Stratum Approachesto Temporal DBMS
| mplementation

Kristian Torp, Christian S. Jensen, and Richard T. Snodgrass

March 28, 1997

TR-5

A TIMECENTER Technical Report

Title Stratum Approaches to Temporal DBMS Implementation

Copyright(© 1997 Kristian Torp, Christian S. Jensen, and Richard T. Snod-
grass. All rights reserved.

Author(s) Kristian Torp, Christian S. Jensen, and Richard T. Snodgrass

Publication History March 1997. A TMECENTER Technical Report.

TIMECENTERParticipants

Aalborg University, Denmark
Michael H. Bohlen

Renato Busatto

Heidi Gregersen

Christian S. Jensen (codirector)
Kristian Torp

University of Arizona, USA
Anindya Datta
Richard T. Snodgrass (codirector)

Individual participants

Curtis E. Dyreson, James Cook University, Australia
Kwang W. Nam, Chungbuk National University, Korea
Keun H. Ryu, Chungbuk National University, Korea
Michael D. Soo, University of South Florida, USA
Andreas Steiner, ETH Zurich, Switzerland

Vassilis Tsotras, Polytechnic University, New York, USA
Jef Wijsen, Vrije Universiteit Brussel, Belgium

Any software made available viaME CENTER s provided “as is” and without any express or implied war-
ranties, including, without limitation, the implied warranty of merchantability and fithess for a particular
purpose.

The TiMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-called
Runealphabet used one millennium ago by the Vikings, as well as by their precedessors and successors,
The Rune alphabet (second phase) has 16 letters. They all have angular shapes and lack horizontal lines
because the primary storage medium was wood. However, runes may also be found on jewelry, tools, and
weapons. Runes were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.

Abstract

Previous approaches to temporal databases have assumed that a temporal database management
system (temporal DBMS) must be implemented from scratch, as an integrated architecture to yield
adequate performance and to use new temporal implementation techniques, such as temporal indexes
and join algorithms. However, this is a very large and time-consuming task.

In this paper we explore how a temporal DBMS can be implemented in a stratum on top of an existing
non-temporal DBMS, rendering the task more feasible because it reuses much of the functionality of the
underlying conventional DBMS.

At the outset, we discuss the advantages and disadvantages of the stratum architecture compared
to the integrated architecture, and we present a set of criteria for a stratum architecture. Subsequently,
three different meta architectures for implementing a temporal DBMS in a stratum are identified. Each
meta architecture contains several specific architectures, which are examined in turn. Existing temporal
DBMS implementations are classified according to the specific architectures identified. Finally, the
specific architectures are evaluated according to our criteria.

We conclude that a stratum architecture is the best short, medium, and perhaps even long-term,
approach to implementing a temporal DBMS. Further, it is possible to integrate existing conventional
DBMSs with new temporal implementation techniques, blurring the differences between integrated and
stratum architectures.

1 Introduction

Temporal databases extend conventional databases by associating timestamps with facts. Implementing a
temporal database management system (temporal DBMS) on top of a conventional DBMS has generally
not been pursued because it cannot take advantage of well-known temporal implementations techniques
such as temporal indexes [13], temporal storage structures [1], and temporal join (e.g., [22]) and coalescing
algorithms [6]. Further, it seems that there has been an implicit assumption (e.g., in [18]) that the perfor-
mance of temporal DBMSs should be similar to that of conventional DBMSs, even when a temporal DBMS
manages multiple versions of data and a conventional DBMS only manages one version.

Building a complete DBMS is a very large task that may only be accomplished by the major DBMS
vendors. At the same time, it is clear that many applications handle time-varying data [10, 17]. Temporal
data management is currently (re-)implemented in each individual application in an ad-hoc manner, with
little support from the DBMS. Writing temporal queries in SQL-92 can be very tedious, and it has been
shown that a temporal SQL can significantly reduce the amount and difficult of code needed to express
temporal queries [19, Ch. 1]. The temporal data management applications could thus benefit substantially
from built-in support.

With the general goal of providing built-in support for time-varying data without having to construct
a temporal DBMS from scratch, we explore in this paper how a temporal DBMS can be implemented in
a stratum on top of an existing, conventional DBMS. The idea is to reuse the functionality of existing
DBMS technology. The limitations of building on top of existing DBMSs are that it is not possible to
modify existing core DBMS functionality, e.g., the data manager, the query processor component, and the
transaction manager.

While the stratum approach may bring built-in temporal support in the DBMS to application program-
mers, the approach also provides a means of experimenting with new temporal database technologies. The
approach makes it feasible for research teams to implement and experiment with temporal query languages,
and it also allows some experimentation with parts of the back end of a database, e.g., query evaluation and
special temporal operator implementations [6]. The experience gained in using the stratum approach can be
used in the long-term goal of building temporal functionality directly into the DBMS.

We list eight criteria that a stratum should satisfy. For example, the criteria include these: no changes to
the underlying DBMS, retention of all desired properties of the DBMS, and minimal impact on middleware.

We then define three overall architectures to building a stratum, namely (a) imposing a stratum directly, (b)
using middleware as the stratum (e.g., ODBC [14]), and (c) using a preprocessor. Each overall architecture
captures several specific architectures, which are discussed in turn. We use the architectures for classifying
existing systems, including the temporal DBMS implementations listed in a resent survey [5]. The specific
architectures are then evaluated against the eight criteria.

The performance of a temporal DBMS implemented as a stratum might be compared with the perfor-
mance of an integrated architecture or with a database application which explicitly handles multiple versions
of data. However, no integrated temporal DBMS exists, rendering only the latter comparison possible in
practice. Comparing with a temporal data management application is reasonable because both store multi-
ple versions of data. The difference is the former has built-in support for versions in the DBMS, whereas in
the latter, the application programmer must implement version support explicitly.

The paper concludes that a stratum approach makes it possible to focus on what may be implemented
with reasonable resources. It will take years before an integrated architecture will become available. In
the meantime, a stratum approach can be used. in addition, a stratum is not necessarily a unintelligent
converter—new temporal functionally can be implemented in a stratum.

