
Capturing and Querying Multiple Aspects of Semistructured Data

Curtis E. Dyreson
Department of Computer Science
James Cook University, Australia

curtis@cs.jcu.edu.au

Michael H. Böhlen Christian S. Jensen
Department of Computer Science

Aalborg University, Denmark
fboehlen,csj g@cs.auc.dk

Abstract

Motivated to a large extent by the substantial and
growing prominence of the World-Wide Web and
the potential benefits that may be obtained by ap-
plying database concepts and techniques to web
data management, new data models and query lan-
guages have emerged that contend with web data.
These models organize data in graphs where nodes
denote objects or values and edges are labeled
with single words or phrases. Nodes are described
by the labels of the paths that lead to them, and
these descriptions serve as the basis for querying.

This paper proposes an extensible framework for
capturing and querying meta-datapropertiesin a
semistructured data model. Properties such as
temporal aspects of data, prices associated with
data access, quality ratings associated with the
data, and access restrictions on the data are con-
sidered. Specifically, the paper defines an ex-
tensible data model and an accompanying query
language that provides new facilities for match-
ing, slicing, collapsing, and coalescing properties.
It also briefly introduces an implemented, SQL-
like query language for the extended data model
that includes additional constructs for the effective
querying of graphs with properties.

1 Introduction
The World-Wide Web (“web”) is arguably the world’s most
frequently used information resource. While current web
data has little and mostly local structure, web data will
likely have far more in the near future. Specifically, the
eXtended Markup Language (XML) is expected to replace

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

the Hypertext Markup Language [12, 4]. An XML web
page can have a schema of how the data in the page is
structured. XML will at best only provide some struc-
ture for data since the page-level schemas may (and likely
will) vary from page to page. The ability of semistructured
data models to accommodate data that lacks a well-defined
schema makes them attractive candidates for querying and
managing XML data [14, 26]. XML-like representation of
web meta-data has also been proposed, cf. the RDF stan-
dard [21]. Somewhat unlike database meta-data, web meta-
data is typically taken to mean additional information about
a document, such as the author, subject, language, or URL.
In this paper we use the term ‘meta-data’ to encompass both
database and web meta-data.

Semistructured data models organize data in graphs [8,
14] where each node represents an object or a value, and
each edge represents a relationship between the objects or
values represented by the edge’s nodes. Edges are both di-
rected and labeled. The labels are important because they
make nodesself-describingin the sense that a node is de-
scribed by the sequences of labels on paths through the
graph that lead to the node [8].

This paper introduces an extensible, semistructured data
model that generalizes existing semistructured models. In
this model, each label is a set of descriptiveproperties. A
property is a kind of meta-data. Typical properties are the
name of the edge and the level of security that protects the
edge, but any property can be used in a label to describe the
nodes that are reachable through that edge.

To exemplify edge labels, consider Figure 1. Part (a)
shows a conventional edge that is labeledemployee and
connects nodes&ACMEand &joe . In contrast, part (b)
shows the kind of label introduced in this paper. This la-
bel is a set of ‘property name: property value’ pairs. Each
pair is collectively referred to as a property. This label has
two properties:name and transaction time. This gener-
alizes existing semistructures since the label in part (a) can
be assumed to specify an implicitnameproperty, with the
valueemployee.

The paradigm of using labels with properties can be re-
cursively applied. For instance, the propertyname in Fig-
ure 1(b) could itself be transformed into a label with two
properties:name and language, e.g., English, indicating

290

Proceedings of the 25th VLDB Conference, Edinburgh, Scotland, pp. 290-301, September 7-10, 1999.
This copy is permitted by the Very Large Data Base Endowment.
Copyright © 1999 by the VLDB Endowment

employee

&ACME

&joe

&ACME

&joe

[31/Jul/1998 − 31/Oct/1998]
name:
trans. time:

employee

(a) a typical edge (b) a label with properties

Figure 1: The New Kind of Edge Labels

that name is an English word. While the recursive nature
of labels with properties is theoretically appealing, it is of
limited utility since meta-meta-data (and meta-meta-meta-
data, etc.) is uncommon in the real-world. So although
this framework could capture and query recursively nested
properties, we focus exclusively on a single level of meta-
data in this paper.

Previous research in semistructured and unstructured
data models has focussed on basic issues such as query
language design [6, 7, 25, 3, 20], restructuring of query
results [13, 2], tools to help naive users query unknown
semistructures [16, 17], techniques for improving imple-
mentation efficiency [25, 15, 23], and methods for extract-
ing semistructured data from the web [18, 24]. Several
well-designed languages have also been presented [6, 3, 20,
13, 14].

Our paper is different, in part, because it treats edge la-
bels as something other than single words or strings. Bune-
man et al. also propose a semistructured model with com-
plex labels [9]. In their model, key information from ob-
jects in the database is added to labels making each path in
the database unique. We focus on adding meta-data rather
than data to the labels and on the additional operations nec-
essary to manipulate the meta-data in labels. Another paper
with augmented labels presents the Chlorel query language
for the DOEM data model [10]. DOEM extends OEM with
special annotations on edges to record information about
updates; in particular, the (transaction) time and kind of up-
date. This permits a history of changes to a semistructure
to be maintained. We further extend the scope and power of
the annotations on edge labels into a more general frame-
work. Chlorel is a language for querying the extended data
model. Chlorel supports a limited kind of temporal query,
which lacks both coalescing and collapsing. We believe
these operations are important to correctly supporting tem-
poral semantics [5].

The paper is organized as follows. Section 2 motivates
the extended semistructured model, arguing the utility of
introducing a richer structure for labels. Section 3 presents
the extended model. Initially, the format of a database is
defined. An important feature is that the set of properties
present may vary from label to label. Section 3.2 proceeds
to introduce several new or extended query operators to
contend with properties in labels. Section 4 incorporates

the new query operations into a derivative of the SQL-like
Lorel query language [25, 22, 3], called AUCQL, for query-
ing semistructured data with properties. The last section
covers future work and summarizes the paper.

The URL <www.cs.auc.dk/˜curtis/AUCQL >

provides an interactive query engine for the example
database given in this paper, documentation and examples
on using AUCQL, and a freely-available implementation
package.

2 Motivation and Background

This section aims to describe the new type of semistruc-
tured database proposed, with an emphasis on its back-
ground, the underlying design ideas, and its relation to ex-
isting semistructures.

2.1 An Example Database

A sample movie database spans semistructured data from
a total of six sites. TheInternet Movie Databasesite con-
tains a wealth of movie data;Videotasticis a monthly, on-
line movie industry magazine, portions of which are avail-
able only by subscription; theHaus du Flickssite charges
a fee in e-cash for access to each of its many film clips, the
fee being collected by an e-cash broker when a clip is ac-
cessed;Joe Doeis a Yankee On-line User site devoted to
science fiction movies; the siteHorsing Around Movieshas
data about R- and NC-18 rated films, portions of which are
restricted to web surfers over the age of 18; and theInter-
net Archivessite offers movie data collected by a robot that
periodically traverses part of the web.

