Transitioning Temporal Support in TSQL2to
SQL3

Richard T. Snodgrass, Michael H. Bohlen, Christian S. Jensen and Andreas Steiner

April 1, 1997

TR-8

A TIMECENTER Technica Report

Title Transitioning Temporal Support in TSQL2 to SQL3

Copyright (© 1997 Richard T. Snodgrass, Michael H. Bohlen, Christian S. Jensen
and Andreas Steiner. All rights reserved.

Author(s) Richard T. Snodgrass, Michael H. Bohlen, Christian S. Jensen and Andreas Steiner

Publication History March 1997. A TIMECENTER Technical Report.

TIMECENTER Participants

Aalborg University, Denmark
Michael H. Bohlen

Renato Busatto

Heidi Gregersen

Christian S. Jensen (codirector)
Kristian Torp

University of Arizona, USA
AnindyaDatta
Richard T. Snodgrass (codirector)

Individual participants

Curtis E. Dyreson, James Cook University, Australia
Kwang W. Nam, Chungbuk National University, Korea
Keun H. Ryu, Chungbuk National University, Korea
Michael D. Soo, University of South Florida, USA
Andreas Steiner, ETH Zurich, Switzerland

Vassilis Tsotras, Polytechnic University, New York, USA
Jef Wijsen, Vrije Universiteit Brussel, Belgium

Any software made availablevia TIMECENTER isprovided“ asis’ and without any expressor implied warranties,
including, without limitation, the implied warranty of merchantability and fitness for a particular purpose.

The TIMECENTER icon on the cover combinestwo “arrows.” These “arrows’ arelettersin the so-called Rune a-
phabet used one millennium ago by the Vikings, aswell asby their precedessorsand successors, The Rune al phabet
(second phase) has 16 letters. They all have angular shapes and lack horizontal lines because the primary storage
medium was wood. However, runes may also be found on jewelry, tools, and weapons. Runes were perceived by
many as having magic, hidden powers.

Thetwo Rune arrowsin theicon denote“T” and “ C,” respectively.

Abstract

This document summarizes the proposals before the SQL3 committees to allow the addition of tables with
valid-time and transaction-time support into SQL/Temporal, and explains how to use these facilities to migrate
smoothly from a conventional relational system to one encompassing temporal support. Initially, important re-
quirements to atemporal system that may facilitate such a transition are motivated and discussed. The proposa
then describes the language additions necessary to add valid-time support to SQL 3 while fulfilling these require-
ments. The constructs of thelanguage aredivided into four levels, with each level adding increased tempora func-
tionality to its predecessor. A prototype system implementing these constructs on top of a conventional DBMS
ispublicly available.

1 Introduction

Weintroduce constructsthat have been submitted to thel SO SQL 3 committeeas change proposal sto SQL/Temporal
[7] to add valid-time and transaction-time support to SQL3 [12, 13]. These constructs are variants of those first
defined in TSQL2 [11]. We start with a brief chronology of work by the temporal database community. We then
outlineafour-level approach for theintegration of time. Theextensionsarefairly minimal. Each level isdescribed
viaaquick tour consisting of a set of examples. These examples have been tested in a prototypewhich is publicly
available [14]. We examine valid-time support first, then consider transaction-time and bitemporal support.

2 Chronology

The TSQL 2 committee was formed in July, 1993 after ageneral invitation sent to the community. This committee
consisted of Richard T. Snodgrass, 11soo Ahn, Gad Ariav, Don Batory, James Clifford, Curtis E. Dyreson, Chris-
tian S. Jensen, Ramez Elmasri, Fabio Grandi, Wolfgang K&fer, Nick Kline, KrishnaKulkarni, Ting Y. Cliff Leung,
Nikos L orentzos, John F. Roddick, Arie Segev, Michael D. So0, and SurynarayanaM. Sripada. The committeepro-
duced a preliminary language specification the following January, which appeared in the ACM SSGMOD Record
[8]. Based on responses to that specification, changes were made to the language, and the final language specifi-
cation and 28 commentaries were made available viaanonymous FTP in early October, 1994. A book describing
the language and examining in detail the design decisions was released at the VL DB International Workshop on
Temporal Databases in September, 1995 [11].

Richard Snodgrass started working with the ANS| and 1SO SQL3 committeesin late 1994. Thefirst step was
to propose anew part to SQL 3, termed SQL/Temporal [10]. Thiswasformally approvedin July, 1995. Jim Melton
agreed to edit this new part.

Discussions then commenced on adding valid-time support to SQL/Temporal. Whilethe ANSI committee was
supportive of the overall approach, there were several concernsvoiced about the TSQL 2 design. The major objec-
tionswere asfollows.

1. Temporal elements are not bounded in size, which meansthat all timestamped rows will also be unbounded
insize.

2. Duplicates are not allowed, because coalescing is always enforced.

3. A table with temporal support is returned with a conventional SELECT statement. To get a table without
temporal support, the SNAPSHOT keyword isrequired. The committeefelt that aconventional query should
return atable without temporal support.

4. Therewas no formal semanticsfor TSQL 2.
5. There existed no implementation of the proposed constructs.
6. Thekeywords VVALI D and TRANSACTI ONwere judged to be too generic.

After many discussions with the committee and with others, the following solutions were agreed upon. This
processtook well over ayear to complete. These modificationsare reasonable, asthe TSQL 2 design and the change
proposals had differing objectives.

1. Rows would be timestamped with periods rather than temporal elements. This enabled timestamps to be
bounded in size.

2. Coaescing would be optional, so that duplicates could be accommodated.

3. SNAPSHOT was discarded. A conventional query returns a table with no temporal support (this was later
generalized to the highly desirable property of temporal upward compatibility [1]). The VALI D clause was
moved to before the SELECT and later generalized to support sequenced queries (which were developed as
part of the ATSQL design [4]).

4. Mike Bohlen provided aformal semanticsfor the language.

5. Mike Bohlen and Andreas Steiner produced a public domain prototype implementation. Andreas has con-
tinued to evolve this prototype to be consistent with the change proposal .

6. Thekeywordswere changed to VALI DTI ME and TRANSACTI ONTI ME.

Many other smaller changes were made to the language proposals and to the wording of the change proposals
to address concerns of the committee members. The full story, including the change proposalsthemselves, can be
foundat FTP. cs. ari zona. edu/ t sql / t sql 2/ sql 3.

The change proposal s have been unanimously approved by the ANSI SQL 3 committee (ANSI X3H2) and are
under consideration by the 1SO SQL 3 committee (ISO/IEC JTC 1/SC 21/WG 3 DBL).

3 TheProblem

Most databases store time-varying information. For such databases, SQL is often the language of choicefor devel-
oping applications that utilize the information in these databases. However, users also realize that SQL does not
provide adequate support for temporal applications. To illustrate this, the reader is invited to attempt to formulate
the following straightforward, realistic statementsin SQL3. An intermediate SQL programmer can express all of
themin SQL for anon-time-varying database in perhapsfive minutes. However, even SQL expertsfind these same
gueries challenging to do in severa hours when time-varying data is taken into account.

e An Employee table has three columns. Name, Manager and Dept. We then store historical information by
adding a fourth column, When, of data type PERI CD. Manager is aforeign key for Employee.Name. This
means that at each point in time, the character string value in the Manager column also occursin the Name
column (probably in adifferent row) at the sametime. This cannot be expressed via SQL's foreign key con-
straint, which doesn’t take time into account. Formulate this constraint instead as an assertion.

e Consider thequery “List those employeeswho are not managers.” Thiscan easily beexpressedin SQL, using
EXCEPT or NOT EXI STS, ontheoriginal, three-columntable. Thingsarejust alittle harder with the When
column; awhere predicateisrequired to extract the current employees. Now formulatethe query “List those
employees who were not managers, and indicate when.” EXCEPT and NOT EXI STS won't work, because
they don’'t consider time. Thissimple temporal query is challenging even to SQL experts.

o Consider the query “Give the number of employeesin each department.” Again, thisis asimple query in
SQL. Formulate the query “Give the history of the number of employeesin each department.” Thisquery is
extremely difficult without temporal support in the language.

o Now formulate the modification “ Change the manager of the tools department for 1994 to Bob.” This mod-
ification is difficult in SQL because only a portion of many validity periods needs be changed, with the in-
formation outside of 1994 retained.

Most users know only too well that while SQL is an extremely powerful language for writing queries on the
current state, the language provides much less help when writing temporal queries, modifications, and constraints.

4 Qutline of the Solution

The problemwith formulating these SQL statementsis dueto the extreme difficulty of specifyingin SQL the correct
valuesof thetimestamp column(s) of theresult. Thesolutionisto allow the DBM Sto computethesevalues, moving
the complexity from the application codeinto the DBMS. With the language extensions proposed here, the above
gueries can al be easily written by an intermediate SQL programmer in about five minutes.

Referential integrity can be specified using sequenced valid semantics (which will be defined, exemplified, and
provided aformal definition later in this document):

CREATE TABLE Enpl oyee(
Nane VARCHAR(30),
Manager VARCHAR(30) VALI DTI ME REFERENCES Enpl oyee (Name),
Dept VARCHAR(20)) AS VALI DTI ME PERI OD(DATE)

Hereweindicatethat the table has valid-time support through“AS VALI DTI ME PERI OD(DATE) " and that the
referential integrity isto hold for each point in time through “VALI DTI ME REFERENCES”.

For the query “List those employees who are not managers,” we are interested only in the current employees.
We use temporal upward compatibility to extract thisinformation from the historical information stored in the Em-
ployeetable.

SELECT Name FROM Enpl oyee EXCEPT SELECT Manager FROM Enpl oyee

Thisresultsin a conventional table, with one column.
We use sequenced valid semanticsin the query “List those employees who were not managers, and when.”

VALI DTI ME SELECT Nane FROM Enpl oyee EXCEPT SELECT Manager FROM Enpl oyee

Theadded “VALI DTl ME” reserved word specifies that the query isto be evaluated at each point intime. At some

times, an employee may not be amanager, whereas at other times, the employeeisamanager. A one-columntable

results, but this time with valid-time support (i.e., the periods of time when each was not a manager is included).
The query “Give the number of employeesin each department” is easy given temporal upward compatibility.

