
Evaluating and Enhancing the

Completeness of TSQL2

Michael H. B�ohlen1

Christian S. Jensen2

Richard T. Snodgrass1

TR 95-05

June 28, 1995

Abstract

The question of what is a well-designed temporal data model and query language is a

di�cult, but also an important one. The consensus temporal query language TSQL2

attempts to take advantage of the accumulated knowledge gained from designing and

studying many of the earlier models and languages. In this sense, TSQL2 represents

a constructive answer to this question. Others have provided analytical answers by

developing criteria, formulated as completeness properties, for what is a good model

and language.

This paper applies important existing completeness notions to TSQL2 in order to

evaluate the design of TSQL2. It is shown that TSQL2 satis�es only a subset of these

completeness notions. In response to this, a minimally modi�ed version of TSQL2,

termed Applied TSQL2, is proposed; this new language satis�es the notions of temporal

semi-completeness and completeness which are not satis�ed by TSQL2. An outline of

the formal semantics for Applied TSQL2 is given.

1Department of Computer Science

University of Arizona

Tucson, AZ 85721

fboehlen, rtsg@cs.arizona.edu
2Department of Mathematics and Computer Science

Aalborg University

Fredrik Bajers Vej 7E

DK{9220 Aalborg �, DENMARK

csj@iesd.auc.dk

Evaluating and Enhancing the
Completeness of TSQL2

Copyright c
 Michael H. B�ohlen, Christian S. Jensen and Richard T. Snodgrass 1995

Contents

1 Introduction 1

2 Upwards Compatibility 2

2.1 De�nitions : 2

2.2 Upwards Compatibility among SQL{92 and TSQL2 : : : : : : : : : : : : : : : : : 4

3 Temporal Groupedness 4

3.1 De�nition : 4

3.2 TSQL2 and Temporal Groupedness/Ungroupedness : : : : : : : : : : : : : : : : : 6

4 Temporal Semi-Completeness 8

4.1 De�nition : 8

4.2 TSQL2 and Temporal Semi-Completeness with Respect to SQL{92 : : : : : : : : : 10

4.2.1 Lack of Duplicates in TSQL2 : 10

4.2.2 Problems with Subqueries : 11

4.2.3 Summary : 12

5 Temporal Completeness 12

5.1 De�nition : 12

5.2 TSQL2 and Temporal Completeness with Respect to SQL{92 : : : : : : : : : : : : 13

5.2.1 Overriding Snapshot Reducibility : 14

5.2.2 Beyond Coalescing : 14

5.2.3 Summary : 15

6 Ensuring Temporal Completeness in TSQL2 15

6.1 An Applied Cousin to TSQL2 : 15

6.2 Admitting Value-Equivalent Tuples : 16

6.3 Achieving Full Snapshot Reducibility : 16

6.4 A New Valid Clause : 17

6.5 Supporting User-Speci�ed Valid Times : 17

6.6 Migrating from TSQL2 to Applied TSQL2 : 18

6.6.1 E�ects on the Users : 18

6.6.2 Implications for the Underlying Algebra : 18

6.7 Summary : 19

7 Outline of a Formal Semantics 19

8 Summary and Future Research 21

9 Acknowledgments 22

i

1 Introduction

The temporal database community has been proli�c in its production of temporal data models

and query languages. Over the past �fteen years, more than two dozen temporal relational data

models have been proposed, each with one or more associated query languages [�OS95]. This has

left the community with a wide, confusing|but also challenging|variety of alternatives.

As one response to this state of a�airs, a committee of eighteen temporal database researchers

has recently released the TSQL2 Language Speci�cation [SAA+94a], which de�nes a temporal

extension to the SQL{92 standard [SQL92, MS93]. TSQL2 was created partly in an attempt to

consolidate, in a single consensual model and language, the insights and experiences gained from

the development of the previous data models and languages.

As a quite di�erent approach, other e�orts (e.g., [CCT93, CCT94, MS91, B�oh94, BM94])

have put focus on the properties of temporal data models and query languages, as well as on

the design alternatives available when developing these. This has led to precise de�nitions of

model and language properties that can be used to characterize and evaluate the many models

and languages. In the spirit of Codd's original de�nition of relational completeness [Cod72], some

of these properties have been stated as di�erent kinds of completeness.

It then seems appropriate to use the body of work on model and language properties to

study the design of TSQL2|this paper does exactly that. Further, it attempts to rectify any

de�ciencies found. It is a fundamental assumption of the paper that when evaluating a data model

and query language, both the functionality and the syntax for expressing a certain functionality

are important. The completeness notions that we adopt in the investigation thus include both

functionality-related and syntactical criteria.

Speci�cally, we formalize the notion of a data model being upwards compatible with another

data model and show that TSQL2 is upwards compatible with SQL{92. Brie
y, this means that a

smooth transition from SQL{92 to TSQL2 is possible.

One of the most widely cited distinctions among temporal data models is that between �rst

normal form and non-�rst normal form models. This distinction has been formally captured by

the concepts of temporally ungrouped and grouped data models [CCT93, CCT94]. We show that

TSQL2 is temporally ungrouped and not temporally grouped. As this property is inherent in the

model, we do not propose to change it. Rather, we put focus on the implications of a model being

ungrouped or grouped.

The last two notions of completeness considered are temporal semi-completeness and the

more restrictive temporal completeness [B�oh94, BM94]. The former notion essentially states that

a temporal relational data model must contain temporal generalizations of all snapshot relations

and queries. Further, the generalized queries must be syntactically similar to the snapshot queries

they generalize. Temporal completeness adds further functional and syntactical requirements,

accounting for queries that cannot be answered by temporally semi-complete languages. It is

shown that TSQL2 does not fully satisfy these completeness notions. This leads to the design

of Applied TSQL2, a minimally modi�ed version of TSQL2 that satis�es both notions. While

the paper will review the relevant concepts and syntactic constructs of TSQL2, the reader is

encouraged to consult the extensive commentaries on the language design1 for a full understanding

of the implications of the properties we prove and the modi�cations we propose.

