| ncremental Join of Time-Oriented Data

Dieter Pfoser and Christian S. Jensen

TR-34

A TIMECENTER Technical Report

Title

Incremental Join of Time-Oriented Data

Copyright © 1998 Dieter Pfoser and Christian S. Jensen. All rights re-
served.

Author(s) Dieter Pfoser and Christian S. Jensen

Publication History September 1998. AiMECENTER Technical Report.

TIMECENTER Participants

Aalborg University, Denmark

Christian S. Jensen (codirector), Michael HHBn, Renato Busatto, Curtis E. Dyreson,
Heidi Gregersen, Dieter Pfoser, SimoSastenis, Janne Skyt, Giedrius Slivinskas,
Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector), Sudha Ram

Individual participants

Anindya Datta, Georgia Institute of Technology, USA

Kwang W. Nam, Chungbuk National University, Korea

Mario A. Nascimento, State University of Campinas and EMBRAPA, Brazil
Keun H. Ryu, Chungbuk National University, Korea

Michael D. Soo, University of South Florida, USA

Andreas Steiner, TimeConsult, Switzerland

Vassilis Tsotras, Polytechnic University, USA

Jef Wijsen, Vrije Universiteit Brussel, Belgium

For additional information, see ThaMe CENTER Homepage:

URL: <htt p://ww. cs. auc. dk/ resear ch/ DBS/ t db/ Ti meCent er/ >

Any software made available viaME CENTER s provided “as is” and without any express or implied war-
ranties, including, without limitation, the implied warranty of merchantability and fitness for a particular
purpose.

The TiIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-called
Runealphabet used one millennium ago by the Vikings, as well as by their precedessors and successors.
The Rune alphabet (second phase) has 16 letters, all of which have angular shapes and lack horizontal lines
because the primary storage medium was wood. Runes may also be found on jewelry, tools, and weapons
and were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.

Abstract

Data warehouses as well as a wide range of other databases exhibit a strong temporal orientation: it
is important to track the temporal variation of data over several months or, often, years. In addition, data
warehouses and databases often exhibit append-only characteristics where old data pertaining to the past
is retained while new data pertaining to the present is appended. Performing joins on large databases
such as these can be very costly, and the efficient processing of joins is essential to obtain good overall
query processing performance. This paper presents a sort-merge-based incremental algorithm for time-
oriented data. While incremental computation techniques have proven competitive in many settings, they
also introduce a space overhead in the form of differential files. However, for the temporal data explored
here, this overhead is avoided because the differential files are already part of the database. In addition,
data is naturally sorted, leaving only merging. The incremental algorithm works in a partitioned storage
environment and does not assume the availability of indices, making it a competitor to sort-based and
nested-loop joins. The paper presents analytical cost formulas as well as simulation-based studies that
characterize the performance of the join.

1 Introduction

Many databases exhibit an append-only behavior [Cop82]. This occurs when databases capture information
about processes. In data warehousing, business processes such as sales or buys are often captured [Kim96].
In scientific applications, physical, chemical, or, e.g., biological processes are monitored [JS94]. Many
applications, e.g., financial and medical [PJ98], are faced with accountability requirements that translate
into the requirement that all previously current states of the database be retained, which, in turn, dictates an
append-only behavior. This paper concerns such databases.

A fundamental and costly operation in any large database, e.g., in a data warehouse, is the join opera-
tion [ME92]. Its basic use is to meaningfully combine information distributed over pairs of relations in the
database. The cost of a join is directly related to the size of the argument relations, and even with sophis-
ticated join algorithms and indexing techniques, the worst-case c@détxsM, where N and M are the
numbers of tuples in the argument relations.

Faced with an expensive operation and potentially very large append-only relations, incremental com-
putation techniques deserve exploration. To compute a join, these techniques assume the availability of
the result of a previous computation of the join as well as descriptions of the modifications to the argu-
ment relations in-between the time of the previous computation and the current time. If these modifications
are relatively small, incremental computation is likely to be very efficient in comparions to recomputation
[KD79], [Rou91], [QW91].

This paper presents two join algorithms for append-only relations: a basic sort-merge-based algorithm
and its incremental version. The algorithms assume that the relations have associated an interval-valued
time attribute. Beyond this distinguished attribute, no assumptions about the numbers of other attributes
and their domains are made. For example, additional time-valued attributes may be present. The algorithms
exploit the property that the relations in many cases are sorted on their time attribute values. The join
predicate is the conjunction of an overlap predicate on the time attribute values and any predicate on the
remaining attributes. Hence the only competitor to our algorithms is the nested-loop algorithm.

Incremental computation techniques have proven competitive in many settings. However, they also
introduce a space overhead in the form of materialized results and differential files. For the append-only
databases explored here, the overhead of differential files is avoided because the differential files are already
part of the database. Knowing the time when the previously computed and stored result was computed, the
differential files can be extracted from the stored relations. This makes incremental techniques particularly
attractive in our temporal setting. The incremental algorithm works in a partitioned storage environment
(e.g., [AS88], [Sto87]) and does not assume the availability of indices.

The research on temporal joins can be characterized according tedtetion criteriaused in the
algorithms and by the techniques used for applying the reduction criteria. The reduction criterion in a join
is the aspect of the argument relations that is exploited to reduce the number of tuple comparisons and
thus to reduce the cost of the join. The criteria are the transaction-time (TT), valid-time (VT), and explicit
join attributes (EA) of tuples, and their combinations. Valid time captures when information is true in the
modeled reality, and transaction time captures when information is current in the database [SA85]. The join
techniques include sort-merge, partition-based, nested-loop, and incremental techniques [ME92]. Of these,
the nested loop join applies no reduction criterion. Table 1 gives an overview of research work categorized
by the above criteria.

Join Reduction criterion
technique TT VT VT+EA
Sort-Merge [LM93] [SS93]
this work
[GS91] | [GS91] | [GS91]
partition-based [LM92]
[SSJ94]
Nested Loop
Incremental this work

Table 1: Previous Work on Temporal Joins

Leung and Muntz [LM92] describe a partition-based algorithm in a multiprocessor environment. Soo et
al. [SSJ94] introduce a partitioning-based algorithm supporting valid time. Segev and Shoshani [SS93]
present an algorithm supporting valid time that assumes the argument tuples to be sorted on their join
attribute and then on the start of their valid-time attribute, in that order. Both algorithms are suitable for
transaction time as well. However, since the properties of transaction time are stricter than the ones that
apply to valid time, the algorithms tailored to valid-time data generally leave room for improvement when
used for transaction-time data. Leung and Muntz [LM93] present an algorithm that supports transaction
time. Itis assumed that the relations are sorted on the start of their transaction-time attribute. They do not
consider a partitioned environment. Both Segev and Shoshani [SS93], and Leung and Muntz [LM93] also
describe their algorithms in an abstract form without implementation details. Performance studies are thus
not reported. Gunadhi and Segev [GS91] present sort-based algorithms for joins of temporal relation with
and without considering join predicates on the non-temporal attributes. In this work, relations are sorted,
depending on the type of join (i.e., only on the temporal attribute, the explicit attribute, or both). Analytical
cost formulas and performance studies are reported. However, this work is limited to recomputation, does
not contend with partitioned storage, and does not consider the special timestamp

The outline of the paper is as follows. Section 2 gives the definition of, as well as an algorithm for, a
temporal join in a partitioned storage environment. Further, it presents an incremental join algorithm for
temporal data. Section 3 shows the cost of the algorithms using analytical formulas, whereas Section 4
presents simulation-based studies that characterize the performance of these join techniques. Finally, Sec-
tion 5 gives conclusions and directions for future work.