Figure 2 shows a portion of the movie database. Edges
are directed arrows, values are given in italics, and objects
are depicted as ovals. Most of the semistructure is not
shown—many other edges and nodes exist in the complete
movie database.

The database models the following pertinent facts. In-
formation about a new movie,Star Wars IV, was added to
the database on 31/Jul/1998. A review of this movie ap-
peared in the June issue ofVideotastic, which was made
available on 25/May/1988. The review is only available to
paid subscribers.Joe Doealso has a review ofStar Wars
IV, but since he is a Yankee On-line User, it is deemed to
be of low quality. Haus du Flickscharges $2 dollars for
a Star Wars IVfilm clip, but under a deal withVideotastic,
paid subscribers can get the clip for free in one of the maga-
zine’s reviews. Bruce Willis stars inStar Wars IV. His mis-
spelled name was corrected on 2/Apr/1997. Finally,Hors-
ing Around Movieshas data about the NC-18 rated movie,
Color of Night, which also stars Bruce Willis. Only surfers
with an appropriate security clearance are permitted to view
this movie.

We will use this sample database for illustration through-
out the paper.

291

name:

name:
trans. time:

name:

name:
trans. time:

&movies

quality: low
review

textname:

This movie...

clip
price:

movie

over 18

&Star Wars IV

name:
quality:

review
high
subscriber

trans. time:
valid time:

name
[2/Apr/1997 − uc]

paid
$2

&Color of Night

name:

name: movie

&wars clip

name: e−mail

name: clip

stars

name:
trans. time:

name
[31/Jul/1994 − 1/Apr/1997]

Bruce Wilis Bruce Willis

name: stars
[25/May/1998 − uc]
[1/June/1998 − 31/June/1998]

security!

security!

security!
[31/Jul/1998 − uc]

&Willis
&by Videotastic

&by Joe Doe

joe@yol.com

Figure 2: A Web Movie Database

2.2 Sample Properties

The data model presented in this paper is capable of captur-
ing the facts described above, in part by using properties in
labels. Labels are the most appropriate locations for proper-
ties since nodes arecompletelydescribed by the paths that
lead to them. For instance, while the&Willis node in
Figure 2 has a meaningful internal name,&Willis , this
name is ofno importance, and the node may just as easily
be called&foo . It is only known that&Willis stars
in a movie because there exists an incoming edge labeled
stars , which in turn is reached after traversing amovie
edge. Other descriptions of&Willis , say as afather or
as aperson , would only be available as labels along other
paths to the node (not shown in the figure).

The data model is extensible, in that any properties may
be used. Below, we discuss a partial list of such properties.
None of them are mandatory. Indeed, for most labels, one
or more properties may bemissing.

name: The name is a text description. The domain for
names is the set of finite-length strings over some alpha-
bet (e.g., Unicode characters). In general, the value of this
property is a set of names. For simplicity, in this paper our
examples only use a single name.

security: Some data has security restrictions, which are in-
tended to indicate that only qualifying users are allowed
access to the data. The essential ingredient to supporting
this kind of security is to provide a method to restrict ac-
cess to edges in queries. We use required properties for this
purpose, as will be discussed further in Section 3.2.2. This
paper assumes that security is controlled through Netscape-
like certificates. So a more descriptive property name
would besecurity.netscape.read, but for brevity we have
shortened it. Several protocols exist for obtaining and man-
aging these certificates. Once obtained, a certificate or com-
bination of certificates permits access to various services
and documents. For clarity, we render a certificate in plain

text rather than in its encrypted form. The security is given
as a formula built of individual certificates, AND, and OR.
For instance a security ofover 18 AND subscriber
would mean that a user needsbothcertificates to access a
service; and a security ofover 18 OR subscriber
would mean that either certificate alone would suffice. This
is only one possible security property; the extensible data
model can support others.

transaction time: The transaction time is the time when the
edge is current in the database. It is called transaction time
since it is the time interval between the time of the transac-
tion that led to the edge and the time of the transaction that
deleted or updated the edge [19]. Edges that are current
have a special transaction-time end value,until changed,
which indicates that the edge is current and will remain so
until it is changed (deleted or updated). The special role of
transaction time in database modifications is elaborated in
Section 3.4.

valid time: The valid time of a database fact indicates when
that fact is true in the modeled reality [19]. In our context,
the valid-time property thus indicates when that edge re-
flects the real world. As for transaction time, valid-time
timestamps are closed intervals.

price: When data is spread over a network, accessing some
data may have substantially greater cost than other data,
e.g., in terms of size, time, or money. The price property re-
flects these differing costs in obtaining data. Multiple price
properties can comfortably coexist, but we simply assume
that the price is a U.S. dollar amount.

quality : Information on the web arises from many sources,
some of which are far more credible than others. For in-
stance, one would commonly rate information from the
CNN server as more credible than information from a user’s
personal home page. The quality property records the qual-
ity of the source of the information. We will assume that
the quality is an intuitive ranking fromlow to high.

292

The above list only covers properties used in the movie
database and does not exclude other properties such as lan-
guage, Dublin Core tags, or URL space.

2.3 Features of Properties in Labels

Many labels consist of several properties. For example, the
two edges from the&Willis node shown in Figure 2 have
the same value for thenameproperty, but different transac-
tion times. The most common property isname—only in
unusual circumstances will an edge be unnamed.

The ability to accommodate the schema irregularities
found in web data is an important feature of a semistruc-
tured (or unstructured) data model. In keeping with this
requirement, the data model presented in the paper has sev-
eral features worth mentioning.

One feature is that a property found in one label can be
missingfrom other labels. In Figure 2, the transaction time
property is in only a few of the labels. Generally, a property
is missing because it isdon’t care information, as in, this
property is missing because we don’t care if it is present, it
is not germane to or will not improve the description of the
data.

Another feature is that a property can be specified as be-
ing required. A required property is required to be matched
in a query to gain access to nodes below that edge, but
otherwise is just like any other property.1 The security
property on the edge to&Color of Night is a required
property (indicated by affixing an ‘!’ to the property name).
It is meant to indicate that a usermusthave a matching se-
curity clearance, i.e., an appropriate certificate, to traverse
that edge. Further details on required properties are pre-
sented in Section 3.2.2.

There are few restrictions on the properties in labels.
Common properties may be shared by a number of labels.
Meta-data is often specified for a bag or container for a col-
lection of objects [21]. Since a label is a set, it can easily
be shared, in part or in whole, among a number of labels.
In addition, multiple edges may connect the same pair of
nodes with overlapping or redundant labels. Requiring la-
bels to contain disjoint descriptions would be an unneces-
sary restriction.