SELECT Dept, COUNT(*)
FROM Enpl oyee
GROUP BY Dept

Again, we just get the current count for each department. To extract “the history of the number of employeesin
each department”, only a simple change is required.

VALI DTI ME SELECT Dept, COUNT(*)
FROM Enpl oyee
GROUP BY Dept

For each department, a time-varying count will be returned.
Modificationswork in similar ways. The modification “ Change the manager of the tools department for 1994
to Bob” can be expressed by following VALI DTl ME with a period expression.

VALI DTI ME PERI OD ' [1994-01-01 - 1994-12-31]' UPDATE Enpl oyee
SET Manager = ' Bob’
WHERE Dept = ’'Tool s’

Here again, we exploit our knowledge of SQL to first write the updateignoring time, then changeit in minor ways
to take account of time.

These statements are reminiscent of the kinds of SQL statements that application programmers are called to
write all the time. The potential for increased productivity is dramatic. Statements that previously took hoursto
write, or were simply too difficult to express, can take only minutes to write with the extensions discussed here.

We now return to the important question of migrating legacy databases. In the next section, we formulate
several requirements of SQL/Temporal to allow graceful migration of applications from conventiona to tempo-
ral databases.

5 Migration

The potential users of temporal database technology are enterprises with applications' that need to manage poten-
tially large amounts of time-varying information. These include financial applications such as portfolio manage-
ment, accounting, and banking; record-keeping applications, including personnel, medical records, and inventory;
and travel applicationssuch asairline, train, and hotel reservationsand schedule management. Itismost realistic to
assumethat these enterprisesare already managing time-varying dataand that thetemporal applicationsare already
in place and working. Indeed, the uninterrupted functioning of applicationsis likely to be of vital importance.

For example, companiesusually have applicationsthat managethe personnel recordsof their employees. These
applicationsmanagelarge quantities of time-varying data, and they may benefit substantially from built-intemporal
support in the DBMS[9]. Temporal queries that are shorter and more easily formulated are among the potential
benefits. Thisleadsto improved productivity, correctness, and maintainability.

This section explores the problems that may occur when migrating database applications from an existing to a
new DBMS, and it formulates a number of requirementsto the new DBM S that must be satisfied in order to avoid
different potential problems when migrating. Formal definitions of these requirements may be found elsewhere

[1].

5.1 Upward Compatibility

Perhaps the most important aspect of ensuring a smooth transition is to guarantee that all application code without
modification will work with the new system exactly with the same functionality as with the existing system.

To explorethe relationship between nontemporal and temporal data and queries, we employ a series of figures
that demonstrate increasing query and update functionality. In Figure 1, a conventional table is denoted with a
rectangle. The current state of thistableistherectanglein the upper-right corner. Whenever amodificationismade
to this table, the previous state is discarded; hence, at any time only the current state is available. The discarded
prior states are denoted with dashed rectangl es; the right-pointing arrows denotethe modification that took thetable
from one state to the next state.

Figure 1: Level 1 evaluates an SQL 3 query over atable without temporal support and returns atable also without
temporal support

When aquery ¢ is applied to the current state of atable, aresulting table is computed, shown as the rectangle
in the bottom right corner. Whilethisfigure only concerns queries over single tables, the extension to queries over
multiple tablesis clear.

Upward compatibility statesthat (1) all instances of tablesin SQL 3 areinstances of tablesin SQL/Temporal, (2)
all SQL 3 modificationsto tablesin SQL 3 result in the same tables when the modifications are evaluated according
to SQL/Temporal semantics, and (3) all SQL3 queries result in the same tables when the queries are evaluated
according to SQL/Temporal.

LWe use “ database application” non-restrictively, for denoting any software system that uses aDBMS as a standard component.

By requiring that SQL/Temporal isastrict superset (i.e., only adding constructs and semantics), it isrelatively
easy to ensure that SQL/Temporal is upward compatible with SQL 3.

Throughout, we provide examples of the various levels. In Section 6, we show these examples expressed in
SQL/Temporal.

EXAMPLE 1: A company wishesto computerizeits personnel records, so it creates two tables, an employeeta
ble and amonthly salary table. Every employee must have a salary. These tables are populated. A view identifies
those employees with a monthly salary greater than $3500. Then employee Thereseis given a 10% raise. Since
the salary table has no temporal support, Therese's previous salary islost. These schema changes and queries can
be easily expressed in SQL3. O

5.2 Temporal Upward Compatibility

If an existing or new application needs support for the temporal dimension of the datain one or more tables, the
table can be defined with or altered to add valid-timesupport (e.g., by usingthe CREATE TABLE ... AS VALID
or ALTER ... ADD VALI Dstatements). Thedistinction of atable having valid-time support is orthogonal to the
many other distinctionsalready present in SQL/Foundation, including “ basetable” versus“derived table’, “ created
table” versus“declaredtable”, “global table” versus*“local table”, “groupedtable” versusungrouped table, ordered
table versus table with implementation-dependent order, “subtable” versus “supertable’, and “temporary table”
versus “permanent table’. These distinctions can be combined, subject to stated rules. For example, atable can
be simultaneously atemporary table, atable of degree 1, an inherently updatable table, aviewed table, and atable
with valid-time support. In most of the SQL 3 specification, it doesn’t matter what distinctions apply to thetablein
guestion. In those few places where it does matter, the syntax and general rules specify the distinction.

It is undesirable to be forced to change the application code that accesses the table without temporal support
that is replaced by a table with valid-time support. We formulate a requirement that states that the existing appli-
cations on tables without temporal support will continue to work with no changesin functionality when the tables
they access are altered to add valid-time support. Specifically, temporal upward compatibility requires that each
query will return the same result on an associ ated snapshot database as on the temporal counterpart of the database.
Further, this property is not affected by modifications to those tables with valid-time support.

Temporal upward compatibility isillustrated in Figure 2. When valid-time support is added to atable, the his-
tory is preserved, and modifications over time are retained. In this figure, the state to the far left was the current
state when the table was made temporal. All subsequent modifications, denoted by the arrows, result in states that
areretained, and thus are solid rectangles. Temporal upward compatibility ensuresthat the stateswill haveidentical
contents to those states resulting from modifications of the table without valid-time support.

Time

Figure 2: Level 2 evaluates an SQL 3 query over a table with valid-time support and returns a table with similar
support

The query ¢ is an SQL3 query. Due to temporal upward compatibility the semantics of this query must not

changeif it is applied to a table with valid-time support. Hence, the query only applies to the current state, and a
table without temporal support results.

EXAMPLE 2: We make both the employee and salary tables temporal. This meansthat all information currently
in the tablesis valid from today on. We add an employee. This modification to the two tables, consisting of two
SQL3 | NSERT statements, respects temporal upward compatibility. That meansit isvalid from now on. Queries
and views on these tables with newly-added valid-time support work exactly as before. The SQL 3 query to list
where high-salaried employees live returns the current information. Constraints and assertions also work exactly
as before, applying to the current state and checked on database modification. O

Itisinstructiveto consider temporal upward compatibility in moredetail. When designinginformation systems,
two general approaches have been advocated. In the first approach, the system design is based on the function of
the enterprise that the system isintended for (the “ Yourdon” approach [15]); in the second, the design is based on
the structure of the reality that the system is about (the “ Jackson” approach [5]). It has been argued that the latter
approachis superior because structure may remain stable when the function changeswhilethe oppositeisgenerally
not possible. Thus, a more stable system design, needing less maintenance, is achieved when adopting the second
design principle. This suggests that the data needs of an enterprise are relatively stable and only change when the
actual business of the enterprise changes.

Enterprises currently use non-temporal database systems for database management, but that does not mean
that enterprises manage only non-temporal data. Indeed, temporal databases are currently being managed in a
wide range of applications, including, e.g., academic, accounting, budgeting, financial, insurance, inventory, le-
gal, medical, payroll, planning, reservation, and scientific applications. Temporal data may be accommodated by
non-temporal database systemsin several ways. For example, apair of explicit time attributes may encode avalid-
time interval associated with arow.

Temporal database systems offer increased user-friendliness and productivity, as well as better performance,
when managing data with temporal. Thetypical situation, when replacing a non-temporal system with atemporal
system, isonewherethe enterpriseis not changing its business, but wantsthe extra support offered by the temporal
system for managing its temporal data. Thus, it is atypical for an enterprise to suddenly desire to record tempo-
ral information where it previously recorded only snapshot information. Such a change would be motivated by a
change in the business.

Thetypical situationisrather more complicated. The non-temporal database systemislikely to already manage
temporal data, which is encoded using tables without temporal support, in an ad hoc manner. When adopting the
new system, upward compatibility guaranteesthat it is not necessary to change the database schema or application
programs. However, without changes, the benefits of the added valid-time support are also limited. Only when
defining new tables or modifying existing applications, can the new temporal support be exploited. The enterprise
then gradually benefits from the temporal support available in the system.

Nevertheless, the concept of temporal upward compatibility is still relevant, for several reasons. First, it pro-
vides an appealing intuitive notion of a table with valid-time support: the semantics of queries and modification
are retained from tables without temporal support; the only differenceis that intermediate states are also retained.
Second, in those cases where the original table contained no historical information, temporal upward compatibility
affordsa natural means of migrating to temporal support. In such cases, not asingleline of the application need be
changed when the tableis altered to be temporal. Third, conventional tables that do contain temporal information
and for which temporal support hasbeen added can still be queried and modified by conventional SQL 3 statements
in a consistent manner.

5.3 Sequenced Valid Extensions

The requirements covered so far have been aimed at protecting investments in legacy code and at ensuring un-
interrupted operation of existing applications when achieving substantially increased temporal support. Upward
compatibility guaranteesthat (non-historical) legacy application code will continue to work without change when
migrating, and temporal upward compatibility in addition allows legacy code to coexist with new temporal appli-
cations following the migration.

Therequirement in this section aims at protecting the investmentsin programmer training and at ensuring con-
tinued efficient, cost-effective application devel opment upon migration. Thisisachieved by exploiting the fact that

programmersare likely to be comfortable with SQL.