The paper is organized as follows. Section 2 discusses the general idea of a stratum and lists our criteria
to stratum implementation of a temporal DBMS. A total of 15 specific stratum architectures, partitioned into
three meta architectures, and their current use are explored in Sections 3 and 4, respectively. In Section 5, we
compare the specific architectures to the criteria. Related work is the topic of Section 6. Finally, Section 7
summaries the paper.

2 The Stratum Approach

This section describes the general idea of a stratum approach and considers how the approach applies to
temporal databases. The section also lists our design criteria for a temporal stratum.

2.1 The Stratum Architecture

The general idea of a stratum architecture is shown in Figure 1. Here the downward arrows denote a flow
of queries and the upward arrows denote a flow of data. All boxes denote software components. The round
boxes denote components which we can alter, and the square boxes denote components we cannot alter, i.e.,
they are black-boxes. There are three levels in the stratum approach. The application level consists of the
applications that access the DBMS. At the stratum level, the stratum is implemented as an interface to the
DBMS. Finally, at the representational level, we have the DBMS where the data is actually stored.

[Application] [Application] [Application] Application Level

DBMS Representional Level

Figure 1. The Stratum Approach

In the stratum approach, the database applications are not directly connected to the DBMS. All com-
munication between the applications and the DBMS is interposed by a stratum. There are two important

2

potential advantages of using a stratum. First, it is possible to provide applications with a different data
model than what is actually implemented by the DBMS. Second, a new data model implemented in a stra-
tum, does not have to be supplied by the DBMS vendor.

When the stratum approach is applied to temporal databases, the idea is to convert the conventional
DBMS, which supports SQL-92, to a temporal DBMS, which support a temporal SQL. The applications
send temporal queries to the temporal DBMS. The queries are received by the stratum, which converts them
to SQL-92 queries, which, in turn, are sent to the DBMS. The result from the DBMS is returned to the
stratum which may do some processing of the data before sending it to the applications. The purpose of the
stratum is to make the conventional DBMS look like a DBMS supporting a temporal data model from the
applications’ point of view.

2.2 Design Criteriafor the Stratum Approach

In evaluating a temporal DBMS in a stratum approach, we stress a set of eight design criteria, which are
introduced next. The criteria are used in Section 5 to evaluate the different stratum architectures.

1. No maodifications to the underlying DBMS are requirdthe DBMS is used entirely as a black-box by
the stratum. From the DBMS'’s point of view, the stratum is an application. The stratum uses only the
DBMS's call level interface (CLI) and does not rely on the DBMS being extended with any temporal
functionality. Because the stratum encapsulates the DBMS entirely, it is the only application that
uses the DBMS directly. It is important that the stratum does not require the DBMS to be modified
because we do not have the source code for the DBMS available.

2. Minimal impact on middlewareThe stratum may not use the DBMS’s native CLI, but may instead
use a generic API, e.g., ODBC [14]. We allow changes to this middleware, which can be used in
the implementation of the stratum (to be discussed in Section 3.2) because generic APIs are open
standards with source code available. An example can be to change the middleware to initiate a
temporal SQL-to-SQL-92 conversion. The criterion on middleware is more flexible than the criterion
on the DBMS because we do not assume we have the specification or the source code for the DBMS.
Minimal impact on middleware is important to avoid side effects that may affect existing applications.

3. Independence of applicationsThe stratum implementation should encapsulate the DBMS for all
applications. Applications implemented using the DBMS directly, e.g., via its native CLI, and appli-
cations using the DBMS indirectly, e.g., via a library, should all see the data model exposed by the
stratum. If applications do not see the same data model, several versions of new applications must
be implemented, and existing applications may be affected by the addition of time attributes to tables
they use.

4. Maximum reuse of existing technologife want a thin stratum and therefore want to reuse as much
of the functionality of the underlying DBMS as possible. We do not want to implement functionality
already in the DBMS, e.g., the log and the transaction managers. Only functionality not found in the
DBMS should be implemented in the stratum. The motivation for maximum reuse and a thin stratum
is that limited resources are available for implementing the stratum.

5. Gradual availability of temporal functionality Again, because we assume limited resources and
because an early return on the invested resources is desirable, it should be possible to make new
temporal functionality available in a stepwise fashion. This provides a foundation for early availability
of a working temporal DBMS with functionality that may increase gradually. Gradual availability is
important to be able to demonstrate and evaluate temporal functionality.

6. Retention of desired properties of the underlying DBW& underlying DBMS satisfies core database
properties, e.g., the ACID properties of transactions. We want to retain these properties in the stratum,
so that applications are not adversely affected by a stratum being interposed. The criterion ensures
that the functionality provided by the stratum is an extension of the functionality provided by the
underlying DBMS. However, it also means that if the underlying DBMS does not ensure a certain
database property, the stratum will not support it either.

7. Adequate PerformancéVe define adequate performance as follows. First, legacy applications should
have the same performance as before a stratum is interposed. Performance is essential to the accep-
tance of temporal functionality. We cannot require existing (legacy) applications to be rewritten
because new applications are built that use temporal support.

Second, temporal queries on temporal databases should be as fast as the corresponding SQL-92
queries on the corresponding “snapshot” databases with temporal data. Put differently, SQL-92 code,
for temporal-data access, generated by the stratum’s temporal-SQL-to-SQL conversion should be as
fast as hand-optimized SQL-92 code for the same purpose. Otherwise, application programmers may
not want to use the automatic converter.

8. DBMS independenceThe stratum should be independent of the underlying DBMS. We want the
technigues used in the implementation of the stratum to be generic. As an example, we want to avoid
that the temporal-SQL-to-SQL conversion uses recursive SQL as found in IBM’s DB2, but not in
most other DBMSs.

The criteria are somewhat conflicting. As examples, the “independence of applications” criterion may
conflict with the “adequate performance” criterion, and the “maximum reuse of existing technology” cri-
terion may conflict with the “DBMS independence” criterion. The stratum implementor must consider the
trade-offs in each specific situation.