Multiple properties in a label can capture more data se-
mantics, but they break existing query languages. To take
one example, consider the path from&movies through
&Star Wars IV to the misspelled valueBruce Wilis. It
would be easy to retrieve that path by using an appropri-
ate regular expression over thenameproperty in each label
(e.g.,movie.stars.name). While this is a path, it is
not avalid path since the transaction times of the first and
last edges in the path are disjoint: when the first edge in the
path was inserted, the final edge was already deleted. So
at no time did the two edges coexist in the current database
state.

This paper offers a collection of query language oper-
ators that support a more correct manipulation of the ex-

1A required property is similar to theMUST keyword in a proposal for
privacy meta-data [27].

tended edge labels. Each operator is extensible in the sense
that the semantics of properties are not fixed in the data
model; rather, the meaning is supplied by a database de-
signer. For instance, to test the validity of a path, thetrans-
action time property will be tested quite differently than
the name property. Several new query operators are also
described.Matchmatches a so-calledpath regular expres-
sionto the labels along a path in the semistructure.Collapse
collapses entire paths to single edges that have their labels
computed from the labels on each edge in the path.Coa-
lescecomputes the value of a property which is distributed
among a number of different labels on edges between the
same pair of nodes. Finally,Slice restructures the labels
along paths by slicing a portion from selected properties in
each label.

2.4 Contrast With Existing Semistructured Data
Models

Our proposed model is not the only one capable of rep-
resenting meta-data; existing semistructured data models
with simple string labels can also explicitly capture meta-
data. For example, the “property” information in a label
could be encoded by splitting an edge into separatedata
and meta-dataedges, with the properties branching from
the end of the meta-data edge. But there are at least two
problems with this approach of encoding the meta-data to-
gether with the data.

First, meta-data has no special status in such a model, so
a query that involves awildcard (which matches any label)
may unintentionally access meta-data rather than data. A
user could formulate a query that follows onlydataedges,
but this is challenging and, we believe, unnecessary. It
should not be left to the user to guess how the meta-data
is represented in the database and to write queries to ex-
plicitly avoid such data.

A second, more fundamental problem, is thatsomeof
the meta-data has special semantics that must be accounted
for in queries. For instance, assume that in a semistructured
database with simple string labels, the transaction time for
an object is represented as attime edge from that node.
As discussed above, a path is only valid if its edges are
concurrent in the database—any other semantics is incor-
rect. Below we give a Lorel-like query to correctly retrieve
only movie.star.name s that are concurrent (assuming
that the INTERSECT operation computes the intersection
of two time intervals).

SELECT N
FROM movie M, M.star S, S.name N
WHERE NOT_EMPTY(M.ttime INTERSECT

S.ttime INTERSECT N.ttime)

The WHERE clause tests the transaction times of objects
along the path to ensure that they are concurrent.

Although a user may explicitly formulate each query to
correctly manipulate the transaction time and other proper-
ties, such a strategy has several highly undesirable features.
First, all properties must be accounted for in all queries.

293

For example, the query given above is incorrect since it
does not correctly handle the security property. Second,
the semantics of a property cannot be enforced. For ex-
ample, a user could simply omit the WHERE clause in the
query given above, or test some other condition on trans-
action time. The query will run to completion and return
a result. But since the semantics of the transaction time
property has not been observed, the result may includefic-
tive paths. Third, naive users cannot formulate queries. A
user has to know which properties exist, be familiar with
the semantics of those properties, and must appropriately
contend with all properties in every query. Fourth, queries
become brittle. Even correctly formed queries will have a
short shelf-life since adding a new property, or deleting an
existing one, can break existing queries.

In summary, it is theoretically possible, but unattractive
and beyond the capabilities of users to represent and query
properties using an ordinary semistructured database. The
extensible data model presented in this paper can be viewed
as, and perhaps can even be implemented as, a layer on top
of a normal semistructured data model. The layer imple-
ments the semantics for each property and correctly trans-
lates queries and results between the user and the underly-
ing database.

3 Extending a Semistructured Data Model
With Properties

This section first defines a semistructure with properties,
then defines the foundation necessary for querying such a
semistructure, and finally considers update.

3.1 A Semistructured Model With Properties

A semistructured database,DB = (V; E; &root ; �),
consists of a set of nodes,V , a set of labeled, directed
edges,E, a single root node,&root , and a collection of so-
called property operations,�, that determine the semantics
of properties. We also defineROOTS � E to be the set
of edges emanating from&root . (These edges lead to what
would normally be considered the roots of the semistruc-
ture; the extra level of indirection serves to record the prop-
erties of the root nodes.) An edge inE from nodev to node

w with the labelL is denotedv
L
�! w. L is a label with

properties.

Definition 3.1 [Label with properties]
A label with properties, L, is a set of m pairs,
f(p1: x1); (p2: x2); : : : ; (pm: xm)g, where (i) eachpi
is thenameof a property, (ii)xi is avaluedrawn from the
property’s domain, that isxi 2 domain(pi), (iii) property
operations exist in� for eachpi, and (iv) each property
name is unique, that is,8i; j(pi = pj) i = j).

A required property, saypi with valuexi, is denoted
(pi! xi). 2

Example 3.2 In Figure 2, an edge connects&movies to
&Color of Night . The label is the set of properties

f(name: movie), (security! over 18)g. Thesecurity prop-
erty is a required property. It is intended to limit access to
the node to individuals over 18 years of age. 2

To accommodate properties in queries, several opera-
tions for each property are needed, namely property col-
lapse (PrCl), property match (PrMa), property coalesce
(PrCs), and property slice (PrSl) (see Section 3.2). These
operations determine the semantics of properties and are in-
cluded in�.

Definition 3.3 [Property operations]
For each propertyp in a label, operations with the following
signatures should be present in�. For brevity, letT be
domain(p).

� PrClp : T � T ! T [funde�nedg

� PrMap : T � T ! BOOLEAN

� PrCsp : 2
T [funde�nedg ! T [funde�nedg

� PrSlp : T � T ! T [funde�nedg 2

These operations collapse, match, coalesce, and slice prop-
erty values.

New properties may be introduced at any time by regis-
tering the appropriate operations with the database. Default
semantics are available for the operations, as will be dis-
cussed in Section 3.4.2. Table 1 lists operations for one
possible implementation of the properties discussed in this
paper. The role of the property operations will become clear
when querying is considered, next.