Related work on completeness has been primarily in the context of non-temporal databases.

It is possible to distinguish two basic approaches. The �rst one takes a particular calculus (usually

�rst order relational calculus) as a metric. Any language having at least the expressive power of

1The language speci�cation and the associated commentaries are available via anonymous ftp from FTP.cs.ari-

zona.edu:tsql/tsql2/tsql2.final.

1

the calculus is said to be complete. Original work along these lines was done by Codd for relational

databases [Cod72]. There have been generalizations for entity-relationship databases [AC81] and

for temporal databases [TC90]. One inherent problem with these approaches is the degree of

appropriateness of the calculus that is used as a metric. There is no guarantee that the calculus

captures all reasonable queries. For example, it has been shown [AU79] that �rst order relational

calculus cannot express the transitive closure of binary relations.

The second approach is to de�ne an appropriately large set of queries and require query lan-

guages to express all queries in this set. This kind of completeness was investigated by Bancilhon

[Ban78] and Chandra and Harel [CH80]. The de�nitions of temporal semi-completeness and tempo-

ral completeness are somewhat in this spirit. They (in particular temporal semi-completeness) take

the set of queries that are expressible by a non-temporal language as a reference and ensure that

temporal generalizations of the non-temporal language can express all these queries. Additionally,

they establish syntactic restrictions a temporal language must obey.

Brie
y, the contributions of the paper are threefold. First, the paper further formalizes some

existing de�nitions of completeness of relevance for temporal data models and query languages,

namely the notions of upwards compatibility, temporal semi-completeness and temporal complete-

ness. Second, the paper explores the design of TSQL2 by applying these completeness notions and

the notion of temporal (un)groupedness to TSQL2. It is shown that TSQL2 satis�es some of these

notions, but does not satisfy all of them. The third contribution is a constructive recti�cation of

the identi�ed de�ciencies, leading to a \complete" TSQL2, Applied TSQL2.

The paper is structured as follows. Each of Sections 2{5 �rst de�nes a particular type of

completeness. They then evaluate the completeness of TSQL2 in the context of each completeness

notion. During this investigation, some de�ciencies of TSQL2 are uncovered that are subsequently

addressed in Section 6. This section proposes constructive solutions to each de�ciency, leading to

the \applied" version of TSQL2. Finally, Section 7 provides an outline of a core semantics for

Applied TSQL2. Section 8 summarizes the paper and points to directions for future research.

2 Upwards Compatibility

Completeness is generally a relative property of a data model or a query language. Thus, a model

or language satis�es some notion of \completeness" if it is related to another model or query

language in a certain way. In this section, we introduce the �rst of the three types of completeness.

Speci�cally, we formalize the notion that a data model is upwards compatible with respect to

another data model. We subsequently consider the upwards compatibility of SQL{92 with respect

to TSQL2.

2.1 De�nitions

When a new database management system, with an associated data model, is introduced into an

organization, often that system replaces an existing system, also with an associated data model.

For software engineering reasons, to be discussed in more detail below, it is an important property

that the existing data model be upwards (or, forwards) compatible with the new data model. Put

di�erently, the new data model should be a strict superset of the existing data model.

We will adopt the convention that a data model consists of two components, namely a set

of data structures and a language for querying the data structures. For example, the central

data structure of the relational model is the relation, and the central, user-level query language is

SQL. Notationally, M = (DS, QL) then denotes a data model, M, consisting of a data structure

component, DS, and a query language component, QL. Thus, DS is the set of all databases

expressible by M, and QL is the set of all queries in M that may be formulated on some database

2

in M. We will use db to denote a database and q to denote a query.

De�nition 2.1 (upwards compatibility) Let M1 = (DS1; QL1) and M2 = (DS2; QL2) be two

data models. Model M1 is upwards compatible with model M2 if and only if

� DS1 is a superset of DS2, and

� for each instance db in DS1 \DS2 (i.e., in DS2) and for each query expression q in QL2, q

is also a legal query expression in QL1, and the results of evaluating q on db is the same in

M1 and M2.

This concept captures the conditions that need to be satis�ed in order to allow a smooth

transition from a current system, with data model M2, to a new system, with data model M1.

The �rst condition implies that all existing databases in the old system are also legal databases

in the new system and thus need not be modi�ed when the new system is adopted. The second

condition guarantees that existing queries will remain legal and will compute the same results in

the new system as in the old system. Thus, the bulk of legacy application code is not a�ected by

the transition to a new system.

The de�nition of upwards compatibility is related to the traditional notion of Codd complete-

ness (Codd originally used the term relational completeness) [Cod72], as formulated in the context

of the standard relational model. To see the similarity and di�erences, we review that completeness

notion.

Essentially, a relational or extended relational data model is Codd complete if all queries that

can be formulated on arbitrary conventional relations expressible in the model are a superset of all

relational algebra queries that can be formulated.

De�nition 2.2 (Codd completeness) LetM = (DS;QL) be some data model, and let (SR;RA)

be the relational model with the relational algebra as its query language. Model M is Codd com-

plete if and only if each query in RA has an equivalent counterpart in QL when all db in DS \ SR

are considered.

Two query expressions are equivalent if they always yield mutually identical results when

supplied identical arguments. The relational algebra comes in numerous versions2, and while the

de�nition is dependent on a particular version being chosen, it is not important at this point what

particular version is chosen.

The similarity between upwards compatibility and Codd completeness is apparent, but there

are also important di�erences. First, Codd completeness is restricted to use the relational algebra

as a yardstick for measuring the expressive power of other query languages. Thus, the relevance

of Codd completeness is dependent on how \natural" or well-chosen the relational algebra is. On

the other hand, upwards compatibility is not tied to any particular data model.

Second, Codd completeness strictly concerns functionality while upwards compatibility con-

cerns both functionality and the syntax for expressing the functionality. Speci�cally, Codd com-

pleteness is de�ned in terms of the existence of equivalent, but possibly di�erent, query expressions.

Upwards compatibility requires query expressions that yield identical results to also be syntacti-

cally identical. Thus, a model being upwards compatible with the relational model/algebra is a

stronger criterion than the model being Codd complete.

2The relational algebra used in conjunction with the original de�nition of Codd completeness [Cod72] included

\cartesian [sic] product," \union," \intersection," \di�erence," \projection," \�-join," \division," and \restriction"

(a special case of selection).

3

2.2 Upwards Compatibility among SQL{92 and TSQL2

Clearly, it is an important property for a new data model, such as TSQL2, to be a strict superset

of the data model it is intended to supersede, i.e., SQL{92. We now consider this issue.

In TSQL2, there are six kinds of relations3: snapshot relation, valid-time event relation, valid-

time state relation, transaction-time relation, bitemporal event relation, and bitemporal state

relation. The �rst is the kind of relation found in the relational model; the remaining �ve are

temporal relations. As all the schema speci�cation statements of SQL{92 are included in TSQL2,

it follows that the data structures of TSQL2 include those in SQL{92.

TSQL2 is also a strict superset of SQL{92 in its query facilities. In particular, if an SQL{92

select statement does not incorporate any of the constructs added in TSQL2 (e.g., the valid clause,

the VALID() and TRANSACTION() expressions, and extensions to the from and group by clauses),

and mentions only snapshot relations in its from clause(s), then the language speci�cation states

explicitly that the semantics of this statement is identical to its SQL{92 semantics.

It should be noted that the preliminary TSQL2 language speci�cation released in March,

1994 [SAA+94a] did not have that property. In particular, SQL{92 INTERVALs were termed SPANs

in the preliminary TSQL2 speci�cation, and TSQL2 INTERVALs were not present at all in SQL{92.

The �nal TSQL2 language speci�cation [SAA+94a] retained SQL{92 INTERVALs and added the

PERIOD data type, which was previously called INTERVAL in preliminary TSQL2 (confusing, isn't

it?). Additional changes to the datetime literals were also made to ensure that TSQL2 was a strict

superset of SQL{92.

Hence, both conditions are satis�ed, demonstrating that TSQL2 is upwards compatible with

SQL{92.

As discussed previously, this directly implies that TSQL2 is Codd complete.

Finally note that, while upwards compatibility is a highly desirable property, it says absolutely

nothing about constructs added to a data model or query language to support time. This notion

of completeness is thus quite limited in scope, as seen from a temporal data-model perspective.

3 Temporal Groupedness

In this section, we �rst review the previously proposed notions of temporally ungrouped and

grouped data models. We then investigate the temporal groupedness of TSQL2. In contrast

to upwards compatibility, temporal groupedness speaks directly to the support of time-varying

information in the temporal data model.

3.1 De�nition

In temporal data modeling, an informal division among temporal relational data models into �rst

normal form (1NF) and non-�rst normal form (NFNF) models has developed over the years, and

each type of model has attracted its followers4.

With one objective being to clarify this distinction, Cli�ord et al. [CCT93, CCT94] have

recently given a formal de�nition of two types of relation structures, termed temporally ungrouped

and temporally grouped. While it is debatable whether the data model of TSQL2 is strictly a

3In this paper, we use the terminology Codd introduced [Cod70]: relation, tuple, and attribute, rather than the

more prosaic terminology used in SQL{92 and subsequently in TSQL2: table, row, and column.
4In this particular context, the NFNFness is due to how time is added to the relational model, so most NFNF

temporal data models do not support general NFNF relations, and the distinction is di�erent from the distinction

between the 1NF and the various general NFNF relational data models (e.g., [JS82]).

4

1NF model in the generic sense5, we will show that the model is temporally ungrouped. To set the

stage, we review the de�nition of a temporally ungrouped data model.

A data model is temporally ungrouped if its data structure component is isomorphic to a

particular canonical temporally ungrouped data structure, i.e., an onto and 1{1 mapping must

exist between the canonical structure and the structure of the model to be proved temporally

ungrouped. The canonical structure is de�ned next.

De�nition 3.1 (canonical temporally ungrouped relation structure) [CCT94, pp. 69{70]

Let UD = fD1; D2; : : : ; Dndg be a set of non-empty value domains, and let D = [nd
i=1Di be the

set of all values. Let T = ft0; t1; : : : ; ti; : : :g be a non-empty, �nite or countably in�nite set of times

with \<" as the total order relation. Finally, let UA = fA1; A2; : : : ; Ang be a set of attributes, and

let TIME be a distinguished time attribute.

A canonical temporally ungrouped (TU) relation schema is de�ned as a triple < A;K;DOM>

where

(1) A[fTIMEg (A � UA) is the set of attributes of the schema.

(2) The set K [fTIMEg (K � A) is the key of the schema, i.e., K [fTIMEg ! A.

(3) DOM is a function from A[fTIMEg to UD [fTg that assigns domains in UD to attributes

in A and TIME to T.

A TU database schema is a �nite set of TU relation schemas.

A TU tuple t on schema < A;K;DOM > is a function from A [fTIMEg to D [T that

assigns a value in DOM(Ai) to each attribute Ai in A and a value in TIME to T. A TU relation

is then a �nite set of TU tuples that satisfy the key constraint in (2) above. A TU database is a

�nite set of TU relations.

Example 3.2 The following is a sample TU database with one relation.

A B TIME

a1 b1 1

a3 b2 1

a2 b1 2

a3 b3 2

The relation schema is < fA;Bg; fA;Bg; f >, where f assigns domains fa1; a2; a3g and fb1; b2; b3g

to A and B, respectively, and the natural numbers to TIME.

A data model cannot be both temporally ungrouped and temporally grouped, and as we will

prove that the TSQL2 data model is isomorphic to TU, we will not give a formal de�nition of a

the canonical temporally grouped relation structure, TG. Rather, we give an example and point

to what makes TG grouped.

5First normal form (1NF) states that each attribute value is atomic [Cod70]. This certainly holds for TSQL2's

explicit attributes, which can have as types any of the SQL{92 data types or the new type PERIOD. Hence, considering

only values of explicit attributes, TSQL2 is a 1NF model. However, the timestamp associated with each tuple in

TSQL2 is a temporal element, a �nite union of periods [JCE+94]. While the timestamp is not an explicit attribute,

it can be referenced within a query. We thus feel that timestamps should also satisfy the property. Since the

partitioning construct in the from clause of TSQL2 (designated \(PERIOD)") e�ectively iterates over the maximal

periods of a temporal element, timestamps are not treated as atomic. Thus, TSQL2 is not a 1NF model in this strict

sense.

5

Example 3.3 The schema of a temporally grouped relation consists of the same three components

as that of an ungrouped relation, with the exception that the componentDOM assigns a domain of

functions to each attribute in A. These functions map times to some value domain. A tuple, then,

consists of some speci�c function for each attribute in A. In addition, a tuple has an associated

lifespan, a set of times. The functions of a tuple map each time in the tuple's lifespan to some

value.

For example, a TG relation schema may have attributes A and B. The key may be the

combination of these attributes, and DOM may assign functions to A and B that map from the

natural numbers to fa1; a2; a3g and fb1; b2; b3g, respectively. A sample tuple may have lifespan

f1; 2g and may have the mappings [1 ! a1; 2 ! a2] as its A-value and [1 ! b1; 2 ! b1] as its

B-value. A relation instance with this and one more tuple is given next.

A B lifespan

1! a1 1! b1

2! a2 2! b1 f1; 2g

1! a3 1! b2

2! a3 2! b3 f1; 2g

In comparison with the TU instance given before, this instance adds a grouping of the temporal

information. As before, there are four rows. However, these rows may now be combined in several

ways to form tuples. Thus, these are also legal TG instance with the same rows.

A B lifespan

1! a1 1! b1 f1g

2! a2 2! b1 f2g

1! a3 1! b2

2! a3 2! b3 f1; 2g

A B lifespan

1! a1 1! b1

2! a2 2! b1 f1; 2g

1! a3 1! b2 f1g

2! a3 2! b3 f2g

A B lifespan

1! a1 1! b1 f1g

2! a2 2! b1 f2g

1! a3 1! b2 f1g

2! a3 2! b3 f2g

Put informally, the result is that a TG structure contains more elements than a TU structure.

This indicates why it is not possible for a relation structure to be both temporally ungrouped and

grouped.

3.2 TSQL2 and Temporal Groupedness/Ungroupedness

The canonical ungrouped relation structure TU is a quite simple one. The relation structure

of TSQL2 is more elaborate. TSQL2 relations come in several variations. First, relations may

support valid time, transaction time, or both. Second, valid-time support may be for either state

or event relations. While each of the resulting six types of relations are important in practice, it is

advantageous in this context to consider only valid-time state relations. This permits a focus on

the important concepts and is consistent with existing work [CCT94]6. With this restriction, the

relation structures of TSQL2 and TU are quite similar.

The central di�erence is that in TU, tuples are stamped with a single TIME value from domain

T while in TSQL2, tuples are stamped with sets of times, valid-time elements, from domain T.

As we shall now demonstrate, this di�erence is not essential.

To show that TSQL2 is temporally ungrouped, we devise an isomorphic mapping between

TSQL2 and TU. This mapping takes as argument an arbitrary TSQL2 relation with schema

(A1; A2; : : : ; An j T) where the Ai are explicit value attributes and T is the implicit, set-valued

6For simplicity, we also assume that the attribute domains of TU and TSQL2 are the same and that all the

domains, including the totally ordered time domain, are �nite.

6

time attribute (the vertical bar is used to emphasize that the Ai's are explicit attributes and that

T is a distinguished, implicit attribute). It maps each TSQL2 tuple in turn. A TSQL2 tuple

(a1; a2; : : : ; an j fti1 ; ti2; : : : ; tikg)

is mapped to the set

f(a1; a2; : : : ; an j ti1); (a1; a2; : : : ; an j ti2); : : : ; (a1; a2; : : : ; an j tik)g

of TU tuples. Note that one TU tuple is generated for each time in the timestamp of the argument

TSQL2 tuple. No duplicates are introduced as TSQL2 timestamps are sets of times. Note also that

no duplicate tuples are introduced between the sets of tuples generated from individual TSQL2

tuples. This is so because TSQL2 relations do not contain value-equivalent tuples [JS92] (tuples

are value-equivalent if they agree on all explicit attribute values [JCE+94]).

It should be clear that this mapping is de�ned for all TSQL2 relations. Next, for any TU

relation instance, there exists an TSQL2 instance that maps to it, i.e., the mapping is onto the set

of all TU relations. To see this, pick an arbitrary TU relation. For each set of value-equivalent

tuples, form a single TSQL2 tuple with the same explicit values and with a timestamp that is the

union of the timestamps of the value-equivalent tuples. The result is a legal TSQL2 relation, and

that relation maps to the initial TU relation. Finally, there is exactly one TSQL2 relation that

maps to any TU relation, i.e., the mapping is 1{1. To see this, observe that two di�erent TSQL2

relations map to di�erent TU relations. In conclusion, the mapping is an isomorphism.

It is worth noting that TU and TSQL2 agree regarding duplicates. A TU relation is de�ned

as a set of tuples and thus excludes duplicates. TSQL2 relations do not contain value-equivalent

tuples, and a timestamp is a set of times. A version of TSQL2 changed to allow value-equivalent

tuples with overlapping timestamps would contain more instances than the original TSQL2 and

would thus not be temporally ungrouped.

It may also be shown that if fAj1 ; Aj2; : : : ; Ajlg is a temporal key [JSS92] of a TSQL2 relation

then fAj1; Aj2 ; : : : ; Ajl ;TIMEg is a key of the corresponding TU relation.

We have now seen that TSQL2 is temporally ungrouped and thus not temporally grouped.

It is then a natural question to ask whether it would be useful to make TSQL2 grouped. It

is our contention that it would not be useful to pursue temporal groupedness in the context of

TSQL2. One reason for this is that making TSQL2 relations temporally grouped would change

the data structures and thus the query language fundamentally and almost beyond recognition.