Several observations are in order for a stratum implementation that fulfills all the criteria. First, no
legacy application that now uses the stratum is affected by the addition of the stratum (this assumes that the
temporal SQL is upward compatible with SQL-92). They work as before and have the same performance (if
no time-support is added to any of the tables they use). However, legacy applications not using the stratum
will be affected if a table they used are altered to support time.

Second, it is not possible to encapsulate the DBMS from the DBA's point of view. The DBA must be
aware that, e.g., tables have been extended with time attributes to implement the built-in support for time
offered by the stratum.

Third, all update statements on temporal tables must be performed via the stratum if new temporal
integrity constraints are implemented here. Alternatively, the stratum must rely on the integrity constraint
mechanisms of the DBMS to implement new temporal constraints. Otherwise, it may be possible to update
a temporal table to a temporally inconsistent state, by using SQL-92 update statements that are not passed
through the stratum.

Finally, to make it possible for the stratum to do semantic checking of temporal SQL queries, all DDL
statements altering tables to support time dimensions must be executed via the stratum.

3 Stratum Taxonomy

Next, we explore how a stratum can be implemented. The outset is the general stratum architecture shown
in Figure 1. We have a set of applications using temporal SQL. However, we do not have a temporal DBMS.
Therefore, we simulate a temporal DBMS by using a conventional DBMS and interpose a stratum between
the applications and the conventional DBMS.

The stratum can be implemented in different positions, leading to the following three overall architec-
tures, each of which is explored in more detail in the sequel.

e Interposing a stratum directly between the applications and the conventional DBMS.

e Interposing a stratum in middleware (e.g., ODBC) between the applications and the conventional
DBMS.

e Interposing a stratum using a preprocessor software component.

In the subsequent discussions of the three architectures, we will only consider applications where an
APl is used to communicate with the DBMS. This is a general approach to accessing a DBMS.

The discussions and figures use sample specific APIs, e.g., the DBMS-specific APIs for the DB2, Ora-
cle, and Sybase DBMSs. Different specific DBMSs are used simply to make the discussion easier to follow,
and we do not investigate the differences between, e.g., between the DB2 and Sybase APIs—from our point
of view, they are simply representatives of DBMS-specific APIs. Similarly, we use the ODBC API [14]
simply as a representative of any generic API (because it is the best documented such one). We could have
used other generic APIs such as the JDBC API [11] or the Perl DBI API [4].

3.1 Interposing a Stratum Directly

Interposing a stratum directly between the applications and the DBMS is illustrated in Figure 2. As for
Figure 1, upward and downward arrows denote the flow of queries and data, respectively. The round boxes

and the square boxes are software components that we can and cannot alter, respectively. The dashed lines
show the input interface and the output interface of the stratum.

L Sybase App. Application Oracle App.
Application Level Using Lib. Using ODBC Using API

Proprieta
Stratum Level .p v
Library

Representational Level Driver Manager

Sybase DB2 | Oracle
Driver| Driver| Driver

API API API

Sybase DB2 Oracle
DBMS DBMS DBMS

Figure 2: Interposing a Stratum Directly

Before the stratum was interposed in Figure 2, the ODBC Translation and Oracle Translation compo-
nents did not exist. Further, the Proprietary Library was not temporally enhanced. The applications were
linked with the Proprietary Library, the ODBC driver manager, or the Oracle API.

When a stratum is interposed, the calls that an application makes to an API are intercepted (the ODBC
and Oracle examples in Figure 2). The temporal-SQL code in the call is translated to SQL-92 code, and the
stratum calls a DBMS or the driver manager at the representational level with this code.

5

When a stratum is interposed in a proprietary library, as shown in the Sybase example, we will assume
that no temporal-SQL code is passed as a parameter, but that the library implements high-level functions
specific to the database being managed. For example, if an employee table is present, the library may imple-
ment a functiorCreate Employeé<parameters-) that creates a new employee by updating the employee
table in the underlying DBMS with the parameters given as input. Note that in the proprietary-library ap-
proach, no SQL-92 code is passed as a parameter. This is in contrast to the APl approach, and it gives the
two approaches different properties.

To implement a stratum by interposing it directly, the stratum must support an API (or library interface)
that is a superset of the API (or library) the applications used before the stratum was interposed. We next
turn to discussing the examples in Figure 2 in greater detail.

The Sybase application to the left in Figure 2 is an example of an application that uses a proprietary
library. Before the stratum was interposed, the Sybase application used the proprietary library, which, in
turn, used the Sybase DBMS. After interposing the stratum in the library, we do not want to alter the possibly
many applications that use this library. Instead we change the implementation of the library. We retain, or
strictly extend, the library’s interface to the applications. We have the flexibility in the stratum to either
make it use a DBMS-specific API or a generic API. This flexibility is indicated in the figure by the arrows
from the proprietary library at the stratum level to the Sybase API and to the Driver Manager API at the
representational level.

In the middle of Figure 2, we have an example of an ODBC application which, before the stratum
was interposed, was linked to the ODBC driver manager. After the stratum is interposed, the application
is connected to a stratum ODBC driver manager component. This component must comply fully with the
ODBC API. When the ODBC application connects to a DBMS (now via the stratum), the stratum converts
the arguments passed, if necessary. Again, we have the flexibility in the stratum to either map the input API
calls to a generic API or a DBMS-specific API.

The example to the right in Figure 2 shows an Oracle application that used the Oracle-specific call-
level interface before the stratum was interposed. After the stratum is interposed the application uses the
component at the stratum level that complies with the Oracle call-level interface. The Oracle call-level inter-
face component in the stratum has the same functionality as the stratum ODBC driver manager, converting
temporal SQL to SQL-92 and forwarding the function calls.

Studying the input and output APIs of the stratum level, it can be seen that the six combinations shown
in Figure 3 exhaust the possibilities. Interposing a stratum directly between the applications and the DBMSs
or driver manager thus yields a total of six specific architectures for implementing a stratum.