3.2 Retrieving Information From Semistructures
With Properties

This section extends the information retrieval capability of
an ordinary semistructured query language to handle labels
with properties. Emphasis is on the query language as-
pects that are affected by the new labels. These aspects
are quite localized, since labels are used only in path regu-
lar expressions to traverse paths in the semistructure. There
are two parts to the extension. First, when retrieving data,
only valid paths should be followed, as discussed in Sec-
tion 2. We define aValid predicate to test whether a path
is valid by determining whether the path can becollapsed
to a single edge with a label that preserves the informa-
tion content of all the labels along the path. Second, path
regular expressions must be generalized to support labels
with properties and required properties. This involves re-
defining how labels are matched in the evaluation of an ex-
pression. We conclude by observing that the extension is
strictly additive—the extended retrieval mechanism works
as expected on a semistructure with simple string labels.

3.2.1 Path Validity

Only some of the paths in the semistructure arevalid. In-
tuitively a path is valid if it transits through properties that
share some “commonality.” This commonality is computed
by collapsing the labels on the path.

294

name valid time security transaction time price quality
PrMap = truth assignment overlaps overlaps � �
PrClp concatenation AND intersection intersection sum minimum
PrCsp union OR coalesce coalesce min average
PrSlp semantic error conjunct elimination intersection intersection > pruning < pruning

Table 1: Property Operations

Consider the case of a path to a movie star’s name. One
such path is shown in Figure 3, composed by the solid lines.
Intuitively, the path forms avirtual edgefrom &movies to
Bruce Willis. In the figure, the virtual edge is depicted as a
dashed line. The virtual edge should have a label that de-
scribes it, just like any other edge. This label is determined
by collapsing the labels along the path into a single label.

name:
trans. time:

name:
trans. time:

name:
trans. time:

&movies

movie

&Star Wars IV

name
[2/Apr/1997 − uc]

name: stars

Bruce Willis

[31/Jul/1998 − uc]

&Willis

movie.stars.name
[31/Jul/1998 − uc]

Figure 3: A (Virtual) Edge for the Name of a Movie Star

The operation described below collapses a path by recur-
sively collapsing the labels along the path. A pair of labels
is collapsed by determining their common properties. If
only one of the labels has some property, that property is
propagated to the collapsed label. A missing property in
a label is interpreted as “don’t care information,” meaning
that any value of the missing property is acceptable for the
label. For properties that appear in both labels, a property-
specific collapsing constructor is used to compute the value
of the property. This constructor could result in anunde-
finedvalue, which signifies that these labels do not have any
commonality for that property. The path is collapsed back-
wards, that is, from the sink to the source, which effectively
means that each collapsing constructor is left-associative.

Definition 3.4 [ClPt� : PATH ! EDGE]
Collapse path (ClPt�) takes a path and computes the label
for the virtual edge between the first and last nodes in the
path. The operation is extensible in that it depends on the
semantics of the properties as given by�. Each constructor
PrClp in � is property-specific and is used to collapse a
pair of property values for propertyp. In this operation,
required properties are treated the same as other properties.

ClPt�(v
L
�! w)

4
= v

L
�! w

ClPt�(v
L1

�! u
L2

�! w)
4
= v

L
�! w where

L =f(p: PrClp(x; y) j (p: x) 2 L1 ^ (p: y) 2 L2g [

f(p: x) j (p: x) 2 L1 ^ (p: y) 62 L2g [
f(p: y) j (p: x) 62 L1 ^ (p: y) 2 L2g

ClPt�(v
L1�! u

L2�! : : :
Lm�! w)

4
=

ClPt�(v
L1�! ClPt�(x

L2�! : : :
Lm�! w)) 2

The collapsing constructor,PrClp, depends on the seman-
tics of the property. Table 1 suggests constructors for a few
common properties. In general, since each property is col-
lapsed independently, the collapse constructor for a prop-
erty should either be amutator, which transforms one do-
main value into another, e.g., concatenation, or arestrictor,
which reduces the extent of the domain value, e.g., time
interval intersection.

Example 3.5 The transaction time property in the col-
lapsed path in Figure 3 is [31/Jul/1998 - uc]. This is the in-
tersection of the transaction times on the edges on the path.
It follows that the valueBruce Williswas described in the
database as amovie.stars.name from 31/Jul/1998 to
the current time (until it is changed). Note that this is not an
exclusivedescription—a differentmovie.stars.name
path (through&Color of Night) is current over a
slightly longer transaction-time interval. 2

To determine if a path is valid, the path is collapsed and
then each property is checked to ensure that it is defined.

Definition 3.6 [Valid� : PATH ! BOOLEAN]
A path,P , is valid if after collapsing the path, there are no
properties withundefinedvalues.

Valid�(P)
4
= 8p [(p:unde�ned) 62 L ^

(p!unde�ned) 62 L ^

v
L
�! w = ClPt�(P)] 2

Example 3.7 Consider the path from&movies through
&Star Wars IV to the misspelled valueBruce Wilisin
Figure 2. When the path is collapsed, thename property
in the resulting label has the valuemovie.stars.name .
The transaction time property isundefined. The transac-
tion times of the first and last edges in the path are disjoint,
so their intersection does not produce a valid transaction
time value. Consequently the path is invalid. 2

The cost of checking path validity isO(n �m), wheren
is the length of the path andm is the number of properties
in a label. We expect thatm will usually be much smaller
thann. Path validity can be checked as a path is matched,
as discussed next.

295

3.2.2 PathMatch

In this section, we first provide a means of determin-
ing whether a user-givendescriptor, specified in a query,
matches a label. The label matching operation is then in-
corporated into anMatchoperation to match a path regular
expression to paths in the semistructure.

Label matching in existing semistructured query lan-
guages is straightforward. The descriptor is typically a sin-
gle word or phrase that is compared, using string compar-
ison, to the label. For example, in the regular expression
(person | employee).name? , the descriptors, the
basic building blocks of the regular expression, areper-
son , employee , andname. During evaluation of this
expression, the descriptorperson would only match a la-
bel person on an edge. More flexible string comparisons
between descriptors and labels are supported in some lan-
guages, such as Lorel [3], which reuse the wildcard opera-
tor ‘%’ from SQL. The descriptorper% would match any
label that starts with ‘per’.

The semantics of label matching is more involved in our
model since each label is a set of properties. In addition,
string comparison is insufficient because many properties
are not strings. These complications are addressed in the
label match operationLaMa, defined below. In general, op-
erationLaMa succeeds if every individual property in the
descriptor has a match in the label or is missing from the
label. Extra properties in the label are ignored, and differ-
entPrMap operations are used for different properties,p.
Note that the descriptor is a label in the operator definition.

There are three cases to consider. (1) Arequiredprop-
erty in one label ismissingfrom the other label. In this
case, the match does not succeed. A required property must
be present in both labels. (2) A non-required property in
one label ismissingfrom the other label. In this case, the
match succeeds because missing properties are treated as
don’t care information. (3) The property is present in both
labels. The predicate,PrMap specific to the property is
used to determine if the property values match. Required
and non-required properties are treated the same.

