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Abstract

With the widespread and increasing use of data warehousing in industry, the design of effective data warehouses
and their maintenance has become a focus of attention. Independently of this, the area of temporal databases has
been an active area of research for well beyond a decade. This article identifies shortcomings of so-called star
schemas, which are widely used in industrial warehousing, in their ability to handle change and subsequently
studies the application of temporal techniques for solving these shortcomings.

Star schemas represent a new approach to database design and have gained widespread popularity in data
warehousing, but while they have many attractive properties, star schemas do not contend well with so-called
slowly changing dimensions and with state-oriented data. We study the use of so-called temporal star schemas
that may provide a solution to the identified problems while not fundamentally changing the database design
approach. More specifically, we study the relative database size and query performance when using regular star
schemas and their temporal counterparts for state-oriented data. We also offer some insight into the relative ease
of understanding and querying databases with regular and temporal star schemas.

1 Introduction

Data warehousing is one of the fastest growing segments of the database management market, which, in turn,
is one of the biggest markets for software. The area of data warehousing has grown out of a need for decision
support that was not met by existing database management technologies. Without data warehousing, the data of
an enterprise resides in different databases that belong to systems aimed at supporting the day-to-day business
of the enterprise. These databases are often termed operational data stores, and the systems are termed on-line
transaction processing systems (OLTP systems) or operational systems. Paraphrasing Kimball [7], OLTP systems
are designed to meet the needs of someone whoturns the wheels of an enterprise. As a result, these systems do
not meet the needs of someone whowatchesthe wheels and tries to find the ways of making them turn even better.
The objective of data warehousing is to meet this need by enabling enterprises to exploit the data that is entered
into their operational data stores for decision support, allowing them to base business decisions on careful analyses
of accumulated data capturing the past performance of the enterprise.

To enable such analyses, a data warehouse system typically employs its own hardware and software and is
separate from the operational systems. Data is extracted from the different operational data stores, is integrated,
and is loaded into the data warehouse database, where it is then accumulated to make the database cover perhaps
the past 5–10 years. The process of loading operational data into the warehouse is typically performed at regular
intervals, e.g., every night. This architecture implies that the life cycle of the data warehouse consists of two
alternating phases: the relatively short loading phase, where new data is inserted, and the querying phase, where
data is not updated, only queried.

Data in data warehouses must be organized so that it is possible to query and analyze it on-line in the ways
required by the analysts. It should be easy to formulate and execute queries. Most often these queries will not
have a large answer set, but their execution can involve scanning huge amounts of data. Naturally, the requirement
is to make these queries run as fast as possible.

To fulfill these goals, the organization of data in a data warehouse must be considered very carefully. Dimen-
sional data modeling is one of the main techniques used for this purpose, and star schemas serve as the means
of representing dimensional data in relational databases. Star schemas are restricted types of relational database
schemas where there is one central table, termed a fact table, and a number of other tables, termed dimension ta-
bles. The fact table has a foreign key reference to each dimension table, and the dimension tables have no foreign
key references. For example, each row in the fact table could model a sale of a product and would then record the
quantity sold. There might be dimension tables that record information about the products for sale, and the times
when products are sold. A fact table row then references the product dimension row describing the product being
sold and the time dimension row describing the time of the sale.

While being widely used and possessing desirable features, star schemas do not contend well with changes
to the dimension tables, and they also do not contend well with state-oriented data, which occur if fact table
rows record information that remains valid for a duration of time (the rows for sales in the example above model
instantaneous events).

This paper studies the use of techniques from temporal databases for solving these problems. It describes
temporal star schemas and provides a case-based, empirical comparison of temporal star schemas with regular
star schemas, considering database size and query performance, as well as the ease of formulating queries. The
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temporal star schemas considered here capture valid time [6, 11], the time when the facts stored in the database
are true in the modeled reality.

The novel notion of temporal star schemas was introduced in a white paper by Leep Technology, Inc. [9].
While the performance of various representation schemas for temporal data has been the object of study (e.g., [1]),
we are not aware of any works that have studied the size, query performance, or user-friendliness of temporal star
schemas.

The paper is outlined as follows. Section 2 introduces star schemas as well as the distinction between state-
oriented and event-oriented data. With this background in place, the identified problems that motivate this study
are presented. Section 3 then describes the proposed solution to the problems, namely temporal star schemas,
covering both state-oriented and event-oriented data. Having presented the solution, Section 4 proceeds to describe
the settings for the experimental comparison of temporal and regular star schemas. Sections 5 and 6 compare
database size and and query performance, respectively. The latter section also reports on our experiences with the
relative ease of understanding and querying the two kinds of star schemas. Finally, Section 7 concludes the paper.

2 Star Schema Problems

As a precursor to presenting the identified problems with regular star schemas, these are introduced, and we
consider the different data representations that are used for event-oriented and state-oriented data.

2.1 Star Schemas

As stated above, a star schema is a collection of tables where one central table, the fact table, contains foreign
keys to all other tables, the dimension tables, which do not contain any foreign keys. A row in a dimension table
contains data, typically textual, that describes aspects of rows in the fact table. Fact table rows typically contain,
in addition to their foreign key references, one or more measured values, typically numerical, that describe some
business process. The presence of a time dimension that describes when the measured values are in effect is a
defining property of a data warehouse [3].

Let us take as an example a company that has a chain of stores that sell various products. The fact table records
sales, and there are dimension tables Product, Store, and Time that describe the products being sold, the stores
where the products are sold, and the times of the sales. The star schema is shown in Figure 1. A fact table row
may thus store the information that “on April 28, store X sold 200 items of product Y.”