Input Interface Output Interface
Proprietary Library s
specifc APl x { SPee AT
Generic API

Figure 3: Inputs and Outputs for a Directly Interposed Stratum

3.2 Using Middleware asthe Stratum

Next, we turn to the use of middleware for implementing a stratum. Again note that we use ODBC as
our prototypical middleware because it is a mature and well-documented interface. The other types of
middleware that we have looked at (JDBC and DBI) are based on ODBC and resemble it.

The idea of using ODBC as the stratum is shown in Figure 4. The dashed arrows inside the driver
manager indicate different paths that can be taken and are explained further shortly.

PowerBuilder
Using Lib.

Application Level ‘ Sybase App.‘ [Oracle App. ‘

Proprietary [PowerBuilder

Library Using ODBC Using ODBC Using ODBC
AP|
i A i
| ‘ |
Stratum Level ! !
Translate
| |
| -7 | N |
v - y o~ y
TSHE)POW Sybase | DB2 Oracle TS"BEC(’:W
ybase . . .
Driver Driver Driver Driver Driver
AFZ/ API API
Representational Level Sybase DB2 Oracle
DBMS DBMS DBMS

Figure 4: Using ODBC as the Stratum

Both before and after the stratum is interposed in Figure 4, the applications communicate with the
ODBC driver manager.

The stratum can be implemented in two places using a generic APl as ODBC. First, the stratum can
be implemented within the driver manager. This is indicated with the component “Translate” in the fig-
ure. Second, the stratum can be implemented in an ODBC driver. This is indicated with the components
“Temporal Sybase Driver” and “Temporal ODBC Driver.”

When implementing the stratum within the driver manager, the driver manager itself is extended by a
component that translates temporal SQL to SQL-92. When an application makes an ODBC call, the driver
manager normally just forwards the call (assuming a connection has been established). With the extra
temporal SQL-to-SQL-92 translation component added, the driver manager checks whether the arguments
in the call contain temporal SQL that must be translated, performs the translation, if necessary, and then
forwards the call and translated arguments to the appropriate “plain” ODBC-driver. By “plain” we mean an
off-the-shelf ODBC driver. In Figure 4 the three ODBC drivers in the middle, i.e., the Sybase, DB2, and
Oracle drivers, are the “plain” ODBC-drivers. With this approach, the paths taken within the driver manager
are from the API through “Translate” to a “plain” driver.

The other alternative when using ODBC is to implement the stratum in an ODBC-driver. The driver
manager is then not altered. Instead, the translation is done in “temporal” ODBC drivers. In Figure 4, we
show two types of such a “temporal” driver. To the left, there is a “Temporal Sybase Driver,” and to the
right, there is a “Temporal ODBC Driver.” We discuss each in turn.

Using a DBMS-specific “temporal” ODBC driver, as exemplified by the “Temporal Sybase Driver,”
when an application makes an ODBC call, the driver manager performs the same actions as for a “plain”
ODBC driver: it simply forwards the call and arguments. In the “temporal” driver, temporal SQL is con-
verted to SQL-92, and the DBMS is queried.

When using a generic “temporal” ODBC driver (i.e., the “Temporal ODBC Driver”), the driver manager
forwards the call and the arguments to the driver. The generic “temporal” driver converts temporal SQL to
SQL-92. It does not forward the call directly to a specific DBMS, but instead reconnects to the ODBC

driver manager. This second connection uses the “plain” driver for the appropriate specific DBMS. The
reconnection to the driver manager is possible because a driver can function as an application.

The combinations of input and output to the stratum level using the ODBC driver architecture as the
stratum are shown in Figure 5. The architecture provides a total of three specific stratum architectures: (1)
A generic APl/specific APl architecture obtained by implementing a DBMS specific “temporal” ODBC
driver; (2) a generic APl/generic API architecture realized by implementing a generic “temporal” ODBC
driver; and (3) a generic APl/specific APl achieved by adding a translation component to the driver manager.
Note that the first and third architectures, while different, have identical input and output interface.

Input Interface Output Interface
. Specific API
{ GenericAPI} x { Generic AP }

Figure 5: Input and Output to Stratum Level Using ODBC as the Stratum

3.3 Preprocessing

The third overall architecture for implementing a stratum is to use a preprocessor. The idea is shown in
Figure 6, where the dashed arrows show the flow of program code. A stratum implemented in a preprocessor
does the conversion at compile time, as opposed to the two overall architectures discussed previously, where
the stratum does the conversion at runtime. The preprocessor architecture is therefore only possible for
applications that do not generate temporal SQL code at runtime, e.g., it cannot be used for applications
handling ad-hoc queries against a temporal DBMS. The preprocessor idea is widely used to embed SQL
code into a host language such as C or COBOL.

L Sybase App. PowerBuilder| Application Oracle App
Application Level) ;
ppiication Leve [Usmg API Usmg ODBC Usmg ODBC Usmg API
\ \
,,,,,,, ‘,,,,,,,,,,,,,,,,,,,,/,,,,,,,,,,,,,4,,,,,,,
| |
Stratum Level Sybase ODBC Oracle
fatum Leve Preprocessol Preprocessol Preprocessol
I
,,,,,,, :,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, I
v
Sybase App. PowerBuilder| Application Oracle App

Representational Level

Using API Using ODBC Using API Using API

API

Driver Manager

Sybase DB2 | Oracle
Driver | Driver | Driver

API API| API
Sybase DB2 Oracle
DBMS DBMS DBMS

Figure 6: The Preprocessor Architecture

There is no difference between the architectures before and after the preprocessor stratum is interposed.
The source code of the “temporal” applications is converted using a preprocessor, being compiled into

8

an executable. The only difference is that the preprocessors are extended. First, a preprocessor converts
temporal-SQL code to SQL-92 code. Next, the SQL-92 code is run through the preprocessor supplied
by the DBMS vendor. We do not show the DBMS vendors’ preprocessors in Figure 6; rather, the two
preprocessing steps are both done in the preprocessor components at the stratum level.