Another reason is that groupedness does not mix well with the restructuring capabilities of the

TSQL2 query language. These capabilities, inspired by, e.g., Gadia [Gad88], have proven very

useful [Jen93, SAA+94b]. The following example illustrates in what sense temporal groupedness

and restructuring do not mix well.

Example 3.4 In TSQL2 queries, it is possible to declare and use \tuple" variables that range

over groups of tuples. To illustrate this, consider the almost identical TSQL2 version, termed

relationAB (see also below), of the TU instance in Example 3.2. The TSQL2 from clause

FROM relationAB (A) AS relationA

declares a \tuple" variable relationA that ranges over groups of relationAB tuples with the same

A value. In the where clause, it is then possible to reference the A value (using relationA.A) and

the timestamp (using VALID(relationA)) of this variable. A di�erent TSQL2 from clause

FROM relationAB (B) AS relationB

declares a tuple variable relationB that ranges over groups of relationAB tuples with the same

B value. Three groupings are possible, as illustrated by the following relations.

7

A B T

a1 f1g

a2 f2g

a3 f1; 2g

A B T

b1 f1; 2g

b2 f1g

b3 f2g

A B T

a1 b1 f1g

a3 b2 f1g

a2 b1 f2g

a3 b3 f2g

relationA relationB relationAB

Next, note that these three instances essentially correspond to the last three temporally

grouped instances depicted in Example 3.3. However, grouping as in TSQL2 (and, e.g., TempSQL

[GB93]) cannot produce the �rst instance depicted in Example 3.3. This means that temporally

groupedness and grouping as in TSQL2 do not coexist harmoniously.

More generally, it is our contention that temporal ungroupedness versus groupedness are

fundamental design decisions to be made when designing a data model.

Ungroupedness and groupedness have relative advantages and weaknesses. Cli�ord et al.

[CCT94] lucidly describe the advantages of groupedness. Others have pointed to potential ad-

vantages of ungroupedness. To exemplify, assume that attribute A records employee names and

attribute B records department names. With grouping, one must decide at schema de�nition time

whether tuples in the relation are intended to represent departments (i.e., one tuple records all

employee names for a department which may change its name over time) or employees (i.e., one

tuple records all department names for an employee which may change name over time). With-

out grouping and assuming that departments and employees do not change names over time, this

decision may be deferred to when a query is formulated, which is more
exible.

4 Temporal Semi-Completeness

This section �rst gives re�ned de�nitions of temporal semi-completeness and temporal completeness

[BM94]. The de�nitions presented here add additional syntactical requirements that were intended

in the original de�nitions, but were not stated explicitly.

These notions re
ect a belief that both functionality and syntactical requirements are im-

portant when evaluating a data model. Both types of requirements are relative to some chosen

non-temporal data model. While the de�nitions are applicable to any pair of a temporal and a

non-temporal data model, they are intended to be applied to pairs of a temporal relational data

model and the particular version of the snapshot relational model that the temporal model extends.

The section ends with an evaluation of TSQL2 according to each de�nition. We emphasize

that the contribution is not in the de�nitions per se, but in their application to TSQL2, yielding

new insights into this language.

4.1 De�nition

To de�ne temporal semi-completeness, we �rst introduce the auxiliary notion of a snapshot re-

ducible query. We will use r and rv for denoting a snapshot and a valid-time relation instance,

respectively. Similarly, db and dbv are sets of snapshot and valid-time relation instances, respec-

tively.

The de�nition uses a valid-timeslice operator �M
v;M

c (e.g., [Sch77, BM94]) which takes as

arguments a valid-time relation rv (in the data model Mv) and a valid-time instant c and returns

a snapshot relation r (in the data model M) containing all tuples valid at time c. In other words,

r consists of all tuples of rv whose valid time includes the time instant c, but without the valid

time. We assume that the valid timeslice preserves duplicates, i.e., if rv contains value-equivalent

8

tuples that are valid at time c then �M
v;M

c (rv) will contain duplicates. This becomes important

later, when we consider SQL{92 relations with duplicates.

De�nition 4.1 (snapshot reducibility) [Sno87] Let M = (DS;QL) be a snapshot relational

data model, and let Mv = (DSv; QLv) be a valid-time data model. Also, let dbv be a database

instance in DSv. A valid-time query qv in QLv is snapshot reducible with respect to a snapshot

query q in QL if and only if

8dbv 8c (�M
v;M

c (qv(dbv)) = q(�M
v;M

c (dbv))).

Graphically, snapshot reducibility implies that for all dbv and for all c, the commutativity diagram

shown in Figure 1 must hold.

?

-

?

-

dbv

�M
v;M

c (dbv)

qv(dbv)

q(�M
v;M

c (dbv)) = �M
v;M

c (qv(dbv))

qv

q

timeslices at c timeslice at c

Figure 1: Snapshot Reducibility of Query qv With Respect To Query q

Temporal semi-completeness of a temporal data model with respect to a snapshot data model

requires �rst that all relation instances in the snapshot data model can be produced by taking

timeslices of some relation instance in the temporal data model. Further, it is required that

each query q in the snapshot model has a counterpart qv in the temporal model that is snapshot

reducible with respect to it. Observe that qv being snapshot reducible with respect to q poses

no syntactical restrictions on qv. It is thus possible for qv to be quite di�erent from q, and qv

might be very involved. This is undesirable, as we would like the temporal model to be a straight-

forward extension of the snapshot model. Consequently, we add to the de�nition of temporal

semi-completeness the syntactical restriction that qv and q be syntactically similar.

De�nition 4.2 (temporal semi-completeness) [BM94] LetM = (DS;QL) be a snapshot data

model, and let Mv = (DSv; QLv) be a valid-time data model. Data model Mv is temporally semi-

complete with respect to model M if and only if all three of the following conditions hold.

1. For every relation r in DS, there exists a valid-time relation rv in DSv and a time instant c

such that r = �M
v;M

c (rv).

2. For every query q in QL, there exists a query qv in QLv that is snapshot reducible with

respect to q.