2 Temporal Joins

In this section we define the temporal join, introduce the patrtitioned storage scheme, and finally present a
recomputation, sort-based algorithm and its incremental version for computing the join.

2.1 Temporal Joinsand Partitioned Storage

While many temporal aspects of data may be of interest to various applications, we simply make the as-
sumption that relation schemas have at least one time-interval attribute. In addition, we assume that the
tuples are inserted in the order of the start times of their intervals. This ordering occurs naturally in many
situations, e.g., in data warehousing where business processes are captured over time and in scientific and
monitoring applications where chemical, nuclear, or, e.g., biological processes are captured.

We use a common 1NF tuple-timestamped data model for the representation of temporal data. Tuples in
a temporal relation have a set of attribute values and a timestamp. We assume the underlying time-line to be
partitioned into minimal-duration intervals, termed chronons. The timestamp of a tuple is represented as a
single time interval, denoted by inclusive starting and ending chronons. We will assume temporal relational
schemask and S of the format

R = (Ala) AnaT)
S = (Bi, ..., Bm, T),

where thed; andB; are the explicit attributes, arilis the interval-valued timestamp. We will u3eand
T to denote start and end times of values of T.

Examples of temporal relation schemas are DeptLocation = (Department, Floor, T) and EmpDepartment
= (Employee, Department, T). DeptLocation locates departments at various floors, whereas EmpDepartment
assigns employees to departments. Table 1 shows instances of the two schemas. In the examples, we use
nowas a special chronon denoting the present time {GTl

deptLocation empDepartment

Department| Floor T Employee| Department| T
Controlling | 1 1-2 Bill Marketing | 2-5
Controlling | 2 2-3 Dana Sales 4-6
Sales 5 3-5 Siggi Marketing | 5-now
Marketing | 1 4-6 Fox Sales 6 - now
Sales 2 6 - now Edgar Sales 7 - now
Controlling | 4 7 -now John Marketing | 9 - now
Marketing | 5 7 -now

Figure 1: Temporal Relations

Among the temporal aspects that one may associate with data, the aspgemtsadtion timeandvalid
time are the most prominent. The valid time of a tuple denotes when the information recorded by the
attribute values of the tuple is true in the modeled reality. Transaction time, on the other hand, is system-
maintained and captures when tuples are current in the database. Capturing transaction time offers an ideal
foundation for supporting accountability requirements to the application at hand.

The transaction time of a tuple is recorded by assigning the time, it is inserted into the database, as the
start time of its interval. The end time is the (growing) current time until the tuple is deleted. When that
occurs, the time of deletion is assigned to the interval end time. As a result, transaction-time databases
satisfy the sequential arrival-order property.

In summary, we assume that the time attribute has the sequentiality property of transaction time, but not
necessarily the semantics of it. Rather, it might as well be the case that a natural process, such as incoming
bank transactions, creates relations having the properties of transaction time, but the semantics of valid time.

Now, considering the join of temporal relations, tednd s be instances of schema#sand.S, respec-
tively. To compute the join of ands, tuples inr ands have to satisfy the join conditioff (snapshot join),
and their time intervals have to overlap. The attribute values of the tuple resulting from two qualifying

tuples are the explicit attributes of the two tuples and the overlap of the time intervals. An expression for a
temporal join using tuple relational calculus follows.

rxbs = {"mt2 | JrerIyes
(P(z,y)A
Z[Al, ceey An] = QJ[Al, ceey An] A Z[Bl, ceey Bm] = y[Bl, ceey Bm]/\
2[T] = z[T] Ny[T] A 2[T] Ny[T] # 0)}

From the expression above, we can see that our join algorithm does not réqaind T™ to be thesole
temporal attributes of the relation. Any of the explicit attributes can be temporal, too. Our algorithms will
work for any kind of join predicateé®. This join is a natural generalization of the conventional join, with
join predicateP, on non-temporal relations, in that it is snapshot reducible [Sno87] to this join.

We partition each temporal relation into a current and an old partition. Tuples that fulfill the criterion
T = now, i.e., they are current, are placed in the current partition. Tuples that are logically deleted are
placed in the old partition. As mentioned earlier, deleting a tuple means assigning an end-transaction time
to the tuple that is different fromow.

With this partitioning scheme, tuples in the current partition remain ordered by increfsiag new
tuples with later begin times are appended to the relation. Tuples in the old partition are ordered by increas-
ing T™, as tuples are appended to the old partition when they are logically deleted from the current partition,
and the time of deletion is assignedTo.

Using patrtitioned relations, a temporal join is computed as the union of the four joins of the current
partition relations-,,- ands.,., and the old partitionss,;; ands,.

T T T T T
r Wp 8 = Teur Wp Scur U Teur Wp Sotd U Totd Xp Scur UToid Wp Sola

In Table 2 we split our example relation into a current and an old partition.

| Department] Floor | T | | Employee| Department| T |
deptLocation,;, empDepartment,;,
Controlling | 1 1-2 Bill Marketing | 2-5
Controlling | 2 2-3 Dana Sales 4-6
Sales 5 3-5 empDepartment,.,, .
Marketing | 1 4-6 Siggi Marketing | 5-now
deptLocation,.,,,. Fox Sales 6 - now
Sales 2 6 - now Edgar Sales 7 - now
Marketing | 5 7 - now John Marketing | 9 - now
Controlling | 4 7 - now

Figure 2: Partitioned Temporal Relations

2.2 Temporal Join Recomputation

In the previous section we defined the temporal join in a partitioned environment. As the next step, we give
a recomputation algorithm for computing the join.

The whole recomputation algorithm for the join comprises four sub-join algorithms. The basic idea
behind the sub-joins is to exploit the orderings of the tuples with respect to their time attribute values. This
is similar to sort-merge joins when relations are presorted. However, the sub-joins differ from sort-merge
algorithms in that the predicate on the time attribute values is interval intersection instead of equality.

Figure 3 visualizes the four sub-joins of the temporal join. The tuples of the partitions are represented
by their time intervals. Time proceeds from left to right, and the dotted line symbolizes the current time.
Tuples are appended at the bottom. In the joins, the tuples are always read from the bottom to the top.

4

—_—

— —
T

P Teur NP Scur —
[— —
[time] now
e — —
— T —
— Tfcur NP Solg
— —
— —_
— . E—
P r o NP Scur —
— —
— —
— —
> —
A M oid g Sold
— —

Figure 3: Temporal Join for Partitioned Storage

In the pseudo-code for the algorithms that follonBNL loop” denotes the basic loop in a block-based
nested loop join [ME92, Dat95], with the additional property that conditions may be added that express the
skipping of tuples in the reading of the relations. We use this abstraction to concisely convey the principles
at play in the actual Java implementation that is used in the simulation studies, to be described in Section 4.