As an example consider the Sybase application using the Sybase API. Before the temporally-enhanced
application code is used, it is run through the “temporal” Sybase preprocessor at the stratum level. This
converts the temporal SQL in queries to SQL-92 and may convert the APl used to being either the Sybase-
specific API or the generic ODBC API.

The different type of input and output to the stratum level are the same as for interposing a stratum
directly as shown in Figure 3, leaving six specific architectures for building a temporal DBMS in a prepro-
Cessor.

4 Applications of the Different Stratum Architectures

In this section we discuss the utility of the different stratum architectures and, when possible, provide
concrete examples of their use. Specifically, we have tried to categorize all the existing temporal DBMS
implementations found in a recent survey [5] that use the stratum approach. Where we have not been able
to find an example relating to temporal DBMS implementation, we discuss hon-temporal examples.

4.1 Interposing a Stratum Directly

As shown in Figure 3, there are six combinations of input and output to the stratum level. The resulting six
different architectures will be discussed in turn.

Theproprietary library/specific AP&rchitecture can be used if a site has a large number of applications
using a single DBMS and wants to change the underlying DBMS to a temporal DBMS. The applications are
targeted towards a specific DBMS that is considered a strategic component. There is no reason for porting
the library to support different DBMSs.

The advantage of using a single DBMS is that it is possible to use all the features of the DBMS. It may
have “that one essential feature,” providing the reason why this specific DBMS is used. The feature can be
a hardware feature, e.g., the DBMS runs on an IBM mainframe, or a software feature, e.g., it supports data
blades.

We assume this architecture can be used, e.g, for companies that are extensively using one DBMS in
their applications, e.g., banks and insurance and telephone companies. The DBMS may be a part of a high-
performance mission-critical transaction processing system. This architecture has been used by the Swiss
Regional Banks to implement a bitemporal DBMS library on top of Oracle 7.3 [3].

The proprietary library/generic APhkrchitecture can be used if a company has an existing library tar-
geted towards a specific DBMS which is used by a large set of applications. However, the company now
wants to add temporal support to the DBMS. Further, the company gradually wants to move from a closed
environment to an open one. Instead of changing all the applications, the proprietary library is reimple-
mented to support the mapping from temporal SQL to SQL-92. To make the library open, the reimple-
mentation makes connections to DBMSs via a generic API, e.g., ODBC instead of via a DBMS-specific
API.

The Perl 5 [29] ODBC module [15] is an example of this architecture. The module makes it possible
to access the C-language ODBC API from Perl programs. Note that the Perl ODBC module is an example
of a library that is schema independent. The module is not built to support a specific set of application,
but targets a generic API, making it applicable to any database. In contrast, the Swiss bank proprietary

library/specific APl example mentioned above is a database-specific, or schema-dependent, library where
the library implementor is aware of the underlying schema of the DBMS targeted.

The specific API/specific AParchitecture can be used where a large set of applications use only one
DBMS. The architecture is more general than using the proprietary library/specific API architecture because
the specific API/specific APl is schema independent. The architecture converts the DBMS-specific API
calls, and not only the calls to the proprietary library. It is likely to be used for the same reasons as the
proprietary library/specific API architecture: a specific DBMS is a strategic product, and all the features of
the specific DBMS can be utilized in the mapping, possibly leading to better performance. The architecture
is also useful for custom-built applications where which DBMS to use is known at design time, and where
which DBMS to use is unlikely to change throughout the lifetime of the applications.

The architecture can be used by the major DBMS vendors to extend their database products with tem-
poral support. Different research prototypes have added temporal support to existing DBMS by using
this architecture, e.g., Chronolog, HDBMS, TimeDB, and T-Square DBMS [5]. These are all examples
of temporal extensions of a specific conventional DBMS. The prototypes are not implemented as an API
conversion. Instead, they convert a temporal SQL dialect to SQL-92 (in fact, to vendor-specific SQL-92
dialects) and then query the SQL-92 database. However, they all adopt the the overall idea of the specific
APl/specific API architecture.

The specific APl/generic APdrchitecture can be used if the source code from an application generator
tool contains DBMS-specific API-calls and the user prefers the application to access another DBMS, e.g.,
via ODBC.

Thegeneric APl/specific ARArchitecture can be used if a set of ODBC applications have a performance
problem and the applications are only connected to one specific DBMS. By interposing a stratum that
connects directly to the DBMS instead of using the ODBC driver manager, it may be possible to enhance
the performance of the applications by moving temporal functionality from the stratum into the DBMS, e.g.,
as stored procedures.

The generic APIl/generic AParchitecture can be used where a set of ODBC-enabled applications are
connected to several DBMSs, each of which is updated to support temporal data. When the temporal-
SQL-t0-SQL-92 conversion occurs before the driver manager, all DBMSs previously accessed can still be
accessed without building a converter for each specific DBMS.

4.2 Using Middlewareasa Stratum

For this type of architecture, the combinations of input and output to the stratum level are shown in Figure 5.
Thegeneric API/specific APdrchitecture is the normal way of using ODBC. A set of applications are
using a DBMS which is enhanced to support temporal data management. To enable the existing applications
to use the enhanced DBMS, all the conversion from temporal SQL to SQL-92 is done in the DBMS-specific

driver.

An example is the NNODBC driver [12] which allows users to query an NNTP news server with a
subset of SQL-92 via ODBC. The NNODBC driver encapsulates the news server with a relational interface,
i.e., makes it look like a table from the driver manager’s point of view. Another similar example is the
flat-file ODBC driver [14] that allows users to query ASCI| files via SQL.

Thegeneric APl/generic AParchitecture is useful when applications are connected to different DBMSs
via a generic API, but there are no DBMS-specific drivers available for the DBMS to be used. However,
there is a “temporal” driver which bridges to a generic API, for which a DBMS-specific driver exists.

An example of this architecture is the JDBC-ODBC bridge [11], which allows Java applications, using
the generic JDBC API, to access databases via ODBC. As a difference from the example shown in Figure 4,
not one but two different driver managers are used. The application using the JDBC-ODBC bridge connect

10

to the JDBC driver manager. The JDBC-ODBC driver then connects to the ODBC driver manager, which
establish a connection to a specific DBMS.