3. There exist two (possibly empty) text strings S1 and S2 such that for all pairs (q; qv) of

queries, where qv is snapshot reducible with respect to q, query qv is syntactically identical

to S1qS2.

Note that the same two strings S1 and S2 must apply to all (q; qv) pairs. The strings represent

particular syntactical constructs in the language QLv.

If the valid-time data model treats valid-time relations as a new type of relation, as does

TSQL2, it is possible to use the same syntactical constructs (i.e., qv and q are identical) for

9

querying snapshot and valid-time relations. In this case, the type of a relation determines the

meaning of the syntactical construct.

Temporal semi-completeness of a valid-time data model with respect to a snapshot data

model guarantees that the temporal model is a user-friendly (i.e., minor) extension of the snapshot

model. Temporal semi-completeness is limited in the sense that it covers only those queries in the

temporal data model that are snapshot reducible to a query in the snapshot data model. Most

often, a temporal data model allows for the formulation of other queries as well.

4.2 TSQL2 and Temporal Semi-Completeness with Respect to SQL{92

This section identi�es where TSQL2 falls short in ful�lling the requirements of temporal semi-

completeness. The two related concepts of value-equivalent tuples and duplicates will prove im-

portant in this section. The former concept applies only to temporal relations; the latter applies

to both valid-time relations and timeslices of valid-time relations. To illustrate the interrelations

among these concepts, consider the valid-time relations depicted in Table 1.

r1 r2 r3 r4

A T

a1 [10� 20)

a2 [15� 50)

A T

a1 [10� 17)

a1 [17� 20)

a2 [15� 50)

A T

a1 [10� 20)

a1 [15� 18)

a2 [15� 50)

A T

a1 [10� 20)

a1 [10� 20)

a2 [15� 50)

Table 1: Illustration of Value-equivalent Tuples and Duplicates

Relation r1 contains no duplicates and no value-equivalent tuples. Thus, no timeslices of r1
will contain duplicates. Relation r2 contains no duplicates, but it does contain value-equivalent

tuples. However, as the timestamps of the value-equivalent tuples are disjoint, no timeslices will

contain duplicates. Relation r3, like r2, contains no duplicates, but contains value-equivalent

tuples. Unlike in r2, the timestamps of the value-equivalent tuples and not disjoint and thus there

are timeslices of r3 that contain duplicates. Finally, relation r4 contains duplicates and thus non-

disjoint value-equivalent tuples, leading again to timeslices with duplicates. Note that allowing

value-equivalent tuples does not necessarily yield duplicates in timeslices. However, if we want to

have duplicates in timeslices, we must allow (non-disjoint) value-equivalent tuples.

4.2.1 Lack of Duplicates in TSQL2

One reason why TSQL2 is not temporally semi-complete with respect to SQL{92 is that SQL{

92 relations that contain duplicates have no counterparts in TSQL2 where relations with value-

equivalent tuples (and thus duplicates, either in a timeslice, or in the temporal relation itself) are

not allowed. De�nition 4.2 requires that for every SQL{92 relation r, there must exist a TSQL2

relation rv and a time instant c such that �TSQL2,SQL{92c (rv) = r. However, it is not possible to

�nd an rv in TSQL2 for r's in SQL{92 that contain duplicates. An example illustrates this.

Example 4.3 Let salary relation, salary entry, be given that records (current) monthly incomes

of persons. Assume that the person Tom has three incomes because he has three jobs. In two jobs,

he makes 1200, and in one he makes 800. This can be represented in SQL{92 as follows.

salary entry

Name Amount

Tom 1200

Tom 1200

Tom 800

10

No timeslice of a TSQL2 relation can yield this relation. The following is a reasonable attempt at

adding valid time to the SQL{92 relation to obtain a TSQL2 relation.

salary entry

Name Amount T

Tom 1200 [1994=5� 1995=3)

Tom 1200 [1994=8� 1994=12)

Tom 800 [1994=11� 1995=6)

This relation records that from May 1994 to March 1995, Tom was on one payroll and made a

monthly salary of 1200; from August 1994 to December 1994 he was on another payroll where he

also made 1200 per month; and from November 1994 to June 1995 he made 800 in a third job.

This is not a legal TSQL2 relation because it contains value-equivalent tuples.

The merit of duplicates has already been discussed heatedly (see, e.g., [Dat95, p. 109]).

Doubtless SQL{92 would be cleaner in a mathematical sense without duplicates. However, we

cannot change SQL{92, so whether we like it or not, it is necessary to deal with duplicates when

designing a semi-complete successor to SQL{92. Speci�cally, for TSQL2 to be snapshot reducible

with respect to SQL{92, it must support relations containing value-equivalent tuples with non-

disjoint timestamps, permitting duplicates in timeslices.

As a reminder, we note that duplicates may signi�cantly impact the results of queries. For ex-

ample, the following statement computes a relation that associates with every person that person's

total salary.

SELECT Name, SUM(Amount)

FROM salary_entry

GROUP BY Name

Evaluated over the initial nontemporal salary entry relation, the query computes Tom's salary to

be $3200. Without duplicates, the result would have been $2000, which is unintended.

4.2.2 Problems with Subqueries

Temporal semi-completeness requires that for every snapshot query, it is possible to formulate a

valid-time query that is snapshot reducible and syntactically similar to it. TSQL2 tries to achieve

this goal with a carefully designed default valid clause. This works �ne for many simple queries,

but it does not work for subqueries.

Ignoring duplicates, the following two SQL{92-statements are equivalent [O'N94, p.117].

SELECT r5.a

FROM r5,r6

WHERE r5.a=r6.a

SELECT r5.a

FROM r5

WHERE EXISTS (SELECT *

FROM r6

WHERE r5.a=r6.a)

If TSQL2 is to be semi-complete with respect to SQL{92, there must be valid-time queries in

TSQL2 that are snapshot reducible with respect to the two queries above and are similar to them.

Indeed, the default valid clause of TSQL2 was designed to make those two valid-time queries be

identical to the two queries above. The valid-time queries are given below, with the implicit default

valid clauses shown.