StoreID
Address
City

STORE

ProductID
ProductTitle
UnitPrice

PRODUCT

TimeKey
DayInMonth
WeekDay
WeekInYear
MonthInYear
Year

TIME

ProductID
TimeKey
StoreID
QuantitySold

SALES

Figure 1: Sample Star Schema

Thegranularity of the measured values in the fact table rows is product by store by day. A single row then
records all sales of a single product from a single store that occurred on a single day. Other possible granularities
for the time dimension include minute, hour, week, and month. The choice of granularity affects the level of detail
for the recorded information and the size of the database.

There is a difference between the attributes in fact versus dimension tables. The non-key attribute values in
the fact table usually are numerical and vary continuously, e.g., a storeeach daysellsvariousquantities of its
products. In contrast, the dimension table attribute values such as store addresses and product titles are textual,
discrete, more or less stable, and serve as constraints in the business analyst’s queries. However, sometimes the
value of some attributes from the dimension tables change, and methods are needed to ensure that data in the
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database remains correct and consistent. Such dimensions, where some attribute values may change, are called
slowly changing dimensions and are discussed in detail in Section 2.2 below.

We distinguish between two orientations of data: event-oriented data and state-oriented data. Examples of
event-orienteddata could be various types of buys, sales, inventory transfers, and financial transactions. The store
example above thus concerns event-oriented data. Examples ofstate-orienteddata include, e.g., prices, account
balances, and inventory levels. The event and state models are complementary in the sense that having events, we
can construct states that span between events; and likewise, having states we can construct events, representing
the changes from one state to another.

The data in the star schema isrepresentedeither as events or as time-series, depending on the data orientation
type. Event-oriented data is represented as events, i.e., each row in the fact table corresponds to an event in real
life. State-oriented data can be represented as events, where a fact table row represents the event that caused
the state of the object to change; or state-oriented data can be represented as time-series, where each row in the
fact table represents a state at some fixed point in time, independently from the state changes of that object (this
corresponds to sampling). We will revisit these issues in Section 2.3.

2.2 Problem 1: Ad-hoc Handling of Slowly Changing Dimensions

In the previous section, we assumed implicitly that all the dimension tables are independent of one another. How-
ever, this is not true: it can easily be seen that some, or most, dimensions are dependent on the omnipresent time
dimension. For example, the prices of products in the product dimension may change over time. We term such
time-dependent dimensionsslowly changing[7].

Their presence leads to potential consistency and correctness problems, with a need for handling these prob-
lems. In the example, if the price of a product changes, the change must somehow be reflected in the Product
dimension, to represent the correct price for all sales recorded in the fact table of the product. All fact table rows
inserted before the change should still refer to the old price, while the new fact table rows (inserted after the
change) should refer to the new price.

As proposed by Kimball [7], we can use three methods to handle slowly changing dimensions. Each of
these methods provides a different degree of fidelity. We describe the most used method (the second, below) and
briefly mention the other two proposals. In the description, we use a state-oriented star schema with a fact table,
termed Balance, recording account balances and with dimension tables Time, Customer, and Account recording
the times, customer informations, and account informations of the account balances, respectively. Assume that
customer John Smith changed his address on January 15, 1997.

The first method suggests to overwrite the old value in the Customer dimension row. This method is the most
simple to implement, but it does not satisfy the data warehouse goal of tracking history accurately. The problem
is that existing fact-table rows that pointed to the old values now incorrectly point to the new values. A careful
user-needs analysis has to be performed before choosing this method.

The second method proposes to create an additional dimension row at the time of the change with the new
attribute value, getting the old description and the new description, see Figure 2. We create a new row in the

Balance Customer Balance Customer
GK Bal GK CId Name Address GK Bal GK CId Name Address

1/01 1 100 1 1 John Ulavej 1 1/01 1 100 1 1 John Ulavej 1
1/10 1 200 1/10 1 200 2 1 John Ritavej 5

1/20 2 300

Figure 2: Method Two: Balance and Customer Tables Before and After Changes

Customer dimension for John Smith where the Address field has the new value. The new row must also have
a unique key value. We cannot use, e.g., the social security numbers of customers as the key values because a
customer such as John Smith has the same social security number independently of his address. There is a need
for creating an artificial, generalized key (GK), which then requires special handling and consumes additional
space in the data warehouse.

This method yields a clear partitioning of the history in the example above—John cannot have two addresses
at the same time; thus the facts associated with the two dimension rows for John are non-overlapping. In other
situations, there is not such a clear history partitioning, as illustrated in Figure 3 and discussed next. In this
example we consider a product in a store. At a certain moment, the packaging of this product changes. We
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Sales Product Sales Product
GK Sold GK PId Name Package GK Sold GK PId Name Package

1/01 1 100 1 1 Yoghurt Plastic 1/01 1 100 1 1 Yoghurt Plastic
1/10 1 110 1/10 1 110 2 1 Yoghurt Paper

1/20 2 200
1/20 1 50

Figure 3: Method Two with Overlapping Facts for Product Dimension Rows

create a new row in the Product dimension for the product where the Package field has a new value. But there
are “overlapping” facts in the fact table because the products in new packaging and the products in old packaging
are both being sold until the products in old packaging are sold out. In cases like this, where facts may overlap
for some time, it is very difficult to perform queries like “How many products in old packaging were sold after
the products in new packaging appeared in the store?” This is so because the actual date of the change is not kept
anywhere when using method two.

We are also not able to use the newly updated values in dimensions on older facts and vice versa, which is
sometimes meaningful. For example, the names of all bank branches may change, but there may still exist a need
to track history in terms of the new branch names.

The third method suggests to create an additional field in the slowly changing dimension table and to place the
new attribute value in this field while retaining the original attribute value in its place. This method also allows the
date of change in another field in the dimension table. A problem occurs when the facts for both of these values
overlap. This method also retains only the original and current values of the changed attribute. Intermediate values
are lost.