BNL, rcur Mg Scur

Two tuples qualify for the join result if they satisfy the join predicé&tend if their time intervals overlap.
When testing two tuples from the current partitions, the overlap test is omitted.

bnl{
allocate
relouter = SMaller relation;
relinner = larger relation;
buffer ,,ier = Max;
buﬁerinner = 11
BNL loop
if P(touter, tinner) then add to result;
END; }

As is customary, the smaller relation is the outer relation. We assume a buffer afstze2 blocks. One
block is used for output, one is used for the inner relation, and the remainder is used for the outer relation.
Tuple variables;,,.., andt,,.- range over the inner and outer relations, respectively.

H T T
TUpleSk'p, Tcur NP Solds Told l>4P Scur

The algorithm computing the join of a current partition with an old partition exploits the ordering of the
current partition on its interval start tinig,,, and of the old partition on its end tiniE} ;. The current
partition is the outer relation and the old is the inner.

The algorithm uses an aggressive buffer allocation strategy and allocates the maximum buffer size for
the inner relation. The reason is that the part of the old partition that is relevant for the join might fit in the

5

buffer, even if the whole relation does not. If, during the computation, further tuples of the inner relation
have to be read, the algorithm allocates the maximum memory-size for the outer relation, thus reverting to
the normal nested-loop behavior.

tupleSkig

allocate
reluer = CUrrent relation;
relinner = 0ld relation;

bUfferouter = 1;
buffer,, ., = max;
BNL loop

if (P(touters tinner) N overlap(touter [T], tinner[T])) then add to result;
if (touter [TF] > tinner [T4]) then

skip rest of tuples imelj,per; (*proceed with next € relyyter®)
if (size(tuples readl > buffer;,,.,) then

allocate
buffer ., = max;
bUﬂ:erinner = 1;
END; }

For each tuple in the outer relation, the algorithm scans the inner relation for matching tuples. As soon
asTt,,. > T, is true, the scan continues at the beginning of the inner relation for the next tuple in the outer
relation. If for the last tuple in the outer relation, the above condition is true, the algorithm stops.

Figure 4 and Table 2 exemplify the TupleSkip join. Table 2 shows the reduction of the join load with
this alogrithm. Tuple pairs that are inspected are marked by the letter “i”, and pairs that join are marked by
the letter “j”. Unmarked pairs that are neither inspected nor join represent the reduction over a nested loop

join.

Sales 2| 6-now
Marketing | 5| 7 - now ML
Controlling | 4 | 7 - now

Bill Marketing | 2
Dana| Sales 4 -

Figure 4:deptLocation,,, X5 empDepartment,;,

deptLocation,,,[T] || empDepartment,;,;[T]
2-5 4-6
6 - now i I j
7 - now i
7 - now i

Table 2: Reduction of Join Load with TupleSkip

BlockSKip, 7o1g X5 s414

The algorithm to compute the join of two old partitions is based on the ordering of the relatidhsTdre
maximum buffer is allocated for the smaller outer relation. Now, for each block in the outer relation, we
read through the inner relation. The algorithm proceeds with the next block of the outer relation if a tuple

6

read from the inner relation preceedl tuples currently in the buffer from the outer relation. Here the
algorithm differs from the previous one, for which the tuples in the outer relation are ordef€gand
the value ofT" is constant, i.e now.

blockSkip(

allocate
reluer = SMaller relation;
relinner = larger relation;

buffer,,., = max;
bUﬁer:inner = 11
BNL loop

if (P(touterstinner) N overlap(touter[T], tinner[T])) then add to result;
if (Vtouter € blockoyter (touter [TF] > tinner [Tﬂ)) then
skip rest of tuples imel;,ner; (*read next block ofelyyter*)
END; }

Similar to for the TupleSkip join, Figure 5 and Table 3 exemplify the BlockSkip join. Table 3 shows the
reduction of the join load with this alogrithm. The block size for the outer relation is two tuples, and the i's
and j's have the same meaning as before.

Controlling | 1| 1-2
Bill Marketing | 2-5 (T Controlling | 2 | 2-3
Dana| Sales 4-6 P | Sales 5|3-5
Marketing | 1| 4-6

Figure 5:empDepartment,;; X5 deptLocation,,

empDepartment,;;[T] deptLocation4[T]
1-2/2-3|3-5|4-6
2-5 [i i, j
4-6 i iy J i

Table 3: Reduction of Join Load with BlockSkip

Together, the three algorithms described in this section allow us to compute the four sub-joins and
thus the temporal join. We shall see next that the three algorithms also constitute the components of the
incremental temporal join algorithm.

2.3 Incremental Join Computation

Computing a join incrementally is possible if the result of a previous computation of the same join is
available. The incremental strategy is most attractive if the join is costly to recompute and if the changes
to the underlying argument relations since the most recent computation are small. For example, this may
apply to data warehouses, which are typically temporal and contain very large numbers of tuples, making
join and computation expensive.

The goal when designing an incremental algorithm is to maximize reuse of the previously computed
result. Since we do not physically delete tuples from our database, all the tuples of the outdated result will
also appear in the newly computed one.

In the following, we describe the updates to an outdated join result that are necessary to obtain the up-
to-date join result. Figure 6(a) shows the joins necessary to recompute the joinreexflthe argument
relationsr ands. The resultres comprises the current partitiaid and the old partitior.

Figure 6(b) shows the operations necessary to incrementally compute the new up-to-date joinsresult
on the argument relation$ and s’, by maximally reusing the old resultes. We first explain how the
relationsr ands evolve intor’ ands’, then explain the computation ofs.

r;\d S;\d
— ’ B B'=B
A=A A
i . old old
D D' =f uh
C=eug C Sy
Al o Od B — = EEE
e | F F' = F\f
E=Ee \E'|-----=----- Cur
Cur 1| EEEEreEEEEE
c :
E| cur S b cosog Ol 9] [T b H' H'=aHh
\ / Join AGT \ / TAH
J
res res, on
old I'= (AMB)U (AF) (B¢ B) |, ol
Old
7 J'=(C'xD’) U(C' xF’) U(C')H") U
K cur K= (ExF) — (E'® D) U(G'® D))
K’ ook K = K\k = K\((exF) U (E'xf)u (e« f))
Cur
L L' = (G xF) U(G’ xH') U(E xH')
(a) partitioned temporal join & (b) incremental join at

Figure 6: Overview Incremental Join Computation

As time progresses, new tuples are added to the relaticmsd s. The shaded parts of the boxes
representing the relations in Figure 6(b) show the changes between the two computations @atiches
t1). For relations’, we see that the tuple setsandg are added to the old partition. The getontains the
tuples that were current &t but were logically deleted betwegnandt;. The sely contains the tuples that
were inserted aftety, and logically deleted betwednandt;. Furthermore tuple se¥ is added to, and
sete is deleted from, the current partition. S€tcontains the tuples that were inserted affemd remain
current att;. The changes described above apply similarly.to

Considering now the composition of the restdt, similar explanations apply. The resuls com-
prises the current parfs’ and L', as well as the outdated parftsand.J’. PartK’ represents the part of the
result already computed &t which is K minus the set of tuplek. This set consists of all the tuples it
that derived from the setsand f of now outdated tuples. PaFtderives from the newly added tuples in
the argument relations. Pdfttis identical tol, the old partition of the outdated result. Pdrtierives from
tuples logically deleted afteg.

Below, we derive the expression to compui€, reusing the resultes. The naming of relations and
parts of relations is as depicted in Figure 6. The partioned join of two relatiamsl s’ comprises four
individual joins and can be written as follows.