11

SELECT r5.a

VALID INTERSECT(VALID(r5), VALID(r6))

FROM r5,r6

WHERE r5.a=r6.a

SELECT r5.a

VALID VALID(r5)

FROM r5

WHERE EXISTS (SELECT *

VALID VALID(r6)

FROM r6

WHERE r5.a=r6.a)

The query to the left behaves as expected. The valid clause states that the valid time of a result

tuple is the intersection of the valid times of the argument tuples from r5 and r6. This means

that the left-hand-side valid-time query is snapshot reducible with respect to the left-hand-side

snapshot query. The result (result1) of the query for two sample instances of r5 and r6 is shown

in Table 2. The situation gets more complicated when we consider the query to the right. The

r5 r6 result1 result2

A T

a1 [5� 9)

A T

a1 [7� 10)

A T

a1 [7� 9)

A T

a1 [5� 9)

Table 2: Computing a Valid-time Join Without or With a Subquery in TSQL2 Yields Di�erent

Results

outermost valid clause implies that the valid time of a result tuples is equivalent to the valid time

of the argument tuple from r5 (see result2 in Table 2 for an example). This means that the right-

hand-side valid-time query is not snapshot reducible with respect to the right-hand-side snapshot

query. TSQL2 thus lacks a valid-time query that is snapshot reducible with respect to and is a

simple syntactic extension of the right-hand-side snapshot query. Consequently, TSQL2 is not

temporally semi-complete with respect to SQL{92.

4.2.3 Summary

We have identi�ed two reasons why TSQL2 is not temporally semi-complete with respect to

SQL{92. The �rst is that, while duplicates are allowed in SQL{92, value-equivalent tuples are not

allowed in TSQL2. The second reason is that the valid clause in TSQL2 is not su�ciently powerful

to ensure that all SQL{92 queries have similar, snapshot reducible counterparts in TSQL2. We

showed this for nested queries. We conjecture that there are also some problems with aggregation,

grouping, and ordering.

5 Temporal Completeness

Temporal semi-completeness poses useful restrictions on temporal data models. However, temporal

semi-completeness poses restrictions on only a subset of the queries that are generally expressible in

temporal data models. For example, it does not cover queries that retrieve information concerning

relationships between perceived states of the world at di�erent points in time. Furthermore,

temporal semi-completeness does not say anything about the format of valid time. Both aspects

are accounted for by the notion of a temporally complete data model.

5.1 De�nition

12

De�nition 5.1 (temporal completeness) [BM94] A valid-time data model Mv = (DSv; QLv)

is temporally complete with respect to a snapshot data model M = (DS;QL) if and only if all �ve

of the following conditions hold.

1. Mv is temporally semi-complete with respect to M .

2. For every snapshot reducible query qv in QLv, it is possible to override snapshot reducibility,

either by dropping the syntactic extensions that enforce snapshot reducibility (c.f., De�ni-

tion 4.2) or by modifying qv syntactically to S1qS2, where S1 and S2 are (possibly empty)

text strings that depend on QLv but not on qv. Overriding snapshot reducibility means to

evaluate a query without interpreting valid times.

3. The name of a valid-time relation within a statement can be syntactically substituted (per-

haps with other syntactic modi�cations and additions, such as parentheses) with a query qv

in QLv that de�nes the respective valid-time relation without changing the semantics of the

statement. The syntactic modi�cations must depend on QLv only, not on qv.

4. Allen's temporal relationships [All83] can be used between (a) temporal attributes of stored

valid-time relations (i.e., valid time attributes and explicit temporal attributes), (b) implic-

itly computed valid times associated with temporally semi-complete (sub)queries, and (c)

temporal constants.

5. It is possible to retrieve and constrain (a) maximal continuous valid-time periods and (b)

valid times as speci�ed by the user.

First, we require that temporally complete languages are temporally semi-complete. This accounts

for queries that can be answered by examining (sequences of) snapshots. Overriding snapshot

reducibility accounts for a fundamental principle in databases, namely that a query should treat

the elements of a database as uninterpreted objects [CH80, p.158]. Section 5.2.1 provides an

example that illustrates this. The third condition ensures that the syntactic construct that is used

to enforce snapshot reducibility can be applied not only to whole queries, but also to subqueries. In

other words, a temporally complete query may consist of several temporally semi-complete queries.

Allen's operators are necessary to state arbitrary temporal relationships. (They were proven to

exhaustively describe the relationships between periods [All83]. However, other, equally expressive

operators are possible as well.) Note that there are di�erent timestamps that are of interest in

a temporal database: temporal attributes of base relations, implicitly computed valid times, and

temporal constants. We require that all of them can be used together as operands to Allen's

operators. Finally the database system has to support maximal continuous periods and valid

times as speci�ed by the user. Both kinds of timestamps have been shown necessary in answering

temporal queries [Sri91]. It must be possible to retrieve and constrain (i.e., use as operands of

functions and predicates) either kind of timestamp.

We emphasize that the notions of temporal semi-completeness and temporal completeness

go beyond approaches that de�ne the completeness in terms of an algebra (i.e., by requiring a

temporal language to have the same expressive power as an algebra). For example, temporal semi-

completeness (and thus temporal completeness) may, depending on the language it is with respect

to, cover aggregates, grouping, null values, ordering, and duplicates.

5.2 TSQL2 and Temporal Completeness with Respect to SQL{92

In order to qualify for temporal completeness, a temporal query language must ful�ll the �ve

requirements listed in De�nition 5.1. We �rst must modify TSQL2 to make it temporally semi-

complete. To ensure temporal completeness, it must in addition be possible to override snapshot

13

reducibility. The valid clause in TSQL2 is intended for this purpose, but as its scope does not extend

to set operations such as EXCEPT and UNION, the clause cannot override snapshot reducibility for

them, either.

The third condition is that a temporal language must allow a valid-time query to appear in

a larger query everywhere a valid-time relation name may appear, so that if the valid-time query

computes the named relation, the two forms of the larger queries compute the same result. This

feature is provided by table expressions, which were introduced in SQL{92 [MS93, p.178] and

carried over to TSQL2.