Careful user-needs analysis has to be performed to decide which method can be used when dimension at-
tribute value changes. The second method is most generally applicable, but it, as the other two methods, has
disadvantages, thus creating a need for a better solution to the problem of handling slowly changing dimensions.

2.3 Problem 2: Ineffective Handling of Change for State-oriented Data

We have mentioned that state-oriented data can be represented as either time-series or as events. Here, we identify
potential data warehouse size and query performance problems that may arise from the management of state
changes of state-oriented data for both representations.

Under realistic assumptions, the time-series representation inadvertently leads to loss of some information and
repetition of other information. To see this, consider the banking example where we want to record the balances
of all accounts. If we sample balances every hour then we will not have the complete account information because
there can occur many transactions for a single account per hour. On the other hand, if we sample every minute
then we will probably not loose information, but redundancy will be enormous because each account (there could
be millions) will have a corresponding entry for each minute independently of whether the balance changed or
not. In general, it can be difficult to choose a proper time granularity for the time-series representation, because
some balances may change very often while others may change quite rarely. The time-series representation may
be suitable when state transitions occur coordinated with a fixed frequency.

With the event representation, there is a row in the fact table for each balance change. If some loss of infor-
mation is acceptable, it is possible to record facts not for each event (change of a balance), but for several events
together. For example, it may be adequate to record one fact for all changes to a balance per hour, independently
of how many times the balance changed per hour, if it changed at least once. In the event representation, we also
avoid redundant information because balances that do not change do not generate rows for the data warehouse.

However, the event representation creates query performance problems. With state-oriented data, it is likely
that there frequently is a need to know the entire interval during which a state persisted (e.g., the time when a
balance remained at a constant value). We can efficiently find the time row giving the period’s beginning, but
finding the end of the interval is neither simple nor cheap to compute.

In the next section, we will present the temporal star schema, which represents a possible solution to the
problems mentioned in this section.
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3 Temporal Star Schemas

Based on the previous section, we conclude that the problem of handling slowly changing dimensions does not
have a fully satisfactory and conceptually clean solution using regular star schemas. In contrast, the temporal star
schema systematically solves this problem. Besides, we have reasons to believe that the temporal star schema lets
us achieve good query performance and a relatively compact data warehouse.

The idea behind the temporal approach to databases is simple: most of the things that we observe change in
time, and the database system should capture the changes. This resembles one of the main characteristics of data
warehouses—the data stored in a data warehouse is historical and time-dependent [3]. The temporal star schema
is especially aimed at representing such types of data.

The temporal star schema differs from the traditional one in its treatment of time. While the traditional star
schema treats time as any other dimension, the temporal star schema omits the time dimensiontableand instead
timestamps each row in every table of the schema. It thus treats the fact table and the dimension tables equally
with respect to time. The advantages gained from having the explicit time dimension (information on weekends,
holidays, last days of the month, etc.) can be compensated by a rich set of time manipulation functions in the
query language. Temporal query languages are meant to provide those functions [13]. It is also possible to retain
a time dimension table when implementing a temporal star schema using a traditional DBMS not supporting a
temporal query language.

Adding detail to this design, we observe that event-oriented data and state-oriented data are represented dif-
ferently in the temporal star schema. For event-oriented data, the event representation is used, meaning that each
row in the fact table represents some event and has one timestamp, capturing the event occurrence time. For state-
oriented data, we employ the state representation, meaning here that each row in the table describes some state
and has two timestamps—the beginning and ending times of the period when the state persisted (see Figure 4).
The event representation has the advantage of storing only one timestamp instead of two. Naturally this type of

Transaction Date Transaction amount Begin Date End Date Account balance
1997/04/01 -100 1997/03/20 1997/04/01 10000
1997/04/06 500 1997/04/01 1997/04/06 9900

Figure 4: Event and State Representations of Data

representation is well suited for event-oriented data and event-oriented queries. On the other hand, queries asking
questions about states of some object in some periods of time will result in the comparison of timestamps from
the different rows and thus will execute slower. The state representation, while occupying more space, appears to
be better suited for state-oriented data and state-oriented queries.

Taking a closer look at the data warehouse tables reveals that dimension tables predominantly store state-
oriented data. This implies having two timestamps in dimensions independently of whether the fact table repre-
sents events or states. For instance, in the banking example to the left in Figure 4, each fact table row represents
one bank transaction and has one timestamp, while each Branch dimension row would have two timestamps. If
some branch first became operational on July 14, 1990 and originally dealt only with savings accounts, but was
upgraded to provide loans also on April 6, 1996, then the Branch dimension table will have two rows for that
branch with timestamps July 14, 1990–April 6, 1996 and April 6, 1996–now.

Next, some dimension tables may not need timestamps at all. This occurs when a dimension models objects
that do not change at all or when it does not describe real-world objects. An example of the latter could be the
inventory status dimension in an inventory tracking data warehouse. This dimension lists only the possible values
of the inventory status (received, inspected, boxed, etc.)

When using a temporal star schema, the problems associated with the handling of slowly changing dimensions
disappear. It is worth noticing that the temporal approach is more informative than any regular star schemas—
unlike the non-temporal star schemas, it keeps all the historical information associated with theexactdates of the
changes. In addition, we are freed from the problem of key generalization that existed in the second method for
handling slowly changing dimensions.

The presence of period timestamps raises some new issues. First, the valuenowhas to be represented in one
way or another—we choose the maximum date (9999/12/31) for this purpose. Second, some integrity constraints
may have to be maintained, including self-consistency and referential integrity.Self-consistencymeans that the
timestamps of rows representing the same object (e.g., one bank branch or one product) must neither overlap each
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other nor leave gaps. This corresponds to the natural understanding that any real-world object is in precisely one
state at a single point in time.