Definition 3.8 [LaMa� : LABEL� LABEL! BOOL]
LabelL is matched against labelS as follows. LaMa de-
pends on the semantics of the properties as specified in�,
since properties in the labels are individually matched.

LaMa�(L; S)
4
=

8p; x[(p! x) 2 L) 9y[(p: y) 2 S ^ PrMap(x; y)]] ^
8p; y[(p! y) 2 S) 9x[(p: x) 2 L ^ PrMap(x; y)]] ^
8p; x; y[(p: x) 2 L ^ (p: y) 2 S) PrMap(x; y)] 2

The property-specific predicatePrMap matches two prop-
erty values. For example, equality may be used forname,
and time interval overlaps may be used fortransaction
time. See Table 1.

Example 3.9 The label that follows requires a movie de-
scription.

Lmovie := f(name! movie)g

In Figure 2, there are two labels with amovie name
property. One describes&Color of Night ; the other,
&Star Wars IV .

Sc := f(name: movie), (security! over 18)g
Sw := f(name: movie), (trans. time: [31/Jul/1998 - uc])g

These labels are matched as follows.

� LaMa�(Lmovie ; Sc) = False ; the requiredsecurity,
over 18, is missing fromLmovie .

� LaMa�(Lmovie ; Sw) = True; the extratransaction
time property inSw is ignored. 2

OperationLaMa is the basis for interpreting regular
expressions of descriptors. Generally, these regular ex-
pressions are interpreted exactly as in other semistructured
query languages, and the usual regular expression opera-
tions (+, *, ?, j, and . for sequencing) have their usual
meaning. The only essential difference between our lan-
guage and standard semistructured query languages is that
the matched path is checked to ensure that it is valid. The
following operation extends a set of paths in a semistruc-
ture, if the sequence of labels on an extended path matches
the regular expression and the entire path is valid.

Definition 3.10 [MatchDB : 2PATHS�REG ! 2PATHS]
Let S be a set of starting paths (typically the roots of the
semistructure) andX be a regular expression over an al-
phabet of (extended) labels. ThenX is said to match a path
in DB = (V; E; &root ; �) by extending a path inS as
follows.

MatchDB (S; X)
4
= fx j x 2M(S;X) ^ Valid�(x)g,

where the matcher,M , is defined as follows.

M(S;L) = fv1
L1�! : : :

Lm�! vm+1 j

v1
L1�! : : :

Lm�1

�! vm 2 S ^

vm
Lm�! vm+1 2 E ^ LaMa�(L;Lm)g

M(S;X:Y) =M(M(S;X); Y)

M(S;X�) = S [M(S;X+)

M(S;X+) =M(S;X:X�)

M(S;X?) = S [M(X)

M(S;X jY) =M(S;X) [M(S; Y) 2

In the definition, the matcherM extends a path inS by
recursively decomposing a path regular expression (the ex-
pression unifies with the second argument). The matcher
extends a standard semistructured database matcher to use
LaMa� to match individual labels, as discussed above.

We note that the presence of cycles in the semistructure
can lead to an infinite result set, just like matching in any
semistructured query language. Consequently, when this
operation is implemented, some strategy must be adopted
to either break cycles (e.g., node marking is used for Lorel)

296

or otherwise generate a finite result sets (e.g., stop after the
first N matches). Which strategy to use is a decision best
left to a language designer; AUCQL uses node marking to
break cycles.

The cost ofMatch is essentially the same as path match-
ing in a normal semistructured database: at worst the entire
semistructure is explored. The path validity can be com-
puted as each path is explored, although it costs an extra
factor ofO(m), wherem is the number of properties in a
label.LaMa is also anO(m) operation, assuming that the
properties in a label are sorted or hashed. So overall, the
cost of matching in our framework grows by a factor of the
size of each label.

Sometimes only the set of final nodes in a set of paths is
desired.

Definition 3.11 [Nodes : 2PATHS ! 2NODES]
LetP be a set of paths.

Nodes(P)
4
= fw j v

L1�! : : :
Lm�! w 2 Pg 2

Example 3.12 A user is interested in retrieving informa-
tion about movie stars as of 31/Jul/1998. That set of nodes
can be obtained as follows.

Lmovie := f(name! movie),
(trans. time: [31/Jul/1998 - 31/Jul/1998])g

Lstars := f(name! stars),
(trans. time: [31/Jul/1998 - 31/Jul/1998])g

Lname := f(name! name),
(trans. time: [31/Jul/1998 - 31/Jul/1998])g

Nodes(MatchDB(ROOTS ; Lmovie :Lstars :Lname))

Recall thatROOTSis the set of edges from&root to
roots in the semistructure. The regular expression in this
example is a sequence of descriptors. In each descriptor,
thename is required (so an edge without anamewill not
match), but the transaction time is not required (an edge
that is missing a transaction time is presumed to exist at all
transaction times). Properties not mentioned in the descrip-
tor are ignored in the path matching, unless the property is
required, in which case the label is not matched.

It is instructive to consider four paths in Figure 2.
(1) The path through&Color of Night to the mis-
spelled valueBruce Wilisis not matched since the required
level of security (over 18) is missing from the descriptors.
The user must have a digital certificate that authenticates
her or him as being over 18, and must add that to the first de-
scriptor to match that edge. (2) The path through&Color
of Night to the valueBruce Willis is also not matched
for the same reason. (3) The path through&Star Wars
IV to the misspelled valueBruce Wilismatches the reg-
ular expression, but is not a valid path (see Example 3.7).
(4) The path through&Star Wars IV to the valueBruce
Willis is the only path that both matches the regular expres-
sion and is a valid path. 2

3.2.3 Backwards Compatibility

Compatibility with current semistructured models is
achieved by assuming that the string labels in those mod-
els default toname properties. Hence our framework can
represent any existing semistructured database by model-
ing it as a database in which every label contains exactly
onenameproperty.

Using the same default, retrieval queries also remain un-
changed. In existing semistructured databases all paths are
valid. In our framework, if every label consists of a single
nameproperty, then all paths are also valid (names are col-
lapsed using string concatenation, which never results in an
undefinedvalue). In existing semistructured databases, the
labels are matched using string comparison, just like in our
framework, so path regular expressions match exactly the
same paths in both models.

Finally, we observe that our framework seamlessly sup-
ports the mixing of data from existing semistructures with
data that has richer meta-data since properties can vary
from label to label. Hence as much or as little data as de-
sired can be migrated to use the new type of labels.

3.3 Additional Query Operators

In this section we present several query language operators
that are useful when querying the information within labels.
First, a label restructuring operation, calledSlice, is given
that carves a portion from each label on a path. Next, the
previously definedClPt operation is trivially generalized to
operate on the result of aMatch. Finally, aCoalesceop-
eration is defined to extract the value of a property that is
distributed in several labels.

3.3.1 Slice

It is often useful to slice a portion from a property in
each label along a path. The most common example is a
transaction-time slice, orrollback, query that determines
the other properties as of a particular transaction time. A
path is sliced by slicing each property in a label on the path,
and checking whether the resulting path is valid.

Definition 3.13 [Slice� : LABEL� 2PATHS ! 2PATHS]
A descriptor,L, slicesthe labels along each path in a set of
paths,P , as follows.

Slice�(L; P)
4
= fv

L0
1�! : : :

L0
m�! w j

v
L1�! : : :

Lm�! w 2 P ^
L01 = LaSl�(L;L1) ^ : : : ^ L

0
m = LaSl�(L;Lm) ^

Valid�(v
L0
1�! : : :

L0
m�! w) 2

A label is sliced property by property. This slicing is
complicated by missing properties. Specifically, if a prop-
erty is missing from the descriptor, but present in the label,
it is passed unchanged into the result. A missing property in
a label is also missing in the result, except if the descriptor
requiresthe property, in which case the property from the
descriptor is added to the result. Finally, if the property is

297

both in the label and the descriptor then a property-specific
constructor slices the property appropriately and adds it to
the result.

Definition 3.14 [LaSl� : LABEL�LABEL! LABEL]
A label,L, slicesa label,S, as follows.

LaSl�(L; S)
4
=

f(p! PrSlp(x; y)) j
(p! x) 2 L ^ ((p: y) 2 S _ (p! y) 2 S)g [

f(p! PrSlp(x; y)) j
(p! y) 2 S ^ ((p: x) 2 L _ (p! x) 2 L)g [

f(p: PrSlp(x; y)) j (p: x) 2 L ^ (p: y) 2 Sg [
f(p! y) j (p! y) 2 S ^ :9x[(p: x) 2 L _ (p! x) 2 L]g [
f(p! x) j (p! x) 2 L ^ :9y[(p: y) 2 L _ (p! y) 2 L]g [
f(p: x) j (p: x) 2 L ^ :9y[(p:y) 2 S _ (p! y) 2 S]g 2

Recall thatPrSlp is a property-specific constructor that
slices a property. Table 1 shows the slicing operators.

Example 3.15 A user is interested in retrieving the other
properties about movie stars names as of the current time.
That set of paths can be obtained as follows.

Lm := f(name! movie)g
Ls := f(name! stars)g
Ln := f(name! name)g
Lnow := f(trans. time: [now - now])g

Slice�(Lnow ;MatchDB(ROOTS ; Lm :Ls :Ln))

Note that aSlice� with Lnow as its first argument differs
from a Match with that descriptor since thetransaction
time property of every label (that has a transaction time)
in the sliced path is [now - now], whereas thetransac-
tion time property in the matched path would be unchanged
from the underlying data. 2

3.3.2 Collapse

In this section, thePathCollapse� operation introduced in
Section 3.2.1 is trivially generalized to collapse every path
in a set of paths. Typically,MatchDB first chooses a set of
paths that match some regular expression, then the paths are
collapsed, and a property is coalesced from the collapsed
paths.

Definition 3.16 [Collapse� : 2PATHS ! 2EDGES]
A set of paths,S, is collapsed by collapsing each path in-
dependently.

Collapse�(S)
4
= fClPt�(P) j P 2 S ^ Valid�(P)g 2

The utility of an operation likeCollapsehas been inves-
tigated in other semistructured query languages where it has
been called “pull-up” [1]. In Lorel,Collapseis not an op-
eration at the query language level; rather, it is used in the
implementation to compute the value of apath variable.

3.3.3 Coalesce

Several (virtual) edges may connect a pair of nodes. For
example, two edges connect the pair of nodes in Figure 4.
The first edge was added when the review began to be de-
veloped on 15/Mar/1998. The security was set to restrict
the edge to page developers. By 25/May/1998, the edge
was publicly released as part of the June issue and so the
security was weakened to include paid subscribers.

&Star Wars IV

name: review
subscriber

trans. time: [25/May/1998 − uc]
security!

&by Videotastic

name: review

trans. time:
security! developer

name: movie

[15/Mar/1998 − 24/May/1998]

Figure 4: Evolving Information About a Review

When several edges connect a pair of nodes, informa-
tion about a single property may be distributed among mul-
tiple labels. In order to determine the full extent of a prop-
erty that (conceptually) pertains to a relationship between a
pair of nodes, regardless of whether information about that
property is distributed among a number of edges, it is ad-
vantageous tocoalescethe property from the set of edges.

Definition 3.17 [Coalesce� : NAME � 2EDGES !
VALUE]
Assume that a set of edges,F , connects the same pair of
nodes.F is coalesced for asingleproperty,p, as follows.

Coalesce�(p; F)
4
= PrCsp(

fx j ((p: x) 2 L _ (p! x) 2 L ^ v
L
�! w 2 Fg)g [

funde�ned j ((p: x) 62 L ^ (p! x) 62 L) ^

v
L
�! w 2 Fg) 2

The PrCsp operation is a property-specific constructor.
Unlike the collapsing constructor, the coalescing construc-
tor does not have to be a restrictor or mutator. Also, the
result is not a label, but a single, coalesced value.

Example 3.18 The following strategy can be used to de-
termine thetransaction time for the review ofStar Wars
IV by Videotastic, irrespective of thesecurity, valid time,
etc. First, find all the paths from a root to the review. Note
that this requires a certain level ofsecurity. Second, col-
lapse each path into a virtual edge. Finally, coalesce the
transaction times of the virtual edges.

Lmovie := f(name! movie), (security: developer)g
Lreview := f(name! review), (security: developer)g
E := Collapse�(MatchDB (ROOTS ; Lmovie :Lreview))
Coalesce�(trans. time; E)

298

The result isf(&root , (trans. time: [15/Mar/1998 - uc]),
&by Videotastic)g. The coalesced transaction time
property, [15/Mar/1998 - uc], is the union of the two trans-
action time intervals in Figure 4. 2

3.4 Updates

When transaction time is one of the supported properties,
special semantics for update should be enforced to accom-
modate transaction time. In a transaction-time database the
database is trusted to enforce these semantics. On the web,
no such trusted mechanism is available for updates. How-
ever, individual sites or even collections of pages within a
site can be archived to correctly support transaction time.
Because of the flexibility of our framework, information
from pages that support transaction time can be freely
mixed with information from pages that do not.

In this section, we describe the constraints that should
exist to correctly support transaction time, but leave open
the issue of how these constraints are enforced on update.
An update can be either at the data level, consisting of a
change to an edge, label, or node, or at the meta-data level,
consisting of the addition of a property. We discuss each
kind of modification in turn.

3.4.1 Data Updates

An edge can be inserted at any time into the semistructure.
On insertion, the transaction time of the label on the in-
serted edge is set to[current time � uc].

Definition 3.19 [Edge insertion]
Let T be the current time. An edge is inserted into a semi-
structure,DB = (V; E; &root ; �), as follows.

InsertDB (T; v
L
�! w)

4
=

(V [fv; wg; E [fv
L0

�! wg; &root ; �),

whereL0 = L [f(transaction time: [T � uc])g: 2

Redundant and overlapping labels are permitted on edges,
i.e., the data is not storedcoalesced. Note also that edge
insertion inserts nodes if the nodes not already exist in the
database. We do not give a separate operation to insert only
a node (our focus is on the relevant changes needed to sup-
port properties in labels).

Edges are (logically) deleted by terminating their
transaction-time interval.

Definition 3.20 [Edge deletion]
Let T be the current time. An edge is deleted from a
semistructure,DB = (V; E; &root ; �), as follows.

DeleteDB (T; v
L
�! w)

4
=

(V; (E � fv
L
�! wg) [fv

L0

�! wg; &root ; �),

where the labelL0 is exactly the same asL except in the
transaction time property. IfL has a transaction time prop-
erty, say (transaction time: x), then

L0 = L� f(transaction time: x)g [
f(transaction time: (x \ [beginning� T]))g:

If the transaction time property is missing fromL,

L0 = L [f(transaction time: [beginning� T])g: 2

Finally, a node can be (logically) deleted by removing
all incoming edges, and an edge modification is modeled as
an edge deletion followed by an edge insertion.

Example 3.21 The transactions that created the two edges
in Figure 4 are given below. Let

v := &Star Wars IV ,
w := &by Videotastic ,
L1 := f(name: review), (security! developer)g, and
L2 := f(name: review), (security! paid subscriber)g.

On 15/Mar/1998, the first edge is inserted:

InsertDB (15/Mar/1998,v
L1�! w)

On 24/May/1998, the first edge is deleted:

DeleteDB (24/May/1998,v
L1�! w)

On 25/May/1998, the second edge is inserted:

InsertDB (25/May/1998,v
L2�! w) 2

3.4.2 Adding and Removing Properties

Just as data evolves over time, properties can also be added
and (logically) deleted.

A property may be added to a label at any time. For all
existing labels, the new property is simply missing. When
a label is subsequently inserted or updated, the new prop-
erty can be used as needed. Each property consists of a
uniquename, adomainor type, and four operations:PrClp
(collapse),PrMap (match),PrSlp (slice), andPrCsp (co-
alesce). A database designer adds this information to the
semantics of properties,�, within DB. For most properties,
the default semantics for operations given below will suf-
fice.

Definition 3.22 [Default property semantics]
Let t1 andt2 be any values for the property.

PrClp(t1; t2) = �t1 t2: t2
PrMap(t1; t2) = �t1 t2: t1 = t2
PrSlp(t1; t2) = Semantic Error
PrCsp(ft1; : : : ; tng) = Semantic Error 2

Two properties are by default collapsed to the second since
paths are collapsed top-down, from a root to a leaf. The
“closest” or most recent property to a leaf is taken to be
the relevant property. Consider aURL property that gives
the URL at which a datum resides. The URL of the page
that contains the datum is more relevant than the URL of
a parent page, and this is exactly what is computed by the
default collapse constructor. Two properties match only if
they are equal. No defaults are provided for andPrSlp and
PrCsp since no reasonable, general defaults exists. Fur-
thermore, these operations are only invoked by mentioning
the property name in an additional, specific query language
operation (they are in some sense optional).

299

A property can be deleted by removing the property se-
mantics from�. Although existing labels in the data store
will mention the property, the property is ignored in all sub-
sequent operations (except for labels with a required prop-
erty in the deleted property, which will fail to match any
subsequent query). To save space, and remove required
properties, the property should also be deleted from each
edge, but this might be costly and disruptive.

This simple support for properties can be enhanced by
maintaining a history of property insertions and deletions
as meta-meta-data. This can be accomplished by using
name and transaction time properties within each label in
the meta-data. Then previous database states can be queried
with the properties available as of that previous state, but
this issue of transaction time support for property changes
is beyond the scope of this paper.

4 AUCQL

This section offers a brief overview of an SQL-like query
language, AUCQL, for querying a semistructured database
that has been extended with properties. AUCQL is like
Lorel [3], but has additional constructs to permit queries to
exploit properties. The focus of this presentation is on the
small changes to the SELECT statement to support the ex-
tended query language operators discussed in the previous
sections. The reader is encouraged to interactively try the
AUCQL queries given here, or other queries, at the AUCQL
website:<www.cs.auc.dk/˜curtis/AUCQL >.

4.1 Variables in AUCQL

The key to understanding AUCQL is understanding the
specification and use of variables. Variables in AUCQL are
very much like variables in Lorel, the primary difference
being that in AUCQL, a variable can range over the result
of any of the extended query operators discussed in Sec-
tion 3.2. Below is an AUCQL (or Lorel) query to find the
names of movie stars.

SELECT Name
FROM movie.stars.name Name;

(This is not the shortest, or best possible query, but
is adequate for the purposes of this discussion.) This
query sets up a variableName that ranges over the ter-
minal nodes of paths that match the regular expression
movie.stars.name . In terms of the operations dis-
cussed in Section 3.2, the variable has the following mean-
ing.

Lm := f(name! movie)g
Ls := f(name! stars)g
Ln := f(name! name)g
Name2 Nodes(MatchDB (ROOTS ; Lm :Ls :Ln))

In fact, in AUCQL, this interpretation can be given explic-
itly.

SELECT Name
FROM NODES(MATCH(roots, (NAME! movie).

(NAME! stars).(NAME! name))) Name;

In AUCQL, a bareword descriptor (e.g.,movie) defaults
to a required use of thename property (e.g., to(NAME!
movie)), since that will be the most commonly used prop-
erty.

4.2 Defaults

Default properties can be set to simplify queries. Once a
default is set, that value is used for the property in all sub-
sequent operations. Properties specifically mentioned in an
operation override their default values. The syntax for set-
ting defaults is straightforward. Below is an example that
retrieves movie stars’ names that are current in the semi-
structure.

SET DEFAULT PROPERTY
(TRANSACTION_TIME: [now-now]);

SELECT movie.star.name;

Security is one of the most common default settings. Users
can advertise their security certificates in all subsequent
queries by setting a default.