Sequenced valid semantics states that SQL/Temporal must offer, for each query in SQL3, atempora query
that “naturally” generalizesthis query, in aspecific technical sense. In addition, we require that the SQL/Temporal
guery be syntactically similar to the SQL 3 query that it generalizes.

With this requirement satisfied, SQL 3-like SQL/Temporal queries on tables with temporal support have se-
mantics that are easily (“naturally”) understood in terms of the semantics of the SQL 3 queries on tables without
temporal support. Thefamiliarity of the similar syntax and the corresponding, naturally extended semantics makes
it possible for programmersto immediately and easily write a wide range of temporal queries, with little need for
expensive training.

Figure 3illustratesthis property. We have already seen that an SQL 3 query ¢ on atable with valid-time support
appliesthe standard SQL 3 semanticson the current state of that table, resulting in atable without temporal support.
Thisfigureillustrates anew query, ¢’, which isan SQL/Temporal query. Query ¢’ isapplied to the tablewith valid-
time support (the sequence of states acrossthetop of thefigure), and resultsin atable also with valid-time support,
which is the sequence of states across the bottom.

Figure 3: Level 3 evaluates an SQL/Temporal query over atable with valid-time support and returns a table with
similar support

We would like the semantics of ¢’ to be easily understood by the SQL3 programmer. Satisfying sequenced
semantics along with the syntactical similarity requirement makes this possible. Specifically, the meaning of ¢’
is precisely that of applying SQL3 query ¢ on each state of the input table (which must have temporal support),
producing a state of the output table for each such application. And when ¢’ also closely resembles g syntactically,
temporal queriesare easily formulated and understood. To generate query ¢’, one needs only prepend the reserved
word VALI DTl ME to query q.

EXAMPLE 3: We ask for the history of the monthly salaries paid to employees. Asking that question for the cur-
rent state (i.e., what isthe salary for each employee) iseasy in SQL 3; let uscall thisquery ¢. To ask for the history,
we simply prepend the keyword VALI DTl ME to ¢ to generate the SQL/Temporal query. Sequenced semantics al-
lows usto do thisfor all SQL3 queries. So let ustry aharder one: list the history of those employeesfor which no
one makes a higher salary and lives in a different city. Again the problem reduces to expressing the SQL3 query
for the current state. We then prepend VALI DTI MVE to get the history. Sequenced semantics also worksfor views,
integrity constraints and assertions. O

These concepts also apply to sequenced modifications, illustrated in Figure 4. A valid-time modification de-
structively modifies states as illustrated by the curved arrows. As with queries, the modification is applied on a
state-by-state basis. Hence, the semantics of the SQL/Temporal modification is a natural extension of the SQL
modification statement that it generalizes.

EXAMPLE 4: Itturnsoutthat aparticular employeenever worked for the company. That employeeisdeleted from
the database. Note that if we use an SQL 3 DELETE statement, temporal upward compatibility requires deleting
the information only from the current (and future) states. By prepending the reserved word VALI DTI MVE to the
DEL ETE statement, we can remove that employee from every state of the table.

Figure 4: Level 3 also evauates an SQL/Temporal modification on a table with valid-time support

Many people misspell the town Tucson as “Tuscon”, perhaps because the name derives from an American In-
dianword in alanguage no longer spoken. To modify the current stateto correct thisspelling requiresasimple SQL
UPDATE statement; let’s call this statement «. To correct the spelling in all states, both past and possibly future,
we simply prepend the reserved word VALI DTI ME to w. O

5.4 Non-Sequenced Queriesand M odifications

In a sequenced query, the information in a particular state of the resulting table with valid-time support is derived
solely from information in the state at that same time of the source table(s). However, there are many reasonable
gueriesthat require other states to be examined. Such queries areillustrated in Figure 5, in which each state of the
resulting table requiresinformation from possibly all states of the source table.

Figure5: Level 4 evaluates anon-sequenced SQL/Temporal query over atablewith valid-time support and returns
atable with similar support

In this figure, two tables with valid-time support are shown, one consisting of the states across the top of the
figure, and the other, the result of the query, consisting of the states across the bottom of the figure. A single query
q performs the possibly complex computation, with the information usage illustrated by the downward pointing
arrows. Whenever the computation of asingle state of the result table may utilize information from a state at a dif-
ferent time, that query is non-sequenced. Such queries are more complex than sequenced queries, and they require
new constructsin the query language.

EXAMPLE 5: Thequery “Who was given salary raises?’ requireslocating two consecutive times, in which the
salary of the latter time was greater than the salary of the former time, for the same employee. Hence, it isanon-
sequenced query. O

The concept of non-sequenced queries naturally generalizes to modifications. Non-sequenced modifications
destructively change states, with information retrieved from possibly all states of the original table. In Figure 6,
each state of the table with valid-time support is possibly modified, using information from possibly all states of
the table before the modification. Non-sequenced modificationsinclude future modifications.

ExAMPLE 6: Wewishtogiveemployeesa5%raiseif they havenever had araise before. Thisisnot atemporally
upward compatible modification, because the modification of the current state usesinformationin the past. For the

Figure 6: Level 4 aso evaluates a non-sequenced SQL/Temporal modification on atable with valid-time support

samereason, it is not a sequenced update. So we must use adightly moreinvolved SQL/Temporal UPDATE state-
ment. In fact, only the predicate “if they never had araise” need be nonsequenced; the rest of the update can be
temporally upward compatible. O

Views and cursors can also be nonsegquenced.

EXAMPLE 7: We wish to define a snapshot view of the sal ar y table in which the row’s timestamp period ap-
pears asan explicit column. We can also defineavalid-timeview on this snapshot view that usesthe explicit period
column as an implicit timestamp. O

It is important to note that nonsequenced queries are very different from sequenced queries. In the latter the
guery language is providing a temporal semantics; in the former, the query language interprets the timestamp as
simply another column. For the user, this means that in nonseguenced queries (modifications, assertions, etc.)
the period timestamps must be manipulated explicitly. The operations, such asjoin and relational difference, are
performed with respect to the periods themselves, rather than on the individual states of the tables with temporal
support. Reserved words are used to syntactically differentiate temporally upward compatible queries, sequenced
gueries, and non-segquenced queries, each of which applies a distinct semanticsto the query.

55 Summary

In this section, we have formulated three important requirements that SQL/Temporal should satisfy to ensure a
smooth transition of legacy application code. We review each in turn.

Upward compatibility and temporal upward compatibility guaranteethat legacy application code needsno mod-
ification when migrating and that new temporal applications may coexist with existing applications. They are thus
aimed at protecting investmentsin legacy application code.

The requirement that temporal statements be a sequenced extension of the existing statements guarantees that
the query languageis easy to use for programmersfamiliar with the existing query language. The requirement thus
helps protect investment in programmer training. It also turns out that this property makes the semantics of tables
with valid-time support straight-forward to specify and enables awide range of implementation alternatives [12].

These requirementsinduce four levels of temporal functionality, to be defined in SQL/Temporal.

Level 1 Thislowest level capturesthe minimum functionality necessary for the query language to satisfy upward
compatibility with SQL3. Thus, there is support for legacy SQL 3 statements, but there are no tables with
valid-time support and no temporal queries. Put differently, the functionality at thislevel isidentical to that

of SQL3.

Level 2 Thislevel adds to the previous level solely by allowing for the presence of tables with valid-time sup-
port. The tempora upward compatibility requirement is applicable to this subset of SQL/Temporal. This
level adds no new syntax for queries or modifications—only queries and modifications with SQL3 syntax
are possible.

Level 3 Thefunctionality of Level 2 is enhanced with the possibility of giving sequenced temporal functionality
to queries, views, constraints, assertions, and madifications on tables with valid-time support. Thislevel of
functionality is expected to provide adequate support for many applications. Starting at thislevel, temporal
gueries exist, so SQL/Temporal must be a sequenced-consistent extension of SQL 3.

Level 4 Finally, thefull temporal functionality normally associated with atemporal languageis added, specifically,
non-sequenced temporal queries, assertions, constraints, views, and modifications. These additionsinclude
temporal queries and modificationsthat have no syntactic counterpart in SQL 3.

6 Tableswith Valid-Time Support in SQL3

This sectioninformally introducesthe new constructs of SQL/Temporal. These constructsare an improved and ex-
tended version of those in the consensus temporal query language TSQL 2 [11]. The improvements concern guar-
anteeing the properties listed in Section 5, to support easy migration of legacy SQL 3 application code [3]. The
extensionsconcern views, assertions, and constraints (specifically temporal upward compatible and sequenced and
non-sequenced extensions) that were not considered in the original TSQL 2 design.

The presentation is divided into four levels, where each successive level adds temporal functionality. The lev-
€l's correspond to those discussed informally in the previous section. Throughout, the functionality is exemplified
with input to and corresponding output from a prototype system [14]. Thereader may find it instructive to execute
the sample statements on the prototype. In the examples, executable statements are displayed in t ypewri t er
st yl e on aline of their own starting with the prompt “> ”

6.1 Level 1. Upward Compatibility

Level 1 ensuresupward compatibility (see Figure 1), i.e., it guaranteesthat legacy SQL 3 statements eval uated over
databases without temporal support return the result dictated by SQL 3.

6.1.1 SQL3Extensions
Obviously there are no syntactic extensionsto SQL 3 at thislevel.

6.1.2 A Quick Tour

Thefollowing statements are executed on January 1, 1995. A company createstwo tables, an employeetableand a
monthly salary table. Every employee must have asalary. These schemachangescan be easily expressedin SQL 3.

> CREATE TABLE enpl oyee(enane VARCHAR(12), eno | NTEGER PRI MARY KEY,
street VARCHAR(22), city VARCHAR(10), birthday DATE);
> CREATE TABLE sal ary(eno | NTEGER REFERENCES enpl oyee(eno), amount | NTECER);

> CREATE ASSERTI ON enp_has_sal CHECK
(NOT EXI STS (SELECT *
FROM enpl oyee AS e
WHERE NOT EXI STS (SELECT *
FROM sal ary AS s
VWHERE e. eno = s.eno)));

These tables are popul ated.