TI Ng S, = (r,old U Tlcur) Mg (Si)ld U S,cur)

T T T T
= (roa Mp Spra) U (Tora Mp Seur) U (e Xp $010) U (T Xp Seyr)

~ v ~ v
e ~~

! ’
T‘@Sold Te€Scur

8

The objective is to transform this expression fi@sinto an equivalent expression that maximally reuses the
components of the outdated restit. To separate these preexisting components from the updated parts,
we substituted’ U ' for r/,,, E' U G' for r,,,., B U D' for s.,,, andF’ U H' for s, (cf. Figure 6(b)).

With each argument now consisting of four partitions, we obtain sixteen joins. These are shown in the first
“column” in the derivation given next. The second “column,” between the braces, gives equivalent reduced
expressions. The expressions after the braces to the left (in the third “column”) provide some of the key
properties used in deriving the reduced expressions.

r'®L s = (A'%E BU }:AN}TDB{A’:A,B’:B

(
(A" ™G (fUR)U /
F=F'Uf
A XLT FhU =AXD F
EA' Mi H’))U P { (A'XE Ry u A XL HY =0
((eUg) X} B)U ,
E=FEUe
E' XL BHU =EXLB
(ot B P { (935 B') U (G' ¥ B) =0
(C"xE DU
C' L Fhu
EC’ il H '))U } = "M sty
(E' %L D"u Ty
(G/ N; D’)U = Teur l>qP D

e

’
resold

E=EUeF=FUFf

E' x5 FyU }z(ENIT»F)\’f{ k= (eXE F)U(E' ™E f)u(exF f)

G’ N%F) H') } =¢ D<IITD Scur

e

’
TeScyr

Using the reduced expressions above, six joins compute the updated old parti§jpnand three joins
compute the updated current partitiord,,,.. In the derivation below, we isolate the parts from these
partitions already available from the outdated resuk,

The three joins that form padt of res’,, are already available as pdrt The remaining three joins
in part J' must be computed. The current partitiety!,,. is composed of the part&” andL'. PartK’ is

contained in the already availablé = E X F. To reusek, we deriveK’ by subtracting the components
of partk from K. For partL/ we need to perform two join operations.

" xE s = (AxE B)U
(AXE F)u =I=1T
(EXE B)U
(C" X% DU
EC, N; Slcm")U =.J

T
7Aé’u,r l>4P D/)U

res! .
(ExEP)\kU | =K' =K\ex F'\E' WL f\ e f

(E' XL H")U)
G/ NT = L
(P Seur)

~ J
~~

’
TeScyr

To incrementally compute the temporal jofrx% s/, we thus need to perform a total of eight joins. At
first sight, this might seem to be no improvement over the four joins necessary to recompute the result from
scratch. However, in the incremental computation, we reuse the old result, slightly updating it. Depending
on the outdatedness of the available outset, each of the eight joins will involve at most one large relation.
Such joins are efficient to compute.

Next, for the computation of the eight joins, we need not read the entire stored relatinds’, but
parts of them. Relations ands are updated t&f and s, respectively, in such a way that all parts used
in the incremental computation, namely, D', r..., scur, E', F', G', and H' are contained in blocks of
tuples newly added to the stored relations. Thus, if we know the gimewhich the outdated resutts
was computed (which we do), we can obtain the relations necessary to compute the newfasyarts
of stored relations by using conditional read operations. The tuplesid f are mixed into theZand F”
blocks in the relations,,,,. ands’,,,.

For the computation of the eight joins, we make use of the algorithms described in the previous section.
Below we show a simplified algorithm for the incremental computation of a temporal join. The function
subtrac{setl, set2) deletes all elements from setl that also occur in set2, whddseatl, set2) appends
all elements of set2 to setl. Thabtractoperation can be seen as an additional join operation, for which
the result consists of tuples in setl, but not in set2.

incr{

add(l, BlockSkip(C' X% D"));
add(l, TupleSkip(.., X5 D"));
add(l, TupleSkip6.., XL C"));
subtractK, TupleSkipe X5 F'));
subtractK, BNL(E' X% f));
subtrac{K, BNL(e X% f));
addK, BNL(G' XL s.,,));
add(K, BNL(E' XL H"); }

Having completed the design of the recomputation and incremental temporal join algorithms, the next
step is to gain an understanding of their performance characteristics.

3 Analytical Cost Formulas

This section presents formulas for estimating the costs of the algorithms presented in the previous section.
Specifically, the two following subsections give formulas for the cases of recomputation and incremental

10

computation. First, some general assumptions are made.

In general, the cost of the join ML s consists of the cost of input/output (IO) operatiotgy, plus
the CPU costCepry. We focus on the 10 cost and omit for simplicity the CPU cost. Next, the 10 cost
includes the cost of read (R) and write (W) operatiofig,and Cyy, respectively. Again for simplicity,
we do not distinguish between sequential and random IO operations. We expect most IO operations to be
sequential for all the algorithms. The cast for writing to disk is typically assumed to be identical for
algorithms computing the same results and is thus frequently ignored when comparing the costs of different
join algorithms. But when comparing recomputation and incremental computation, this assumption does
not hold, and we consequently consider this cost.

3.1 Recomputation

We give formulas foiCg, the disk read cost of the temporal join algorithms, based on data characteristics
including tuple lifespans and relation lifespans. Thple lifespanof a tuple is the duration of the tuple’s
time interval. Thaelation lifespanof a relation is the duration of the interval from the earliest start time of
a tuple in the relation to the latest end time of a tuple in the relation.

We assume tuples in the old partition of a relation have the same (standard) lifespan and also the lifes-
pans to bauniformly distributedover the lifespan of the partition. For the current partition of a relation,
where tuples end at the special chrommwand thus are still growing, these assumptions imply that there
are as many tuples inserted as there are tuples deleted, and that the lifespan of the current partition is iden-
tical to the standard tuple lifespan.

With these assumptions, we can develop a precise analytical cost formula that will serve as a good
approximation for more general cases. For example, the standard lifespan may represent well a situation
with an average lifespan and tuples randomly distributed over the relation.

The cost of a temporal join for partitioned storage is the sum of the costs of the four individual joins,
Tcur Mg Scury Tcur Mg Sold» Told N; Scur, @Ndryyg N; Sold-

The following formulas estimate the tuple reagsn blocks, wheren is the size of the main-memory
buffer in blocks, andr| is the size of relatiom in blocks. The functions seli};, rel,q) and sel2fel.,,,
rel,q) represent the selectivity of the BlockSkip and the TupleSkip algorithm, respectively.

Cr = lreurl + 7 sl + &)
reurl + Ll Se12 (s s00a) + @)
|7o1a| + Irotal |Scur| - 5€12(Scur, Told) + 3
|Tota| + |T;;lld| |So1d| - sell(ro1d, Sotd) (4)

The cost of a partitioned computation without the selectivity factors is in the rangetof|r| + |s| higher
than the cost of the regular nested loop computation without partitioned storage because we have to perform
four joins instead of one and thus also have to read each partition of the outer relation twice. The cost is
|| higher in the case none of the relations completely fit in the buffer, and is |s| higher in the case
a relation ¢ or s) fits entirely. However, by exploiting the orderedness properties of the relations, we can
reduce the costs of three of the four joins. This reduction is expressed by the selectivity factors sell and
sel2 in the cost formula.