Referential integritymeans that if a (fact) tablef1 refers to some (dimension) tablet1 then for any time pointi1
in a timestamp of any rowr1 in f1, there must exist a rowr2 in t1, such that the foreign key value ofr1 matches the
primary key value ofr2, and the timestamp ofr2 containsi1. For example, let us consider a state-oriented banking
data warehouse that records the balances of accounts (not the transactions that change those balances). If a row in
the fact table indicates that the balance of some account in branchb1was 10000 from March 20, 1993 to April 1,
1993 then for any day in this period, there must exist a row in the Branch dimension forb1with a timestamp that
contains that day.

The primary key of any table augmented with timestamps is the original key plus one or two timestamps. Joins
of such tables become more complex: for the two rows to join, their original keys must match, and also their
timestamps must overlap. This implies that the joins in the temporal star schema become more expensive and thus
have a negative effect on query speed.

4 Settings for Comparison of Star Schemas

In Sections 2 and 3, we presented regular star schemas, pointed out several problems with these, and described
a possible solution, namely the temporal star schema. The next step is to compare the new proposal with the
old. To this end, experiments were carried out using the Oracle DBMS (version 7.2.2.3). In this section we
describe the aspects that we considered significant for the comparison, and we present the case that was used for
the experiments. The experiments and their results are described in the following sections.

The previous sections compared regular and temporal star schemas at a conceptual level, thus offering impor-
tant background for selecting a particular schema for an application. In this section, we take data warehouse size
and query performance as the criteria for choosing one star schema over another.

We investigate state-oriented data, which can be represented in two ways using regular star schemas and in
one way using temporal star schemas, leading to a comparison of three data warehouses: a regular time-series
warehouse, a regular events warehouse, and a temporal states warehouse. Even if all three warehouses attempt to
represent the same information, their sizes as well as the execution speeds of queries on them will generally differ.
In order to present concrete numbers of size and speed measures and to give a more real feeling of the differences,
we will base the experiments on a case study.

In continuation of our examples, we choose a data warehouse for a bank. We assume that there are 50 branches,
200 different customer types (each type is defined as a combination of age group and a pair of city and zip code)
and 5 account types (savings, checking, etc.). The warehouse does not keep information on single accounts and
customers because its intended use is for decision support. Thus we have Branch, CustomerType, Time (only in
the regular warehouses), and AccountType dimensions. We choose “week” as the time granularity. Each fact table
row shows a total sum of all account balances on one fixed day of the week (i.e., Friday) for a certain type of
accounts opened at a certain branch and owned by a certain type of customers.

In order to be able to load appropriate data into all three warehouses, additional assumptions are necessary.
We assume that 60% of all aggregated balances change per week, i.e., the fact tables in both the events warehouse
and the states warehouse have 40% less entries than the fact table in the time-series warehouse, because the latter
one does not exclude duplicate values. For instance, if the total balance of all customers older than 60 and living
in Aalborg remains the same for three weeks, in the time-series warehouse fact table, this will be represented by
three rows, while in the events and states warehouses, there will be only one fact table row. We term the number
0.6 (which corresponds to 60%) theactual change rate(ACR).

We suppose that there are 7500 relevant combinations of AccountType, CustomerType, and Branch (5 ac-
count types� 150 customer types� 10 branches). One customer type is combined with only 10 branches of 50,
because most likely those who live in, e.g., Aalborg never open accounts in the branches that are located in, e.g.,
Copenhagen. AccountType and CustomerType dimensions do not change over time (or if they do, we overwrite
all attribute values). The only slowly changing dimension is Branch, and we assume that 3 branches of 50 change
attribute values per year.

The schemas of the two regular data warehouses are the same. In the temporal warehouse, the AccountType
and CustomerType tables have the same schema as in the regular warehouses, but the Branch and the fact tables
are different, and the Time table does not exist. The Branch tables in the regular warehouses contain a generalized
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key attributeBranchGeneralizedKey, while in the temporal warehouse, the Branch table contains two times-
tamp attributes. The fact tables of the regular warehouses contain 4 foreign key attributes (AccountTypeKey,
BranchGeneralizedKey,CustomerTypeKey,TimeKey) and aBalance attribute. The fact table of the
temporal warehouse includes only 3 foreign keys (there is no Time table) in addition to two timestamp attributes
(BeginDate, EndDate) andBalance.

We create an index on the fact table of each warehouse. For each of the regular warehouse fact tables, we create
a primary index on (AccountTypeKey,BranchGeneralizedKey,CustomerTypeKey,TimeKey), and
for the temporal warehouse fact table we create an index on (AccountTypeKey, BranchKey, Customer-
TypeKey, BeginDate). For the temporal warehouse, we also make experiments with another primary index
that also includes theEndDate attribute. SQL source code for creation of tables and indexes together with the
size estimation of the attribute values of the tables can be found in reference [2].

5 Data Warehouse Size

We proceed to compare the sizes of the three warehouses for the case described in the previous section.
The data warehouse size depends on the sizes of the fact table, the dimension tables, and the indexes. Because

dimension tables are generally very small [7] relative to the fact tables and have very little impact on the total size,
we consider only the fact tables and indexes. The size of a table is determined by the number of rows and the size
of each row.1

The general formula for the computation of the size of a warehouseX is given next.

size�X� � rows�X� � �FRL�X� � IEL�X�� (1)

In the formula,X can be a temporal states warehouse (S), a regular events warehouse (E), or a regular time-series
warehouse (TS). The functionrows�X� returns the number of rows in the fact table of warehouseX . If we assume
that there areN rows in the time-series warehouse fact table, i.e.,rows�TS� � N , thenrows�S� � rows�E� �
ACR � N , where the constant ACR, introduced in Section 4, is the actual change rate. The number of fact table
rows in the time-series warehouse is bigger than in the events warehouse and in the states warehouse because the
time-series representation does not exclude duplicate attribute values.