\%

| NSERT | NTO enpl oyee

VALUES (' Therese’, 5873, ’'Bahnhofstrasse 121', ’'Zurich’', DATE ’'1961-03-21");
| NSERT | NTO enpl oyee

VALUES (' Franzi ska’, 6542, 'Rennweg 683’, 'Zurich', DATE ’'1963-07-04");

\%

\%

I NSERT | NTO sal ary VALUES (6542, 3200);
I NSERT | NTO sal ary VALUES (5873, 3300);

\%

A view identifies those employeeswith amonthly salary greater than $3500.

> CREATE VI EW hi gh_sal ary AS SELECT * FROM sal ary WHERE anpunt > 3500;

10

Employee Therese is given a 10% raise. Since the salary table has no temporal support, Therese's previous
salary islost.

> UPDATE sal ary s
SET ampbunt = 1.1 * anpunt
WHERE s. eno = (SELECT e.eno FROM enpl oyee e WHERE e. enane = ' Therese');

> COMM T;

6.2 Level 2. Temporal Upward Compatibility

Level 2 ensurestemporal upward compatibility asdepictedin Figure 2. Temporal upward compatibility is straight-
forward for queries. They are evaluated over the current state of a database with valid-time support.

6.2.1 SQL3Extensions

The create table statement is extended to define tables with valid-time support. Specifically, this statement can be
followed by the clause “AS VALI DTl ME <datetimefield>", eg., “AS VALI DTI ME PERI OD(DATE) ". This
specifies that the table has valid-time support, with states indexed by particular days. The alter table statement is
extended to permit valid-time support to be added to a table without such support or dropped from a table with
valid-time support.

A table with valid-time support is conceptually a sequence of states indexed with valid-time granules at the
specified granularity. Thisisthe view of atable with valid-time support adopted in temporal upward compatibility
and sequenced semantics. At a more specific logical level, a table with valid-time support is also a collection of
rows associated with valid-time periods.

Indeed, our definition of the semantics of the addition to SQL/Temporal being proposed sati sfies temporal up-
ward compatibility and sequenced semantics.

6.2.2 A Quick Tour
The following statements are executed on February 1, 1995.

\%

ALTER TABLE sal ary ADD VALI DTI ME PERI OD(DATE) ;
ALTER TABLE enpl oyee ADD VALI DTI ME PERI OD(DATE) ;

\

Thefollowing statements are typed in the next day (February 2, 1995).

\%

| NSERT | NTO enpl oyee

VALUES(' Lilian', 3463, '46 Speedway’, 'Tuscon', DATE ’'1970-03-09");
| NSERT | NTO sal ary VALUES(3463, 3400);
COW T;

vV V

The enpl oyee table contains the following rows. (In these examples, we used open-closed ([...) ") for
periods.)

ename eno | street city birthday Valid

Therese | 5873 | Bahnhofstrasse 121 | Zurich | 1961-03-21 || [1995-02-01 - 9999-12-31)
Franziska | 6542 | Rennweg 683 Zurich | 1963-07-04 || [1995-02-01 - 9999-12-31)
Lilian 3463 | 46 Speedway Tuscon | 1970-03-09 || [1995-02-02 - 9999-12-31)

Note that the valid time extends to the end of time, which in SQL3 isthe largest date.
Thesal ary table contains the following rows.

eno | amount Valid

6542 | 3200 [1995-02-01 - 9999-12-31)
5873 | 3630 [1995-02-01 - 9999-12-31)
3463 | 3400 [1995-02-02 - 9999-12-31)

11

We continue, still on February 2. Tables, views, and queries act like before, because temporal upward compat-
ibility is satisfied. To find out where the high-salaried employeeslive, use the following.

> SELECT enane, city
FROM high_salary AS s, enployee AS e
WHERE s.eno = e.eno;

Evaluated over the current state, this returns the employee Therese, in Zirich.

Assertionsand referential integrity act like before, applying to the current state. The following transaction will
abort due to (1) aviolation of the PRI MARY KEY constraint, (2) aviolation of theenp_has_sal assertion and
(3) areferentia integrity violation, respectively.

> | NSERT | NTO enpl oyee
VALUES (' Eric’, 3463, '701 Broadway’', 'Tucson’, DATE ’'1988-01-06");
> | NSERT | NTO enpl oyee
VALUES (' Mel anie’, 1234, '701 Broadway', 'Tucson', DATE ’'1991-03-08");
> | NSERT | NTO sal ary VALUES(9999, 4900);
> COW T,

6.3 Level 3. Sequenced Language Constructs

Level 3 adds syntactically similar, sequenced counterparts of existing queries, modifications, views, constraints,
and assertions (see Figure 3). Sequenced SQL/Temporal queries produce tables with valid-time support. The state
of aresult table at each timeiscomputed from the state of the underlying table(s) at the sametime, viathe semantics
of the contained SQL 3 query. Inthisway, usersare able to expresstemporal queriesin anatural fashion, exploiting
their knowledge of SQL3. Temporal views, assertions and constrains can likewise be naturally expressed.

6.3.1 SQL3Extensions

Temporal queries, modifications, views, assertions, and constraintsare signal ed by thereserved word VALI DTI MVE.
This reserved word can appear in a number of locations.

Derived tablein afrom clause Inthefrom clause, one can prepend VALI DTI ME to a <query expression>.
View definition Temporal views can be specified, with sequenced semantics.

Assertion definition A sequenced assertion applies to each of the states of the underlying table(s). Thisisin
contrast to a snapshot assertion, which is only evaluated on the current state. In both cases, the assertion is
checked before a transaction is committed.

Table and column constraints ~ When specified with VALI DTI ME, such constraints must apply to all states of
the table with valid-time support.

Cursor expression Cursors can range over tables with valid-time support.
Singlerow select Such a select can return arow with an associated valid time.

Modification statements When specified with VALI DTI ME, the modification appliesto each state comprising
the table with valid-time support.

In all cases, the VALI DTI ME reserved word indicates that sequenced semanticsis to be employed.

6.3.2 A Quick Tour

We evaluate the following statements on March 1, 1995.

Prepending VALI DTI ME to any SELECT statement eval uates that query on all states, in a sequenced fashion.
The first query provides the history of the monthly salaries paid to employees. This query is constructed by first
writing the snapshot query, then prepending VALI DTI ME.

12

> VALI DTI ME
SELECT enane, anount
FROM salary AS s, enployee AS e
VWHERE s.eno = e.eno;

This evaluatesto the following.

ename amount || Valid

Franziska | 3200 [1995-02-01 - 9999-12-31)
Therese 3630 [1995-02-01 - 9999-12-31)
Lilian 3400 [1995-02-02 - 9999-12-31)

List those for which no one makes a higher salary in adifferent city, over al time.

> VALI DTI ME
SELECT enane
FROM enpl oyee AS el, salary AS sl
WHERE el.eno = sl.eno
AND NOT EXI STS (SELECT enane
FROM enpl oyee AS e2, salary AS s2
VWHERE e2.eno = s2.eno
AND s2.anpunt > sl. anount
AND el.city <> e2.city);

This givesthe following resullt.

ename valid
Therese [1995-02-01 - 9999-12-31)
Franziska || [1995-02-01 - 1995-02-02)

Thereseislisted becausethe only personin adifferent city, Lilian, makesalower salary. Franziskaislisted because
for that one day, there was no onein adifferent city (Lilian didn’t join the company until February 2).

Thereservedword VALI DTI ME specifiesthat the semanticsof thequery to whichit is prependedisasequenced
semantics. Conceptually the query isevaluated independently on every state of the underlying tables(cf. Figure 3).
This ensures that the user’s intuition about SQL carries over to sequenced queries and modifications.

A formal semantics for sequenced queries has been developed [12, 4]. While Figure 3 provides the meaning
of sequenced queriesin terms of states, the formal semanticsis expressed in terms of manipulations on the period
timestamps of the underlying tables with valid-time support.

We then create atemporal view, similar to the non-temporal view defined earlier. In fact, the only differenceis
the use of the reserved word VALI DT ME.

> CREATE VI EWhi gh_sal ary_history AS
VALI DTI ME SELECT * FROM sal ary WHERE s. sal ary > 3500;

Finally, we define atemporal column constraint.

> ALTER TABLE sal ary ADD VALI DTI ME CHECK (anmount > 1000 AND anount < 12000);
> COWM T,

Rather than being checked on the current state only, this constraint is checked on each state of thesal ar y table.
Thisis useful to restrict retroactive changes[6], i.e., changesto past states and proactive changes, i.e., changesto
future states. Thisconstraint is satisfied for al statesin the table.

Sequenced modifications are similarly handled. To remove employee #5873 for al states of the database, we
use the following statement.

13

\

VALI DTI ME DELETE FROM enpl oyee
WHERE eno = 5873;

VALI DTI ME DELETE FROM sal ary
VWHERE eno = 5873;

COW T,

\%

\%

To correct the common misspelling of Tucson, we use the following statement.

\%

VALI DTI ME UPDATE enpl oyee
SET city = 'Tucson’
WHERE city = ' Tuscon’;
> COW T;

Thisupdates all incorrect values, at all times, including the past and future. Lillian’s city is thus corrected.

6.4 Level 4: Non-Sequenced L anguage Constructs

Level 4 accountsfor non-sequenced queries (see Figure 5) and non-sequenced modifications (see Figure 6). Many
useful queries and modifications are in this category. However, their semantics is necessarily more complicated
than that of sequenced queries, because non-sequenced queries cannot exploit that useful property. Instead, they
must support the formulation of special -purpose user-defined temporal relationships between implicit timestamps,
datetime values expressed in the query, and stored datetime columnsin the database.

Nonsequenced SQL/Temporal queries can produce tables with or without valid-time support, depending on
whether the valid-time period of the resulting rows is provided in the query. The state of aresult table, if atableis
without valid-time support, or the state of aresult table at each time, if atable has valid-time support, is computed
from potentially al of the states of the underlying table(s), at any time. The semantics are quite smple. A nonse-
guenced evaluation treats atable with valid-time support as a tabl e without temporal support, but with an additional
column containing the timestamp. We again emphasize that this semanticsis quite different from temporally up-
ward compatible semantics (where the query is evaluated only on the current state) and from sequenced semantics
(where the query is effectively evaluated on each state independently).