Theextended driver managearchitecture is an alternative to the generic APl/generic API architecture.
Extending the driver manager has the advantage that only a single software components has to altered to
provide temporal support in multiple underlying DBMSs.

4.3 Preprocessor Stratum

The preprocessor approach is a simple one that is currently in wide use for permitting the embedding of
SQL code in host language code, e.g., C/C++, Pascal, and COBOL code. Such host language code is run
through a preprocessor before being compiled. The preprocessor converts the embedded SQL code into,
e.g., function calls using a DBMS-specific API. The converted source code is then compiled. In the stratum
approach, this scenario must be extended with a temporal-SQL-t0-SQL-92 conversion.

The combinations of input and output to the stratum level are shown in Figure 3. The main difference
between interposing a stratum directly and using a preprocessor architecture is that the former does the
conversion of temporal SQL to SQL (and possiblely between APIs) at runtime, whereas the latter does the
conversion at compile time. For this reason, we omit the discussion of all six specific architectures and
instead refer the reader to Section 4.1.

The specific APl/specific ARpreprocessor architecture is highly relevant for the DBMS vendors. As
already mentioned, the preprocessors are widely used; and a temporal preprocessor necessitates no any
changes to the underlying DBMS. However, it does require the DBMS vendor to define a temporal SQL.

The specific APl/generic APand thegeneric API/generic AParchitectures are of relevance to inde-
pendent software houses that support more than one DBMS and are interested in a single product that is
relevant to as many customers as possible. Again, a prerequisite is the specification of a temporal SQL.

5 Comparison of the Architectures

The following three subsections compare the 15 specific stratum architectures identified in Section 3 against
the criteria introduced in Section 2.2. We use the following notation for evaluating the architectures. A table
field is empty if a criterion is not fulfilled. A check-mark/) indicates that a criterion is fulfilled, and a
check-mark-plus\¢*) indicates that a criterion is fulfilled to a higher degree than required. We use NA if

a criterion is not applicable to the specific architecture.

5.1 Interposing a Stratum Directly

The six specific architectures for interposing a stratum directly are compared in Table 1. The criteria are
listed as rows in the table in the order they were discussed in Section 2.2.

None of the architectures require modifications to the underlying DBMS. The stratum is an application
that uses the DBMS; specifically, the stratum uses the public interface to a specific DBMS or a generic API.
To implement the architectures that use a generic API as either the input or output interface, no modifica-
tions are required to the middleware. Because “no modifications” is the absolute minimum impact on the
middleware, we give these architectures a check-mark-plus.

The two architectures that use a proprietary library as their input interface are not independent of appli-
cations. The applications have to call the proprietary library to use the new temporal functionality. Even
if some some applications use the library, this does not rule out that other applications access the DBMS
directly. And as mentioned in Section 2.2, exposing different data models to same database may cause
problems. The remaining four architectures are independent of the applications because all calls to the
input interface (an API) are interposed.

11

| Input Interface || Proprietary Library || Specific API I Generic API |

| Output Interface || Spec. API| Gen. API]| Spec. API| Gen. API|| Spec. API[Gen. API|
No Modification to DBMS V4 V] Vv v/ N N
Minimal Impact on Middlewaré NA Nai NA Nai NA Nai
Independent of Applications Vv Vv Vv v
Reuse Existing Technology Vi Vv Nai VT Nai Nl
Gradual Availability VT Vi V v v v
Retention of Properties Vv N4 N Vv N v
Adequate Performance Nai Vv Nai v/ Vi Vv
Independence of DBMS Vv Vv Vil

Table 1. Comparison of Architectures Interposing a Stratum

With respect to reuse of existing technology, all architectures are in compliance. However, the two
architectures using a proprietary library as input interface require the library to be reimplemented. For
this reason, we find that the architectures that use an API as input interface may reuse existing technology
better. On the other hand, using a proprietary library as input interface may provide the best possible way
of ensuring gradual availability of temporal functionality. Temporal functionality can be provided on a per-
table basis. As time dimensions are added to tables, all the functions using tables must be updated. Using an
API as the input interface requires more coding before application programmers can start using the temporal
functionality, because these architectures are more general than the proprietary library architectures.

We assume that the architectures where the output interface is a specific APl can achieve better perfor-
mance than the architectures where the output interface is a generic API. The justification is that the former
can be tuned to a specific DBMS, e.g., rely on stored procedures. The cost of better performance is that they
become dependent on the DBMS, as shown in the last row in Table 1.

5.2 Using Middleware asa Stratum

The three specific architectures that use middleware as the stratum are compared in Table 2. The leftmost
generic APl/specific API architecture is the DBMS-specific “temporal” driver architecture. The rightmost
generic API/specific API architecture is the architecture that alters the driver manager.

Input Interface Generic API

Output Interface Spec. API| Gen. API|| Spec. API
No Modification to DBMS Vv Vv Vv
Minimal Impact on Middleward| /T Vil v
Independent of Applications Vv Vv Vv
Reuse Existing Technology Nai Nai Vv
Gradual Availability Vv Vv Vv
Retention of Properties Vv Vv Vv
Adequate Performance Nai Vv Vv
Independence of DBMS Vil Vv

Table 2: Comparison of Architectures Using Middleware as the Stratum

As can been seen from Table 2, all architectures are DBMS independent—they only rely on additions to
the middleware. Regarding their impact on the middleware, the two “temporal” driver approaches require
no changes to the driver manager. The drivers are added to the driver manager as “plain” drivers. Altering
the driver manager requires addition of software components to the middleware. The changes are likely to

12

be isolated and do not require reimplementing the entire driver manager. Having to change the middleware,
we find that this is a minimal impact.

All the architectures are independent of applications (the input interface is an generic API), can provide
temporal functionality gradually, and retain the desired properties of the underlying DBMS. Regarding
performance, the first architecture can be tuned to a specific DBMS. Again, the better performance is at the
cost of DBMS independence. The tuning is not possible for the third architecture, even though it also uses
a specific API as output interface. The DBMSs are accessed via “plain” ODBC drivers, which cannot be
altered. However, the architecture becomes independent of the DBMS because multiple specific APIs can
be used.