In Section 4, we stated that the actual change rate in the banking case is 0.6, that there are 7500 relevant
combinations of AccountType, Branch and CustomerType, and that we record data once per week. For one year,
there will thus be 7500� 52 = 390000 rows in the time-series warehouse fact table and 0.6� 390000 = 234000 rows
in the fact tables of events and states warehouses. Thus the regular schema with the events representation and the
temporal schema are better suited for representing changes that occurirregularly in the real world. In such cases,
it is difficult or impossible to choose an appropriate sampling rate (time granularity) for the regular schema with
the time-series representation.

The remaining functions in Formula 1 compute the fact table row length and the index entry length for a
warehouse. Formulas for these functions are given below and quantities used in the formulas are defined in
Table 1.

FRL�X� � rh � NonFKL�X� � FKL�X� � n�X� � �byte2 (2)

IEL�X� � eh � rid � NonFKLIndex�X� � FKL�X� � nIndex�X� � �byte (3)

The fact table row length (Formula 2) is the same in the regular events and time-series warehouses, but differs
for the temporal warehouse. The difference is caused by (1) the presence of two timestamp attributes in the fact
table of the temporal warehouse (S), (2) the presence of a generalized key attribute, which references the slowly
changing Branch dimension, in the fact tables of the regular warehouses (TS and E), and (3) the presence of the
foreign key reference to the Time table in the fact tables of the regular warehouses (TS and E).

The sizes of the fact tables, indexes, and the total sizes of three data warehouses for the banking case are given
in Table 2.

1For simplicity, we use numbers of rows and sizes of rows instead of computing the exact numbers of data blocks used in Oracle. Using
data blocks leads to the same conclusions.

2For each attribute its length value has to be stored. In Oracle for all attributes with average length less than 250 bytes, 1 byte is enough to
store the length value itself.
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Notation Definition
rh row header size (3 bytes in Oracle)
NonFKL�X� the sum of the sizes of the non-foreign key attributes in the fact table of warehouseX (attributes in

our case:fBalanceg for X � fTS�Eg andfBalance, BeginDate, EndDateg for X � S)
FKL�X� the sum of the sizes of the foreign key attributes in the fact table of warehouseX (attributes in our

case:fAccountTypeKey, BranchGeneralizedKey, CustomerTypeKey, TimeKeyg for
X � fTS�Eg andfAccountTypeKey, BranchKey, CustomerTypeKeyg for X � S)

n�X� the number of fact table attributes in warehouseX (in our case: 5 forX � fTS�Eg and 6 forX � S)
eh index entry header size (2 bytes in Oracle)
rid row identifier size (6 bytes in Oracle)
NonFKLIndex�X� the sum of the sizes of the indexed non-foreign key attributes from the fact table of warehouseX

(attributes in our case:fg for X � fTS�Eg andfBeginDateg for X � S)
nIndex�X� the number of attributes in the index defined on a fact table of warehouseX (in our case: 4 for

X � fTS�E� Sg)

Table 1: Definition of Notations

Structure size(TS) size(E) size(S)

Fact table 390000� 21b = 8Mb 234000� 21b = 4.8Mb 234000� 33b = 7.54Mb
Index 390000� 20b = 7.6Mb 234000� 20b = 4.57Mb 234000� 24b = 5.48Mb

Total size 15.6Mb 9.37Mb 13.02Mb

Table 2: Data Warehouse Sizes for One Year of Data in the Banking Case Study

Two characteristics define index size: the number of index entries and the length of each index entry. The
number of index entries is the same as the number of fact table rows. The index entry length is affected by (1)
the space usage of the indexed date-type attributes for the temporal warehouse, (2) the presence of foreign-key
references to slowly changing dimensions, and (3) the presence of a foreign-key reference to the Time dimension
table for the regular warehouses.

Based on Formula 1 and the numbers provided in Table 2, we can determine the sizes for the three warehouses
as a function of the actual change rate, see Figure 5. It can be seen that the states warehouse size is smaller than
the time-series warehouse size when the actual change rate is smaller than 0.72.

Time-Series
States
Events
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10

15

20

0.40.2 0.6 0.8 1

Size, Mb

ACR

Figure 5: Data Warehouse Sizes as a Function of the Actual Change Rate

The states warehouse index includes theBeginDate attribute. The inclusion of also theEndDate attribute
in the index would increase the index size (consequently increasing the total size of the states warehouse about
14% and giving an actual change rate break-even point equal approximately to 0.62), but might also speed up
queries. It is important to achieve an appropriate trade-off between space and speed; to do so, analyzing query
performance is necessary.
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6 Query Performance Experiments

In this section, we compare query performance when using each of the three data warehouses. We begin with
general observations about the optimal query execution scenario. Then we define what types of queries we use for
our experiments, present the results, and draw conclusions.

6.1 General Observations

The special structure of a star schema, most notably the presence of one huge fact table and a number of rela-
tively small dimension tables, greatly impacts the set of appropriate query execution strategies for data warehouse
queries. Current DBMSs offer facilities for query execution plan selection using rule-based optimization and/or
cost-based optimization. Of these, the latter is clearly preferable in a data warehouse environment because it
takes into account the distributions of values in tables and the above-mentioned differences in table sizes. The
generation of such statistics can be performed in Oracle using the commandANALYSE after each data load to the
warehouse.

When dimensions are small, the optimal scenario for executing a query in a data warehouse begins with full
scans of the dimension tables, identifying the dimension table rows that satisfy the constraints on dimension
attributes given in the query. The next step is to perform the Cartesian product of the keys of the qualifying rows.
These composite keys are then used for lookup in the fact table using its index, thus identifying qualifying fact
table rows. Sample query execution plans illustrating this kind of query evaluation are given in Appendix A.