6.4.1 SQL3Extensions

Nonsequenced valid queriesare signaled by the new reserved word NONSEQUENCED preceding the reserved word
VALI DTI ME. This applies analogously to nonsequenced modifications, views, assertions, and constraints. This
reserved word can appear in a number of locations.

Derived tablein afrom clause Inthefromclause, onecan prepend NONSEQUENCED VALI DTl MEtoa<query
expression>. Thisresultsin atable without temporal support, and is the means of removing the valid-time
support of atable.

View definition Nonsequenced views can be specified.

Assertion definition A nonsegquenced assertion applies smultaneously to all of the states of the underlying ta-
ble(s). Thisisin contrast to a snapshot assertion, which isonly evaluated on the current state. In both cases,
the assertion is checked before a transaction is committed.

Table and column constraints ~ When specified with NONSEQUENCED VALI DTI ME, such constraints must
apply to the table with valid-time support as awhole.

Cursor expression Cursors can range over the result of a honsequenced select.

Single-row select A nonseguenced single-row select will return a row without temporal support, even when
evaluated over tables with valid-time support.

Modification statements When specified with NONSEQUENCED VALI DTI Mg, the modification applies si-
multaneoudly to all states comprising the table with valid-time support.

14

In all cases, the NONSEQUENCED reserved word indicates that nonsequenced semanticsis to be employed.
The syntax of a <query expression>> is extended to the following.

{ { NONSEQUENCED } VALI DTI ME { <valueexpression> } } <query expression>

An optional period expression after VALI DTI MVE specifies that the valid-time period of each row of the result
is intersected with the value of the expression. This allows one to restrict the result of a select statement, cursor
expression, or view definition to a specified period, and to restrict the time for which assertion definitions, table
constraints and column constraints are checked.

An optional period expression after NONSEQUENCED VALI DTI ME specifies the valid-time period of each
row of the result, and thus rendersthe resulting table to have valid-time support. This enables atable without tem-
poral support to be converted into atable with valid-time support within a query or other statement.

For modification statements, the period expression after VALI DT ME specifies the temporal scope of the mod-
ification: the times at which the modification isto be applied.

Thevalue expression “VALI DTl ME(<correlationname>) " isavailable; it evaluatesto the valid-time period
of the row associated with the correlation or table name. Thisis required because valid-time periods of tableswith
valid-time support are not explicit columns (the alternative viol ates temporal upward compatibility).

Thefollowing quick tour provides examples of these constructs.

6.4.2 A Quick Tour

This quick tour starts with the database as it was when we last |eft it, in the previous quick tour. Theenpl oyee
table has the following contents.

ename eno | street city birthday valid
Franziska | 6542 | Rennweg 683 | Zurich | 1963-07-04 || [1995-02-01- 9999-12-31)
Lilian 3463 | 46 Speedway | Tucson | 1970-03-09 || [1995-02-02 - 9999-12-31)

Thesal ary table has the following contents.

eno amount valid
6542 | 3200 [1995-02-01 - 9999-12-31)
3463 | 3400 [1995-02-02 - 9999-12-31)

A period expression after VALI DTI ME specifies the temporal scope of the result. List those who were em-
ployed sometime during the first six months.

> VALIDTI ME PERI OD '[1995-01-01 - 1995-07-01)' SELECT enane FROM enpl oyee;

This returns the following table.

ename valid
Franziska | [1995-02-01 - 1995-07-01)
Lilian [1995-02-02 - 1995-07-01)

On April 1, 1995, we give Lilian a 5% raise, starting immediately. Thisis atemporally upward compatible
modification, and so is already expressiblein SQL.

> UPDATE sal ary
SET anount = 1.05 * anount
VWHERE eno = (SELECT S. eno
FROM sal ary AS S, enpl oyee as E
WHERE enane = 'Lilian’ AND E.eno = S.eno);

> COWM T,

Thisresultsin thefollowing sal ary table.

15

eno | amount Valid

6542 | 3200 [1995-02-01 - 9999-12-31)
3463 | 3400 [1995-02-02 - 1995-04-01)
3463 | 3570 [1995-04-01 - 9999-12-31)

To determine who was given salary raises, we must simultaneously consider two consecutive states of the
sal ary table, before and after the raise. This requiresanonsegquenced query.

> NONSEQUENCED VALI DTI ME SELECT enane
FROM enpl oyee AS E, salary AS Sl1, salary AS S2
VWHERE E. eno = S1.eno AND E.eno = S2.eno
AND S1. anmount < S2.anmpunt AND VALI DTI ME(S1) MEETS VALI DTI ME(S2) ;

MEETS ensures that the valid-time period associated with S1 is immediately followed by the valid-time period
associated with S2. Sincethevalid-time period of arow isnot in an explicit column (asthiswould violate temporal
upward compatibility), VALI DTl ME() is used to extract the associated valid-time period. The result is atable
without temporal support, because NONSEQUENCED is not followed by a period expression.

ename
Lilian

If weinstead wish to get back atable with valid-time support, i.e., “Who was given salary raises, and when did they
receivethe higher salary?’, we place a <vaue expression> after VALI DT ME to specify when each resulting row
isvalid. Our first try is the following, in which the <value expression> extracts the valid timestamp of S2.

> NONSEQUENCED VALI DTI ME VALI DTI ME(S2) SELECT enane
FROM enpl oyee AS E, salary AS Sl1, salary AS S2
VWHERE E. eno = S1.eno AND E.eno = S2.eno
AND S1.anmpunt < S2.ampunt AND VALI DTI ME(S1) MEETS VALI DTI ME(S2) ;

Because an expression isassociated with NONSEQUENCED VAL DTI MVE, theresult will beatablewith valid-time
support, with avalid timestamp of the value of the timestamp of S2. However, thisisn’t quite correct, because the
period expression following VALI DTl ME can only mention the columns of the following select statement, and
the timestamp of S2 isn't available. So we put the value in the select list, and use an enclosing (sequenced) select
statement to get rid of this extra column.

> VALI DTI ME SELECT enane
FROM (NONSEQUENCED VALI DTI ME S2val i d SELECT enane, VALIDTI ME(S2) AS S2valid
FROM enpl oyee AS E, salary AS Sl1, salary AS S2
WHERE E. eno = Sl.eno AND E.eno = S2.eno
AND S1. anpbunt < S2.anount AND VALI DTI ME(S1) MEETS VALI DTI ME(S2)) AS S

Theinner query evaluatesto two columns, enamne and S2val i d. The NONSEQUENCED VALI DTl ME includes
a <value expression>, specifying that atable with valid-time support is desired. The valid timestamp of each row
isthe same as the value of the S2val i d column. The outer query just projects out the enamne column, retaining
the valid timestamp. This query has the following result.

ename Valid
Lilian || [1995-04-01- 9999-12-31)

If we had desired thetimewhen the person had received thelower salary, wewould simply specify VALI DTI ME(S1)
instead.

This query is admittedly more complex than the sequenced queries given in the previous section. In non-
sequenced queries the user (more specifically, the query) is doing al the work of manipulating the timestamps,
whereasin sequenced queries, the semantics handles the timestamps automatically, freeing the user from this con-
cern. The reason that nonsequenced queries are included is that some (very useful) queries cannot be expressed
using the sequenced semantics, the query just given being one example.

Following VALI DTI ME with a period expression in a modification (whether sequenced or not) specifies the
temporal scope of the modification. Two applications of this are retroactive and future changes. Assumeiit is now
May 1, 1995. Franziska, employee 6542, will be taking a leave of absence the last half of the year.

16

> VALI DTI ME PERI OD ' [1995-07-01 - 1996-01-01)’
DELETE FROM sal ary
VWHERE eno = 6542;

> VALI DTI ME PERI OD ' [1995-07-01 - 1996-01-01)’
DELETE FROM enpl oyee
WHERE eno = 6542;

> COWM T,

Thesal ary table now has the following contents.

eno | amount Valid

6542 | 3200 [1995-02-01 - 1995-07-01)
6542 | 3200 [1996-01-01 - 9999-12-31)
3463 | 3400 [1995-02-02 - 1995-04-01)
3463 | 3570 [1995-04-01 - 9999-12-31)

The enpl oyee table has the following contents.

ename eno | street city birthday valid

Franziska | 6542 | Rennweg 683 | Zurich | 1963-07-04 || [1995-02-01 - 1995-07-01)
Franziska | 6542 | Rennweg 683 | Zurich | 1963-07-04 || [1996-01-01- 9999-12-31)
Lilian 3463 | 46 Speedway | Tucson | 1970-03-09 || [1995-02-02 - 9999-12-31)

Note that these deletions split single periodsinto two, with alapse between them. Many modifications are greatly
simplifiedinthisway. Also notethat previoudy specified sequenced valid referential integrity and other constraints
and assertions must apply to each state. Hence, if thefirst DEL ETE was performed, but not the second, the COVMM T
will abort because the enp_has _sal constraint isviolated for certain states, such asthe one on August 1, 1995.

The period expression following VALI DTl ME is also alowed for assertions and constraints. Assume that no
employee may make less than 3000 during 1996.

> CREATE ASSERTI ON sal ary_check
VALI DTI ME PERI OD ' [1996-01-01 - 1997-01-01)' CHECK
(NOT EXI STS (SELECT * FROM sal ary WHERE anpbunt < 3000));

This is a sequenced assertion, and thus applies separately to each state (at least, those in 1996). Nonsequenced
assertions and constraints apply to al states at once. To assert that there is only one employee with a particular
name, we use the following constraint within the enpl oyee table definition.

> CONSTRAI NT uni que_nanme UNI QUE (enane)

Thisisinterpreted with temporal upward compatible semantics, and so applies only to the current state. If al we
do is temporal upward compatible modifications, this will be sufficient. However, if we perform future updates,
violations may be missed. To always check all states, a sequenced constraint is used.

