V. Kouramajian, “A Temporal Query Language for
a Conceptual Model,” N.R. Adam and B.K. Bhargava, eds., Ad-
vanced Database Systems, Lecture Notes in Computer Science 759,
ch. 9, pp. 175–195, Berlin: Springer-Verlag, 1993.

[10]� R. Elmasri and S.B. Navathe, Fundamentals of Database Systems.
Benjamin/Cummings, second ed., 1994.

[11]� R. Elmasri, G. Wuu, and V. Kouramajian, “A Temporal Model
and Query Language for EER Databases,” A. Tansel et al., eds.,
Temporal Databases: Theory, Design, and Implementation, ch. 9, pp.
212–229, Database Systems and Applications Series, Benjamin/
Cummings, 1993.

[12]� R. Elmasri and G.T.J. Wuu, “A Temporal Model and Query Lan-
guage for ER databases,” Proc. Sixth Int’l Conf. Data Eng., pp. 76–
83, 1990.

[13]� S. Ferg, “Modeling the Time Dimension in an Entity-Relationship
Diagram,” Proc. Fourth Int’l Conf. Entity-Relationship Approach,
pp. 280–286, 1985.

[14]� S.K. Gadia and C.S. Yeung, “A Generalized Model for a Relational
Temporal Database,” Proc. ACM SIGMOD Int’l Conf. Management
of Data, pp. 251–259, June 1988.

[15]� T. Hadzilacos and N. Tryfona, “An Extended Entity-Relationship
Model for Geographic Applications,” technical report, Computer
Technology Inst., Greece, 1996.

[16]� “A Glossary of Temporal Database Concepts,” C.S. Jensen, J. Clif-
ford, R. Elmasri, S.K. Gadia, P. Hayes, and S. Jajodia, eds., ACM
SIGMOD Record, vol. 23, no. 1, pp. 52–64, Mar. 1994.

[17]� C.S. Jensen and R.T. Snodgrass, “Semantics of Time-Varying In-
formation,” Information Systems, vol. 21, no. 4, pp. 311–352, 1996.

[18]� M.R. Klopprogge, “TERM: An Approach to Include the Time
Dimension in the Entity-Relationship Model,” Proc. Second Int’l
Conf. Entity Relationship Approach, pp. 477–512, Oct. 1981.

[19]� M.R. Klopprogge and P.C. Lockeman, “Modeling Information
Preserving Databases: Consequences of the Concept of Time,”
Proc. Ninth Int’l Conf. Very Large Data Bases, pp. 399–416, Oct. 1983.

[20]� P. Kraft, “Temporale Kvaliteter i ER Modeller. Hvordan?”, work-
ing paper 93, Dept. of Information Science, Aarhus School of
Business, Jan. 1996.

[21]� V.S. Lai, J-P. Kuilboer, and J.L. Guynes, “Temporal Databases:
Model Design and Commercialization Prospects,” DATA BASE,
vol. 25, no. 3, pp. 6–18, 1994.

[22]� P. McBrien, A.H. Seltveit, and B. Wangler, “An Entity-
Relationship Model Extended to Describe Historical Informa-
tion,” Proc. Int’l Conf. Information Systems and Management of Data,
pp. 244–260, July 1992.

[23]� E. McKenzie and R. Snodgrass, “An Evaluation of Relational
Algebras Incorporating the Time Dimension in Databases,” ACM
Computing Survey, vol. 23, no. 4, pp. 501–543, Dec. 1991.

[24]� A. Narasimhalu, “A Data Model for Object-Oriented Databases
with Temporal Attributes and Relationships,” technical report,
National Univ. of Singapore, 1988.

[25]� C. Parent and S. Spaccapietra, “ERC+: An Object-Based Entity
Relationship Model,” P. Loucopoulos and R. Zicari, eds., Concep-
tual Modeling, Databases, and CASE, ch. 3, pp. 69–86, John Wiley &
Sons, 1992.

[26]� J.F. Roddick and J.D. Patrick, “Temporal Semantics in Information
Systems£A Survey,” Information Systems, vol. 17, no. 3, pp. 249–
267, Oct. 1992.

[27]� A. Silberschatz, H.F. Korth, and S. Sudarshan, Database System
Concepts, third ed., McGraw-Hill, 1996.

[28]� R.T. Snodgrass, “The Temporal Query Language TQUEL,” ACM
Trans. Database Systems, vol. 12, no. 2, pp. 247–298, June 1987.

[29]� R.T. Snodgrass, “Temporal Databases,” A.U. Frank, I. Campari,
and U. Formanti, eds., Theories and Methods of Spatio-Temporal Rea-
soning in Geographic Space, pp. 22–64, Lecture Notes in Computer
Science 639, Springer-Verlag, 1992.