The next step is to estimate the selectiviy factors for the BlockSkip and TupleSkip algorithms. Figure 7
gives graphical illustrations of the situations for these two algorithms. The relations at the top of the figure

11

are the outer relations in the join algorithms. In our case, those are the relgtiasdr.,,.. The inner
relations in the inner loop, in both casgg, are scanned sequentially for each tuple in the outer loop.

r r r
ttuple trel - t'fuple

t::el - t?el +t tsuple+ t {up\e
lod A Sl LY
rel tuple

s s r
trel - ttuple' ttuple

i
ther - tuple™ Liuple [Fod| tuple
ther = tiupie ; %
cur
S o .s _: s :
ttuple‘ trel ‘ttuple ttsuple the - ttsuple
NN — N
L T
ttuple ttuple
Sold ‘ . Soid —
ttUpIes |Sold I 0 t[uple |S Idl
el - tiuple t?el - tlsume 0
past [time] now past [time] now
T T
(a) Told l>qp Sold (b) Tcur l>qp Sold

Figure 7: Temporal Joins Using (a) BlockSkip and (b) TupleSkip

The derivation of the cost formulas is based on proportions using similar triangles. The sides of the
triangles we relate to each other are, horizontally, a time interval, and, vertically, a measure for the number
of tuples. We use these proportions to illustrate the correspondence between time and number of tuples, i.e.,
for a given time interval, starting anowand reaching chronons into the past, we want to know how many
time intervals of the relation, and thus with how many tuplesyerlaps with. In Appendix A.1 we derive
a formula that computes the number of tuples that start before a given time point. Consider now the time
interval #;,, . in the relations,; of Figure 7(a). This interval overlaps Wit ,;.)/ (t;e; — tupie) - [Sotd]
tuples ofs,;q. By using these proportions, we derive in the following sections and in Appendix A cost
formulas for the selectivity factors sell and sel2.

3.1.1 sel, BlockSkip

Figure 7(a) shows two relationg;; ands,;4 to be joined. For each tuple ig;4, all tuples froms,;,; that
satisfyT,' > T have to be read. In Figure 7(a), a dotted line shows this condition for the newest tuple in
roq- ONce atuple from,;y is read that does not satisfy this condition, the remaindgyofan be skipped

for the tuple inr,;4. The cost of the algorithm is given below and is derived in Appendix A.2. For relations
Toid @Ndsyq, We denote the lifespans of the relationsthyandt;,;, and the tuple lifespans b, . and

tiuple rESPECtively.

r s s r r s s r
sell = 0.5 - (1 + . ttupl:) . trel _rttupler_ ttuple trel - tril + ttl;ple + ttuple (5)
trel - ttuple trel - ttuple trel - ttuple

The formula is the sum of two parts. The first quantifies the selectivity for the tuplei§ }-4a;,,,;. —t7,.c)

in roq. The last tuple is the first for which we have to read all tuples,in In Figure 7(a), a dashed line
shows the link between the end of the last tuplg,jpand the beginning of the first overlapping tuple in
roq4- The second part of Formula 5 computes the “selectivity” of the remaining tuplgg, iior which we

have to read all tuples ig,q.

12

Assuming that both relations have identical tuple lifespdps, = t7,,. = tiuple, and thatty,p,. <
51, the expression for sell can be simplified to the following.

rel?

t:el + Qttuple - 05 N tiel (6)

sell =
t:el - ttuple
As an example, assuntg, = ¢, = 100 chronons andy,,;. = 1 chronon. These numbers mean that the
relations have equal lifespans and the tuple lifespan is small compared to the relation lifespan. In this case,
sell approaches 0.5. In general, the shorter the tuple lifefsparcompared to the relation lifespd,,
the smaller is sell and thus the cost for computipgX% s,4.

312 sa2, TupleSkip

In the following we give the selectivity for the join of a current partitigp and an old partitiors,;; using
the TupleSkip algorithm (cf. Figure 7(b)). For the old partitig, we denote the lifespan of the relations
by #7.;, and the lifespan of a tuple ki, .. In the case of the current relation, however, the tuple lifespan

equals the relation lifespan, denoted/hyThe formula below is derived in Appendix A.3.

sel2 =05 — 7
trel - ttuple

To exemplify, lett” = ¢§,,, = 10 chronons, and],, = 100 chronons. These numbers mean that the tuple
life spans are one tenth of the relation lifespan. In this ea@e:%. In general, the smallef in relation

tots ,, the smaller is sel2. In the extreme case, sel2 approaches values close to 0.

rel?

3.2 Incremental Computation

The costs of reading’r and writingCyy tuples for the incremental join algorithm (Section 2.3) stem from
the the costs associated with the computations of the eight constituent joins, in addition to the costs of
adding and subtracting these join results to and from the stored relations.

The incremental join algorithm reuses the sub-join algorithms from the recomputation algorithm that
we considered in the previous section. For all eight joins, at least one of the joining relations is expected to
be small, thus yielding a relatively low cost of computing all eight joins. The cost of the add operations is
simply that of writing the tuples to file. The incremental algorithm also incorporates the deletion of tuples
(partk) from the current partition of the old result (pdtl). This deletion can be computed as a join with a
predicate that returns tuples that arddnbut not ink.

The total cost of the incremental computation is the cost of the eight sub-joins plus the cost of reading
and writing for adding and subtracting the results of those joins (cf. Section 3.1).

4 Performance Study

This section first explains the overall design and objectives of the study, including data generation. It then
proceeds to compare the recomputation algorithms and finally compares recomputation with incremental
computation. A summary of the findings is included at the end.

4.1 General Considerations

Using the implementations of the join algorithms described earlier in the paper, this section reports on
simulation-based experiments aiming at understanding the performance characteristics of the proposed al-
gorithms.

13

The studies aim to obtain insight on a total of three aspects. First, it is of interst to understand how
the performance of the nested-loop (NL) versus the sort-merge-based (SMB) joins relate for varying main-
memory sizes. Second, the characteristics of the NL and SMB joins for varying kinds of argument data
are of interest. In particular, it is of interest to learn for what kinds of data, the NL join outperforms the
SMB join and vice versa. Third, itis relevant to learn under what circumstances recomputation outperforms
incremental computation, and vice versa.

As the performance measure, we use the number of input/output (I10) operations. The read operations
encompass random as well as sequential reads, with random reads weighted with factor 10. For the com-
parisons of recomputation algorithms, such as the NL and our SMB algorithm, we do not consider write
operations. However, when comparing incremental computation with recomputation, the number of write
operations will differ among algorithms and are thus included in the performance measure.

Parameter Unit Standard | Other Values | Comments

Relation size tuples 20,000

Relation lifespan chronons 75,000

Distribution of intervals uniform

Buffer size fraction of total| 1/16 1/1, 1/2, 1/4,

relation size 1/8, 1/32, 1/64

Tuple lifespan chronons 1,600 2%, 4x, 8x, 16X multiples of a
single lifespan

Number of long lived % of tuples 0 10, 20, 30,

tuples 40, 60, 80

Outdatedness of old resultchronons from| 0 5, 15, 25, 35, | inthousands qf

used for inc. comp. now 45, 55, 65 chronons

Table 4: Performance Study Parameters

The simulations in the study use different settings for various parameters, incladingmemaory size
anddata characteristicsThe data characteristics considered includg#ireentage of long-lived tuplesd
thetuple length both of which affect the selectivity and thus the cost of a temporal join. Table 4 presents
the parameters, their units of measurement, and their standard settings. The first three parameters are fixed
throughout the performance studies at their standard values. For the remaining parameters, the standard
value is used unless explicitly stated otherwise. For these parameters, the values beyond the standard settings
are also reported, and explanatory comments are offered where appropriate.