The main idea is to access the fact table as late as possible, using its primary index as much as possible. The
index usage may range from performing unique key lookup to not using the index at all. This depends on the
ordering of the key attributes of dimensions in the composite primary key on which the fact table is indexed and
on the set of dimensional constraints given in the concrete query. For example, it is not beneficial to use the index
at all if there are no constraints on the dimension having its key first in the composite key of the fact table index.

To fairly compare query execution speeds for the three warehouses, the first step is to ensure that the queries
are executed optimally. The execution times provided in Section 6.3 were thus measured only after extensive
and careful tuning of each query. It is also interesting to see how much tuning is required for queries on each
warehouse because this substantially affects both the initial application development cost and the subsequent
maintenance cost. A warehouse where each query requires extensive tuning is less preferable than a warehouse
where queries written in a natural way are executed optimally without any tuning. We return to this in Section 6.3.

6.2 Query Types and Queries

The goal of the query performance experiments was to find out what affects the query performance in the regular
warehouses and in the temporal warehouse. To accomplish this, we define several broad query types and then
investigate representative queries of these different types. Since the warehouses differ in how they handle (tempo-
ral) change, the types of queries are defined based on the types of temporal predicates they employ and what they
retrieve. The chosen types of queries are given in Figure 6.

Query Type Type of Temporal Predicate Retrieval of
TYPE1 specified time point non-temporal value
TYPE2 specified time period non-temporal value
TYPE3 specified time duration non-temporal value
TYPE4 specified nontemporal-attribute valuetemporal value

Figure 6: Query types

We find it reasonable to assume that differences in how queries involve time (constraints on time, operations on
time-attribute values) lead to differences in query performance in the three warehouses. We thus believe that the
chosen types of queries allow us to cover a broad range of aspects of query performance and to identify potential
differences among the three warehouses.

We emphasize that, of course, not all queries of a given query type have the same performance. Many proper-
ties not specified by the type, such as the number and type (e.g., selection, aggregation) of operations performed
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in the query, also affect query performance. This is particularly true in data warehouses where queries tend to be
rather complicated. But this aspect may affect all three warehouses similarly.

Next, we give sample queries for each of the four query types (many more queries were studied; here, we give
the most illustrative ones).

TYPE 1
q.1.1: What is the balance—for customers living in City3, with zip code 9086, and whose age is between 25

and 40—of savings accounts in Branch9 on September 10, 1997?
q.1.2: How much money was in all Branch10 savings accounts on September 10, 1997?
q.1.3: Which customer type had the biggest amount in savings accounts in Branch26 on May 1, 1997?
q.1.4: Compare the balances—for customers living in City3, with zip code 9086, and whose age is between 25

and 40—of savings accounts in Branch9 on September 10, 1997 and October 10, 1997.
Rationale: Queries specifying a fixed point in time are frequent, and the handling of this type of predicates is different in the
three warehouses, yielding query performance differences.

TYPE 2
q.2.1: What were the balances—for customers living in City3, with zip code 9086, and whose age is between

25 and 40—of savings accounts in Branch9 from August 1, 1997 until November 1, 1997?
q.2.2: Which customer types used two or more account types in Branch10 during 1997?
q.2.3: What was the averageApril 1997 balance of savings accounts in Branch10 for customers younger than

18 that live in City5 and have zip code 5648?
Rationale: In this type of query, the checking of overlap with a specified period of time is performed, and this operation is
accomplished differently in the three warehouses.

TYPE 3
q.3.1: What customer types had the same balance in savings accounts in Branch2 for at least 12 weeks?
Rationale: The three warehouses differ in how duration predicates are evaluated.

TYPE 4
q.4.1: When were the balances of savings accounts in Branch41 for customers younger than 18, living in City7,

and with zip code 7700 bigger than 12000?
Rationale: We are interested here in temporal-information retrieval, i.e., periods of time when some conditions prevailed,
because different computations are needed to retrieve such information using the three different warehouses.

6.3 Performance Results

We evaluated each of the queries given in the previous section a total of 10 times, measuring their actual execution
times.

Test runs of the different queries were interleaved in order to minimize the impact of the DBMS caching
facilities. Figure 7 gives the query execution times. Execution times shown in the figure for queries on the temporal
warehouse were measured using the index including bothBeginDate andEndDate because this index yielded
the best performance. The query execution times are normalized with respect to the longest execution time. The
longest execution time for each query is also given in seconds at the top of the appropriate column.

Additional detail, including the actual tuned SQL queries and their execution plans for each of the three
warehouses, are provided elsewhere [2].

As we can see from Figure 7, queries on the temporal warehouse and the time-series warehouse are in most
cases more efficient than queries on the events warehouse. The main reason is that in the events warehouse, it is
difficult to find the time period when some state was valid. This is because one row in the fact table represents
the beginning of the period; and in order to get an end of the period, which is located in another row, a subquery
is needed. In addition to adversely affecting performance, subqueries reduce the readability and understandability
of queries, especially if several subqueries are present and perhaps are nested.

In all queries (except Type 1) on the events warehouse, we also face the problems of finding the time period
when the current balance state is valid. To accomplish this, either an additional subquery or aUNIONwith another
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Figure 7: Query Execution Times in Percent of the Slowest Query

SELECT statement is necessary to catch the ”terminating” event. However, there are also factors that reduce the
query performance speed in the other two warehouses.

The time-series warehouse fact table contains duplicate values and is bigger than the fact tables in the other
two warehouses. Therefore more fact table rows satisfy the given query constraints and more blocks are often
read from the disk. For example, this is the main reason for the poor performance of query q.3.1 in the time-series
warehouse.

On the other hand, the fact table rows and index entries are bigger in the temporal warehouse; thus, more disk
block reads are required for the same number of rows than in the regular warehouses.

Another difference between the presented warehouses is the absence of the Time dimension in the temporal
warehouse, thus eliminating any joins with such a table. The price for not having a time table is to have two date
attributes in the fact table, which can cause lower performance for some queries.