[30]� R.T. Snodgrass, “Temporal Object Oriented Databases: A Critical
Comparison,” W. Kim, ed., Modern Database Systems: The Object
Model, Interoperability, and Beyond, ch. 19, pp. 386–408, Addison-
Wesley/ACM Press, 1995.

[31]� R.T. Snodgrass, I. Ahn, G. Ariav, D.S. Batory, J. Clifford, C.E.
Dyreson, R. Elmasri, F. Grandi, C.S. Jensen, W. Kafer, N. Kline,
K. Kulkanri, T.Y.C. Leung, N. Lorentzos, J.F. Roddick, A. Segev,
M.D. Soo, and S.M. Sripada, TSQL2 Temporal Query Language,
Kluwer, 1995.

[32]� R.T. Snodgrass, Böhlen M., C.S. Jensen, and A. Steiner, “Change
Proposal to SQL/Temporal: Adding Valid Time” Part A, O.
Etzion, S. Jajodia, and S. Sripada, eds., Temporal Databases: Research
and Practice, pp. 150–194, Lecture Notes in Computer Science
1,399, Springer-Verlag, 1998.

[33]� B. Tauzovich, “Toward Temporal Extensions to the Entity-
Relationship Model,” Proc. 10th Int’l Conf. Entity Relationship Ap-
proach, pp. 163–179, Oct. 1991.

[34]� T.J. Teorey, Database Modeling and Design, Data Management Sys-
tems Series, Morgan Kaufmann, 1990.

[35]� C. Theodoulidis, B. Wangler, and P. Loucopoulos, “The Entity
Relationship Time Model,” Conceptual Modelling, Databases, and
CASE: An Integrated View of Information Systems Development, ch. 4,
pp. 87–115, John Wiley & Sons, 1992.

[36]� C.I. Theodoulidis and P. Loucopoulos, “The Time Dimension in
Conceptual Modelling,” Information Systems, vol. 16, no. 3, pp.
273–300, 1991.

[37]� C.I. Theodoulidis, P. Loucopoulos, and B. Wangler, “A Conceptual
Modelling Formalism for Temporal Database Applications,” In-
formation Systems, vol. 16, no. 4, pp. 401–416, 1991.

[38]� G. Wiederhold, S. Jajodia, and W. Litwin, “Dealing with Granu-
larity of Time in Temporal Databases,” R. Anderson et al., eds.,
Proc. Third Int’l Conf. Advanced Information Systems Eng., Lecture
Notes in Computer Science 498, Springer Verlag, 1991.

[39]� E. Zimanyi, C. Parent, S. Spaccapietra, and A. Pirotte, “TERC+: A
Temporal Conceptual Model,” Proc. Int’l Symp. Digital Media In-
formation Base, Nov. 1997.



GREGERSEN AND JENSEN: TEMPORAL ENTITY-RELATIONSHIP MODELS—A SURVEY 497

Heidi Gregersen received her BSc degree in
computer science and mathematics, and the
MSc and PhD degrees in computer science in
1993, 1995, and 1999, respectively£all from
Aalborg University in Denmark. She is currently
an assistant professor in the Department of
Computer Science at Aalborg University. Her
research interests include data modeling and
temporal databases, with emphasis on design
of temporal databases at the conceptual and
logical levels.

Christian S. Jensen is a research professor of
computer science at Aalborg University, where
he directs the Nykredit Center for Database Re-
search. He has been with the University of Ari-
zona during four sabbaticals and, prior to joining
Aalborg University, he conducted his graduate
studies at the University of Maryland. His re-
search interests are in the areas of database
systems, and include issues of semantics, mod-
eling, and performance. With his colleagues, he
receives substantial national and international

funding for his research. He is a member of the Editorial Boards of
IEEE Transactions on Knowledge and Data Engineering and the ACM
SIGMOD Digital Review; was general chair of the 1995 International
Workshop on Temporal Databases, and a vice program committee
chair and best-paper awards committee member for the 1998 IEEE
International Conference on Data Engineering; and is co-program
committee chair of the 1999 Workshop on Spatio-Temporal Database
Management, held in conjunction with VLDB 99. He continues to serve
on the program committee and other committees for a number of con-
ferences, including ACM SIGMOD, CAiSE, EDBT, IEEE Data Engi-
neering, SSDBM, and VLDB; and he serves regularly as a reviewer for
all the major database journals. He is a senior member of the IEEE,
and a member of the ACM and the IEEE Computer Society.


