
Layered Implementation of Temporal DBMSs�Concepts and Techniques

Kristian Torp Christian S� Jensen Michael B�ohlen

TR��

A TimeCenter Technical Report

Title Layered Implementation of Temporal DBMSs�
Concepts and Techniques

Copyright c� ���� Kristian Torp Christian S� Jensen Michael B�ohlen�
All rights reserved�

Author�s� Kristian Torp Christian S� Jensen Michael B�ohlen

Publication History A shorter version of this paper appeared in DASFAA ��

TIMECENTER Participants

Aalborg University� Denmark

Michael H� B�ohlen
Renato Busatto
Heidi Gregersen
Christian S� Jensen �codirector�
Kristian Torp

University of Arizona� USA

Anindya Datta
Hong Lin
Richard T� Snodgrass �codirector�

Individual participants

Curtis E� Dyreson� James Cook University� Australia
Michael D� Soo� University of South Florida� USA
Andreas Steiner� ETH Zurich� Switzerland

Any software made available via TimeCenter is provided �as is� and without any express or implied

warranties� including� without limitation� the implied warranty of merchantability and �tness for a par�

ticular purpose�

The TimeCenter icon on the cover combines two �arrows�	 These �arrows	 are letters in the so
called
Rune alphabet used one millennium ago by the Vikings� as well as by their precedessors and successors�
The Rune alphabet �second phase� has �� letters� They all have angular shapes and lack horizontal lines
because the primary storage medium was wood� However� runes may also be found on jewelry� tools�
and weapons� Runes were perceived by many as having magic� hidden powers�

The two Rune arrows in the icon denote �T	 and �C�	 respectively�

Abstract

A wide range of database applications manage time�varying data� Examples include� e�g�� accounting�
personnel� schedule� and data warehousing applications� At the same time� it is well�known that
querying and correctly updating time�varying data is di�cult and error�prone when using standard
SQL� As a result of a decade of intensive exploration� temporal extensions of SQL have reached a
level of maturity and sophistication where it is clear that they o�er substantial bene�ts over SQL
when managing time�varying data�

The topic of this paper is the e�ective implementation of temporally extended SQL�s� Tradi�
tionally� it has been assumed that a temporal DBMS must be built from scratch� utilizing new
technologies for storage� indexing� query optimization� concurrency control� and recovery� This pa�
per adopts a quite di�erent approach� Speci�cally� it explores the concepts and techniques involved
in implementing a temporally enhanced SQL while maximally reusing the facilities of an existing
SQL implementation� e�g�� Oracle or DB�� The topics covered span the choice of an adequate times�
tamp domain that include the time variable �now�	 a comparison of alternative query processing
architectures including a partial parser approach� update processing� and transaction processing� the
latter including how to ensure ACID properties and assign correct timestamps�

Keywords� Temporal databases� SQL� layered architecture� query processing

� Introduction

A wide variety of existing database applications manage time
varying data �e�g�� see ��
� p� ���� �
����
Examples include medical� banking� insurance� and data warehousing applications�

At the same time� it is widely recognized that temporal data management in SQL��
 is a complicated
and error
prone proposition� Updates and queries on temporal data are complex and are thus hard to
formulate correctly and subsequently understand �e�g�� see ���� ���
���� This insight is also not new� and
following more than a decade of research� advanced query languages with built
in temporal support now
exist �e�g�� �
�� ���� that substantially simplify temporal data management�

To be applicable in practice� a temporal language mustmeet the challenges of legacy code� Speci�cally�
a temporal query language should be upward compatible with SQL��
� meaning that the operation of the
bulks of legacy code is not a�ected when temporal support is adopted� In addition� it is desirable that the
languages permit for incremental exploitation of the temporal support� When a temporal language is �rst
adopted� no existing application code takes advantage of the temporal features� Only when converting
old applications and developing new ones are the bene�ts of temporal support achieved� To be able to
make this transition to temporal support� temporal and old� �non
temporal	 applications must be able
to coexist smoothly�

Temporal query languages e�ectively move complexity from the user�s application to the implemen

tation of the DBMS� The usual architecture adopted when building a temporal DBMS is the integrated
architecture used for implementing commercial relational DBMS�s ���
� ���
�� ���� This architec

ture allows the implementor maximum �exibility in implementing the temporal query language� This
�exibility may potentially be used for developing an e�cient implementation that makes use of� e�g��
special
purpose indices� query optimizers� storage structures� and transaction management techniques�
However� developing a temporal DBMS with this approach is also very time consuming and resource
intensive� Indeed� existing implementations of temporal query languages using this architecture focus on
proof of concept or functionality only�they do not also succeed in exploiting the potential for improved
performance ���� A main reason why the layered architecture has received only little attention so far is
that the ambitious performance goal has been to achieve the same performance in a temporal database
�with multiple versions of data� as in a snapshot database �without versions and thus with much less
data��

As a supplement� we will in this paper explore the implementation of temporal query languages using
a di�erent architecture� the layered architecture� This architecture implements a temporal query language
on top of an existing relational DBMS� Here� the relational DBMS is considered a black box� in that it
is not possible to modify its implementation when building the temporal DBMS�

The most important potential advantage of building on top of an existing DBMS� compared to
building the temporal DBMS from scratch� is the possibility of reusing the services of the DBMS� e�g��
the concurrency control and recovery mechanisms� for implementing the extended functionality� Another

�

advantage is the possibility of achieving upward compatibility with a minimal coding e�ort� The major
disadvantages are the entry costs that DBMS�es impose on its clients� as well as the impossibility of
directly manipulating DBMS
internal data structures�

In this paper we focus on the design of a temporal DBMS� implemented using a layered architecture�
Our main design goals are upward compatibility and maximum reuse of the underlying DBMS� Another
goal is that no queries should experience signi�cantly lower performance when replacing an existing
DBMS with a temporal DBMS� Throughout� we aim to achieve these goals�

We consider the possible alternatives for a domain for timestamps� including the possible values
available for representing the time variable �now�	 We show how a partial parser architecture can be
used for achieving upward compatibility with a minimal e�ort� Several implementation aspects are
covered in details� Speci�cally� we show how correct update processing is achieved� and we discuss the
possibilities for implementing correct temporal
transaction processing�

A partial parser has been implemented that provides a minimum of temporal support� and all code
examples in the paper have been tested using the Oracle DBMS and its query language� PL
SQL� We
have chosen a commercial DBMS as the underlying DBMS� and not an extensible system ���� ��� �� ��
because we want to investigate the seamless migration of legacy systems�

Related research may be divided into two parts� other work on the layered implementation of temporal
query languages and work that uses a layered architecture for implementing other functionality�

The research reported by Vassilakis et al� ���� assumes a layered implementation of an interval

extended query language� VT
SQL� on top of Ingres� The focus is on correct transaction support� and
the problem addressed is that the integrity of transactions may be violated when the layer uses temporary
tables to store intermediate results� This is because the SQL��
 standard does not require that a DBMS
permits both data manipulation and data de�nition statements to be executed in the same transaction
���� p� ���� This may make it impossible to rollback a transaction started from the layer� The problem
is solved by using two connections to the DBMS� We �nd that the problem is eliminated if the DBMS
supports SQL��
 temporary tables� and this paper does not address that problem�

The TSQL
 query language was designed with ease of implementation in mind� but still the idea
was to exploit well
known temporal implementation techniques and available internal modules �e�g�� for
storage management� when building an integrated implementation �
��� Layered implementation was
not considered�

More recently� a layered implementation� based on ORACLE� was pursued in the TimeDB proto

type �
�� that implements the ATSQL query language� which incorporates ideas from TSQL
 �
�� and
ChronoLog ���� The topics covered in this paper are partly inspired by and generalize TimeDB�

The layered architecture has been used for implementing object
oriented data models using the ser

vices of relational DBMS�s ��
� ���� Here� the layer is used to make a paradigm shift from a relational
to an object
oriented model� and upward compatibility is not considered� In other research� a passive
DBMS �Starburst� was converted to an active DBMS �
��� A small extension to SQL was implemented
using a layered architecture� with the goal of maximum reuse of the underlying� passive DBMS�

The rest of the paper is organized as follows� In Section
 we �rst characterize temporal support
and motivate the need for a temporal SQL� Then the layered architecture is introduced� and the design
goals for a layered implementation are given� Section � is concerned with the domain of timestamps�
including the representation of the timestamp value �now�	 Alternative partial parser architectures
for temporal query processing are the topic of Section �� and Section � addresses the implementation of
temporal modi�cation statements� Section � is devoted to the correct processing of temporal transactions�
Finally� Section � summarizes and points to directions of future research�

� Temporal SQL and Design Goals

Following an introduction to and a motivation for the functionality that a temporal SQL adds to SQL��
�
we introduce the layered architecture and state the design goals for the layered implementation of this
functionality�

��� Temporal Functionality

Two general temporal aspects of database facts have received particular interest �
��� The transaction
time of a fact records when the fact is current in the database� and is handled by the temporal DBMS�
Orthogonally� the valid time of a fact records when the fact is true in the modeled reality� and is handled
by the user� or default values are supplied by the temporal DBMS� A data model or DBMS with built
in
support for both times is called bitemporal ����� and if neither time is supported� it is termed non�temporal�

In a temporal data model� a database may record the temporal aspects of data implicitly �because the
data model is temporal� or explicitly �because explicit attributes are available�� or both� To distinguish
between these two� we adopt the terminology outlined below�

Implicit Time Support Explicit Time Support���
��

�snapshot	
�valid�time	

�transaction�time	
�bitemporal	

���
��

� �relation with	 �

���
��

�snapshot	
�valid�time	

�transaction�time	
�bitemporal	

���
��

�data	

For example� the relation Employee in Figure � is a bitemporal relation with snapshot data� The relation
records department information for employees� with a granularity of days� and with the last four implicit
columns encoding the transaction
time and valid
time dimensions using half
open intervals�

Name Department T�Start T�Stop V�Begin V�End

Torben Toy
�
����
 ���
����
 ���
����
 NOW

Alex Sports ���
����
 NOW ���
����
 ���
����

Torben Toy ���
����
 NOW ���
����
 ���
����

Torben Sports ���
����
 NOW ���
����
 NOW

Figure �� The Bitemporal Relation� Employee

On August �� the tuple �Torben� Toy� �
�
����� NOW � ��
�
����� NOW � was inserted� meaning that
Torben will be in the Toy department from August �� until the current time� Similarly� at August �
 we
recorded that Alex was to be in the Sports department from August
� and until August ��� Later� on
August ��� we learned that Torben was to start in the Sports department on August
�� The relation
was subsequently updated to record the new belief� We no longer believed that Torben would be in the
Toy department from August �� until the current time� but believed instead that he would be there only
until August
� and that he would be in Sports from August
� and until the current time� Thus� the
�rst NOW in the original tuple is changed to August ��� and the resulting two new tuples with our new
beliefs are inserted�

The relation in Figure � shows that the data model for a temporal SQL is di�erent from the SQL��

data model� Four implicit attributes have been added to the data structure �the relation��

Instead of assuming a speci�c temporal query language� we will simply assume that the temporal
query language supports standard temporal database functionality� as it may be found in the various
existing data models� We also assume that the temporal data model satis�es three important properties�
namely upward compatibility �UC�� temporal upward compatibility �TUC� ��� and snapshot reducibility
�SR� �

�� We will de�ne these properties next�

There are two requirements for a new data model to be upward compatible with respect to an old data
model ���� First� the data structures of the new data model must be a superset of the data structures in
the old data model� Second� a legal statement in the old data model must also be a legal statement in
the new data model� and the semantics must be the same� e�g�� the result returned by a query must be
the same� A temporal extension will invariably include new key words� We assume that such key words
do not occur in legacy statements as identi�ers �e�g�� as table names�� Legacy code must be inspected
to avoid such occurrences� For a temporal data model and DBMS to be successful� it is important that
these requirements are ful�lled with respect to SQL��
�

TUC is a more restrictive requirement� For a new temporal data model to be temporal upward

compatible with respect to an old data model� it is required that all legacy statements work unchanged
even when the tables they use are changed to provide built
in support for transaction time or valid time�

�

Thus TUC poses special requirements on the e�ect of legacy modi�cation statements applied to temporal
relations and to the processing of legacy queries on such relations�

When a temporal DBMS is taken in use� the application code does not immediately exploit the
added functionality� rather� the temporal features are only realized incrementally� as new applications
are developed and legacy application are being modernized� TUC guarantees that legacy and new
applications may coexist harmoniously�

Lastly� a temporal statement is snapshot reducible with respect to a non
temporal statement if all
snapshots of the result of the temporal statement are the same as the result of the non
temporal state

ment evaluated on the corresponding snapshots of the argument relations� The idea of SR is that the
expertise gained by application programmers using SQL��
 should be applicable to the added temporal
functionality� making it easier to understand and use the new facilities �
���

Using TUC and SR� we may divide the new statements in a temporal SQL into three categories� First�
TUC statements are conventional SQL��
 statements� with the exception that they involve temporal
relations� These statements are not �aware	 of the temporal extensions and access only the current state
of the temporal database� Second� sequenced statements are those statements that are de�ned by means of
snapshot reducibility to a corresponding SQL��
 query� Third� non�sequenced statements are statements
that do not have a corresponding SQL��
 counterpart� These statements exploit the temporal facilities�
but do not rely on the DBMS to do timestamp
related processing according to snapshot reducibility�
Rather� they specify non
default timestamp manipulation�

��� The Layered Architecture

The layered architecture implements new temporal query facilities in SQL��
� The queries written in
the new temporal language are then converted to SQL��
 queries that are subsequently executed by the
underlying DBMS� No conversion is needed for plain SQL��
 queries� The layered temporal database
architecture is shown in Figure
�

Management
Metadata

Parser

Scanner

Code Generator

Error Result

Layer

Output Processer

Temporal Query, Q

DBMS

SQL-92 Query, Q’

Figure
� The Layered Temporal Database Architecture

Some comments are in order� First� the layer uses the DBMS as a �black box�	 Second� the assumed
control structures in this architecture are simple� The layer converts temporal queries to SQL��
 queries�
keeps track of information used by the layer internally� and does some post
processing of the result
received from the DBMS� More precisely� a transaction with temporal statements is compiled into a
single SQL��
 transaction that is executed on the DBMS without interference from the layer�the layer
simply receives the result and applies some post
processing� There is thus no control module in the layer�
and there is minimal interaction between the layer and the DBMS� While maximizing the independence
among the two components� this simplicity also restricts the options available for implementing temporal
queries in the layer� The speci�c impacts on the functionality of the temporal query language and on
performance are not yet well understood�

�

As a simple example of how the layer converts a temporal query into an SQL��
 query� consider the
sequenced temporal query in Figure �A that �nds the name and department of employees in the sports
department and how long they have been there� The new keywords SEQUENCED VALID indicate that the
query should be computed over all �valid� times� but just for the current �transaction time� state� The
query is converted to the SQL��
 query shown in Figure �B �we will elaborate on this translation later
in the paper�� If evaluated on August
�� the query returns the relation in Figure ��

SEQUENCED VALID SELECT Name� Department� V�Begin� V�End

SELECT Name� Department FROM Employee

FROM Employee WHERE Department � �Sports� AND

WHERE Department � �Sports� T�Start �� CURRENT�TIME AND

T�Stop �� CURRENT�TIME AND

A B

Figure �� Conversion of a Temporal Query to an SQL��
 Query

Name Department V�Begin V�End

Torben Sports ���
����
 NOW

Alex Sports ���
����
 ���
����

Figure �� The Result of the Query in Figure �� at August
� ����

The query in Figure � is written in the temporal query language ATSQL �
��� It is beyond the scope
of this paper to de�ne syntax and semantics of this language� However� the extensions are consistent
with SQL��
 and are easy to understand� In the example above the SEQUENCED VALID keywords indicate
a sequenced �and thus snapshot reduc ible� semantics as discussed in the previous section� We will use
ATSQL as an example of a temporal SQL throughout this paper�

��� Design Goals

In implementing the layered temporal DBMS� we stress seven somewhat con�icting and overlapping
design goals� namely achieving upward compatibility with a minimal coding e�ort� gradual availability of
temporal functionality� achieving temporal upward compatibility� maximum reuse of existing relational
database technology� retention of all desired properties of the underlying DBMS� platform independence�
and adequate performance� We discuss each in turn�

As discussed already� UC is important in order to be able to protect the investments in legacy
code� Achieving UC with a minimal e�ort and gradual availability of advanced functionality are related
goals� First� it should be possible to exploit in the layered architecture that the underlying DBMS
already supports SQL��
� Second� it should be possible to make the new temporal functionality available
stepwise� Satisfying these goals provides a foundation for early availability of a succession of working
temporal DBMSs with increasing functionality�

TUC makes it possible to turn an existing snapshot database into a temporal database� without
a�ecting legacy code� The old applications work exactly as in the legacy DBMS� and new applications
can take advantages of the temporal functionality added to the database� TUC helps achieve a smooth�
evolutionary integration of temporal support into an organization�

Few software companies have the resources for building a temporal DBMS from scratch� By aiming
for maximum reuse of existing technology� we are striving towards a feasible implementation where both
SQL��
 and temporal queries are processed by the underlying DBMS� Only temporal features not found
in the DBMS are implemented in the layer�

It is important to retain all the desirable properties of the underlying DBMS� For example� we want
to retain ACID properties� With this goal we want to assure that we are adding to the underlying DBMS�
However� this also means that if the underlying DBMS does not have a certain core database property�
the temporal DBMS will not have it either�

�

We stress platform independence because we want the layer to be independent of the underlying
DBMS� By generating SQL��
 code� the layer should be portable to any DBMS supporting this language�

Rather than attempting to achieve higher performance than existing DBMS�s� we simply aim at
achieving adequate performance� Speci�cally� legacy code should be processed with the same speed as
in the DBMS� and temporal queries on a temporal database with snapshot data should be as fast as the
corresponding SQL��
 queries on the corresponding �i�e�� with the same information contents� snapshot
database with temporal data�

Achieving all the design goals simultaneously is not always possible� For example� the maximum

reuse goal implies that the layer should be as thin as possible� which is likely to be in con�ict with
the adequate
performance goal� Similarly� the platform
independence goal may be in con�ict with the
maximal
reuse goal�

��� Fundamental Limitations of an SQL�based Temporal Preprocessor

An important question when adopting a layered architecture is whether it is possible and practical to
translate all temporal SQL queries to SQL��
 queries� For most temporal SQL queries� this translation
is unproblematic� but not for all� as we shall see next�

There is a scope problemwhen mapping some temporal queries to SQL��
 queries� Consider the query
in Figure �A� It select the name and valid time of employees that are listed in two di�erent bitemporal
employee relations� If the content of Employee is �Joe� Shoe� ������ ������� leaving out transaction
time� and the content of Employee� is �Joe� Sports� ������ ������ then the result of the query is �Joe�
������ �������

A SEQUENCED VALID

SELECT E�Name

FROM Employee E

WHERE Name IN �SELECT E��Name

FROM Employee� E��

B SELECT E�Name

CASE

WHEN E�V�Start �� E��V�Start THEN E��V�Start

WHEN E�V�Start � E��V�Start THEN E�V�Start

WHEN E�V�End �� E��V�Start THEN E��V�End

WHEN E�V�End � E��V�Start THEN E�V�Start

ELSE �Error in CASE�

END

FROM Employee E

WHERE E�Name � IN �

SELECT E�� Name

FROM Employee� E�

WHERE ��E�V�Start �� E��V�Start AND E�V�Start � E��V�End� OR

�E��V�Start �� E�V�End AND E�V�End � E��V�End� OR

�E��V�Start �� E�V�Start AND E�V�End �� E��V�End� OR

�E�V�Start �� E��V�Start AND E��V�End �� E�V�End���

Figure �� A Scope Problem

Figure �B gives the straightforward mapping of the temporal query to SQL��
� Unfortunately� the
resulting SQL��
 query is faulty� The correlation name E�� which is used to calculate the timestamps
of result tuples� is used outside of its scope� At �rst sight� it may seem that rewriting the query into
a join is a solution� But while this transformation does eliminate the scope problem� it introduces new
problems� When duplicates are permitted� unnesting is generally not easily possible�

In conclusion� while we believe that much of the functionality of a temporally enhanced SQL may be
mapped systematically to SQL��
� there exist temporal queries� e�g�� complex nested queries� for which
we are now aware of a systematic mapping�

�

� Representing the Time Domain

As illustrated in Figure �� four extra attributes� termed timestamp attributes� and several value
equivalent
tuples� i�e�� tuples with mutually identical non
timestamp attribute values� are used when recording the
temporal aspects of a single fact� The timestamp attributes encode rectangular regions in the space
spanned by transaction time and valid time� When a fact has an associated temporal shape composed
of several such regions� several tuples are used for representing it�

In this section we will discuss which domain to use for the timestamp attributes and how to represent
the special temporal database value �now�	

��� Choosing the Time Domain

The domain of the timestamped attributes can be one of the SQL��
 datetime data types �DATE or
TIMESTAMP�� The advantage of using one of the built
in types is maximum reuse� The disadvantage is
that the domain is limited to represent the years ���� to ���� �����

If the limits of the SQL��
 data types is a problem to the applications� the domain of the time
attributes can be represented using a new temporal data type handled by the layer� and stored as a
BIT�x� in the DBMS� The advantage of using a new temporal data type is that it can represent the
entire age of the universe ����� The most obvious disadvantage is that the layer will be thicker� because
all handling of the new data type must be implemented in the layer� Further� because dates are irregular�
i�e�� there are di�erent numbers of days in di�erent months� and because the arithmetic operators de�ned
on the BIT�x� data type are regular� we cannot easily use the BIT�x� arithmetic operators in the DBMS
to manipulate the new data type ����

As an example of the problems with the irregular arithmetic operators� assume that the �nest granu

larity is days and that we want to evaluate the expression V�Begin � �� Month�� This cannot be done
without �rst decoding V�Begin in the layer before adding the correct number of days� e�g�� if V�Begin is
in March� we will have to add �� days� and if V�Begin is in April� we will add �� days� As a result� the
manipulation of time attributes to a large extent must be handled by the layer� This means more tuples
have to be sent from the DBMS to the layer to be processed� This again leads to a performance penalty�

Because using BIT�x� as the time domain for the time attributes both makes the layer thicker and
leads to a performance decrease� we choose to use the built
in data type TIMESTAMP�We have here reached
one of the limitation on building on top of an existing DBMS� Adding a new data type in the layer� when
the underlying DBMS does not support abstract data types� is a major modi�cation�

��� Representing �Now� in the Time Domain

Temporal relations may record facts that are valid from or until the current time� and the information
they record is or is not current� The relation in Figure � exempli�es this representation of �now	
relative
information�

The value �now	 is not part of the domain of SQL��
 TIMESTAMP values� making it necessary to
represent �now	 by some other value in the domain� A requirement to a useful value is that it is not
also used with some other meaning� Otherwise� the meaning of the value becomes overloaded� There
are essentially two choices of a value for denoting �now	� It is possible to use the value NULL or to use
a well
chosen �normal	 value� e�g�� the smallest or largest timestamp� After a general discussion of this
approach� we compare the two possibilities�

No matter what value is chosen� this will limit the domain of the data type and create a potential
for overloading� For transaction
time attributes� this is not a problem because their values are system
supplied� However� for valid
time attributes� this is a real restriction� Furthermore� we have to explicitly
treat the value representing �now	 specially� e�g�� make sure the user does not enter the special value�
and when we display data to the user� we have to convert the value used for �now	 to an appropriate
value �e�g�� the string �NOW	��

Next� we compare NULL with �regular	 timestamp values� The value NULL has special properties that
makes it di�erent from any other value� An advantage of NULL is that it takes up less space than a regular
timestamp value� Also� the value NULL can be processed faster� This aspect is discussed empirically in
the next section� �While these observations pertain to Oracle ����� similar statements should hold for

�

other DBMS�s�� A disadvantage of NULL is that columns that permit NULL values prevent the DBMS from
using indices� However� using a non
NULL value also impacts indexing adversely� For example� assume
that a B�
tree index� e�g�� on V�End� is used to retrieve tuples with a time period that overlaps �now�	
Because �now	 is represented by a large or a small value� tuples with the V�End attribute set to �now	
will not be in the range retrieved� They will thus have to be found at one of the �sides	 of the B�
tree�

��� Using �Now� in Queries

Above� we considered the representation of �now	 in temporal relations� The next step is to consider the
querying of such relations� Here� it is quite easy to contend with the use of either of NULL� the minimum
value� and the maximum value for �now�	 Assuming a temporally enhanced SQL� �now	 will be used
in the SELECT and WHERE clauses� The idea is to check values of the timestamp attributes and replace
them with the current time �i�e�� the time when the query is executed� if they are equal to the time
representing �now�	

For example� in a SELECT or WHERE clause the valid
time end of tuples in a relation can be referenced
as END�VALID�relation�name�� in ATSQL� This is translated to the following in an SQL��
 query� �

CASE

WHEN relation�name�V�End � �value representing now�

THEN CURRENT�TIMESTAMP

ELSE relation�name�V�End

END

The expression returns the current time if V�End is equal to the value representing �now	� otherwise�
it returns V�End�

��� Performance Comparison of Alternative �now� Representations

We have seen that it is possible to use NULL� the minimum� and maximum values as representatives for
�now�	 To set the alternatives apart� we compare their performance�

Speci�cally� for each choice for NOW � we perform each of three di�erent representative timeslice
queries on three di�erent relations� We choose timeslice queries because of their importance in temporal
query languages ����� The queries favor the current state� because this state is assumed to be accessed
much more frequently than old states� The tests were performed on a SUN Sparc �� using the Oracle
RDBMS version ��
�
��� The types of timeslices used are illustrated in Figure ��

Query 1

Query 2Query 3

Transaction Time
now

now

Valid Time

Figure �� The Three Types of Timeslice Queries in the Test

Query � retrieves the current state in both transaction time and valid time� i�e�� it selects tuples with
transaction
time and valid
time intervals that both overlap with the current time� Tuples with intervals

�For using NULL there is a shorthand COALESCE�relation�name�V�End	 CURRENT TIMESTAMP��

�

th
a
t
en

d
a
t
�
n
ow

	
th
u
s
q
u
a
lify�

P
u
t
d
i�
eren

tly�
th
e
q
u
ery

retriev
es

w
h
at

w
e
cu

rren
tly

b
elieve

a
b
ou

t
th
e

cu
rren

t
state

o
f
th
e
m
o
d
eled

rea
lity�

Q
u
ery

tim

eslices
th
e
argu

m
en

t
relation

as
o
f
�n

ow
	
in

tran
saction

tim
e
an

d
a
s
o
f
a
p
ast

tim
e
in

va
lid

tim
e�

It
th
u
s
retriev

es
ou

r
cu

rren
t
b
elief

ab
o
u
t
a
p
ast

state
of

reality�
Q
u
ery

�
tim

eslices
th
e
relation

a
s
o
f
a
p
ast

tim
e
in

b
oth

tran
saction

tim
e
an

d
valid

tim
ean

d
th
u
s
retrieves

a
p
a
st

b
elief

ab
ou

t
a
p
ast

sta
te

of
reality�

T
h
e
actu

al
q
u
eries

m
ay

b
e
fou

n
d
in

A
p
p
en

d
ix

A
�

T
h
e
q
u
eries

are
p
erfo

rm
ed

o
n

th
ree

d
i�
eren

t
b
item

p
o
ral

tab
les�

w
ith

vary
in
g
d
istrib

u
tion

of
th
eir

tu
p
les�

In
th
e
�
rst

relation
�
���

o
f
th
e
tu
p
les

overlap
s
w
ith

th
e
cu

rren
t
tim

e
in

b
oth

tran
saction

an
d

valid
tim

e�
In

th
e
seco

n
d
an

d
th
ird

rela
tio

n
s�

th
is

p
ercen

tage
is

�
an

d
���

resp
ectively�

E
ach

relation
h
as

on
e
m
illion

tu
p
les�

F
or

each
o
f
th
e
th
ree

can
d
id
ate

rep
resen

tation
s
of

�n
ow

�	
i�e��

N
U
L
L
�
M
in

valu
e�

an
d
M
a
x
��

w
e
h
av

e
a
varia

n
t
o
f
each

ta
b
le�

In
th
e
ex

p
erim

en
ts�

w
e
h
ave

u
sed

a
com

p
osite

B

tree

in
d
ex

o
n
V
�
B
e
g
i
n
a
n
d
V
�
E
n
d
�
an

d
a
B

tree

in
d
ex

on
T
�
S
t
o
p
for

all
tab

les�
T
h
e
resu

lt
is

th
ree

d
i�
eren

t
ta
b
les

a
n
d

th
ree

d
i�
eren

t
q
u
eries�

A
n
d

each
of

th
ese

ex
ists

in
th
ree

va
riation

co
rresp

on
d
in
g
to

th
e
th
ree

ch
o
ices

for
N
O
W

�
T
h
e
C
P
U

tim

es
in

secon
d
s
to

an
sw

er
th
e
q
u
eries

are
sh
ow

n
in

T
a
b
le

�
�

�
�
�

��
���

Q
uery 1

Q
uery 2

Q
uery 3

0

100

200

300

400

500

600

700

800

900

1,000

CPU-Time in Seconds

N
U

L
L

M
in

M
ax

Q
uery 1

Q
uery 2

Q
uery 3

0

100

200

300

400

500

600

700

800

900

1,000

CPU-Time in Seconds

N
U

L
L

M
in

M
ax

Q
uery 1

Q
uery 2

Q
uery 3

0

100

200

300

400

500

600

700

800

900

1,000

CPU-Time in Seconds

N
U

L
L

M
in

M
ax

T
a
b
le

�
�
C
P
U

tim

e
in

S
econ

d
s
for

th
e
T
h
ree

Q
u
eries

It
fo
llow

s
th
a
t
rep

resen
tin

g
�n

ow
	
b
y
th
e
m
in
im

u
m

valu
e
is

alw
ay

s
slow

est�
W

h
en

���
of

th
e
tu
p
les

are
in

th
e
cu

rren
t
sta

te�
it
is

a
p
p
rox

im
a
tely

��
slow

er
to

u
se

N
U
L
L
th
an

th
e
m
ax

im
u
m

valu
e
for

th
e
th
ree

q
u
eries�

H
ow

ev
er�

w
h
en

��
an

d
�
��

of
th
e
tu
p
les

are
cu

rren
t�

it
is
fastest

to
u
se

N
U
L
L
�
It

sh
ou

ld
also

b
e

n
o
ted

th
at

C
P
U

tim
e
an

d
ela

p
sed

tim
e
w
ere

a
lm

ost
id
en
tical

in
ou

r
ex

p
erim

en
ts

�w
ith

ty
p
ical

d
ev

iation
s

w
ell

b
elow

��
����

�

��

���

Q
uery 1

Q
uery 2

Q
uery 3

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

Number of Physical Reads

N
U

L
L

M
in

M
ax

Q
uery 1

Q
uery 2

Q
uery 3

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

Number of Physical Reads

N
U

L
L

M
in

M
ax

Q
uery 1

Q
uery 2

Q
uery 3

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

Number of Physical Reads

N
U

L
L

M
in

M
ax

T
a
b
le

�
N
u
m
b
er

o
f
D
isk

A
ccesses

for
th
e
T
h
ree

Q
u
eries

T
a
b
le

sh
ow

s
th
e
n
u
m
b
er

o
f
p
h
y
sical

d
isk

accesses
for

th
e
sam

e
ex

p
erim

en
ts�

U
sin

g
N
U
L
L
fo
r
�n

ow
	

alw
ay

s
resu

lts
in

a
fu
ll
ta
b
le

scan
a
n
d
th
erefore

alw
ay

s
resu

lts
in

th
e
sam

e
n
u
m
b
er

of
p
ages

b
ein

g
read

�
U
sin

g
th
e
m
in
im

u
m

o
r
m
a
x
im

u
m

valu
e
fo
r
�
n
ow

	
resu

lts
in

th
e
sam

e
n
u
m
b
er

o
f
p
h
y
sical

d
isk

accesses
for

Q
u
ery

�
a
n
d
Q
u
ery

�
T
h
e
n
u
m
b
er

of
d
isk

p
ages

read
for

Q
u
ery

�
is

in
d
ep

en
d
en
t
of

th
e
n
u
m
b
er

of

�

tuples in the current relation �the query does not access the current state�� and it is always better to use
the maximum value compared to using the minimum value for this query�

Comparing Table � to Table
� there seems to be little correlation between the CPU
time and disk
accesses� Query � uses little CPU
time and fetches many disk pages using NULL for �now	� but it uses
more CPU
time for fetching fewer few disk pages when using the maximum value� This phenomenon
occurs because it is approximately � times slower to compare dates than to compare any other data type
in Oracle�

From the experiments� it is clear that the minimum value should not be used to represent �now�	 We
cannot state whether it is best to use NULL or the maximum value� If we� e�g�� have ��� of the tuples
in the current relation it is faster to use the maximum value� but with ��� of the tuples current� it is
faster to use NULL� We choose to use the maximum value to represent now in the following�

� Query Processing

This section describes di�erent strategies for processing queries in a layered architecture� The main
idea is to reduce product development time� For this purpose� several variants of partial parsers are
investigated�

Partial parser approaches are useful in two situations� First� they can signi�cantly reduce the time it
takes to release the �rst version of a new product� Today� this factor often decides whether a product is
successful or not� Second� a partial parser approach is useful if many statements of a language are not
a�ected by the �temporal� extension� The parsing of such statement does not have to be implemented�
as we will see below�

��� A Full Parser

We start with the layered architecture shown in Figure
� The user enters a query� Q� that is parsed in
the layer� Any errors found during parsing are reported� If no errors are found� an equivalent SQL��

query� called Q�� is generated and sent to the DBMS� Query Q can be either an SQL��
 query or a
temporal query� During the conversion� the layer uses and possibly updates the metadata maintained by
the layer� Finally� it is necessary to do some processing of the output from query Q�� e�g�� substitute the
value representing �now	 with the text string �NOW	� We call this layered temporal query processing
architecture a full parser architecture�

With this architecture� it is possible to obtain UC and TUC� and it is possible to process all SQL�
�
 and temporal queries� Further� all desirable properties of the DBMS can be retained because it is
totally encapsulated from the users� Finally� by generating SQL��
 code� the layer can be made platform
independent�

As disadvantages� we do not obtain UC with a minimal e�ort� The SQL��
 parser in the DBMS is not
reused� rather� we have to implement it in the layer� This means that before we can start to implement
the temporal extensions to SQL��
� we �rst have to implement SQL��
� Further� SQL��
 queries are
unnecessarily parsed twice� once in the layer and once in the DBMS� This performance overhead� we
would like to avoid if possible� We thus explore alternative layered architectures next�

��� A Partial Parser Architecture

SQL��
 is a large language� making an upward compatible temporal extension even bigger� Because the
DBMS has a full SQL��
 parser� it is attractive to only have to implement a parser for the temporal
extension in the layer� and to rely on the DBMS�s parser for the SQL��
 queries� This idea is illustrated
in Figure �� The parser in the layer is now a partial parser�it only must know the temporal extensions
to SQL��
�

A query Q is entered� If the parser cannot parse Q� it is assumed to be an SQL��
 query and is
sent unconverted to the DBMS� If the parsing does not generate an error� Q is a temporal query and is
converted to the equivalent SQL��
 query� Q�� that is then sent to the DBMS�

This architecture makes it possible to achieve UC with a minimal e�ort by maximally reusing the
underlying DBMS for the processing of SQL��
 queries� All SQL��
 queries will run immediately� and

��

Parser

Yes

No

Error?

Q’ Q

Layer

Q

Figure �� Converting Temporal to SQL��
 Queries with a Partial Parser

error messages to incorrect SQL��
 queries are generated by the DBMS� It is also possible to achieve
TUC� If an existing relation is altered to support valid or transaction time� legacy queries using the
relation may be detected and modi�ed in the layer�

However� there is still a performance overhead� The layer must start parsing all queries� including
SQL��
 queries� and stops only if and when an error is encountered� Further� there is a problem with
error handling� The result of an error is that the query is sent to the DBMS� which cannot parse an
incorrect temporal query� either� This results in SQL��
 error messages to temporal queries� because the
encapsulation of the underlying DBMS is violated�

The source of the disadvantages seems to be that the layer cannot easily and correctly determine
whether a query is a temporal or an SQL��
 query� The next architecture attempts to solve this�

��� Partial Parser with Optional Hints

With a partial
parser approach with optional hints� the user can indicate whether a query Q is temporal or
non
temporal by writing TEMPORAL or PLAIN� respectively� in a comment before the query� The approach
is illustrated in Figure ��

A query Q is entered� If the scanner �nds PLAIN in front of the query� it is sent directly to the DBMS�
If the scanner �nds TEMPORAL or no hint� Q is parsed in the layer� If Q is a temporal query� it is converted
to Q� which is then sent to the DBMS� If the parser �nds an error� the user receives an error message�
The presence of TEMPORAL indicates that the error is a temporal
query error� Otherwise� the query is
assumed to be a SQL��
 query� and it is sent unconverted to the DBMS�

No

Error?
Yes + No Hint

Parser

Hint?
PLAIN

TEMPORAL/No Hint

Scanner

Yes + TEMPORAL

QQQ’

Error
Q

Figure �� Partial Parser with Optional �Hints	

��

With this approach� it is possible to achieve UC with a minimal e�ort� and SQL��
 queries with a
hint are parsed only once� leading to faster processing� The architecture also permits for obtaining TUC�
and there is good error handling for temporal queries when the TEMPORAL hint is used�

However� there are also some problems� Legacy SQL��
 queries are parsed twice if the PLAIN hint is
not present� Without this hint� we have the same disadvantages as before� a performance overhead for
SQL��
 queries and problems with the error handling for temporal queries� We try to eliminate these
problems next�

��� Partial Parser with Forced �Hints�

With a partial parser approach with forced �hints	 temporal queries must be tagged with a TEMPORAL

hint� Thus queries with no hint are assumed to be SQL��
 queries� This way� we are able to distinguish
SQL��
 queries from temporal queries without having to revisit legacy code�

The idea is illustrated in Figure �� When query Q is entered and the scanner does not �nd TEMPORAL

in front of the query� it is sent directly to the DBMS� If the scanner �nds a TEMPORAL� Q is converted to
Q�� which is then send to the DBMS� If the parser �nds an error� this must be a temporal
query error�
and an appropriate error message may be generated�

Scanner

Hint?

Parser

Error?

Q

TEMPORAL

not TEMPORAL

No

Yes

QQ’

Error

Figure �� Partial Parser with Forced �Hints	

The advantages of this architecture are the same as for a partial parser with optional hints� We get
UC with a minimal e�ort and fast handling of SQL��
 queries� The disadvantage is that we cannot get
TUC� If a table is altered to add temporal support� all legacy queries using the table must be altered by
inserting the temporal hint�

��	 Comparison of Architectures

An overview of the advantages and disadvantages of the di�erent architectures compared to our design
goals from Section
�� appears in Table ��

All four architectures are compatible with a platform
independent layer� and they may reuse the
components in the DBMS� However� there is less reuse with the full parser� Here we cannot achieve UC
with a minimal e�ort� It is interesting to observe that we cannot obtain both TUC and no performance
overhead for SQL��
 queries without revisiting legacy code� For the partial parser with optional hints�
we can either achieve TUC or no performance overhead� but not both at the same time� We can retain
the desired properties� e�g�� error handling� of the DBMS� except for with the partial parser�

�

Full Partial Partial parser� Partial parser�
parser parser optional hints forced hints

Platform independence
p p p p

Maximum reuse
p p p p

Gradual availability
p p p

Upward compatibility
p p p

Temporal upward compatibility
p p

�
p
�

Retention of desired properties
p p p

Adequate performance �
p
�

p

Table �� Advantages of Di�erent Parser Approaches

The partial parser approaches are consistent with the desire for gradual availability of increasingly
more temporal support� The outset is that we want a temporal DBMS that is upward compatible with
SQL��
� Then we want to� e�g�� have temporal upward compatibility for all non
nested SQL��
 queries�
then for all SQL��
 queries� and �nally advanced temporal support via new temporal sequenced and
non
sequenced queries�

� Update Processing

Relations supporting transaction time are append
only� This means that� e�g�� the logical deletion of
tuples from such relations is converted into updates and insertions on the underlying snapshot tables that
represent them in the layered temporal DBMS� This section describes how temporal insert� delete� and
update statements on bitemporal relations are converted into conventional insert and update statements
on the underlying SQL��
 relations� In doing so� we distinguish between TUC� sequenced� and non

sequenced modi�cations� as de�ned in Section
���

Below� we illustrate the concepts by means of examples�

	�� Insertion

The temporal query language is assumed to retain the valid
time periods of tuples as supplied by the
user when a tuple is inserted� This means that tuples are inserted �as is	� merging of value
equivalent
tuples may be achieved separately� using coalescing�

We illustrate insertion using the TUC statement in Figure ��A� with Employee being the relation in
Figure �� Recall that TUC statements are syntactically correct SQL��
 statements� but are applied to
temporal relations� TUC insertions must timestamp inserted tuples so that they remain in the current
state �in both valid time and transaction time� starting at the time of the insertion� That way� other
TUC statements such as queries and constraints may simply be implemented by timeslicing all argument
temporal tables as of the current time �again� in both valid time and transaction time� and then evaluate
the �SQL��
� query on the snapshots�

A INSERT INTO Employee B INSERT INTO Employee VALUES

VALUES ��Kim�� �Shoe�	 ��Kim�� �Shoe�� CURRENT�TIME�
�����

�

CURRENT�TIME�
�����

	

Figure ��� A TUC Insertion

The sample modi�cation inserts an employee Kim who is in the Shoe department� The temporal
insert statement is converted into the SQL��
 insert statement in Figure ��B� It assigns the current
time to transaction
time start and valid
time begin� and ���������� �the maximum date� denoting an
unbound current time variable� to transaction
time stop and valid
time end� This way� the tuple inserted
will always qualify for queries on the current state �and not earlier� and is thus a correct TUC insertion
of a tuple�

��

Sequenced and non
sequenced insertions are handled similarly �they are exempli�ed in the next
sections� covering deletion and update�� However� these insertions include a speci�cation of the valid

time period to be associated with the inserted tuples� The transaction
time timestamps are handled by
the layer� as shown above�

	�� Deletion

A temporal deletion statement includes a predicate that speci�es which tuples to delete� TUC deletions
delete tuples so that they no longer appear in the current transaction
time and valid
time states�

Sequenced and non
sequenced deletions include a period specifying for which valid
time period to
delete the qualifying tuples �from the current transaction
time state�� Such a deletion is converted into
an SQL��
 update of the transaction
time stop attribute values to the current time� This is followed
by from zero to two insertions� to re�ect the changes to the time attributes� The di�erent numbers of
insertions are due to three di�erent cases which may occur�

� The valid
time period of a tuple to be deleted is totally contained in the period speci�ed in the
temporal delete statement� In this case� no insertions are needed�

� The valid
time period a tuple to be deleted overlaps with the period speci�ed in the delete state

ment� and the part not overlapped by the speci�ed period is a single period� In this case� one
insertion is needed�

� The valid
time period a tuple to be deleted overlaps with the period speci�ed in the delete state

ment� and the part not overlapped by the speci�ed period consists of two periods� In this case� two
insertions are needed�

As an example that illustrates the latter case� consider the sequenced deletion in Figure ��A which
deletes Alex from the Sports department in the period �
�
�
����� ��
�
������ �Figure � shows that Alex
is currently registered as being in Sports from
�
�
���� to ��
�
������

A SEQUENCED VALID PERIOD �������

� �
�����

��

DELETE FROM Employee

WHERE Name � �Alex� AND Dept � �Sports�

B UPDATE Employee SET T�Stop � CURRENT�TIME

WHERE Name � �Alex� AND Dept � �Sports� AND T�Stop �
�����

INSERT INTO Employee VALUES ��Alex�� �Sports�� CURRENT�TIME�
�����

�

�
����

�� ������

�	

INSERT INTO Employee VALUES ��Alex�� �Sports�� CURRENT�TIME�
�����

�

�����

��
�����

�	

Figure ��� A Sequenced Deletion

The statement is converted to the SQL��
 update and inserts in Figure ��B� First� the tuple to be
deleted from is logically deleted by setting the transaction
time stop to the current time� Because the
period to delete� �
�
�
����� ��
�
������ splits the old valid
time period� �
�
�
����� ��
�
������ into two
periods� two tuples must be inserted to record this information� The �rst insertion covers the valid

time period �
�
�
�����
�
�
������ and the second insertion covers the period ���
�
����� ��
�
������
The transaction
time start of both insertions are the current time� and their transaction
time stop is
��
�

�����

Non
sequenced deletions are handled similarly to sequenced deletions� and TUC deletions are handled
by setting transaction
time stop values to the current time�

	�� Update

In a snapshot relation� an update can be modeled as a deletion followed by an insertion� The same idea
applies to a bitemporal relation� This means that the tuples to be updated are �rst logically deleted�

��

by setting their transaction
time stop to the current time� Then from one to three insertions follow� to
re�ect the new values and changes to the time attributes �the same three cases as for deletion must be
considered��

As an example� consider the non
sequenced update in Figure �
A which updates the Employee relation
�in Figure �� to record that Alex is in the Shoe department between August �� and September ��� �����

A NONSEQUENCED VALID PERIOD �
�����

� � ���
��

��

UPDATE Employee SET Department � �Shoe�

WHERE Name � �Alex�

B UPDATE Employee SET T�Stop � CURRENT�TIME

WHERE Name � �Alex� AND T�Stop �
�����

INSERT INTO Employee VALUES ��Alex�� �Sports�� CURRENT�TIME�
�����

�

�
����

��
�����

�	

INSERT INTO Employee VALUES ��Alex�� �Shoe�� CURRENT�TIME�
�����

�

�����

�� ���
��

�	

Figure �
� A Non
sequenced Update

The update is converted to the SQL��
 update and insertions in Figure �
B� First� we logically delete
the tuple to update by setting the transaction
time stop attribute to current time� Because the update
speci�es a valid
time period that overlaps the valid
time period of the tuple in the database� we �rst
insert a tuple to re�ect that Alex is not in the Sports department as long as �rst recorded� i�e�� only from
August
� to August ��� Then we insert a tuple with the new department and valid
time period�

Sequenced updates are handled similarly to non
sequenced updates� with the exception that the valid

time periods attached to the tuples resulting from the update are derived from the information in the
database� not just the valid
time period speci�ed by the user� Speci�cally� the resulting times of tuples
are found as the intersections between the existing tuples and the time period speci�ed in the query�

A TUC update is modeled as a TUC deletion followed by a TUC insertion� and it results in one tuple
being inserted�

� Transaction Processing

In this section� we discuss how to implement ACID properties ��
� of transactions in the layer by ex

ploiting the ACID properties of the DBMS� Speci�cally� we show how concurrency control and recovery
mechanisms can be implemented using the services of the DBMS� Next� the correct timestamping of
database modi�cations is explored� Finally� we study how the granularity of timestamps a�ects the
correctness of transaction processing�

�� ACID Properties of Transactions

One of our design goals is to retain the desirable properties of the underlying DBMS� The ACID properties
of transactions are examples of such desirable properties�

The ACID properties of temporal SQL transactions are retained by mapping each temporal trans

action to a single SQL��
 transaction� The alternative of allowing the layer to map a temporal SQL
transaction to several SQL��
 transactions� while easing the implementation of temporal SQL transac

tions� leads to hard
to
solve problems�

To illustrate� assume that a temporal SQL transaction is mapped to two SQL��
 transactions� During
execution it may then happen that one SQL��
 transaction commits but the other fails� meaning that the
temporal SQL transaction fails and should be rolled back� This� however� is not easily possible�other
�e�g�� committed� transactions may already have seen the e�ects of the committed SQL��
 transaction�

Next� it is generally not su�cient to simply require that each temporal SQL transaction is mapped to
a single SQL��
 transaction� It must also be guaranteed that the SQL��
 transaction does not contain
DDL statements� This is so because the SQL��
 standard permits DDL statements to issue implicit

��

commits ���� p� ���� Thus the SQL��
 transaction becomes several SQL��
 transactions� yielding the
same problem as before�

The conclusion is that the ACID properties of temporal SQL transactions are guaranteed if the SQL�
�
 transactions satisfy the ACID properties and if we map each temporal SQL transaction to exactly
one SQL��
 transaction that does not contain DDL statements�

�� Timestamping Database Updates�Correctness and E�ciency

When supporting transaction time� all previously current database states are retained� Each update
transaction transforms the current database state to a new current state� In practice� this is achieved by
associating a pair of an insertion and a deletion time with each tuple� These times are managed by the
DBMS� transparently to the user� The insertion time of a tuple indicates when the tuple became part of
the current state of the database� and the deletion time indicates that the tuple is still current or when
it ceased to be current�

To ensure that the database correctly records all previously current states� the timestamps given to
tuples by the transactions must satisfy four requirements� First� all insertions into and deletions from the
current state by a transaction must occur simultaneously� meaning that the insertion times of insertions
and the deletion times of deletions must all be the same time� If not� we may observe inconsistent database
states� For example� if the two updates in a debit
credit transaction are given di�erent timestamps and
we inspect the database state current between the two timestamps� we see an inconsistent state� Second�
the transactions cannot choose their timestamp times arbitrarily� Rather� the times given to updates by
the transactions must be consistent with a serialization order of the transactions� Thus� if transaction
T� uses timestamp tT� and transaction T� uses timestamp tT� � with tT� � tT� � then there must exist
a serialization order in which T� is before T�� Third� a transaction cannot choose as its timestamp
value a time that is before it has taken its last lock� If this restriction is not met� queries may observe
inconsistent database states� Fourth� it is our contention that it is undesirable that a transaction uses a
timestamp value that is after its commit time� This would result in �phantom changes	 to the database�
i�e�� �changes	 that occur when no transactions are executing�

Using the �ready
to� commit time of each transactions for its timestamps is a simple and obvious choice
that satis�es all the requirements� Salzberg ���� has previously studied two approaches to timestamping
with this choice�

In the �rst approach� all updates by a transaction are deferred until it has acquired all its locks� It
is a serious complication that it may not be possible to determine that a transaction has taken all the
locks it needs before the transaction is ready to commit �c�f� practical two
phase locking where locks
are not released until the transaction is ready to commit�� Next� it is a problem with this approach
for a transaction to read its own updates� Thus� this approach is only suitable for short and simple
transactions�

The second approach is to revisit and timestamp all the tuples after all locks have been acquired�
i�e�� in practice when the transaction is ready to commit� This approach is recommended because it is
general and guarantees correctness� The cost is to have to visit tuples twice� once to write a temporary
value for the time attributes� and once to update the temporary value to the commit time� This cost is
a�ected by the hit ratio for the bu�er of tuples to revisit� With a high hit ratio� tuples to revisit and
give the correct timestamp are often in the bu�er� with a low hit ratio� tuples have often to be fetched
twice from disk�

In order to avoid some of the overhead of the basic timestamp
after
commit scheme� we propose an
improved approach where tuples are timestamped at �rst update� This approach trades correctness for
performance� it generally does not satisfy the third requirement from above� This does not render the
approach useless� but it may not be applicable for all applications �c�f�� SQL��
�s Transaction Isolation
Levels ���� pp�
�����
��� In the presentation that follows� we disregard the third requirement�

The approach is an optimistic one� We select the time of the �rst update� ts
T
� of a transaction� T �

as the transaction�s timestamp time� hoping that we will be able to use this time for timestamping all
updates without violating the second requirement from above� If the transaction has only the one update�
the chosen timestamp time satis�es correctness� However� each update that the transaction makes may�
or may not� invalidate our choice of timestamp time�

��

Consider a tuple x inserted into the current state of the database by a transaction T � and at time
ts
T � and assume that T is to update this tuple� As T sees a result of T �� T � must be before T in any
serialization order� The second requirement then implies that the timestamp time of T � must be before
the timestamp time of T � i�e�� it is required that ts

T � � ts
T
� When the update is to be carried out� this

condition is checked� If it is satis�ed� our choice of timestamp time for T does not violate correctness�
and the update is carried out using time ts

T
� Subsequent updates are then processed similarly� If the

condition is not satis�ed� the choice of timestamp time does violate correctness� and we say that the
two involved transactions con�ict� In this case� timestamp
after
commit is used� If all updates satisfy
the requirement� the choice of timestamp satis�es the serializability requirement� and transaction T can
simply commit without having to revisit any tuples�

This new scheme has other notable characteristics� The �rst update will never lead to a con�ict�
This is so because ts

T
will be larger than the time when we acquire a write lock on the tuple to update�

This time� in turn� will be larger than the timestamp of the tuple� ts
T � � Thus� transactions with a single

update will never experience a con�ict�
Next� observe that using the time of the �rst update for timestamping makes the chance of con�icts

between concurrent transactions the smallest possible� It is also not necessary to attempt to determine
when in a transaction all locks have been acquired�

In both the timestamp
after
commit and timestamp
at
�rst
update� it is necessary for a transaction
to retain a list of updated tuples until the transaction is ready to commit� With the timestamp
at
�rst

update there is an overhead of one comparison for each tuple to update� However� the comparisons are
on tuples that have already been fetched in order to do the update�

The bene�t of using timestamp
at
�rst
update compared to using timestamping
after
commit thus
are that when there are no con�icts� we do not have to revisit updated tuples to update their timestamp
when the transaction is ready to commit� When there are con�icts the two timestamp algorithms are
virtually identical�

To summarize� the general approach we propose for timestamping is as follows� A temporal SQL
transaction is mapped to a single SQL��
 transaction without DDL statements� The serialization level
for the SQL��
 transaction is set to �serializable�	 All timestamp of tuples written by the SQL��

transaction are given the time of the �rst update as their value� and the identity of each updated tuple
is recorded� More precisely� the time of the �rst update for a transaction is the time of the system
clock when the �rst tuple to be updated has been locked� When the transaction is ready to commit
and if there were any con�icts� the update
after
commit procedure is evoked� otherwise� the SQL��

transaction commits�

We have chosen to eagerly update timestamps with �possibly� temporary values� When a transaction
is ready to commit� and if there were any con�icts� we update the temporary value to the �ready to�
commit time of the transaction� An alternative is to update timestamps to re�ect their correct values
lazily� i�e�� as needed� However� this requires that information be retained for each tuple telling which
transaction updated it and that the commit time of all transactions also be retained� The lazy approach
thus adds complexity over the eager approach� To make the layer as thin as possible we choose the eager
approach�

Recovery is an important part of a DBMS that normally is transparent to end users� When construct

ing the layered approach� we are not di�erent from end users and can rely on the recovery mechanisms
implemented in the DBMS� We see no reason why recovery should be faster or slower using a layered
approach�

�� Granularity of Timestamps

Through out this paper we have used time stamps with a granularity of days� It is chosen for illustrative
purposes� if actually used in a temporal database it may result in incorrect results being returned to the
users�

To exemplify this� we consider an example� We have a transaction
time relation Employee where we
record the names and departments of employees� The data is stored at a granularity of a day � Consider
the following scenario�

��

Transaction � Queries Transaction

�at
��� a�m�	

INSERT INTO Employee

VALUES ��Tom�� �Shoe�	

COMMIT

�at ����� a�m�	

SELECT Name

FROM Employee

WHERE Department � �Shoe�

�at ���� p�m�	

DELETE FROM Employee

WHERE Name � �Tom�

COMMIT

�at
��� p�m�	

SELECT Name

FROM Employee

WHERE Department � �Shoe�

The query at ����� a�m� returns that Tom is in the Shoe department� then at ���� p�m� the same
query returns that Tom is not in the Shoe department� The two queries are identical and access the
same state of the transaction
time relation� Therefore� they should return the same result�

The example illustrates a problem that may occur when the granularity of transaction time is too
coarse� To ensure correct queries� the granularity of transaction time must be chosen so �ne that the
following cannot happen within a single granule�

�� One transaction inserts a tuple and commits�

� a query retrieves the tuple� and

�� another transaction delete the same tuple and commits�

This problem can be avoided by not committing a transaction until the start of the next granule� In
the example� Transactions � and
 should thus not be permitted to commit until the next day� This is
the technique we will apply in the layer� The default granularity of the data type TIMESTAMP in SQL��

is adequately �ne�with seconds being the unit� there are by default six digits after the decimal period�

A special case of the scenario just described occurs if tuples are TUC inserted and TUC deleted within
the same transaction� They will then be timestamped with the same valid
time begin� valid
time end�
transaction
time start and transaction
time stop values� Such tuples cannot �harm	 other transactions
as above� and the tuples will never a�ect the result of any TUC or sequenced statements�

Therefore� one could argue that such tuples should be physically deleted from a bitemporal database�
However� we choose not to do this because it violates the append
only nature of a bitemporal database�
Further� it is a faithful recording of what actually happens�

� Conclusion and Future Research

We have investigated concepts and techniques for implementing a temporal SQL using a layered approach
where the temporal SQL is implemented via a software layer on top of an existing DBMS� The layer reuses
the functionality of the DBMS in order to support aspects such as access control� query optimization�
concurrency control� indexing� storages� etc�

While developing a full
�edged DBMS that supports a superset of SQL is a daunting task that only
the major vendors can expect to accomplish� this layered technology promises much faster development�
Assuming that the underlying DBMS is an SQL��
 compliant black box makes this technology inherently
open and technology transferable� It may be adopted by a much wider range of smaller software vendors
that would like to provide more advanced database functionality than o�ered by current products�

We stressed seven design goals� namely upward compatibility with a minimal coding e�ort� grad

ual availability of temporal functionality� temporal upward compatibility� maximum reuse� retention of

��

desired properties of the DBMS� platform independence� and adequate performance� and we favored
achieving a thin layer over high performance�

With these goals in mind� we explored what we believe to be the central issues in the layered imple

mentation of temporal functionality on a relational SQL��
 platform� We �rst considered the options for
the domain of timestamps� and for representing the temporal database variable �now	 within the chosen
domain� Both the storage of �now	 in databases and the implications for queries of its use were studied�
To set apart the possibilities for �now�	 their performance characteristics were compared� Then followed
an exploration of di�erent query processing architectures� We showed how the partial
parser architecture
may be used for achieving upward compatibility with a minimal e�ort and for satisfying additional goals�
We then described how update processing is handled in the layer� Finally� we considered the processing
of temporal transactions� We sketched how ACID
properties of temporal transactions are retained using
the non
temporal ACID transactions of the underlying DBMS� and we also covered how to correctly
timestamp the results of update transactions�

This work points to several directions for future research� First� a more comprehensive study of the
performance characteristics of layered implementation of temporal functionality is warranted� Second�
we feel that the relative merits of the strict preprocessor approach adopted here should be compared with
those of an architecture where the layer is extended with a control component that controls� e�g�� the
execution order of statement sequences and the checking of database consistency� Third� we believe that
it would be interesting to study hybrid architectures� in
between the conventional integrated architecture
of current DBMS produces and the preprocessor approach studied here� A hybrid architecture should be
able to exploit temporal implementation techniques� e�g�� indices and join algorithms� while also reusing
the services of an SQL��
 DBMS� Finally� it may be of interest to try to apply layered techniques to
other types of relational extensions�

References

��� I� Ahn and R� Snodgrass� Partitioned Storage for Temporal Databases� Information Systems�
�������������� �����

�
� I� Ahn and R� Snodgrass� Performance Analysis of Temporal Queries� Information Systems� �������
���� �����

��� D� S� Batory� J� R� Barnett� J� F� Garza� K� P� Smith� K� Tsukuda� B� C� Twichell and T� E� Wise�
Genesis� An Extensible Database Management System� In S� B� Zdonik and D� Maier� editors�
Readings in Object�Oriented Database Systems� Chapter ���� pages �������� Morgan Kaufmann
Publishers� �����

��� M� H� B�ohlen� The Temporal Deductive Database System Chronolog� Ph�D� thesis� Departement
Informatik� ETH Zurich� �����

��� M� B�ohlen� C� S� Jensen� and R� T� Snodgrass� Evaluating and Enhancing the Completeness of
TSQL
� Technical Report TR ��
��� Department of Computer Science University of Arizona� Tuc

son� AZ ���
�� June �����

��� Michael B�ohlen� Temporal Database System Implementations� ACM SIGMOD Record�
����� De

cember �����

��� M� Carey� D� J� DeWitt� G� Graefe� D� M� Haight� J� E� Richardson� D� T� Schuh� E� J� Shekita�
and S� L� Vandenberg� The EXODUS Extensible DBMS Project� An Overview� In S� B� Zdonik
and D� Maier� editors� Readings in Object�Oriented Database Systems� Chapter ���� pages ��������
Morgan Kaufmann Publishers� �����

��� J� Cli�ord and A� Tuzhilin� editors� Recent Advances in Temporal Databases� Workshops in Com

puting Series� Springer
Verlag� November ����� ISBN �
���
�����
��

��� C� J� Date� A Proposal for Adding Date and Time Support to SQL� ACM SIGMOD Record�
���
�������� November �����

��

���� C� Davies� B� Lazell� M� Hughes� and L� Cooper� Time is Just Another Attribute�or at Least� Just
Another Dimension� pages �������� In ���

���� C� E� Dyreson and R� T� Snodgrass� A Timestamp Representation� Chapter
�� pages �������� In
�
���

��
� J� Gray and A� Reuter� Transaction Processing� Concepts and Techniques� Morgan Kaufmann
Publishers� �����

���� G� M� Lohman� B� Lindsay� H� Pirahesh� and K� B� Schiefer� Extensions to Starburst� Objects�
Types� Functions� and Rules� Communication of the ACM� �������������� October �����

���� C� S� Jensen� J� Cli�ord� R� Elmasri� S� K� Gadia� P� Hayes� and S� Jajodia� editors� A Glossary of
Temporal Database Concepts� ACM SIGMOD Record�
������
���� March �����

���� A� M� Keller� Penguin� Objects for Programs� Relations for Persistence� URL� http���www

db�stanford�edu�pub�keller������Penguin
overview
paper�ps� April �����

���� T� Y� C� Leung and H� Pirahesh� Querying Historical Data in IBM DB
 C�S DBMS Using Recursive
SQL� pages �������� In ����

���� J� Melton and A� R� Simon� Understanding the New SQL� A Complete Guide� ISBN �
�����

��
��
Morgan Kaufmann Publishers� �����

���� Oracle Corp� Oracle� Server Concepts Release ���� March �����

���� B� Salzberg� Timestamping After Commit� In Proceedings of the Third International Conference on

Parallel and Distributed Information Systems� pages �������� Austin� TX� September �����

�
�� U� Schreier� H� Pirahesh� R� Agrawal� and C� Mohan� Alert� An Architecture for Transforming a
Passive DBMS into an Active DBMS� Proceedings of the VLDB Conference� pages �������� �����

�
�� A� R� Simon� Strategic Database Technology� Management for the Year �			� ISBN �
�����

��
X�
Morgan Kaufmann Publishers� �����

�

� R� T� Snodgrass� The Temporal Query Language TQuel� Transaction on Database Systems�
�
�
��
���
��� June �����

�
�� R� T� Snodgrass� An Overview of TQuel� Chapter �� pages ������
� In �����

�
�� R� T� Snodgrass and I� Ahn� Temporal Databases� IEEE Computer� ����������
� September �����

�
�� R� T� Snodgrass� Event Tables� Chapter ��� pages �������� In �
���

�
�� R� T� Snodgrass� Change Proposal to SQL�Temporal� A Road Map of Additions to SQL�Temporal�
ANSI Expert�s Contribution ANSI X�h

��
��� ISO�IEC JTC��SC
��WG� DBL � February
�����

�
�� R� T� Snodgrass� editor� The TSQL� Temporal Query Language� ISBN �
��
�
����
�� Kluwer
Academic Publishers� �����

�
�� A� Steiner� M� B�ohlen� C� S� Jensen� and R� Snodgrass� Implementation of TimeDB� URL�
http���www�iesd�auc�dk�general�dbs�tdb�timecenter�software�timedb�tar�gz� �����

�
�� M� Stonebraker� L� A� Rowe� and M� Hirohama� The Implementation of Postgres� IEEE Transaction

on Knowledge and Data Engineering�
�����
����
� March �����

���� M� Stonebraker and L� A� Rowe� The Design of Postgres� In Proceedings of ACM SIGMOD Inter�

national Conference on Management of Data� pages �������� May �����

���� M� Stonebraker and G� Kemnitz� The Postgres Next
generation Database Management System�
Communication of the ACM� �����������
� October �����

�

��
� T� Takahashi and A� M� Keller� Implementation of Object View Query on a Relational Database�
In Data and Knowledge Systems for Manufacturing and Engineering� May �����

���� A� Tansel� J� Cli�ord� S� Gadia� S� Jajodia� A� Segev� and R� Snodgrass� editors� Temporal

Databases� Theory� Design� and Implementation� Database Systems and Applications Series� Ben

jamin�Cummings� Redwood City� CA� �����

���� C� Vassilakis� N� Lorentzos� and P� Georgiadis� Transaction Support in a Temporal DBMS� pages

���
��� In ����

�

A Temporal Queries

The appendix lists the actual queries used to determine which value to use for NOW in Section ����
There� we wanted to use a SQL��
 CASE statement in the queries� but this construct is not available in
the DBMS used� Oracle ��
�
��� Instead� have we used NVL when using NULL for NOW � this operator is
similar to the SQL��
 COALESCE operator� When we studied the performance of using the minimum and
the maximum values for NOW � we used OR in place of the CASE statement�

In the test� we have used the Oracle data type DATE for time attributes using the �nest granularity
of seconds� The minimum and maximum values for this data type are �	��	���
��� 		�		�		� and
�������
��� ���
��
��� respectively� Finally� because Oracle does not allow the use of hyphens in
identi�ers� we use in the queries VTS for V�Begin� VTE for V�End� TTS for T�Start� and TTE for T�Stop�

All queries have the same SELECT and FROM clauses� but have di�erent predicates in their WHERE

clauses� This general format and the varying predicates follow�

SELECT Unique�� two

FROM TableOne

WHERE �predicate��

Query � predicates using NULL� the minimum value� and the maximum value for NOW �

TS �� SYSDATE AND NVL�VTE� SYSDATE	 �� SYSDATE AND TTE IS NULL

VTS �� SYSDATE AND �VTE � SYSDATE OR VTE � ������������ ���������	 AND

TTE � ������������ ���������

VTS �� SYSDATE AND VTE �� SYSDATE AND TTE � �
��������� �
��
��
�

Query
 predicates using NULL� the minimum value� and the maximum value for NOW �

VTS �� ��������

� ��������� AND NVL�VTE� SYSDATE	 � ��������

� ��������� AND

TTE IS NULL

VTS �� ��������

� ��������� AND

�VTE � ��������

� ��������� OR VTE � ������������ ���������	 AND

TTE � ������������ ���������

VTS �� ��������

� ��������� AND VTE � ��������

� ��������� AND

TTE � �
��������� �
��
��
�

Query � predicates using NULL� the minimum value� and the maximum value for NOW �

VTS �� ��������

 ��������� AND NVL�VTE� SYSDATE	 � ��������

 ��������� AND

TTS �� ��������

 ��������� AND NVL�TTE� SYSDATE	 � ��������

 ���������

VTS �� ��������

 ��������� AND

�VTE � ��������

 ��������� OR VTE � ������������ ���������	 AND

TTS �� ��������

 ��������� AND

�TTE � ��������

 ��������� OR TTE � ������������ ���������	

VTS �� ��������

 ��������� AND VTE � ��������

 ��������� AND

TTS �� ��������

 ��������� AND TTE � ��������

 ���������

