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Efficient Differential Timeslice Computation

Kristian Torp, Leo Mark, and Christian S. Jensen, Senior Member, IEEE

Abstract—Transaction-time databases support access to not only the current database state, but also previous database states.
Supporting access to previous database states requires large quantities of data and necessitates efficient temporal query
processing techniques. In previous work, we have presented a log-based storage structure and algorithms for the differential
computation of previous database states. TimeslicesO i.e., previous database states] are computed by traversing a log of database
changes, using previously computed and cached timeslices as outsets. When computing a new timeslice, the cache will contain two
candidate outsets: an earlier outset and a later outset. The new timeslice can be computed by either incrementally updating the
earlier outset or decrementally “downdating” the later outset using the log. The cost of this computation is determined by the size of
the log between the outset and the new timeslice. This paper proposes an efficient algorithm that identifies the cheaper outset for
the differential computation. The basic idea is to compute the sizes of the two pieces of the log by maintaining and using a tree
structure on the timestamps of the database changes in the log. The lack of a homogeneous node structure, a+controllab|e and high
fill-factor for nodes, and of appropriate node allocation in existing tree structures (e.g., B -trees, Monotonic B -trees, and Append-
only trees) render existing tree structures unsuited for our use. Consequently, a specialized tree structure, the Pointer-less Insertion
tree, is developed to support the algorithm. As a proof of concept, we have implemented a main memory version of the algorithm

and its tree structure.

Index Terms—Transaction time, data models, snapshots, timeslice, incremental computation.

1 INTRODUCTION

TRANSACTION-TIME database records the history of the

database [9], [27]. Database systems supporting trans-
action time are useful in a wide range of applications, in-
cluding accounting and banking, where transactions on
accounts are stored, as well as in many other systems where
audit trails are important [6]. Applications also include the
management of medical records [5].

Recent and continuing advances in hardware have
made the storage of ever-growing and potentially huge
transaction-time databases a practical possibility. In order to
make transaction-time systems practical, the hardware ad-
vances must be combined with advances in query process-
ing techniques. Research focus has spread from conceptual
data modeling aspects to also include implementation-
related aspects [15], [16], [29], and significant effort has re-
cently been devoted to implementation-related topics (e.g.,
see [18], [21], [28], [32]).

The timeslice operator [1], [25] is one of the central
operators in temporal database systems. Indeed, most
temporal relational algebras [19] proposed to date
contain a variation of this operator, and user-level, tempo-
ral query language proposals frequently provide special
syntax for timeslice queries. Further, a substantial portion
of the natural-language queries in a recent consensus test
suite for temporal query languages [10] may be imple-
mented using the timeslice operator. The timeslice, R(t), of a
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relation R at a time, t, not exceeding the current time, is the
snapshot state of the relation R as of time t.

The transaction-time data model used in this paper is the
backlog model [11]. In this model, a backlog is generated and
maintained by the system for each relation defined in the
database schema. The change requests (i.e., insertions and
deletions) to a relation are appended to its backlog. A rela-
tion is derived from a backlog by using the timeslice op-
erator. In addition to the attributes of the associated rela-
tion, each tuple in a backlog contains attributes, e.g., a
transaction timestamp, that make the implementation of the
timeslice operator possible.

Data is, at least in principle, never deleted from a
transaction-time database, meaning that it may eventually
contain very large amounts of data. For transaction-time
databases to be useful, queries must be processed effi-
ciently. One way to improve efficiency is to use differential
computation, i.e., incremental or decremental computation of
queries from the cached results of similar and previously
computed queries [2], [3], [4], [13], [14], [22].

When given a time t, for which a new timeslice R(t,) of
relation R is requested, the times t,—; and t,., of the nearest
earlier and later cached timeslices, R(t,—;) and R(t,.;), re-
spectively, are identified. Identifying the times t,_; and t,,;
together with the page position in the backlog correspond-
ing to these times is done through a very small memory-
resident binary tree on the timestamps of the timeslices that
have been previously cached. The Pointer-less Insertion tree
(PLI-tree) is then used to compute the page position for the
time t, in the backlog. The three resulting page positions
can be used to predict whether it is going to be more effi-
cient to incrementally compute R(t,) from R(t,—;) or decre-
mentally compute R(t,) from R(t,.,).

1041-4347/98/$10.00 © 1998 IEEE
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The PLI-tree is a degenerate, sparse B'-tree designed
for append-only relations, such as backlogs where data
is inserted in transaction timestamp order. Thus, insertions
are done in the right-most leaf only, and nodes are packed
completely because node splitting never occurs. The
PLI-tree contains no stored pointers; they are replaced
by computation.

We maintain a PLI-tree on the transaction timestamps in
a backlog. The tree is updated every time a new page of
change requests is allocated for the backlog. Given a trans-
action timestamp, the tree efficiently locates the disk pages
containing the change request(s) with that timestamp or the
most recent earlier timestamp. This ability of the PLI-tree to
find the page position of a change request corresponding to
a given timestamp value is exploited during timeslice com-
putation. The most efficient outset for differential compu-
tation of the timeslice operator can be chosen with little
overhead, and the cost of computing the timeslice can also
be predicted precisely and efficiently, which is useful in,
e.g., real-time applications.

The paper is organized as follows. Section 2 describes
the data structures in the backlog model. It then defines the
timeslice operator, introduces the concept of differential
computation, and provides a top-level differential timeslice
algorithm. The remainder of the paper fleshes out this algo-
rithm. Section 3 defines the PLI-tree and covers insertion,
search, and implementation aspects. Section 4 shows how a
PLI-tree is used during timeslice computation to decide
whether incremental or decremental computation is most
efficient. Section 5 describes related work and includes a
comparison of the PLI-tree with the AP-tree [8], a related
index structure. Finally, Section 6 summarizes the paper
and points to directions for future research.

2 IMPLEMENTATION MODEL FOR TRANSACTION-TIME
DATABASES

A number of data models support transaction time; for a
survey, see [20], [26]. We use the backlog model [11], [13] as
the basis for this work. This model is quite simple in that it
stores temporal data in append-only logs. In addition, its
query language is simple and has a formal semantics based
on the relational algebra [26].

This section introduces the problem of differential
timeslice computation and describes the general solution to
the problem. To do so, we initially present the backlog
transaction-time data model, with an emphasis on its stor-
age structures and the timeslice operator.

2.1 Relations and Backlogs
In the backlog model, all base data is stored in backlogs.
Here, we describe their format and how they are updated.

For each relation, R, defined by the user, the database
system generates and maintains a backlog, Bg. The backlog
Br for relation R is simply a relation which contains the
entire history of change requests to R. Specifically, assume
that R has schema R(A; : Dy, A, : Dy, ..., A, : D). The back-
log Bg then has schema Bg(ld : Surrogate, Operation :
{Ins, Del}, Time : TTime, A;: D;, Ay : Dy, ..., A, : D). Thus, a
backlog contains three attributes in addition to those de-
fined in its corresponding relation. The attribute “Id” is
surrogate-valued and is used as a tuple identifier for back-
log tuples, termed change requests. Next, “Operation” is an
indicator of whether the tuple is an insertion or a deletion
request. An update is modeled as a deletion/insertion pair
with the same transaction timestamp. Finally, “Time,” is an
instant-valued transaction timestamp that records the time
when the transaction that inserted the change request
commited. It is assumed that each change request has a
unique transaction timestamp (except updates) and that the
backlog is stored in transaction-time order.

Table 1 shows how insertion, deletion, and update op-
erations on user-defined relations are translated into inser-
tions into the corresponding backlogs.

The insertion of a tuple into R has the effect that an in-
sertion change request is appended to Bg. The functions
new-id() and current-timestamp() return a previously un-
used surrogate value and the time when the insertion
transaction commits, respectively. The deletion of a tuple
with key value k from R results in a deletion change request
being appended to Bg. The function tuple() returns the tu-
ple in R identified by its argument key. We shall later intro-
duce data structures that allow for the efficient computation
of this function. An update of a tuple with key value k
leads to two change requests being appended to Bg, namely
a deletion request for the tuple with the key value k and an
insertion request for the tuple with key value k and with
the new attribute values.

The storage space requirements are O(n) where n is the
total number of different versions of all tuples. The inser-
tion or deletion of a tuple results in a single change request
being appended to the backlog, and the update of an exist-
ing tuple results in two change requests being appended.

2.2 TheTimeslice Operator

The five basic relational operators are retained in the alge-
bra for the backlog model. Before any of these operators can

TABLE 1
OPERATIONS ON A RELATION AND THEIR EFFECT ON THE BACKLOG

Operation on R

Effect on B

insert R(“tuple”)

insert Br(new-id(), Ins, current-timestamp(), “tuple”)

delete R(k)

insert Br(new-id(), Del, current-timestamp(), tuple(k))

update R(k, “new values”)

insert Br(new-id(), Del, current-timestamp(), tuple(k))

insert Br(new-id(), Ins, current-timestamp(), k, “new values”)
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be applied to a relation, the relation must first be timesliced.
The timeslice at time t, of relation R is denoted R(t,) and
intuitively computes the state of R current at time t,. Only
time arguments between when the relation was created,
tinitialization: @Nd the current time, now, are permitted.

A formal definition of the timeslice operator is given
next [13]. Let relation R have attributes A;, A,, ..., A,, with
Key, a time-invariant key value, being one of these. The
timeslice R(t,) is then defined as follows.

R(t) = {y"I0s(s 0 Bg Oy[A] = s[A]
YAl =s[A] O... Oy[Aq] =s[Aq] U
s[Time] < t, Os[Operation] = Ins O
= [u(u O Bg Os[Key] = u[Key] O
s[Time] < u[Time] < t,))}

As can be seen, the timeslice is computed from the backlog.
In the first two lines, the attributes of the result are selected.
In the third line, all insertions that are done before the
timeslice time are identified. Lines four and five serve to
eliminate all those insertions that have been countered by
deletions before the time of the timeslice.

2.3 Incremental and Decremental Computation of
Timeslices

Having defined the timeslice operator and the underlying
data structure, the next step is to consider the computation
of timeslices. As a foundation for achieving efficiency, re-
sults of applying the timeslice operator, termed timeslices,
are cached and subsequently reused for the computation
of other timeslices. These results may be saved in a so-
called view-pointer caches [22], which are disk-based data
structures from which the results may be materialized. A
view-pointer cache, cg, for relation R, has the format de-
scribed next:

record of (
change-request-pointers : 1ist of (record of (
PID : Pointer,
list of (TID: Surrogate))),
slice-time: TTime,
offset: Integer)

In the data structure, values of attribute PID point to
pages in the backlog where change requests necessary for
materialization of the view are stored. The TID values asso-
ciated with a PID value identify the exact change requests
within the particular page. The timeslice represented as a
view-pointer cache is materialized using the backlog rec-
ords thus identified. Finally, the attribute slice-time records
the time when the timeslice was current, and offset indicates
the number of disk pages occupied by change requests with
a transaction time not exceeding slice-time. Their use will be
explained in Section 2.4.

It is obvious that if a view-pointer cache is stored every
single time a new timeslice is computed, then eventually
the disk-space requirements will be prohibitive. To solve
this problem, we assume that a fixed amount of disk-space
is allocated for storing view-pointer caches. The finite set of
all view-pointer caches for a relation R is denoted Cg. The
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choice of an appropriate cache replacement strategy is an
orthogonal issue that is not addressed here.

Differential timeslice computations use view-pointer
caches as outsets. Thus, the timeslice at a time t, can be
computed using any cached timeslice, earlier or later than
t,, as the outset. Initially, the outset is materialized. Starting
from the outset, the change requests in the backlog are then
reflected in turn in the outset until the desired timeslice is
obtained, see Fig. 1. With an earlier timeslice as the outset,
we are in the incremental (“do* or “update*) case, and with
a later timeslice as the outset, we are in the decremental
(“undo* or “downdate*) case. Algorithms for incremental
and decremental computation of timeslices have been de-
scribed previously [12], [13].

time

Backlog
\ v A A
\ \
\ | R(tw) ?
(@
time
Backlog
y k\ !\ k 4
\\
N\
? - R(tx+1)
(b)

Fig. 1. Computations: (a) incremental; (b) decremental.

2.4 The Problem of Starting from the Best Outset

We have now seen how a new timeslice, R(t,), may be com-
puted with any cached timeslice as the outset. The problem
addressed in this paper is how to efficiently select the best
outset available in the cache. Making the reasonable as-
sumption that a view-pointer cache for R(now) is always
present, there are always precisely two candidate outsets,
namely the currently closest earlier and closest later cached
timeslices. Note that the timeslice R(tinitialization): Which is
empty, is trivially in the cache and will always qualify as an
earlier timeslice. The view-pointer cache for R(now) makes
it possible to compute the function tuple(), introduced in
Table 1, without scanning the backlog.

Locating these two outsets in the cache is quite easy. We
simply assume that a (small) binary tree, referencing the
cached timeslices based on their slice-time values, is main-
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tained in main memory. The candidate outsets are located
by doing a nearest-neighbor search in the tree with the time
of the timeslice to be computed as the search argument.

The problem that remains is to decide which of the two
outsets at hand is the better one to use. We will base our
decision on the numbers of pages of change requests in the
backlog that need to be processed when using one of the
outsets. This yields the following conceptual, top-level al-
gorithm for differential computation of the timeslice R(t,),
which in addition to the timeslice time t, takes as argu-
ments a backlog Bg, and a corresponding cache Cg. Addi-
tional explanations follow the algorithm.

differential Timeslice(t,, Bg, Cg)
t,—1 — max({cg.Slice-timeJcg O Cr O

Croslice-time < t,) @
tews < min({cg.slice-time]cg O Cg O

cr.slice-time = t,}) 2
P, < PagePosition(t.y, Cg) ©)
P, « PagePosition(t,, Bg) “)
R.., — PagePosition(t., Cr) ©)
if|p, -PR _ I<IP,, —P Ithen (6)

incrementalTimeslice(t,—, t,, Bg, Cr)  (7)
else
decrementalTimeslice(t,,4, t, Bg, Cr)  (8)

Steps 1-2 locate the times of the closest earlier and later
cached timeslices, as already outlined above. Steps 3-5
compute page positions of the three timeslice times. The
page positions corresponding to times t,_; and t,,, are re-
corded in the view-pointer caches as offset values and are
easily obtained during Steps 1 and 2, respectively. Step 4
will be addressed later. With page positions for all three
times, the number of backlog pages between the requested
timeslice and the earlier and later cached timeslices, re-
spectively, are compared in Step 6. The intermediate back-
log pages are the ones that must be read to compute the
timeslice. On the basis of the comparison, the timeslice is
computed incrementally or decrementally, as outlined in
Section 2.3.

In order to efficiently compute a timeslice, only one
problem remains, namely that of computing the page posi-
tion in the backlog of an arbitrary timeslice time, i.e., Step 4.

Level ,1=0
Level,1=1

Level,1=2

It is a fundamental requirement to a solution that it be
efficient. This rules out a solution where the backlog be-
tween t;,iiaizaiion @Nd t, (Or the part between t,_; and t, and
the part between t, and t,,;) is scanned. With that solution,
always simply computing either incrementalTimeslice or
decrementalTimeslice is more efficient than computing dif-
ferentialTimeslice. Rather, the solution should require only
a few disk accesses. Also observe that using the temporal
proximity among the three times t,_,, t,, and t,; as the basis
for computing the two page counts in Step 6 is not a good
solution. This is so because it cannot be assumed that
change requests are inserted into the backlog at a constant
frequency. In many applications, e.g., financial applications
such as stock trading, insertions occur at highly irregular
rates.

In the remainder of the paper, we present a precise and ef-
ficient solution to the problem. With this solution, we have
effectively added high-performance transaction-time support
to incremental database systems such as ADMS [22].

3 PLI-TREES

In this section, we describe the PLI-tree. For expository rea-
sons, we introduce PLI-trees in two steps. First, we present
a structure similar to the B'-tree, with pointers between
nodes, the I-tree. Second, we present a structure similar to
the I-tree, with no explicit pointers between nodes, the PLI-
tree.

3.1 |-Trees, a Precursor to PLI-Trees

The structure of an I-tree is described first. Then updates
are considered.

3.1.1 The I-Tree Structure

The I-tree is essentially a degenerate B'-tree designed to
index append-only data on a sequential key, e.g., change
requests in a backlog on their timestamps. An example of
an I-tree is shown in Fig. 2.

The tree shown is of height h = 2 and order d = 3. As can
be seen the structure of the nodes is identical to the struc-
ture of nodes in a B'-tree. Both internal nodes and leaf
nodes have the same structure, and leaf nodes are con-
nected in search-key order.

The chain of pointers and nodes to the right is called the
right-most chain. In Fig. 2, the right-most chain consists of

Fig. 2. An I-tree of height h =2 and order d = 3.
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the root, the boldface pointer, and the right-most leaf,
termed the current node.

Insertions are only made into the current node, and node
splitting does not occur. The I-tree grows from the bottom
and up in the right-most subtree of the root, and internal
nodes are not allocated before they are needed. These char-
acteristics have three implications: First, all nodes, except
nodes in the right-most chain, are filled. Second, all sub-
trees of the root, except the right-most subtree, are filled
and balanced. Finally, the right-most subtree needs not be
balanced.

The array in Fig. 2 is a dynamic array containing point-
ers to all nodes in the right-most chain [7]. These pointers
are used when insertions are made to the tree. In Fig. 2 Po-
sition 0 of the array points to 6 and Position 1 points to 5.
The numbers 5 and 6 refer to the numbers shown above the
right corner of each node. These numbers indicate the allo-
cation order of tree nodes and are used for illustrating the
dynamics of the index later in the paper; they are not part
of the data structure. Furthermore, for each position in the
array, the level of the node is stored along with an indica-
tion of whether the node is full or not. Fig. 2 also shows that
the right-most subtree of the root needs not be bal-
anced[ there is no node at Level 1.

24

Fig. 3. Examples of insertions into the I-tree.
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3.1.2 Insertions into the I-Tree

Next, we give a comprehensive description of insertion into
the I-tree by means of three examples that cover all possible
combinations. The algorithms that formed the basis for the
implementation of the I-tree are listed in [31].

Fig. 3a shows an example of the general case where the
whole tree is completely full and balanced. The key value
17 must be inserted. A new leaf is created and the new
value inserted. A new root is created, and the last key value
in the old current node is inserted. The left-most pointer of
the new root is set to point to the old root, and the right-
most pointer is set to point to the new leaf. The array is
properly updated.

Fig. 3b shows an example of the general case where a
nonfull node is found in the right-most chain. The number
of levels between the closest nonfull node and the next
node in the right-most chain is one. The key value 28 must
be inserted. A new leaf is created and the value 28 is in-
serted. The last key value in the old current node is inserted
in the nonfull node, and a new right-most pointer in the
node is set to point to the new leaf. The array is updated to
reflect the new leaf node.

Fig. 3c shows an example of the general case where
all nodes in the right-most subtree of the root are full,

T S e I T

0 1
3
[13][2a]]
1 2 4
9 |13 17|23 28

012 3

5 [iskoizeis]
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but the subtree is not balanced. This case also covers the
situation when the root is full, but the right-most subtree
of the root is not balanced. The key value 151 is to be in-
serted. A new leaf is created and the new key value is in-
serted. The last key value of the old current node is inserted
in a new node created between the right-most node, found
to point directly to a leaf, and the new leaf. The array is
properly updated.

3.2 PLI-Trees

Next, we shall see that it is possible to eliminate all stored
pointers from the I-tree. This increases the number of
key values that fit in a single node and reduces the index
size. Specifically, assuming that the nodes (disk pages) of an
I-tree are stored on disk in allocation order and consecu-
tively, pointers may be replaced by computation. The re-
sulting data structure is the Pointer-less I-tree (PLI-tree).

First, we briefly cover the structure of the PLI-tree. Then,
search using implicit, computed pointers is described, and
finally, implementation aspects are considered. As the PLI-
tree insertion algorithm is almost identical to that of the I-
tree, it is not discussed here. Further, the insertion algo-
rithm does not use the search algorithm to locate the node
where a new key value is to be inserted, as does the B'-tree.
For reference, the complete insertion algorithms for the I-
tree and PLI-tree are given elsewhere [31].

3.2.1 PLI-Tree Structure
An example of a PLI-tree of height h = 2 and order d = 3 is
shown in Fig. 4. Compare Fig. 4 to Fig. 2.

Compared to the I-tree, all explicit tree pointers are
eliminated. The dynamic array used in I-trees is retained
and contains pointers to all nodes in the right-most chain.
As before, the numbers shown above each node are not part
of the tree; they indicate the allocation order of tree nodes
and are used in the subsequent discussions.

3.2.2 Search in the PLI-Trees

The search algorithm for the PLI-tree is logically the same as
for the B and I-trees. The only difference is that all pointers
are implicit and must be computed. When we show how to
compute the pointers in the following, we use “pointer” to
mean an “implicit pointer” between the nodes.

Fig. 5a shows a PLI-tree. The node numbers above each
node indicate the allocation order, and it can be seen that
the nodes are allocated in in-order. Fig. 5b thus shows how
the nodes are stored sequentially in a file. The start address

of a file is always known. The node numbers make search-
ing without pointers possible because they are offsets
within the file.

To describe search in the PLI-tree, the parameters listed
in Table 2 are needed; see also Fig. 5 for further explanation.
The search algorithm is called with a key value when the
PLI-tree contains more than one node. First, the root and
the level of the root is found in the dynamic array. The node
number of the root can be computed as follows:

h-1 d

root number = Zi—o

The PLI-tree is full except for the right-most subtree. When
the nodes are allocated in in-order, a subtree of height one
smaller than the height of the PLI-tree is allocated before
the root. Note that the first node number is 0.

TABLE 2
PARAMETERS USED
TO CALCULATE NODE NUMBERS

Name Description
h height of the PLI-tree
d order of the PLI-tree
p pointer number in a node
| level number in the tree

If the left-most pointer of a node is to be followed, we
are going to a node that was allocated earlier; we thus sub-
tract all nodes that were allocated between the old node
and the new node. This number is computed as follows:

new number =
h-(1+2)
old number - ((d - 1)(Zi=0

old number -1

dij+1j if 1+2<h
ifl+2>h

In this formula, d — 1 is the number of subtrees of the new
node that were allocated between the old and the new
node. The sum finds the number of nodes in a subtree of
the new node, thus the h - (I + 2). The second case is needed
because the new node may have no subtrees. The +1 ac-
counts for the old node.

If the pointer followed is not the left-most pointer, we
are going to a node that was allocated later. Two possibili-
ties exist: We are in the right-most subtree or we are not in

0 1
Array

Level ,1=0
Level,1=1
Level,L1=2 | o 13| |17 23|

Fig. 4. APLI-tree of height h =2 and order d = 3.
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01
Array 4
Pointer number: p 0o 1 2
Height: h =2 4 =
Number of pointers in node: d = 3 Level: 1=0
9 15 s Level: 1=1
0 2 3 5 7 8 9
5 9 |12 15][18 22|[25 29 || 31 35|38 43 || 46 | Level: 1 =2
@
File 0 1 2 3 4 5 6 7 8 9

|5 9] 9 15]12 15[18 2222 43|25 2929 35[31 35|38 43 | 46 \

(b)
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Fig. 5. An example of a PLI-tree and how nodes are stored in a file.

the right-most subtree. In the latter case, the new node
number is found by the formula below:

new number =
old number + (p, _1)2:1:-;I+1)di + ih:-0(I+2)di +1
ifl[+2<h
h=(1+1) .
old number + (p, —1)zi:0 d +1 if I+2>h

Here, we name the pointer number followed at level I, p,.
Between the old and the new node, we have allocated p, - 1
subtrees of nodes of height one smaller than the height of
the old node; thus the first sum. We have also allocated the
left-most subtree of the new node and the old node itself,
thus the second sum and the +1. Again, two cases are
needed to account for empty subtrees.

If we are in the right-most chain, the dynamic array must
be used to find the level of the new node. The number of
the new node if found as follows:

new number =
h=(1+1)

old number + (d - Z)Zi:0 d +
Zh—(I+jump+1)di +1

i=0

old number +(d - 2)2

if I+jump+1<h
h—(|+1)di

o +1 if I[+jump+1>h

The change from the previous formula is that the left-most
subtree of the new node may be a smaller tree depending
on the number of levels between the old node and the new
node. Thus in the second sum, we use the number of levels
between the nodes, the jump. Notice that if the levels are
only one apart then the sum yields the same as in the pre-
vious formula.

From the node number calculated, the new node is re-
trieved from the file containing the nodes of the PLI-tree,
using the start address of the file and the node number (the
offset). This continues until a leaf is reached.

3.2.3 Implementing the PLI-Tree Using Extents

In the design of the PLI-tree, we have assumed that nodes
(disk pages) in the tree are stored consecutively on disk.
This makes it possible to access a node in a file on disk by a
start address and an offset. This assumption may be too
restrictive in a multiuser environment where nodes are al-
located dynamically. Here, disk space may be allocated in
chunks, termed extents [23]. An extent is a number of con-
secutive disk pages. All extents contain the same fixed
number of disk pages. Within an extent, disk pages can be
accessed via a start address and an offset.

To make it possible to search a PLI-tree, without extra
I/0O-cost, an array containing start addresses of all extents
in which the PLI-tree is stored must be in main memory.
The first slot of this extent array stores the start address of
the first extent allocated for the PLI-tree. Fig. 6b shows how
nodes of a PLI-tree are stored in extents. In the figure, an
extent consists of three disk pages. Compare this to Fig. 5.
The extent array in Fig. 6a contains the start address of ex-
tents. Slot number zero points to extent number zero, etc.

From the node number, the start address and the offset
must be computed to retrieve the node from disk. The start
address can be found by computing in which logical extent
number the node is stored and then making a lookup in
the extent array. From the extent number, the number of
pages in each extent, eg,, and the node number, the offset
can be found.

The extent number (start address) is given by the fol-
lowing formula.

€

node number
extent number = | —

size
The offset of a node within an extent is given as follows.

offset = node number — extent number X e,
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Fig. 6. An example of a PLI-tree and how nodes are stored in extents.

4 USING PLI-TREES FOR DIFFERENTIAL TIMESLICE
COMPUTATION

In this section, we first describe how to find a page position
in the backlog using the PLI-tree. Second, we compare the
performance of our algorithm to that of the only alternative,
a linear scan. Finally, we estimate the size of the PLI-tree
and the 1/0-cost of maintaining it.

4.1 Finding Page Positions Using the PLI-Tree
The idea is to maintain a PLI-tree on the transaction-time
attribute of the change requests of a backlog. Fig. 7 shows a
PLI-tree on a backlog. When computing a timeslice at time
t,, the tree is used to find the page position of the corre-
sponding change request(s) in the backlog.

The following formula is used.

h-1
Page Position = (d - 1) Z (dh_(m) ED.) *+ Py
=0

This formula uses four parameters, namely h, d, p, and |,
which are explained in Table 2 and Fig. 7. The p, values and
the py, value are obtained by searching the PLI-tree with t,
as the search value. The value p; denotes the pointer num-
ber to be followed to the next level during the search in the
PLI-tree node at level i. Value p, thus denotes the pointer
number at the leaf level that points to the appropriate
backlog page.

The formula may then be explained as follows. The
PLI-tree is balanced and all nodes are full to the left. This

means that each time a pointer is skipped in a node at Level
I, (d -1) g pointers to disk pages of the backlog are
passed at the leaf level. The formula sums up the number of
disk pages passed at each level from the root to the level
just above the leaf level. At the leaf level, one disk page is
passed each time the pointer number p is increased by
one—this is py,.

The 1/0-cost of computing a page position is h disk ac-
cesses, the height of the tree. In summary, we are now able
to efficiently choose the best outset for either incremental or
decremental computation of a timeslice. We have thus ac-
counted for Step 4 in the algorithm listed in Section 2.4. As
this was the only remaining step to account for, the full al-
gorithm has now been covered.

4.2 Comparison with Linear Scan

With no PLI-tree available, the only reasonable, existing
way to find the cost of computing a timeslice is to actually
compute it. Therefore, to investigate if timeslice computa-
tion using a PLI-tree is cost effective, we compare it to the
timeslice computed using a linear scan of the backlog from
P, tOP .

-1
To find the two timeslices closest to the desired time t,, a
lookup is done in the cache. We assume that the cost for this
is the same in both situations. The cost of finding the page
positions P, and R, is zero because they can be found

by lookups in the main-memory binary tree that indexes
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Height: h=2

Number of pointers in node: d =3

Pointer number: p 0 1
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Fig. 7. A PLI-tree indexing transaction timestamps on a backlog. The pointers shown are implicit pointers.

the computed and cached timeslices. The cost of finding the
position P, in the PLI-tree is h disk accesses.

Fig. 8 shows the general case, where the cost of com-
puting a timeslice by a linear scan is compared to the
cost of computing a timeslice using differential computa-

tion. The x-axis indicates the page positions of t, and the
closest cached timeslices; the y-axis indicates the number
of disk accesses needed to compute the timeslice. The
dashed line assumes that the timeslice R(t,) is computed
incrementally from Ptx-l , while the solid curve assumes that
the PLI-tree is being used to determine whether to do ei-
ther incremental or decremental update, from position Ptx_1
or Ptm, respectively.

Fig. 8 indicates that the PLI-tree is almost as fast as linear
scan in approximately 50 percent of the cases. The differ-
ence is h disk accesses (in practice, h is 2 or 3). At the same
time, it shows that in the other approximately 50 percent of

Number of
Disk Accesses

Linear Scan

PLI-tree

i R
Position in

P« — —P—»
t backlog

tyn tyst

Fig. 8. Cost comparison of timeslice computation using linear scans vs.
PLI-trees.

the cases, there can be very substantial efficiency gains
when using the PLI-tree. For realistic situations, this means
that using the PLI-tree to choose the outset for the differen-
tial computation, instead of using linear scan, never per-
forms worse and in approximately 50 percent of the cases
performs significantly better.

4.3 Maintenance of the PLI-Tree

In this section, we estimate the size of the PLI-tree and the
1/0-cost for maintaining the tree.

4.3.1 PLI-Tree Size vs. Backlog Size

The PLI-tree does not need to record the transaction time-
stamps of all the change requests in the backlog. Only ap-
proximately one transaction timestamp for each disk page
is needed—the PLI-tree is a sparse index. Two PLI-trees of
the same height are shown in Fig. 9. For this height, Fig. 9a
shows a worst-case situation where the PLI-tree’s size is the
largest possible compared to the size of the backlog. The
right-most leaf has just been allocated. For the same height,
Fig. 9b shows a best-case situation where the size of the
PLI-tree is the smallest possible compared to the size of the
backlog. This PLI-tree is full and balanced.

The following expression is valid for height h > 1 and
order d = 2. In the worst-case situation, the size of the
PLI-tree compared with the size of the backlog is given
as follows.

Worst case: [(zrn;lodm) + 2) / ((d -1)d"™" + 2)

Examples of the worst-case and the best-case are shown
in Table 3 for height, h = 3 and order, d = 100 [23]. As can
be seen, the backlog is approximately d times larger than
the PLI-tree. The size of the index is very small. The differ-
ence for the worst-case and best-case is insignificant for
realistic trees.
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Fig. 9. Situations: (a) worst-case; (b) best-case.

TABLE 3
WORST-CASE AND BEST-CASE FOR THE SIZE
OF THE BACKLOG VS. THE SIZE OF THE PLI-TREE

PLI-Tree Backlog PLI - Tree
% ——MM
Backlog
Worst-case 10,103 990,002 1.0205
Best-case 1,010,101 99,000,001 1.0203

4.3.2 I/O-Cost of Maintaining the PLI-Tree

The 170 needed to maintain the backlog itself is independ-
ent of whether or not there is a PLI-tree index defined on it,
so we focus the attention on the extra I/0-cost related
to maintaining the PLI-tree on the backlog. We assume that
the root, the right-most leaf, and the dynamic array of
the PLI-tree are in main memory; and we assume that the
costs for allocating, reading, and writing a disk page are all
the same.

There is an insertion into the PLI-tree each time a new
disk page is allocated for the backlog. Two cases should
be distinguished: when the right-most leaf of the PLI-tree is
not full, and when that leaf is full. The latter situation is
rare. It occurs only once for each (d - 1)N., appends to
the backlog, where d is the order of the PLI-tree and
N., is the number of change requests which fit in one
disk page. In the frequent first case, the 1/0-cost for up-
dating the PLI-tree is zero. In the second case, the three
possibilities shown in Fig. 3 exist. Their 1/0-costs are shown
in Table 4.

In the worst case, it will require six-disk access to
update the PLI-tree when the backlog is updated. (Note

TABLE 4
NUMBER OF DISk ACCESSES FOR DIFFERENT UPDATE CASES
Description Fig. 3a Fig. 3b Fig.3c
Allocate new leaf node v v v
Allocate new root/node v v
Read internal node v v
Write internal node v v
Write old root v
Write new node v
Write current node v v v
Total I/O-cost 4 4 6
TABLE 5
FANouUT oF PLI-TREE
FOR DIFFERENT PAGE SIZES
Page size (bytes)
512 1,024 | 2,048 | 4,096 | 8,192
Order d 64 128 256 512 1,024
Neh 4 8 16 32 64
Appends per 1/O 42 169 680 2,725 | 10,912

that the 1/0-cost is independent of the height of the
PLI-tree.) The smallest (i.e., worst case) average number of
change requests that can be appended to a backlog per 1/0
operation needed to maintain the PLI-tree index is given
by ((d = 1) N¢/6).

Table 5 shows examples of how many change requests
can be appended to the backlog for each PLI-tree 1/0 op-
eration, for different realistic page sizes. It is assumed that
transaction timestamps occupy 64 bits [26], pointers (Unix)
32 bits, and change requests 128 bytes.

The number of appends per extra disk access grows with
the square of the page size because both d and N, depend
on the page size. In conclusion the PLI-tree is cheap to
maintain for realistic page sizes.

5 RELATED WORK AND COMPARISON WITH THE
AP-TREE

To the best of our knowledge, no other efficient algorithms
exist that address the problem of selecting the best outset
for the differential computation of timeslices. The algorithm
presented in this paper makes essential use of a new tree
structure, the PLI-tree. In this section, we review the exist-
ing tree structures that are most similar to the PLI-tree, and
we explain why we have designed a new tree structure. We
then compare the PLI-tree in more detail to the structure
that resembles it the most, namely the AP-tree.
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5.1 Related Tree Structures

The tree structures most closely related to the PLI-tree are
the B'-tree, the Monotonic B'-tree (MB-tree) [7], and the
Append-only tree (AP-tree) [8].

For an overview of other, less related structures, see [24],
[30]. These structures are all intended for a more general
use than the PLI-tree which is designed for the single spe-
cific purpose of indexing the timestamps of the entries in a
log. For this purpose, the PLI-tree is superior.

If a regular B'-tree was used in place of the PLI-tree, the
nodes would only be approximately 50 percent full [8].

There are primarily three reasons we have chosen to not
use the MB-tree. First, the internal nodes and the leaf nodes
have different formats, and the leaf nodes can be different
in size. This lack of homogeneity is not desirable for our
purposes. Second, internal nodes in the right-most subtree
are allocated before they are needed, yielding an avoidable
space overhead. Third, in the insertion algorithm extra pa-
rameters are given to be able to implement a Time Index [7].
This extra generality, not needed for our use, unnecessarily
complicates the insertion algorithm.

For the AP-tree, there are also three reasons why it is not
well-suited for our use. First, all pointers between nodes in
the AP-tree are double pointers. For our problem, single
pointers will do. Second, not all pointers are used in the
internal nodes of the AP-tree, giving a slight waste of space.
Third, when nodes in the right-most subtree of the root are
appended, the chain from the root to the right-most leaf
must be traversed. This requires that these nodes are stored
in main memory or read from secondary storage.

Being designed for a single purpose, the PLI-tree elimi-
nates these problems. In addition, the PLI-tree uses easily
computed “pointers” while the three related indices use
stored pointers.

5.2 Comparison with the AP-Tree

Being a more general index than the PLI-tree, the AP-tree
allows both insertions and deletions. The AP-tree favors
insertions at the expense of more complicated deletions.
The PLI-tree takes the full step and completely sacrifices
deletion. This has yielded a more compact and regularly
structured tree where it is feasible to compute “pointers.”
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Table 6 shows the fanout, the height, and the number of
pages used to store an AP-tree and a PLI-tree for different
page sizes.

The fanout of the PLI-tree is larger compared to the
fanout of the equivalent AP-tree because the pointers in the
nodes are eliminated. If it is assumed that timestamps oc-
cupy 64 bits [26] and pointers (Unix) 32 bits then the fanout
of a PLI-tree is approximately 50 percent larger than that of
an equivalent AP-tree. The height of PLI-trees and AP-trees
is calculated for an index on a backlog consisting of 1 mil-
lion pages. As can be seen, the height of the PLI-tree is
smaller than or the same as the height of the equivalent
AP-tree, depending on the page size. The number of disk
pages used for storing the PLI-tree and the AP-tree when
indexing 1 million pages, are also shown in Table 6 for dif-
ferent page sizes. As can be seen, the PLI-tree is approxi-
mately 33 percent smaller than the AP-tree.

Finally, the maximum number of disk accesses for mak-
ing an insertion into an AP-tree is 10 [8]. We have shown in
Section 4.3.2, that the maximum number of disk access to
make an insertion into a PLI-tree is six.

6 SUMMARY AND FUTURE RESEARCH

In this paper, we have taken a step in the direction of real-
izing efficient timeslice queries in transaction-time data-
bases. We have presented an efficient algorithm which can
precisely predict whether it is going to be more efficient to
incrementally or decrementally compute a timeslice from
previously computed and cached timeslices.

The algorithm uses a Pointer-Less Insertion tree (PLI-tree)
as an index on the transaction timestamps of the entries of
a backlog, a log-like storage structure for transaction-time
data. The algorithm improves, possibly quite substantially,
the performance of the timeslice operation in approximately
50 percent of all cases. In the remaining cases, there is a
very small, constant overhead.

The PLI-tree is similar to the B+-tree, but has been
designed for the specific purpose of being an ideal part
of the algorithm. The tree has a regular node structure; all
nodes[] root, internal, and leafd have the same format.
Next, all nodes in non-rightmost subtrees are completely
filled, and no node is allocated before it is used. With these

TABLE 6
A COMPARISON
OF AP-TREES AND PLI-TREES

Page size (bytes)
512 1,024 | 2,048 | 4,096 | 8,192
Fanout PLI-tree 64 128 256 512 1,024
AP-tree 41 84 169 340 681
Height PLI-tree 3 2 2 2 1
AP-tree 3 3 2 2 2
No. of pages PLI-tree 15,876 | 7,876 3,924 1,959 978
AP-tree 25,002 | 12,050 5,954 2,952 1,471
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properties, it has been relatively straightforward to also
eliminate all pointers from the tree and replace them by
computation. This gives a maximum fanout. Put together,
the result is a very compact and flat index that does not
waste space.

A main memory version of the PLI-tree has been imple-
mented as a proof of concept.

Several interesting directions for future research exist.
First, it would be interesting to implement the tree in
an extensible database system. Second, it may be observed
that the proposed tree is not helpful for all queries. Ex-
tensions or new indices are needed for, e.g., point and
range queries. Specifically, the combined use of other indi-
ces, e.g., the Time-Split B-tree [17], together with the
PLI-tree is an open problem. Third, we believe that further
insight may be gained from more elaborate performance
studies with real data.
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