5.3 Preprocessor Stratum

The six specific architectures for the overall preprocessor architecture are compared in Table 3.

| Input Interface || Proprietary Library || Specific API I Generic API |

| Output Interface | Spec. API| Gen. API|| Spec. API[Gen. API]| Spec. API| Gen. API|
No Modification to DBMS V4 V] Vv v/ N N
Minimal Impact on Middlewaré NA Nai NA Nai NA Nai
Independent of Applications Vv Vv Vv Vv
Reuse Existing Technology Vil Vi Vi Nii Vi Vil
Gradual Availability Nii Nl Vv v v v
Retention of Properties Vv V4 Vv Vv Vv v
Adequate Performance Vi N Nl v Vil v
Independence of DBMS v Vv VAl

Table 3: Comparison of Architectures Using a Preprocessor

With respect to modifications to the DBMS, impact on middleware, and independence of applications,
the preprocessor architectures are similar to their equivalent architectures (based on input and output inter-
face) for imposing a stratum directly, as discussed in Section 5.1.

All the preprocessor architectures are very good for reusing existing technology. The preprocessor ap-
proach is widely used, so we assume DBMS vendors and software houses have experience with implement-
ing preprocessors in general. Further, the preprocessor architectures make the coupling between the stratum
and the DBMSs lower because there is no run-time interaction between the stratum and the DBMSs. The
strata (preprocessors) are only used at compile-time, not at run-time. We also assume that because of their
widespread use, many applications programmers are familiar with the concept of a DBMS preprocessor.

Regarding performance, we have rated the preprocessor architectures similar to the performance of
the architectures when the stratum is interposed directly. However, we believe that the performance of the
preprocessor architectures will be better because queries are optimized at compile time instead of at runtime.
As before, we assume that performance and DBMS independence are inversely related for the architectures.

6 Related Work

Using strata, or layers, is a general software design technique used to decrease the complexity of systems.
This reduction is possible because a system can be broken into subcomponents (i.e., the layers), each with a
well-defined interface and functionality. The use of layers can also increase modularity, in that entire layers
can be replaced without affecting other parts of the larger system as long as the new layer adheres to the
same interface as the old layer. Finally, dividing systems into layers allows for independent development.

13

The use of a layer can be found in several design patternsFadezledesign pattern [9] can be used to
provide a high-level interface to subsystems. The Facade pattern is useful for layering the system and can
do work on its own, e.g., if the interface to the subsystems does not apply directly to the interface provided
by the Facade. In the context of this paper, the Facade would then be the stratum and a specific DBMS
would be a subsystem. Other types of layers, also called wrappers, can be foundettratorand the
Adaptordesign patterns [9].

The original System R paper [2] introduced a design for how the (at the time new) relational model
could be implemented. The paper also discusses in some detail how non-relational data models (e.g., the
hierarchical and the network data model) could be implemented on top of the new relational model being
proposed. Their idea of “programs on top” is similar to how this paper considers how to implement a
temporal data model on top of the relational data model.

An alternative to a stratum approach to building a temporal DBMS is the integrated architecture where
a DBMS is build from scratch and the implementation incorporates temporal support. The Postgres DBMS
[25, 26] is the most well-known example of such an architecture. It supports transaction time and so-called
time travelin the query language PostQuel, an extension of Quel. The TemplS Temporal DBMS supports
both valid and transaction time [16] and extends academic Ingres [24]. This system implements the TQuel
temporal query language [18]. (The implementation of the TemplS Temporal DBMS is discontinued.)
The TimeMultiCal is a another temporally enhanced DBMS built from scratch [20]. It supports multiple
calendars, but neither valid time nor transaction time. The temporal T-REQUIEM system, finally (!), has
an integrated architecture (for contact information, please see [5]). This system extends a public domain
DBMS (Requiem) with valid and transaction time support. The prototype is not publicly available.

The stratum approach has recently be used for implementing a temporal DBMS prototype, called
TimeDB, which supports both valid time and transaction time [23]. It is built on top of the Oracle DBMS
and supports the ATSQL2 temporal query language [21], a descendent of the TSQL2 [19] temporal query
language. The Tiger prototype [8] is a close relative of TimeDB. It implements ATSQL [7] and can be tested
online.

A mixture of an integrated and a stratum architecture is documented in [28]. Here, a temporal DBMS
prototype supporting valid time is implemented partly on top of the Ingres DBMS and partly as an extension
of the Ingres DBMS. The Ingres kernel is extended with support for an interval data type. The rest of the
temporal functionality is built on top of the extended kernel.

Finally, in [27] we discuss how a temporal DBMS can be implemented on top of an existing system
with a minimal effort. Several implementation techniques are covered

7 Summary

Building a temporal DBMS from scratch is a very large and time-consuming task, which may only be
realized by the major DBMS vendors. To enable the implementation of applications that exploit built-in
support for time in the DBMS and to enable experimentation with a temporal DBMS, we have investigated
how the task of building a temporal DBMS can be reduced by building on top of an existing conventional
DBMS, maximally reusing its functionality.

A set of criteria for evaluating a stratum architecture is proposed. Three overall architectures to building
a stratum are identified and fifteen specific architectures are discussed. We categorize the existing temporal
DBMS implementations that we are aware of according to the specific architectures.

The specific architectures are then compared against our criteria. There is no best architecture. Which
architecture is preferred depends on the situation where the stratum is to be used. Those who want temporal
functionality available quickly can use a temporally enhanced library to provided temporal support. A
library can also be tailored to a specific DBMS for maximum performance. The DBMS vendors can extend

14

their products by, e.g., providing a temporally enhanced preprocessor or a stratum on top of the specific
DBMS. DBMS vendors should make the temporal extension general, requiring more work compared with
only extending a single library with temporal support.