> CONSTRAI NT uni que_nane_per _ti ne VALI DTI ME UNI QUE (enane)

Thiswill ensure that at any time, each ename value is unique.
To ensure that each ename is unique, across all states simultaneously, a nonsequenced constraint is required.

> CONSTRAI NT uni que_nane_over _al | _ti me NONSEQUENCED VALI DTI ME UNI QUE (enane)

The above enpl oyee table satisfies the first two constraints, but not the third (the nonsequenced one), because
there are two rows with an ename of Franziska.

As with VALI DTI ME, NONSEQUENCED VALI DTI ME can appear in a from clause. To give employees a
5% raise if they never had araise before, we first write atemporal upward compatible modification (i.e., without
VALI DTI ME) to givetheraise.

17

> UPDATE salary AS S
SET amount = 1.05 * anount;

We can augment this statement to use a non-sequenced query in the from clause to look for raises in the past.

> UPDATE salary AS S
SET anount = 1. 05 * anount
WHERE NOT EXI STS (SELECT *
FROM (NONSEQUENCED VALI DTI ME SELECT *
FROM sal ary AS S1, salary AS S2
VWHERE S1. anmpunt < S2. anount
AND VALI DTI ME(S1) MEETS VALI DTI ME(S2)
AND S1.eno = S.eno and S2.eno = S.eno) AS S3
);
> COW T;

TheNOT EXI STSwasadded. Assumethat the update was entered on June 1, 1995. Thefollowingsal ar y table
results.

eno | amount Valid

6542 | 3200 [1995-02-01 - 1995-06-01)
6542 | 3360 [1995-06-01 - 1995-07-01)
6542 | 3360 [1996-01-01 - 9999-12-31)
3463 | 3400 [1995-02-02 - 1995-04-01)
3463 | 3570 [1995-04-01 - 9999-12-31)

Since the update is evaluated with temporal upward compatible semantics, if changes the salary for valid times
after June 1.

Finally, we wish to define a snapshot view of the sal ar y table in which the row’s timestamp appears as an
explicit column.

> CREATE VI EW snapshot _sal ary (eno, anount, when) AS
NONSEQUENCED VALI DTI ME SELECT S.*, VALIDTI ME(S) FROM sal ary AS S;

Coming around full circle, we can define avalid-timeview on snapshot _sal ar y that usesthe explicit column
val i dti me asanimplicit timestamp.

> CREATE VI EWtenporal salary (eno, amount) AS
VALI DTI ME SELECT eno, anount
FROM (NONSEQUENCED VALI DTI ME when SELECT * FROM snapshot _salary AS S) AS S2;

This conversion can a so be applied within queries and cursors.

7 Transaction-Time Support

Transaction time identifies when data was asserted in the database. If transaction time is supported, the states of
the database at all previous points of time are retained and updates are append-only.

Unlike valid time, transaction time cannot be entirely simulated with tables with explicit timestamp columns.
Thereason isthat tableswith transaction-time support are append-only: they grow monotonically. Whilethe query
functionality can be simulated on table with no temporal support, in the same way that valid-time query functional -
ity can be trandated into queries on table with no temporal support, thereisno way to restrict the user to modifica-
tions that ensure the table is append-only. While one can revoke permission to use DELETE, it is still possible for
the user to corrupt the transaction timestamp viadatabase updates and insertions. Thismeansthat theuser can never
be sure that what the table says was stored at some time in the past was actually in the table at that time. The only
way to ensure the consistency of the dataisto have the DBM S maintain the transaction timestamps automatically.

18

Many applicationsneed to keep track of the past states of the database, often for auditing requirements. Changes
are not allowed on the past states; that would prevent secure auditing. Instead, compensating transactions are used
to correct errors.

When an error is encountered, often the analyst will ook at the state of the database at a previous point in time
to determine where and how the error occurred.

However, SQL currently does not support such modifications or querieswell. The following example will il-
lustrate the problems.

e Assume that we wish to keep track of the changes and deletions of the Employee table discussed above.
This table has four columns: Name, Manager, Dept, and When (a PERI OD indicating when the row was
valid). To know when rows are inserted and (logically) deleted, we add two more columns, InsertTime and
DeleteTime, both of the datatype TI MESTAMP. Of course, adding these two columns breaks the referential
integrity constraint between Manager and Name (the manager must also be an employee). The reader is
invited to write this referential integrity constraint to take into account the three time columns.

o Wefind out that the telephonebill for adepartment isunusually high, so we ask “How many employees have
been in each department” to get a start. This query is quite complex to formulatein SQL.

e |t turns out that one of the departments shows an unreasonable number of current employees (more than
25). When was the error introduced? Is this inconsistency in the database widespread? How long has the
database been incorrect? The query “When did we think that departments are overly large?’ provides an
initial answer, but is also very difficult to expressin SQL.

These queries are very challenging, even for SQL experts, when timeisinvolved.

Modifications are even more of aproblem. A logical deletion must be implemented as an update and an inser-
tion, becausewe don’t want to changethe previously stored information. However, thereisnoway of preventingan
application frominadvertently corrupting past states (by incorrectly altering the valuesof the InsertTime or Delete-
Time columns), or awhite-collar crimina from intentionally “changing history” to cover up histracks.

8 Outline of the Solution

The solution is to have the DBMS maintain transaction time automatically, so that the integrity of the previous
states of the database is preserved. The query language can also help out, by making it easy to write queries and
modifications.

With the small syntactic additions proposed here, transaction time can be easily added.

ALTER TABLE Enpl oyee ADD TRANSACTI ONTI ME

Because the DBM S is maintaining transaction timefor us, for thistable, we don’t have to worry about the integrity
of the previous states. The DBMS simply won't let us modify past states.

The previoudly specified sequenced valid referential integrity still applies, aways on the current state of the
database. No rephrasing of thisintegrity constraint is necessary.

The query “How many employees have been in each department?’ asks for the history in valid time of the
current transaction-time state. Hence, it is particularly easy to specify, by exploiting transaction-time upward com-
patibility.

VALI DTI ME SELECT Dept, COUNT(*)
FROM Enpl oyee
GROUP BY Dept

To find where the error was made, we write the query “When did we think that departments are overly large?’

This uses the current time in valid time (the current departments), but looks at past states of the database. This
requires a sequenced transaction query, with valid-time upward compatibility.

19

TRANSACTI ONTI ME SELECT Dept, COUNT(*)
FROM Enpl oyee

GROUP BY Dept

HAVI NG COUNT(*) > 25

By having the DBMS maintain transaction time, applications that need to retain past states of tables for audit-
ing purposes can have these past states maintained automatically, correctly, and securely. Aswell, the proposed
language extensions enabl e queries to be written in minutes instead of hours.

The concepts of temporal upward compatibility (TUC), sequenced (SEQ), and nonsequenced (NONSEQ) se-
mantics apply orthogonally to valid time and transaction time.

The semanticsis dictated by three simple rules.

e The absence of VALI DTI ME (respectively, TRANSACTI ONTI ME) indicates valid-time (resp., transaction-
time) upward compatibility. The result does not include valid-time (resp., transaction-time) support.

e VALI DTI ME (respectively, TRANSACT| ONTI MVE) indicates sequenced valid (resp., transaction) semantics.
Anoptional period expressiontemporally scopestheresult. Theresultincludesvalid-time (resp., transaction-
time) support.

o NONSEQUENCED denotes nonsequenced valid (resp., transaction) semantics. An optional period expression
after NONSEQUENCED VALI DTI ME provides a valid-time timestamp, yielding valid-time support in the
result.

EXAMPLE 8: Assume that we have an employee table with attributes Name, Salary, and Manager. We can state
queries that are different combinations of TUC, SEQ, and NONSEQ in valid and transaction time. In the follow-
ing, we indicate valid time, then transaction time. Hence, “TUC/SEQ” means valid-time upward compatible and
seguenced transaction-time semantics.

TUC/TUC Who currently makes more than their manager, as best known?
A table with no temporal support results.

SEQ/TUC Who at any time makes or made more than their manager did (at the same time, as best known)?
A table with valid-time support results.

TUC/SEQ Who did we think makes more than their manager today?

NONSEQ/TUC Who made more than their manager did (at any time), as best known?
A table with no temporal support results.

TUC/NONSEQ When wasiit recorded that someone currently makes more than their manager?
A table with no temporal support results.

SEQ/SEQ When did we think that someone, at some time, made more than their manager, at the same time?
A table with both valid-time and transaction-time support results.

SEQ/NONSEQ When did we correct the information to record that someone, at some time, made more than their
manager, at the same time?

A table with valid-time support results. For each transaction time, we get a row with valid-time support,
indicating when the employee is now considered to make more than their manager.

NONSEQ/SEQ Who was recorded, perhaps erroneously, to have made more than their manager did at any time?
Here we get a table with transaction-time support, indicating when the perhaps erroneous data was in the
table.

NONSEQ/NONSEQ When did we correct the information, to record that someone made more than their manager
did, at any time?

Here atable with no temporal support results.

20

TUC invalidtimetrandatesin English to “at now”; SEQ translates to “at the same time’; and NONSEQ trans-
latesto “at any time.” TUC intransactiontimetrandatesto “as best known”; SEQ trandlatesto “when did we think
... at the sametime”’; and NONSEQ translates to “when wasiit recorded that.”

This exampleillustrates that all combinations are meaningful. O

While this example emphasized the orthogonally of valid and transaction time, that TUC, SEQ, and NONSEQ
can be applied equally to both, there are still some differences between the two types of time.

First, valid time can have a precision specified by the user at table creation time. The transaction timestamps
have an implementati on-dependent range and precision. Second, valid time extendsinto the future, whereastrans-
action time always ends at now. Third, unlike NONSEQUENCED VALI DTI Mg, a <value expression> is not per-
mitted after NONSEQUENCED TRANSACTI ONTI ME, becauseit isnot possibleto computeatablewith transaction-
time support. Finally, during modificationsthe DBM S providesthetransaction time, in contrast with the valid time
of facts, which are provided by the user. This derives from the different semantics of transaction time and valid
time. Specifically, when afactis (logically) deleted from a table with transaction-time support, its transaction stop
timeisset automatically by the DBM Sto the current time. When afact isinserted into the table, itstransaction start
timeis set by the DBMS, again to the current time. An update is treated, concerning the transaction-time times-
tamps, as a deletion followed by an insertion. The transaction times that a set of modification transactions give to
the modified rows must be consistent with the serialization order of those transactions.

EXAMPLE 9: We can alter the employeetableto be atable with both valid-time and transaction-time support, by
adding transaction-time support. O

Tempora upward compatibility guarantees that conventional, nontemporal queries, updates, etc. work as before,
with the same semantics.

Sincethe history of the databaseisrecorded in tables with both valid-time and transaction-time support, we can
find out when corrections were made, using a nonsegquenced transaction query.

ExXAMPLE 10: The query “When was the street corrected, and what were the old and new values?’, combines

nonsequenced transaction semantics (since this involves two transaction states. before and after the correction)
with sequenced valid semantics. O

ExAMPLE 11: To extract all the information from the employee table, we can use a sequenced valid/sequenced
transaction query. Such queries can have arbitrarily complex predicates. “When did we think that someone lived
somewhere for more than six months?’ O

Modificationstake effect at the current transaction time. However, we can still specify the scope of the change
in valid time, both before and after now (retroactive and postactive changes, respectively).

ExAMPLE 12: Lilian moved last June 1. a

Finally, arbitrarily complex queriesin transaction time can be expressed with nonsequenced transaction queries.

EXAMPLE 13: Thequery “When was an employee’saddressfor 1995 corrected?’ involves nonsequenced trans-
action semantics and sequenced valid semantics, with atemporal scope of 1995. O

As always, the concepts also apply to views, cursors, constraints, and assertions.
EXAMPLE 14: Theassertion “An entry in the security table can never be updated. It can only be deleted, and a

new entry, with another key value, inserted.” can be expressed with a nonsequenced transaction semantics, stating
in effect that the key valueis unique over all transaction time. O

21

9 A Quick Tour

This quick tour starts with the database as it was when we last |€ft it, at the end of the previous quick tour. The
enpl oyee table has the following contents. Recall that closed-open periods are used here for the valid-time and
transaction-time periods.

ename eno | street city birthday valid

Franziska | 6542 | Rennweg 683 | Zurich | 1963-07-04 || [1995-02-01 - 1995-07-01)
Franziska | 6542 | Rennweg 683 | Zurich | 1963-07-04 || [1996-01-01- 9999-12-31)
Lilian 3463 | 46 Speedway | Tucson | 1970-03-09 || [1995-02-02 - 9999-12-31)

Thesal ary table has the following contents.

eno | amount Valid

6542 | 3200 [1995-02-01 - 1995-06-01)
6542 | 3360 [1995-06-01 - 1995-07-01)
6542 | 3360 [1996-01-01 - 9999-12-31)
3463 | 3400 [1995-02-02 - 1995-04-01)
3463 | 3570 [1995-04-01 - 9999-12-31)

We can alter the enpl oyee table to be a table with both valid-time and transaction-time support, by adding
transaction-time support. Assume that the current dateis July 1, 1995.

ALTER TABLE enpl oyee ADD TRANSACTI ONTI ME;
COW T;

Since enpl oyee was atable with valid-time support, this statement convertsit to the following table with both
valid-timeand transaction-timesupport. Recall that an the ending bound of the transaction-time period of the end of
timein the representation simply indicatesthat the row still logically residesinthetable, i.e., hasnot been logically
deleted.

ename eno street city birthday valid Transaction

Franziska | 6542 | Rennweg 683 | Zurich | 1963-07-04 || [1995-02-01 - 1995-07-01) | [1995-07-01 - 9999-12-31)
Franziska | 6542 | Rennweg 683 | Zurich | 1963-07-04 || [1996-01-01 - 9999-12-31) | [1995-07-01 - 9999-12-31)
Lilian 3463 | 46 Speedway | Tucson | 1970-03-09 || [1995-02-02 - 9999-12-31) | [1995-07-01 - 9999-12-31)

Weretain the sal ar y table as atable with valid-time support.

Temporal upward compatibility guarantees that conventional, nontemporal queries, updates, etc. work as be-
fore, with the same semantics. We can list those for which (currently, as best known) no one makes a higher salary
in adifferent city.

SELECT enane
FROM enpl oyee AS el, salary AS sl
WHERE el.eno = sl.eno
AND NOT EXI STS (SELECT enane
FROM enpl oyee AS e2, salary AS s2
VWHERE e2.eno = s2.eno AND s2. anmpbunt > sl. anount
AND el.city <> e2.city)

Thistakes atimeslice in both valid time and transaction time at now, and returns the result: Lilian.
We can also ask, for all time, when thisistrue, by simply prepending “VVALI DTI MVE”.

VALI DTI ME SELECT enane
FROM enpl oyee AS el, salary AS sl
WHERE el.eno = sl.eno
AND NOT EXI STS (SELECT enane
FROM enpl oyee AS e2, salary AS s2
WHERE e2.eno = s2.eno AND s2. anmbunt > sl1. anount
AND el.city <> e2.city)

22

Thisreturnsatablewith valid-time support, eval uated with sequenced valid semantics, after the current transaction
timeslice has been taken.

ename Valid

Franziska || [1995-02-01 - 1995-02-02)
Lilian [1995-02-02 - 1995-04-01)
Lilian [1995-04-01 - 9999-12-31)

There are two rows for Lilian, because two rows of sal ar y participated in computing the result. Interestingly,
Franziska satisfied the where condition for exactly one day, before Lilian was hired.

Temporally upward compatible modificationsal so work asbefore. Assumeitisnow August 1, 1995. Franziska
just moved.

UPDATE enpl oyee

SET street = ' N ederdorfstrasse 2’
VWHERE enane = ' Fr anzi ska’;
COW T;

Thisupdate yields the following enpl oyee table. Note that although Franziskais at the new address starting on
August 1, 1995, since shewon’t be an employeefor the next five months, her new addressisrecorded from January
1, 1996 onward.

ename eno Street city birthday Valid Transaction

Franziska | 6542 | Rennweg 683 Zurich | 1963-07-04 || [1995-02-01 - 1995-07-01) | [1995-07-01 - 9999-12-31)
Franziska | 6542 | Rennweg 683 Zurich | 1963-07-04 || [1996-01-01 - 9999-12-31) | [1995-07-01 - 1995-08-01)
Franziska | 6542 | Niederdorfstrasse2 | Zurich | 1963-07-04 || [1996-01-01 - 9999-12-31) | [1995-08-01 - 9999-12-31)
Lilian 3463 | 46 Speedway Tucson | 1970-03-09 || [1995-02-02 - 9999-12-31) | [1995-07-01 - 9999-12-31)

Since the history of the database is recorded in tables with both valid-time and transaction-time support, we
can find out when corrections were made, using a nonsequenced transaction query. Assume it is now September
1, 1995.

The query “When was the street corrected, and what were the old and new values?’ combines nonsequenced
transaction semantics with sequenced valid semantics.

NONSEQUENCED TRANSACTI ONTI ME AND VALI DTl ME
SELECT el.ename, el.street AS old street, e2.street AS new street,
BEQ N(TRANSACTI ONTI ME(e2)) AS trans_tinme
FROM enpl oyee AS el, enpl oyee AS e2
VWHERE el.eno = e2.eno AND TRANSACTI ONTI ME(el) MEETS TRANSACTI ONTI ME(e2)

Thisyieldsthe following table with valid-time support. Thet r ans_t i e column specifieswhen the changewas
made; the implicit timestamp indicates the valid-time period of the fact that was changed.

old_street
Rennweg 683

Vaid
[1996-01-01 - 9999-12-31)

trans_time
1995-08-01

ename
Franziska

new_street
Niederdorfstrasse 2

To extract all the information from the enpl oyee table, we can use a sequenced valid/sequenced transaction
query. “When did we think that someone lived somewhere for more than six months?’.

VALI DTI ME AND TRANSACTI ONTI ME SELECT enane,
FROM enpl oyee

street

WHERE | NTERVAL(VALI DTI ME(enpl oyee) MONTH) > | NTERVAL '6° MONTH
ename street Valid Transaction
Franziska | Rennweg 683 [1996-01-01 - 9999-12-31) | [1995-07-01 - 1995-08-01)
Franziska | Niederdorfstrasse2 || [1996-01-01 - 9999-12-31) | [1995-08-01 - 1995-09-01)
Lilian 46 Speedway [1995-02-02 - 9999-12-31) | [1995-07-01 - 1995-09-01)

23

Notice that in the result, the ending transaction time for datain the current state is always the current time, rather
than the end of time, reflecting information currently known.

Modificationstake effect at the current transaction time. However, we can still specify the scope of the change
in valid time, both before and after now (retroactive and postactive changes, respectively).

Assumeit is now October 1, 1995. Lilian moved last June 1.

VALI DTI ME PERI OD ' [1995-06-01 - 9999-12-31)' UPDATE enpl oyee
SET street = '124 Al berca’

VWHERE enane = 'Lilian’

COW T,

This update yields the following enpl oyee table.

ename eno street city birthday valid Transaction

Franziska | 6542 | Rennweg 683 Zurich | 1963-07-04 || [1995-02-01 - 1995-07-01) | [1995-07-01 - 9999-12-31)
Franziska | 6542 | Rennweg 683 Zurich | 1963-07-04 || [1996-01-01 - 9999-12-31) | [1995-07-01 - 1995-08-01)
Franziska | 6542 | Niederdorfstrasse2 | Zurich | 1963-07-04 || [1996-01-01 - 9999-12-31) | [1995-08-01 - 9999-12-31)
Lilian 3463 | 46 Speedway Tucson | 1970-03-09 || [1995-02-02 - 9999-12-31) | [1995-07-01 - 1996-10-01)
Lilian 3463 | 46 Speedway Tucson | 1970-03-09 || [1995-02-02 - 1995-06-01) | [1995-10-01 - 9999-12-31)
Lilian 3463 | 124 Alberca Tucson | 1970-03-09 || [1995-06-01 - 9999-12-31) | [1995-10-01 - 9999-12-31)

Finally, arbitrarily complex queriesin transaction time can be expressed with nonsequenced transaction queries.
Thequery, “When was an employee’saddressfor 1995 corrected?’, invol ves nonsequenced transaction seman-
tics and sequenced valid semantics, with atemporal scope of 1995. Assumethat it is November 1, 1995.