To keep the experiments manageable while still obtaining realistic results, we use relatively small re-
lations of size 20,000 tuples, but then compensate by also assuming a small block size, where one block
corresponds to one tuple. Following these decisions, all sizes are reported in numbers of tuples.

For the experiments we generate data using the TimelT software [KS98]. TimelT is a system for testing
temporal database algorithms, and it contains a database generator that generates interval timestamped
temporal relations. Both the positions of timestamps within the lifespan of a relation, as well as the duration
of the timestamps can be selected from several distributions, including uniform, normal, constant, and
percentage breakdowns. As an example of the latter, 25% of the timestamps’ start times may be determined
by a uniform distribution between 1000 and 10000 chronons, and 75% might then be normal distributed
with 5000 chronons as the mean; the durations of the tuples would be specified by separate distributions.
Explicit attributes may be specified with similar distributions.

14

4.2 Comparing Recomputation Algorithms

In this section, we compare the SMB algorithm to a version of its existing competitor, the nested-loop (NL)
join. The NL algorithm is not based on partitioned storage, thus we do not impose the cost of reading parti-
tioned relations onto the algorithm. These experiments should furthermore show under what circumstances
a partition-based algorithm (SMB) can outperform a non-partitioned competitor (NL). We compare the al-
gorithms under varying parameter settings, specifically, using varying main memory buffer sizes, varying
percentages of long-lived tuple timestamps, and varying timestamp lengths.

421 Sensitivity to Main Memory Buffer Size

An important factor for join performance is the size of the main memory available for the join. In the present
experiment we compare the NL and SMB joins under varying main-memory buffer sizes. The buffer sizes
are specified in fractions of the size of one relation. We use 1/1, 1/2, 1/4, 1/8, 1/16, and 1/32 as main
memory buffer in our experiments. All other parameters assume their standard values, as shown in Table 4.
Figure 8 presents the results. The experiments show that the SMB join yields better performance for small

700,000 -

600,000 A .

500,000 | —=— PartJoin /
—— BNL Join /

400,000

10[1]

300,000
200,000

100,000

0 T T T T 1
1/1 12 1/4 1/8 1/16 1/32

memory [1]

Figure 8: NL Versus SMB Join for Varying Buffer Sizes

main-memory sizes. In this case, the SMB join’s reduction criteria are successful in reducing the cost of
computation. However, in the case one relation fitting entirely in memory, the NL join performs better due
to the additional reading cost for a join in a partitioned storage environment (cf. Section 3.1).

4.2.2 Effectsof Long-Lived Tuples

An aspect of data that typically affects the performance of a temporal join is the fraction of tuples with an
untypically long interval timestamp. For our experiments, we choose a duration of 10 times the average of
standard tuples for long-lived tuples. Figures 9(a) and (b) show the performance of the NL and SMB join
under varying percentages (10% to 80%) of long-lived tuples. In addition, we conducted these experiments
with two different buffer sizes. The results show that the performance of the SMB algorithm degrades with
increasing percentage of long-lived tuples, whereas the NL algorithm remains unaffected. The effect of
long-lived tuples on the degradation of the join performance seems weaker in the case of large buffer sizes.
Increasing the tuple lifespan means that the algorithm is forced to read more tuples. The IO cost associated
with this becomes relatively smaller as the buffer size increases. Thus, with a large buffer available, an
increased number of long-lived tuples has a much smaller effect on the join performance.

15

350,000 80,000

A ——— — — A ——— — — Ak —— — — — A —— —— —4

330,000 75,000 #——

310,000 70,000

= =+ SMB =
8 -+ NL e - SMB
290,000 - 65,000 —+ NL
270,000 4 " 60,000 4~ ————— 4 ————— e e B
l»/’/./_/k ——
250,000 T T T T l 55,000 T T T 1
10 20 30 40 60 80 10 20 30 40 60 80
long-lived tuples [%)] long-lived tuples [%0]
(a) buffer size 1/16 of relation size (b) buffer size 1/2 of relation size

Figure 9: NL Versus SMB Join for Varying Percentages of Long-Lived Tuples

4.2.3 Effectsof Varying TupleLifespans

In the previous section, we varied the number of long-lived tuples relative to the total number of tuples in
the relation. Another approach to affect the temporal characteristics of the argument temporal databases is
to vary the lifespan of all tuples. The results obtained when doing this are shown in Figure 10. It can be

350,000 +
300,000 -

250,000 -

10[1]

—=— SMB

200,000 4 e NL

150,000
1 2 4 8 16

tuple length [mult. of simple length]

Figure 10: NL Versus SMB Join for Varing Tuple Lifespans

seen that the performance of the SMB join degrades with increasing tuple lifespan. This result matches the
analytical studies in Section 3 that show that the selectivity factors sell and sel2 approach 1 as the tuple
lifespan increases. In the case that the number of outdated tuples is rather large compared to the number of
current tuples, the cost of the whole join operation is mostly determined by the BlockSkip algorithm. Thus,

if the selectivity factor for this join, sell, converges to 1, the cost of the whole join converges to the cost of
the equivalent NL join.

4.3 Incremental Computation Ver sus Recomputation

The experiments reported here aim to explore the break-even point between the incremental and SMB
joins. The degree of outdatedness of the outset for an incremental join fundamentally affects the relative
performance of the two. We adopt the outdatedness of the old result as the parameter that we vary in the
experiments. We assume that the incremental join (and the recomputation join) take place at the current
time. In Figure 11, the:-axis indicates the outdatedness of the outdated result by giving the time at which

the outdated result was computed in numbers of chronons before the current time where the incremental

16

250,000 ~

200,000 & " " 4 A S

150,000 - P
‘ .

100,000

101

—&— Inecr, 1/1
—&— Recomp, 1/1
- & - Incr, 1/8
-4 - Recomp, 1/8
---m-- Incr, 1/16
-4 Recomp, 1/16

50,000 -

0 T T T T T 1
5,000 15,000 25000 35000 45000 55000 65,000

outdatedness [chronon]

Figure 11. Recomputation Versus Incremental Computation using Varing Outdatedness and Buffer Sizes

computation is performed. We conducted our experiments for buffer sizes of 1/1, 1/8, and 1/16 of the
relation size.

In the performance measurements, we encountered the situation that the outdated current @aytition (
of the result (cf. thesubtract) operation in Section 2.3) did not contain any current tuples, and thus was
completely moved to the old partition of the result.

The break-even point between incremental computation and recomputation in Figure 11 is at about
37,000, 50,000, and 60,000 chronons for the buffer sizes of 1/1, 1/8, and 1/16, respectively. This means
when an old result was computed at a time corresponding to chronon 38,000, 25,000, and 15,000, respec-
tively, or later, incremental computation is better than recomputation.

Viewing these results in the light of the experiments in Section 4.2.1, one would expect incremental
computation to always be better than recomputation. This is not always the case as these experiments show.
To incrementally compute a join we need to compute eight individual joins (Section 2.3). The results of
those eight joins need to be added to or subtracted from existing relations. The cost of computing these joins
and the cost of adding and subtracting the respective results can be higher than the cost of recomputation.