We believe that the best short and medium term approach to building a temporal DBMS is to build on
top of an existing conventional DBMS. This way, resources can be focussed on implementing new temporal
functionality without having to reimplement existing functionality.

Acknowledgements

This research was supported in part by the Danish Natural Science Research Council through grant 9400911,
by the National Science Foundation through grants IRI-9632569 and IRI-9202244; and by the CHORO-
CHRONOS project, funded by the European Commission DG XlI Science, Research and Development, as
a Networks Activity of the Training and Mobility of Researchers Programme, contract no. FMRX-CT96-
0056.

References

[1] I. Ahn and R. T. Snodgrass. Partitioned Storage for Temporal Databdséstmation Systems
13(4):369-391, 1988.

[2] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Ewaran, J. Gray, P. P. Griffiths, W. F. King,
R. A. Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu, I. L. Traiger, B. W. Wade, and V. Watson.
System R: Relational Approach to Database Manageme@il TODS 1(2):97-137, 1976.

[3] R. Barnert and G. Schmutz Die zeitbezogene Datenhaltung bei den Schweizer Regionalbanken.
Wirtschaftsinformatik39(1):45-53, 1997.

[4] T. Bunce et al. Perl DBI API Specification version 0.6htt p://ww. hermatic. cont -
t echnol ogi a/ DBI / , March 1997.

[5] M. H. Bohlen. Temporal Database System Implementati@&MOD Record24(4):53—-60, 1995.

[6] M. H. Bohlen, M. D. Soo, and R. T. Snodgrass. Coalescing in Temporal Databastscaedings of
the 22nd VLDB Conferencep. 180-191, 1996.

[7] M. H. Bohlen and C. S. Jensen. A Seamless Integration of Time into SQL. Technical Report R-
96—-2049, Aalborg University, Department of Computer Science, Fredrik Bajers Vej 7E, DK-9220
Aalborg gst, Denmark, 1996.

[8] M. H. Bbhlen The Tiger Bitemporal Database Prototypehttp://ww. cs. auc. dk/ -
~boehl en/ , March 1997.

[9] E. Gamma, R. Helm, R. Johnson, and J. VlissidBesign Patterns: Elements of Reusable Object-
Oriented SoftwareAddison-Wesley, Reading, Massachusetts, 1995.

[10] J. Gray and A. ReuterTransaction Processing: Concepts and Technigudsrgan Kaufmann Pub-
lishers, San Francisco, 1993.

[11] G. Hamilton and R. Cattell. JDBC: A Java SQL API version 1.20t p: // spl ash. j ava-
sof t. com pub/j dbc- spec0120. ps, March 1997.

15

[12] K. Jin. NNTP ODBC Driver and NNSQL Agent 0.5.t p: //ft p. uu. net/ pub/ dat abase/ -
perl-interfaces/other/i ODBC ,March 1997.

[13] D. Lomet and B. Salzberg. Access Methods for Multiversion Dat@rbteedings of ACM SIGMOD
International Conference on Management of Dadp. 315-324, June 1989.

[14] Microsoft Corp. Microsoft Open Database Connectivity Software Development Kit VersiorVE-O.
crosoft Press, 1994.

[15] D. Roth. The Win32::0DBC Perl Moduldt t p: / / www. r ot h. net / odbc/ , March 1997.

[16] K. H. Ryu. A Temporal Database Management Main Memory Prototype Templs Technical Report
No. 26. Department of Computer Science, University of Arizona, Tucson, AZ, 85721, USA, 1991.

[17] A. R. Simon. Strategic Database Technology: Management for the Year.200&rgan Kaufmann
Publishers, San Francisco, 1995.

[18] R. T. Snodgrass. The Temporal Query Language TQAMEM TODS 12(2):247-298, 1987.
[19] R.T. Snodgrass (ed.J-he TSQL2 Temporal Query Languadgduwer Academic Publishers, 1995.

[20] R. T. Snodgrass, C. E. Dyreson, C .S. Jensen, N. Kline, M. D. Soo, L. So, and J. Whelan. The
MULTICAL System, Release 1.1t p://ftp.cs. arizona. edu/tsql/multical/,1995.

[21] R. T. Snodgrass, M. H. @ilen, C. S. Jensen and A. Steiner. Adding Valid Time to SQL/Temporal.
Change proposal, ANSI X3H2-96-501r2, ISO/IEC JTC1/SC21/WG3 DBL MAD-146r2, 1996.

[22] M. D. Soo, R. T. Snodgrass, and C. S. Jensen. Efficient Evaluation of the Valid-time Natural Join. In
Proceedings of the International Conference on Data Engineeppg282—-292, 1994.

[23] A. Steiner, M. H. Bhlen, C. S. Jensen, and R. T. Snodgrass. Implementation of
TimeDB. http://ww. cs. auc. dk/ general / dbs/tdb/ti mecent er/ sof t war e-
/timedb.tar. gz, 1995.

[24] M. Stonebraker, E. Wong, and P. Kreps The Design and Implementation of INGREM.TODS
1(3):189-222, 1976.

[25] M. Stonebraker. The Design of the Postgres Storage SystenProkeedings of the 13th VLDB
Conferencepp. 289-300, 1987.

[26] M. Stonebraker, M. Hirohama, and L. A. Rowe. The Implementation of Postff&E Transaction
on Knowledge and Data Engineering(1):125-142, 1990.

[27] K. Torp, C. S. Jensen, and M. HoBlen. Layered Implementation of Temporal DBMSs—Concepts
and Techniques. Technical Report R-96-2037, Department of Computer Science, Fredrik Bajers Vej
7E DK-9220 Aalborg @st, Denmark, 1996.

[28] C. Vassilakis, P. Georgiadis, and N. Lorentzos. Transaction Support in a Temporal DBMS. In J. Clif-
ford and A. Tuzhilin, editorsRecent Advances in Temporal Databastywinger-Verlag, pp. 255-271,
1995.

[29] L. Wall, T. Christensen, and R. L. Schwart2rogramming Perl 2nd editianO’Reilly & Associates,
Inc., Sebastopol, 1996.

16