SET DEFAULT PROPERTY
(SECURITY: over 18 AND subscriber);

5 Summary and Future Work
This paper proposes an extensible framework for capturing
more data semantics in semistructured data models. The
framework is extensible so that it can incorporate the lat-
est advances in diverse domains, from web security and
e-commerce to transaction-time databases. The additional
semantics for each domain are captured in enriched labels.
The new labels are sets of descriptive properties. The prop-
erties used as examples in this paper include transaction
time, price, security, quality, and valid time. But the prop-
erties do not have to be the same for every database or even
for every label within a database since this framework per-
mits missing properties. Support for required properties,
to model properties such as security, is also built into the
framework.

Several new operations are needed to manipulate labels
with properties. Match chooses a set of paths from the
semistructure that match a user-given path regular expres-
sion. Collapsecombines the properties in labels along a
path to create a new label for the entire path.Sliceslices
a portion from each label on a path. Finally,Coalesceco-
alesces a property from a set of edges. These operations
are built into the AUCQL query language, an implemented,
Lorel-like query language, which is briefly described in this
paper.

This work may be extended in a number of directions.
Labels can be further extended to include aset of labels.
This does not greatly increase the modeling power since
multiple descriptions of the same relationship can be split

300

into individual labels on a multitude of edges. However,
it is essential to storing coalesced labels, which may be of
some convenience to the user.

We also need to research translating meta-data in XML,
such as RDF [21] or P3P [27], to a set of properties. The
translation should be relatively straightforward since there
is a clear mapping between paths in an XML data-set and
properties: each path maps to a property, the labels along
the path collapse to the property’s name, while the terminal
value of the path is the property’s value.

Finally, and perhaps most importantly, the impact of our
framework on path indexes must be addressed. We expect
that a spatial or (bi)-temporal index can be generalized to
index paths through properties in labels, and we plan to in-
vestigate this issue in the future.

Acknowledgements
This research was supported in part by a grant from
the Nykredit Corporation, by the Danish Technical Re-
search Council through grant 9700780, and by the
CHOROCHRONOS project, funded by the European Com-
mission DG XII Science, Research and Development, con-
tract no. FMRX-CT96-0056.

References

[1] S. Aggarwal, I. Kim, and W. Meng. Database Ex-
ploration with Dynamic Abstractions. InDEXA’94,
Sep. 1994.

[2] G. Arocena and A. Mendelzon. WebOQL: Restructur-
ing Documents, Databases, and Webs. InICDE’98,
pp. 24–33, Feb. 1998.

[3] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. Wiener. The Lorel Query Language for Semistruc-
tured Data.International Journal of Digital Libraries,
1(1):68–88, 1997.

[4] T. Berners-Lee. Keynote Address. InWWW7,
Apr. 1998.

[5] M. Böhlen, R. Snodgrass, and M. Soo. Coalescing
in Temporal Databases. InVLDB’96, pp. 180–191,
Sep. 1996.

[6] P. Buneman, S. Davidson, and D. Suciu. Programming
Constructs for Unstructured Data. InDBPL-5, 1995.

[7] P. Buneman, S. B. Davidson, G. G. Hillebrand, and
D. Suciu. A Query Language and Optimization
Techniques for Unstructured Data. InSIGMOD’96,
pp. 505–516, Jun. 1996.

[8] P. Buneman. Semistructured Data. InSIGMOD/-
PODS’97(tutorial notes), May 1997.

[9] P. Buneman, A. Deutsch, and W.-C. Tan. A Determinis-
tic Model for Semi-structured Data. InICDT’99 Work-
shop on the Web Query Languages, Jan. 1999.

[10] S. Chawathe, S. Abiteboul, and J. Widom. Represent-
ing and Querying Changes in Semistructured Data. In
ICDE’98, pp. 4–13, Feb. 1998.

[11] S. Castano, M. Fugini, G. Martella, and P. Samarati.
Database Security. Addison-Wesley, 1994.

[12] D. Connolly, R. Khare, and A. Rifkin. The Evolution
of Web Documents: The Ascent of XML.XML special
issue of the World Wide Web Journal, 2(4):119–128,
1997.

[13] M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A
Query Language for a Web-Site Management System.
SIGMOD Record, 26(3), Sep. 1997.

[14] D. Florescu, A. Levy, and A. Mendelzon. Database
Techniques for the World-Wide Web: A Survey.SIG-
MOD Record, 27(3):59–74, Sep. 1998.

[15] M. Fernandez and D. Suciu. Optimizing Regular
Path Expressions Using Graph Schemas. InICDE’98,
pp. 14–23, Feb. 1998.

[16] R. Goldman and J. Widom. Dataguides: Enabling
Query Formulation and Optimization in Semistruc-
tured Databases. InVLDB’97, pp. 436–445, Sep. 1997.

[17] R. Goldman and J. Widom. Interactive Query and
Search in Semistructured Databases. Inthe First Inter-
national Workshop on the Web and Databases, pp. 42–
48, Mar. 1998.

[18] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha,
and A. Crespo. Extracting Semistructured Informa-
tion from the Web. Inthe Workshop on the Manage-
ment of Semistructured Data(in association withSIG-
MOD’97), Jun. 1997.

[19] C. S. Jensen and C. E. Dyreson (eds.).A Consen-
sus Glossary of Temporal Database Concepts - Febru-
ary 1998 Version. In O. Etzion et al. (eds.),Tempo-
ral Databases: Research and Practice, LNCS 1399,
pp. 367–405. Springer-Verlag, 1998.

[20] B. Ludäscher, R. Himmer¨oder, G. Lausen, W. May,
and C. Schlepphorst. Managing Semistructured Datat
with FLORID: A Deductive Object-Oriented Perspec-
tive. To appear inInformation Systems.

[21] O. Lassila and R. Swick. Resource Description
Framework (RDF) Model and Syntax Specification.
W3C Technical Report, Jan. 1999.

[22] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and
J. Widom. Lore: A Database Management System for
Semistructured Data.SIGMOD Record, 26(3):54–66,
Sep. 1997.

[23] T. Milo and D. D. Suciu. Index Structures for Path
Expressions. InICDT ’99, Jan. 1999.

[24] S. Nestorov, S. Abiteboul, and R. Motwani. Inferring
Structure from Semistructured Data. Inthe Workshop
on the Management of Semistructured Data(in associ-
ation withSIGMOD’97), Jun. 1997.

[25] D. Quass, A. Rajaraman, J. D. Ullman, J. Widom, and
Y. Sagiv. Querying Semistructured Heterogeneous In-
formation.Journal of Systems Integration, 7(3/4):381–
407, 1997.

[26] D. Suciu. Semistructured Data and XML. In
FODO’98, 1998.

[27] W3C. Platform for Privacy Preferences (P3P1.0).
W3C Technical Report, Jan. 1999.

301