Many queries (e.g., of Type 1) on the time-series and events warehouses access only those fact table rows
that affect the answer and do not access fact table rows to test time constraints. The same holds for the temporal
warehouse with both dates in the index. But if only one of the dates is present in the index, these queries on the
temporal warehouse are forced to access far more fact-table rows. This results in more disk accesses and slows
down the query speed. (In Type 1 queries, it is possible to write the queries in a slightly unnatural way to avoid
unnecessary disk accesses.)

We have experienced that date comparisons are expensive on their own in Oracle. This becomes clear when a
lot of dates must be checked. This holds for query q.2.2 (the worst performance in the temporal warehouse) where
the index cannot be used, meaning that all fact table rows are accessed; for the temporal warehouse, there is a need
to check two timestamps of each row to determine whether they overlap with a given period.

Joins with slowly changing dimensions in the temporal warehouse are more complicated than those in the
regular warehouses—additional checks of fact and dimension row timestamps are made to ensure that the fact row
timestamps overlap with the dimension row timestamps. This is an issue particularly for queries of Type 2, 3, and
4. Temporal query language would make it significantly easier to formulate temporal join queries.

The above-mentioned problems with temporal warehouses explain why query performance for the time series
warehouse is usually slightly better than for the states warehouse.

The systematic handling of slowly changing dimensions in the temporal star schema leads to complex temporal
joins, which are not attractive. But the handling of slowly changing dimensions in the regular star schema using
generalized keys for the Branch dimension also complicates queries because values of these keys do not identify
real Branch entities (there can exist several rows, with different generalized key values, for the same branch). If
a query on a regular warehouse contains a subquery and there is a constraint on Branch in the main query, a join
with Branch is needed in the subquery. This makes such queries difficult to write and hard to comprehend.

Another important point is that for all three warehouses, virtually every query requires manual tuning (using
Oracle’s hints) to achieve reasonable performance.

The general conclusion is that queries on the events warehouse always tend to become more complex and take
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more time to execute, while queries on the time-series and temporal warehouses stay simpler and run faster. Many
issues mentioned in this section are illustrated in the sample query given in Appendix A.

7 Conclusions and Future Research

The objective of data warehousing is to provide on-line decision support that may assist management in the
decision-making process, e.g., by making it possible to detect business trends in the organization.

Dimensional data modeling using star schemas is a typical approach when designing a relationally-based
data warehouse. The regular star schema treats all dimensions, one of them being the Time dimension, equally
and assume them to be independent. A data warehouse may capture events or states; and events or states are
represented either as time-series or as events using the star schema. Star schemas have fundamental difficulties
with the handling of slowly changing dimensions and change in state oriented-data: the time-series representation
records potentially large amounts of redundant data, and the events representation has difficulties with query
performance. Both representations fall short in capturing the actual times when dimensions change.

A possible solution to these problems, temporal star schemas systematically capture changes to fact and di-
mension tables alike. In temporal star schemas, time is not a separate, independent dimension table, but is a
dimension of all tables and is represented via one or more time-valued attributes in all tables. Event-oriented
data is represented as events (with one time attribute in the fact table), and state-oriented data as states (with two
attributes) in the temporal star schemas.

In the temporal star schema, real-world changes are handled in a natural and systematic way, allowing for the
storage of the full and correct history of time-varying data. After the investigation of data warehouse size and
query performance in the three warehouses representing state-oriented data, we can conclude that in the temporal
states warehouse, queries on state-oriented data are easier to write and usually run faster than in the regular events
warehouse; and the temporal states warehouse size is smaller than that of the regular time-series warehouse. The
temporal states warehouse does not keep redundant information and is convenient for computing periods when
some state was valid, which is usually needed in state-oriented queries.

Additional studies may shed further light on the properties of temporal star schemas. We studied pre-chosen
queries on three different warehouses representing the same information. An alternative would be to attempt to
identify the types of queries that are appropriate for each warehouse. The issue of efficient bulkloading may also
be studied. Updates to existing fact-table rows will be necessary when bulkloading the temporal warehouse, while,
in the regular warehouses, it is only necessary to insert new rows. It would also be of interest to analyze temporal
star schemas that include a time table. In this case, it would be enough to keep compact integer-type timestamps
for each row, making comparisons more efficient. However, joins with the Time dimension table will be required.

Another research direction is to investigate advanced join techniques such as the STARjoin using the STAR-
index [10] or other techniques involving precomputed joins [14]. The performance gain resulting from the usage
of precomputed joins would probably be more visible in the temporal warehouse than in the regular one, because
temporal joins are more complex and expensive than regular joins.
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A Concrete Versions and Query Evaluation Plans for Query q.4.1

Each of the queries listed in Section 6.2 were written as SQL queries on each of the three data warehouses con-
sidered in the paper’s performance comparison. To ensure a fair comparison of the three warehouses, extensive
efforts were made to tune each query so that it would execute as fast as possible.

This appendix gives the resulting SQL queries (to the left) and their query evaluation plans (to the right) for
query q.4.1. Each SQL query was run a total of 10 times, yielding the execution times and variations listed next
(the full paper [2] gives this information for all the queries considered in Section 6.2).