Increasing the buffer size also disfavors the incremental computation, since larger buffer size means
generally lower cost of join computation (cf. Section 4.2.1).

4.4 Summary of Performance Study

The sort-merge based (SMB) algorithm outperforms the nested-loop (NL) algorithm, except when main
memory is so large that an entire relation fits in memory.

The temporal relation parameters, tuple lifespan and percentage of long-lived tuples generally have a
smaller impact on the performance of the SMB algorithm than does the main-memory buffer size.

We compared the performance of the SMB algorithm to its incremental version, varying both the out-
datedness of the argument join result in the incremental computation and the buffer size. The studies favor
the incremental algorithm for the cases of low to modest outdateness. The degree of outdatedness necessary
to competitively perform an incremental computation varies with the main memory size. The smaller the
buffer size, the more outdated a result can be while incremental computation being superior to recomputa-
tion. Generally, the results suggest that incremental computation may be applied in many situations where
recomputation would be a waste of resources.

17

5 Conclusions and Future Work

The paper formally defines a temporal join of two temporal relations and extends this definition to apply also
to a partitioned storage environment. The paper then proceeds to define and study the characteristics of two
new join algorithms for temporal relations with append-only characteristics, a sort-merge based algorithm
and its incremental version.

The algorithms assume that the relations have associated an interval-valued time attribute. Beyond this
distinguished attribute, no assumptions about the numbers of other attributes and their domains are made.
The join predicate is the conjunction of an overlap predicate on the time attribute values and an arbitrary
predicate on the remaining attributes. The algorithms work in a partitioned-storage environment, which
is realistic for very large relations. That is, current and outdated tuples of a temporal relation are stored
separately in a current and an old partition, respectively.

The paper includes analytical cost formulas for the joins and also reports on simulation-based perfor-
mance studies. The performance studies show the sort-based algorithm to be an improvement over the only
existing join algorithm that contends with the same class of predicates, hamely the nested-loop join. Only in
the case of large buffer sizes is the nested-loop algorithm competitive. This is due to the additional reading
cost for the join of partitioned relations (four sub-joins), as opposed to the nested-loop join of unpartitioned
relations (one join). This indicates that the sort-based algorithm is an overall good replacement for the
nested loop algorithm for the data considered in this paper.

The included evaluation of the performance of the incremental algorithm with respect to the recomputa-
tion algorithm show the incremental algorithm to be superior when the available outset for the computation
is outdated to a low or modest degree. The maximum degree of outdatedness possible, while still having
the incremental algorithm be competitive, grows with decreasing main memory size. While incremental
computation techniques have proven competitive in many settings, they also introduce a space overhead in
the form of differential files. For the temporal data explored here, however, this overhead is avoided because
the differential files are already part of the database.

This research points to several directions for future research. When performing incremental computa-
tion, previous join results must be cached for future use. Assuming that only limited disk space is available
for caching, caching should be selective. Additional research in caching policies and cache replacement
policies is warranted. Next, spatiotemporal data in many cases arrive at the database in a time-ordered
fashion, thus meeting the assumptions made in this paper. Extending the join algorithms proposed here, or
devising entirely new algorithms, is a relevant and interesting direction. The lack of good spatiotemporal
indices adds to the relevance of this direction. Finally, the result of an incremental computation is sorted
if it is cached for use in a later join computation. The optimal integration of this sorting in the algorithms
remains to be explored.

Acknowledgements

The authors are with Department of Computer Science, Aalborg University, Fredrik Bajers Vej 7E, DK—
9220 Aalborg @, DENMARK({pf oser |csj }@s. auc. dk. This research was supported in part by the
Danish Technical Research Council through grant 9700780, by the CHOROCHRONOS project, funded by
the European Commission, contract no. FMRX-CT96-0056, and by the Nykredit Corporation.

A Analytical Formulas

In this appendix, we derive the selectivity factors sell and sel2 used in the analytical cost formulas for the
BlockSkip and the TupleSkip join algorithms. The formulas for sell and sel2 are shown in Formulas 5 and

18

7 in Section 3.1. To give a cost formula for the join of two relatiorend s, we consider how many tuples

in the respective relations can possibly join. We disregard the explicit join attribute and consider only the
time interval of the tuples as the join criterion. Thus, two tuples join if their time intervals overlap. Making
certain assumptions about the properties of the time intervals in the relatsonss, we can give estimates

for how many tuples have to be read.

A.1 General Considerations

A first step is to develop a formula that computes the number of tuples that end after a given time point.
This formula becomes useful for the cost formula of the temporalrjoff s, for which we want to know
how many tuples of, we have to read for each tuplesin

,,,,,,,,,,,,, Sold
VVVVVVVV ‘ Iasttuplé\ ‘777777777777777777777777777}
‘ ‘ \\\‘ N ‘ | ttsuple:4
| e | te=10
of tuples | - _ o soa | =7
] |]
‘ firsttuple >~ _ J
time [chronon] ‘x+1‘ x+2‘ x+3‘ x+4‘ x+é x+é x+7‘ x+é x+§ x+iO

Figure 12: Relating Number of Tuples to Elapsed Time

Consider now Figure 12. Here we show the old partitigp containing 9 outdated tuples. In the
x-direction of the coordinate system, we depict the time relative to an arbitrary timepoint x. In the y-
direction, we measure numbers of tuples. The tuples in Figure 12 are symbolized by bars of length 4. The
length represents the tuple Iifespﬁ[})le in chronons. The lifespan of the whole relation is 10 chronons.

In Figure 12, two tuples are labeled “first tuple” and “last tuple,” respectively, to indicate which tuple we
encounter first and last when traversing the relation.

The quantity we want to express is the sum of tuples per time unit. To do this, we make use of the
dashed triangle in Figure 12. The height of the triangle is the number of tupdgs iPhe width is the time
interval from x+10 to where the tuple preceding the last tuple (the dotted tuple in Figure 12) would end.
This point is determined by subtracting tsgacingbetween consecutive ends of time intervals fromehe
of the last tuple To obtain a formula for the length of the spacing between end points, we have to distribute
the end points of thés,4| time intervals, in our example 7, over the tuple lifesgan which is 10 (from
x+1 to x+10). The last tuple starts at the beginning of the relation lifespan, at x+1. It emd}sj%e, in
our example x+4. Thus, the time interval we have to distribute over ol;4)(end points, is 6 chronons,
from chronon x+5 to chronon x+10. Thus is computedigs- ¢,,,,.. Now, we have to distribute the 7
(Iso1a]) €nd points over this interval, where the first end point shall be at the beginning of the interval and
the last shall be at the end of it. This means we havé {s,4| — 1) spaces between the end points. The
length of the spacing can thus be computedf)y — t/,.,;.)/ (|So1a| — 1)

Effectively, the width of the triangle is computed by subtracting one tuple lifespan from the relation lifes-
pan and adding the above derived spacing for tuple ends to it. Thisfgjves,, .+ (7., —tupe) / (So1al —

1). In our example, the width of the triangle would be 7.
By now, having both the height and the width of the triangle, we can express the quantity of tuples per

19

time unit.
tuples |s]

(8)

tf’elitsu le
T
In the example shown in Figure 12, this ratio is 1. Transforming Formula 8, we obtain the following much

simpler expression.

time s s
trel - ttuple

tuples ls|] — 1 |s]
= & : ©)

: s s
time trel - ttuple trel - ttuple

For the derivation of the cost formulas, we simplify the formula by ugijgnstead of|s| — 1 in the
numerator. For a moderate number of tuples, this simplification will yield negligible differences from all
prior formulas.

A.2 BlockSkip

In the case of the BlockSkip algorithm, two old partitions are joined. Figure 7(a) shows the time intervals
of the relations,;; ands,;y. For each tuple of,;, - the relation in the outer loop of the algorithm - we
want to know how many tuples @f,;;, we have to read. The cost of the whole join is then the sum of reads
over all tuples irv,q.

At this point, note that the reasoning below only applieﬁ})fle, the typical tuple lifespan of,,, is
shorter thart;,, — ¢}, If this condition does not hold, it means that already for the first tupig.nwe
have to read all the tuples #y,4. In this case, we have no additional selectivity, and sell becomes 1.

For the first tuple i, that has a lifespan dof,,,, we compute by using Formula 9 that we have to
read(t;,,.)/ (tre1 — tiupie) [01a| tuples froms,,q. The dotted line in Figure 7 illustrates this situation.

Now, sincet;, is bigger thart;_;, we will reach a tuple im,;; that overlaps with the last tuple &f;.
This means that for this and all the following tuplesgn, we have to read the entire relatig. This is
the case for tuple numbet;,; — ¢, ... — tupie) / (trer — tupie) * 1Totd| OF 7ol

We split the formula to compute the total number of tuples, we have to readgfgnmto two parts:
one for the tuples im,,; for which we do not have to read the entire relatigp, and another for which we
have to.

For the first part, we use the formula of an arithmetic series. Generally thg,safm elements of an
arithmetic series is, = n - (a1 + a,)/2, Whereq; is the value of the first element aigl is the value of

the last element. Using the numbers derived for our case we get the following.

S S T T
Il “tuple = “tupl tupl
Sp =05 TE—— L L] (L | Sora] + |Sotal) (10)
th =1 >, —t
rel tuple rel tuple

For the second part, we have to read for each of the remaining tupigsah the tuples ins,;4.

r s s r
2 trel - trel + ttuple + ttuple
n - r r

trel - ttuple

s “|rotd| - [Sotdl (11)

The total number of reads fay,, is the sum ofs. ands?. By factoring out|ryg| - |soa|, We obtain
Formula 5 for sell, shown in Section 3.1.

A.3 TupleSkip

In the case of the TupleSkip algorithm, a current partition is joined with an old partition. Figure 7(a) shows
the time intervals of the relations,,- ands,;4. The relationr.,, is the one in the outer loop of the join.

20

Thus, we have to read all its tuples once. We want to know, for each tuplg diow many tuples of,;4,
we have to read.

For the first tuple in,,., we assume that its lifespan is 0. Thus, we do not have to read any tuples from
so1q for it. Making this assumption simplifies the cost formula. For the last tuple in the current partition, we
have to readt;, ,;.)/ (£} — tiupie) * S0l tuples froms,q.

By again using the above formula to compute the sum of elements of a arithmetic series, we obtain the

following formula for the number of tuples, we have to read frgin

tT‘

— 5

Sp=0.5- |7"cur| . (0 . |50ld| + I
rel tuple

“|S01dl) (12)

By factoring out|rcy,| - |04/, We obtain the Formula 7 for sel2, as shown in Section 3.1.

References

[AS88] I. Ahn and R. T. Snodgrass. Partitioned Storage for Temporal Databedesnation Systems
13(4):369-391, 1988.

[CDI*97] J. Clifford, C. Dyreson, T. Isakowitz, C. S. Jensen, and R. T. Snodgrass. On the Semantics of
“now” in DatabasesACM Transactions on Database Syste@#%(2):171-214, June 1997.

[Cop82] G. Copeland. What If Mass Storage Were FrdBEE Computer Magazinel5(7):27-35, July
1982.

[Dat95] C. J. DateAn Introduction to Database Systenfsddison-Wesley, 6th edition, 1995.

[GS91] H. Gunadhi and A. Segev. Query Processing Algorithms for Temporal Intersection Joins. In
Proceedings of the IEEE Conference on Data Engineerpagges 336—344, Los Alamitos, CA,
USA, April 1991.

[JS94] C.S.Jensen and R. T. Snodgrass. Temporal Specialization and GeneralZ&ttomransactions
on Knowledge and Data Engineering(6):954-974, 1994.

[Kim96] R. Kimball. The Data Warehouse Toolkilohn Wiley & Sons, Inc., 1996.

[KD79] K. C. Kinsley and J. R. Driscoll. Dynamic Derived Relations Within the RAQUEL Il DBMS. In
Proceedings of the 1979 ACM Annual Conferemages 69-80, October 1979.

[KS98] N. Kline and M. Soo. Time-IT, the Time-Integrated Testbed. URL:
<ftp://ftp.cs.arizona.edu/timecenter/time-it-0.1.taxgLurrent as of August 18, 1998.

[LM92] T.Y.C.Leungand R. R. Muntz. Temporal Query Processing and Optimization in Multiprocessor
Database Machines. IRroceedings of the International Conference on Very Large Databases
pages 383—-394, Vancouver, Canada, August 1992.

[LM93] T.Y.C. Leung and R. R. MuntzStream Processing: Temporal Query Processing and Optimiza-
tion, In A. U. Tansel et al. (editors), Temporal Databases: Theory, Design, and Implementation,
Chapter 14, pages 329-355. Benjamin/Cummings, 1993.

[ME92] P. Mishra and M. H. Eich. Join Processing in Relational Databa8€dvi Computing Surveys
24(1):63-113, March 1992.

21

[PJ98] Pedersen, T. B. and C. S. Jensen. Research Issues in Clinical Data WarehouRiageddings
of the Tenth International Conference on Scientific and Statistical Database Manag@ages
43-52, July 1998. IEEE Computer Society.

[QW91] X-L. Qian and G. Wiederhold. Incremental Recomputation of Active Relational Expressions.
IEEE Transactions on Knowledge and Data Engineer®():337-341, 1991.

[Rou91] N. Roussopoulos. An Incremental Access Method for Viewcache: Concept, Algorithm, and Cost
Analysis. ACM Transactions on Database Systef®(3):535-563, September 1991.

[SA85] R. T. Snodgrass and I. Ahn. A Taxonomy of Time in DatabasesPréweedings of the ACM
SIGMOD Conference on the Management of Datages 236-246, Austin, TX, May 1985.

[Sno87] R. T. Snodgrass. The Temporal Query Language TQUW&IM Transactions on Database
Systemd 2(2):247-298, June 1987.

[SS93] A. Segev and A. Shosham\ Temporal Data Model Based on Time Sequenbes. U. Tansel
et al. (editors), Temporal Databases: Theory, Design, and Implementation, Chapter 11, pages
248-270. Benjamin/Cummings, 1993.

[SSJ94] M. D. Soo, R. T. Snodgrass, and C. S. Jensen. Efficient Evaluation of the Valid-Time Natural
Join. InProceedings of the IEEE International Conference on Data Enginegpages 282—-292,
February 1994.

[Sto87] M. Stonebraker. The Design of the POSTGRES Storage Systefro¢eedings of the Inter-
national Conference on Very Large Databaspages 289-300, Brighton, England, September
1987.

22