NONSEQUENCED TRANSACTI ONTI ME AND VALI DTI ME PERI OD ' [1995-01-01 - 1996-01-01)’
SELECT el.enanme, el.street AS old street, e2.street AS new street,
BEG N(TRANSACTI ONTI ME(€e2)) AS trans_tine
FROM enpl oyee AS el, enpl oyee AS e2
WHERE el.eno = e2.eno AND TRANSACTI ONTI ME(el) MEETS TRANSACTI ONTI ME(e2)
AND el.street <> e2.street

This evaluates to the following result, which has an explicit column denoting the date the change was made, and
animplicit valid time indicating the time in reality in question.

old_street
46 Speedway

Vaid
[1995-06-01 - 1996-01-01)

trans_time
1995-10-01

ename
Lilian

new_street
124 Alberca

Note that the period from February through May is not included in the valid time, as the street didn’t change for
that period.

As always, the concepts also apply to views, cursors, constraints, and assertions.

In Section 6.3.2 we gave an example of a sequenced constraint (VALI DTI ME CHECK (anount > 1000
AND anmpunt < 12000))onthesal ary table. Thisconstraint must hold independently on every (valid-time)
state of thetable. In Section 6.4.2wegaveaseriesof valid-timeconstraintsontheenane columnof theenpl oyee
table. Those alternatives apply orthogonally to the transactiontime. Asan example, the assertion, “An entry in the
security table can never be updated. It can only be deleted, and a new entry, with another key value, inserted.”,
can be expressed with a nonsequenced transaction semantics, stating in effect that the key valueis unique over all
transaction time.

CREATE TABLE security (
keyval ue NUVERI C(8) NONSEQUENCED TRANSACTI ONTI ME UNI QUE,

24

10 Summary

Inthis paper, wefirst outlined several desirablefeaturesof SQL/Temporal relativeto SQL 3: upward compatibility,
temporal upward compatibility, and sequenced semantics. A series of four levels of increasing functionality was
elaborated. The specific syntactic additions were outlined and examples given to illustrate these constructs. The
extensions involve (@) the use of the VALI DTI ME and TRANSACTI ONTI ME reserved words, to indicate valid-
time, resp. transaction-time, support (in the case of schema specification statements) and sequenced semantics (in
the case of queries, modifications, views, cursors, assertions and constraints), (b) the use of the NONSEQUENCED
reserved word for nonsequenced semantics, and () the use of a period expression to temporally scope sequenced
and nonsequenced queries, modifications, views, cursors, constraints, and assertions. Elsewherewe provide afor-
mal semantics, in terms of the formal semantics of SQL 3, that satisfied the sequenced semantics correspondence
between temporal queries and snapshot queries, and also provide the semantics for nonsequenced queries[12, 13].
In those change proposals we also list aternative implementation approaches which vary in the degree of imple-
mentation difficulty and the achievable performance efficiency. The implementation alternatives all compute the
result by manipulating periods, and thus are independent of the granularity.

In this paper weintroduced transaction time aswell astableswith transaction-time support, sequenced transac-
tion semantics, nonsegquenced transaction semantics, scoping on transaction time viaan optional period expression,
and modification semantics. The specific syntactic additions were outlined and examples given to illustrate these
constructs.

We end by listing some of the advantages of the approach espoused here.

e Upward compatibility is assured, permitting existing constructs to operate exactly as before.
e Only three new reserved words, NONSEQUENCED, VALI DTI ME, and TRANSACTI ONTI ME, are required.

e Satisfaction of temporal upward compatibility ensures that existing applications do not break when tables
without temporal support have such support added.

o Satisfaction of sequenced semanticsensuresthat temporal queries, modifications, views, assertions, and con-
straints are easy to specify, formalize, and implement.

¢ Nonsequenced semantics permitstableswith temporal support to be converted to tableswithout such support,
with explicit timestamp columns, and for temporal support to be added to tables, even within a query.

e A simple period expression permits the temporal scope to be specified.
e The transaction-time extensions are compatible with, and orthogonal to, those for valid time.

e Since the semanticsis defined in terms of the non-temporal semantics, the extensions are compatible with
all thefacilities of SQL3.

¢ A public-domain prototype [14] demonstrates the practical viability of the proposed constructs. The quick
tour was validated on this prototype.

Acknowledgments

Theinspiration for the constructs described here and proposed for incorporation into SQL/Temporal isthe TSQL 2
language. The participation of 1lsoo Ahn, Gad Ariav, Don S. Batory, James Clifford, Curtis E. Dyreson, Ramez
Elmasri, Fabio Grandi, Wolfgang Kafer, Nick Kline, Krishna Kulkarni, T.Y. Cliff Leung, Nikos Lorentzos, John
F. Roddick, Arie Segev, Michael D. Soo and SurynarayanaM. Sripadawas critical.

Thisresearch was supported in part by the National Science Foundation through grants IRI-9632569 and | Sl -
9202244, by grantsfrom IBM, the AT& T Foundation, and DuPont, by the Danish Natural Science Research Coun-
cil through grant 9400911, and by the CHOROCHRONOS project, funded by the European Commission DG XI|
Science, Research and Development, as a Networks Activity of the Training and Mobility of Researchers Pro-
gramme, contract no. FMRX-CT96-0056.

David Toman provided hel pful commentson a previousdraft. We also appreciate feedback from the ANSI and
SO SQL 3 committees, which hel ped shape the specifics of this proposal.

25

References

[1] Bair, J., M. Bohlen, C.S. Jensen, and R.T. Snodgrass, “Notions of Upward Compatibility of Temporal Query
Languages’, Business Informatics (\Wrtschaftsinformatik) 39(1):25-34, February 1997.

[2] Bohlen, M. H. Valid-Time Integrity Constraints, Aalborg University, October 1995, 21 pages.

[3] Bohlen, M. H., C. S. Jensen and R. T. Snodgrass,. “ Evaluating the Completeness of TSQL 2", in Proceedings
of the VLDB International Workshop on Temporal Databases. Ed. J. Cliffordand A. Tuzhilin. VLDB. Springer
Verlag, September 1995.

[4] Bodhlen,M.H.andC. S. Jensen. Seamless|ntegration of Timeinto SQL. Technical Report R-962049, Aalborg
University, Department of Computer Science, Denmark, December, 1996.

[5] Jackson, M. A. System Development. Prentice-Hall International Seriesin Computer Science. Prentice-Hall
International, Inc., 1983.

[6] Jensen, C. S.and R. Snodgrass, “ Temporal Specialization and Generalization” . | EEE Transactionson Knowl-
edge and Data Engineering 6(6):954-974, December 1994.

[7] Melton, J. (ed.) SQL/Temporal. July, 1996. (ISO/IEC JTC 1/SC 21/WG 3 DBL-MCI-012.)

[8] Snodgrass, R.T.,|. Ahn, G. Ariav, D.S. Batory, J. Clifford, C.E. Dyreson, R. ElImasri, F. Grandi, C.S. Jensen,
W. Ké&fer, N. Kline, K. Kulkarni, T.Y.C. Leung, N. Lorentzos, J.F. Roddick, A. Segev, M.D. Soo, and S.M. Sri-
pada, “TSQL 2 Language Specification,” SSGMOD Record 23(1):65-86, March, 1994.

[9] Snodgrass, R. T. and H. Kucera. Rationalefor Temporal Supportin SQL3. 1994. (ISO/IEC JTC1/SC21/WG3
DBL SOU-177, SQL/MM SOU-02.)

[10] Snodgrass, R. T., K. Kulkarni, H. Kucera and N. Mattos. Proposal for a new SQL Part—Temporal. 1994.
(ISO/IEC JTC1/SC21/WG3 DBL RIO-75, X3H2-94-481.)

[11] Snodgrass, R. T. (editor), IIsoo Ahn, Gad Ariav, Don Batory, James Clifford, Curtis E. Dyreson, Ramez El-
masri, Fabio Grandi, Christian S. Jensen, Wolfgang Kafer, Nick Kline, Krishna Kulkarni, T. Y. Cliff Leung,
Nikos L orentzos, John F. Roddick, Arie Segev, Michael D. Soo and SuryanarayanaM. Sripada. The Temporal
Query Language TSQL2. Kluwer Academic Pub., 1995.

[12] Snodgrass, R. T., M. H. Bohlen, C. S. Jensen and A. Steiner Adding Valid Time to SQL/Temporal, change
proposal, ANSI X3H2-96-501r2, ISO/IEC JTC 1/SC 21/WG 3 DBL-MAD-146r2, November 1996, 77
pages. AtURL: <ftp://ftp.cs.arizona. edu/tsql/tsql 2/ sql 3/ mad146. ps> (versioncur-
rent November 21, 1996).

[13] Snodgrass, R. T., M. H. Bohlen, C. S. Jensen and A. Steiner Adding Transaction Time to SQL/Temporal,
change proposal, ANSI X3H2-96-502r2, | SO/IEC JTC1L/SC21/WG3 DBL MAD-147r2, November 1996, 47
pages. AtURL: <ftp://ftp.cs.arizona. edu/tsqgl/tsql 2/sql 3/ mad147. ps> (versioncur-
rent November 21, 1996).

[14] Steiner, A. and M. H. Bohlen. The TimeDB Tempora Database Prototype, Version 1.07, November
1996. At URL: <http://wwu i esd. auc. dk/ gener al / DBS/ t db/ Ti meCent er > or at URL:
<ftp://ftp.cs.arizona.edu/tsqgl/timecenter/TineDB.tar.gz> (verson current
March 26, 1997).

[15] Yourdon, E. Managing the System Life Cycle. Yourdon Press, 1982.

26