TS:����� ������ E: ����� ������ S:����� �����
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TS—the regular time-series warehouse
SELECT T.WeekBeginDate Begindate, T.WeekEndDate Enddate
FROM AccountType A, BranchETS B, CustomerType C, Time T, FactsTS F
WHERE F.AccountTypeKey = A.AccountTypeKey
AND F.BranchGeneralizedKey = B.BranchGeneralizedKey
AND F.CustomerTypeKey = C.CustomerTypeKey
AND F.TimeKey = T.TimeKey
AND A.AccountTypeName = ’Saving’
AND B.BranchName = ’Branch41’
AND C.AgeGroup = ’< 18’
AND C.City = ’City7’
AND C.ZipCode = ’7700’
AND F.Balance > 12000;

SELECT STATEMENT StmtId = x Cost = 17
MERGE JOIN
SORT JOIN
NESTED LOOPS
NESTED LOOPS
NESTED LOOPS
TABLE ACCESS FULL ACCOUNTTYPE
TABLE ACCESS FULL CUSTOMERTYPE

TABLE ACCESS FULL BRANCHETS
TABLE ACCESS BY ROWID FACTSTS
INDEX RANGE SCAN PK_FACTSTS

SORT JOIN
TABLE ACCESS FULL TIME

E—the regular events warehouse
SELECT /*+ ordered index(f pk_factse)*/ T1.WeekBeginDate BeginDate, T2.WeekBeginDate - 1 EndDate
FROM AccountType A, BranchETS B, CustomerType C, FactsE F, Time T1, Time T2
WHERE F.AccountTypekey = A.AccountTypeKey
AND F.BranchGeneralizedKey = B.BranchGeneralizedKey
AND F.CustomerTypeKey = C.CustomerTypeKey
AND F.TimeKey = T1.TimeKey
AND A.AccountTypeName = ’Saving’
AND B.Branchname = ’Branch41’
AND C.AgeGroup = ’< 18’
AND C.ZipCode = ’7700’
AND C.City = ’City7’
AND F.Balance > 12000
AND T2.TimeKey = (SELECT MIN(F1.TimeKey)

FROM BranchETS B1, Factse F1
WHERE F1.AccountTypekey = F.Accounttypekey
AND F1.BranchGeneralizedKey = B1.BranchGeneralizedKey
AND F1.CustomerTypeKey = F.CustomerTypeKey
AND B1.BranchName = ’Branch41’
AND F1.TimeKey > F.TimeKey)

UNION
SELECT /*+ index(f pk_factse)*/ MIN(T.WeekBeginDate) BeginDate,

TO_DATE(’1997/12/28’,’YYYY/MM/DD’) EndDate
FROM AccountType A, BranchETS B, CustomerType C, Time T, FactsE F
WHERE F.AccountTypekey = A.AccountTypeKey
AND F.BranchGeneralizedKey = B.BranchGeneralizedKey
AND F.CustomerTypeKey = C.CustomerTypeKey
AND F.TimeKey = T.TimeKey
AND A.AccountTypeName = ’Saving’
AND B.BranchName = ’Branch41’
AND C.AgeGroup = ’< 18’
AND C.ZipCode = ’7700’
AND C.City = ’City7’
AND F.Balance > 12000
AND NOT EXISTS (SELECT *

FROM BranchETS B1, Factse F1
WHERE F1.AccountTypeKey = F.AccountTypeKey
AND F1.BranchGeneralizedKey = B1.BranchGeneralizedKey
AND F1.CustomerTypeKey = F.CustomerTypeKey
AND B1.BranchName = ’Branch41’
AND F1.TimeKey > F.TimeKey);

SELECT STATEMENT StmtId = x Cost = 45
PROJECTION
SORT UNIQUE
UNION-ALL
NESTED LOOPS
MERGE JOIN
SORT JOIN
NESTED LOOPS
MERGE JOIN
NESTED LOOPS
TABLE ACCESS FULL ACCOUNTTYPE
TABLE ACCESS FULL BRANCHETS

SORT JOIN
TABLE ACCESS FULL CUSTOMERTYPE

TABLE ACCESS BY ROWID FACTSE
INDEX RANGE SCAN PK_FACTSE

SORT JOIN
TABLE ACCESS FULL TIME

TABLE ACCESS BY ROWID TIME
INDEX UNIQUE SCAN PK_TIME
SORT AGGREGATE
NESTED LOOPS
TABLE ACCESS FULL BRANCHETS
INDEX RANGE SCAN PK_FACTSE

SORT AGGREGATE
NESTED LOOPS
NESTED LOOPS
NESTED LOOPS
NESTED LOOPS
TABLE ACCESS FULL CUSTOMERTYPE
TABLE ACCESS FULL ACCOUNTTYPE

TABLE ACCESS FULL BRANCHETS
TABLE ACCESS BY ROWID FACTSE
INDEX RANGE SCAN PK_FACTSE
NESTED LOOPS
TABLE ACCESS FULL BRANCHETS
INDEX RANGE SCAN PK_FACTSE

TABLE ACCESS BY ROWID TIME
INDEX UNIQUE SCAN PK_TIME

S—the temporal states warehouse
SELECT GREATEST(B.BeginDate, F.BeginDate) BeginDate,

DECODE(LEAST(B.EndDate, F.EndDate), ’9999/12/31’,
TO_DATE(’1997/12/29’, ’YYYY/MM/DD’),
LEAST(B.EndDate, F.EndDate)) - 1 EndDate

FROM AccountType A, BranchS B, CustomerType C, FactsS F
WHERE F.AccountTypeKey = A.AccountTypeKey
AND F.BranchKey = B.BranchKey
AND F.CustomerTypeKey = C.CustomerTypeKey
AND A.AccountTypeName = ’Saving’
AND B.BranchName = ’Branch41’
AND C.AgeGroup = ’< 18’
AND C.ZipCode = ’7700’
AND C.City = ’City7’
AND F.BeginDate < B.EndDate
AND F.EndDate > B.BeginDate
AND F.Balance > 12000;

SELECT STATEMENT StmtId = x Cost = 9
NESTED LOOPS
NESTED LOOPS
NESTED LOOPS
TABLE ACCESS FULL CUSTOMERTYPE
TABLE ACCESS FULL ACCOUNTTYPE

TABLE ACCESS FULL BRANCHS
TABLE ACCESS BY ROWID FACTSS
INDEX RANGE SCAN PK_FACTSS
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