The fourth requirement is satis�ed by the where clause which is enhanced with temporal

predicates that have the same expressive power as Allen's predicates. Temporal attributes of base

relations, implicitly computed valid times (e.g., valid times computed by table expressions), and

temporal constants can be used as operands to these predicates.

Finally a temporal language must support maximal continuous valid-time periods and valid

times as speci�ed by the user. In the second subsection we will see that TSQL2 ignores the

user-speci�ed valid time format.

5.2.1 Overriding Snapshot Reducibility

In TSQL2, the valid clause can be used to override snapshot reducibility|if no valid clause is

speci�ed, the semantics defaults to valid-time intersection. However, the scope of the valid clause

does not include set operations and, therefore, it is not possible to override valid-time semantics

associated with these operations. As an example, suppose the valid-time relations r5 and r6 of

Table 2. In TSQL2, it is not possible to use EXCEPT to retrieve all tuples in r5 that are not in r6.

Snapshot reducibility is hard-wired into EXCEPT, which means that TSQL2 always yields

A T

a1 [5� 7)

rather than the following.

A T

a1 [5� 9)

5.2.2 Beyond Coalescing

The last point of De�nition 5.1 requires that a temporal query language be able to retrieve and

constrain (a) maximal continuous valid-time periods and (b) valid times as speci�ed by the user.

First, TSQL2 falls short in doing this at the outermost level of queries. The results of queries are

always coalesced relations, i.e., relations where value-equivalent tuples are eliminated by combining

their valid timestamps. This also holds for an individual select statement which may be part of a

larger query.

Second, TSQL2 relations are constrained to contain coalesced tuples. To exemplify why this

may be a problem, consider relations r1 and r2 of Table 1. We may envision that it is signi�cant

to a user whether the explicit attribute value a is associated with one single timestamp, [10� 20),

or is associated with two separate timestamps, [10� 17) and [17� 20). These two relations may

mean di�erent things to a user. However, r2 is not a legal TSQL2 relation, and if the user inserts

tuples ha1; [10� 17)i and ha1; [17� 20)i into a TSQL2 relation, the tuples will be coalesced, and

relation r1 will be the result. Put di�erently, TSQL2 does not consider the di�erence between r1
and r2 (and r3 and r4) important and thus only admits coalesced relations.

Temporal completeness requires that TSQL2 respects the valid times as provided by the user.

If the user provides two intervals for attribute value a, TSQL2 must maintain those two intervals

14

and cannot simply coalesce them. Clearly, this matters for queries. For example, the query \Does

there exist an entry with a valid time identical to [10 � 17)" should return \yes" if applied to

r2 (because the user has inserted a tuple with this valid time into r2) and \no" if applied to r1
(because the user has not inserted a tuple with this valid time into r1).

Currently, TSQL2 is a point-based [Cho94], or a snapshot-equivalence preserving [JSS94],

temporal query language that uses time intervals at the representational level to achieve a reason-

able performance. Changing TSQL2 to respect the valid times as speci�ed by the users represents

a substantial conceptual change to TSQL2. It may be argued that admitting uncoalesced relations

represents a complication, but it also adds to its expressiveness. With implicit coalescing, users

do not have to be concerned with the valid times, but they also cannot associate special semantics

with valid times (c.f., Section 4.2.1).

5.2.3 Summary

Apart from not being temporally semi-complete, two aspects prevent TSQL2 from being temporally

complete. First, it is not possible to override the temporal semantics of set operations. Second,

implicit coalescing prevents TSQL2 from respecting valid times as provided by the users.

6 Ensuring Temporal Completeness in TSQL2

In response to the shortcomings that prevent TSQL2 from being temporally complete, we chose

to de�ne a new language, called Applied TSQL2, that will be temporally complete with respect to

SQL{92. This section �rst motivates why we leave TSQL2 unchanged and instead design a new

query language. It then reconsiders the problems uncovered in the previous section and proposes

appropriate solutions in an informal fashion. A more rigorous mathematical coverage is provided

in Section 7.

6.1 An Applied Cousin to TSQL2

In database research, e.g., in database design, relations are generally assumed to be sets of tuples,

i.e., without duplicates. While this use of relations as sets is inconsistent with practice, it allows

many nice results to be stated and proven much more easily than if duplicates were allowed.

In keeping with this tradition, relations in TSQL2 were also de�ned to be sets of tuples. This

has already allowed for relatively straight-forward extension of conventional dependency theory

and normal forms to temporal databases [JS92]. Nevertheless, TSQL2 was also envisioned as an

extension of SQL{92, and to be relevant to real-world applications. As shown in Section 4, TSQL2

is not an extension, for several reasons.

One approach would be to simply modify TSQL2 to address these concerns. As we will

see shortly, such modi�cations jettison other highly useful properties, such as relations being sets.

Additionally, supporting duplicates, which is required for temporal semi-completeness with respect

to SQL{92, must necessarily abandon temporal ungroupedness.

We propose instead to mirror the relationship between the relational algebra/calculus and

SQL{92. TSQL2 should remain as is, so that further work in logical design and query languages

can exploit its simple data model, and so that it continues to be temporally ungrouped. A new

language should be designed by modifying TSQL2 to re
ect the realities of duplicates and the

need for temporal completeness with SQL{92. As this new language is preferable to TSQL2 for

use by application developers and database administrators, the appellation \Applied TSQL2"

seems appropriate. That said, we attempt to ensure that the two languages remain as similar as

possible, so that most assertions about TSQL2 also apply to its Applied cousin.

15

We restrict our discussion to period timestamped valid-time databases. Transaction time,

instants (a specialization of periods), and temporal elements (a generalization of periods) are not

investigated. Their clean integration into Applied TSQL2 is subject of future research.

6.2 Admitting Value-Equivalent Tuples

We have seen that its lack of value-equivalent tuples prevent TSQL2 from being temporally semi-

complete with respect to SQL{92. Therefore, a �rst step is to allow value-equivalent tuples. This is

a signi�cant change, and we will later show how it impacts the use of the language (Section 6.6.1)

and its underlying algebra (Section 6.6.2).

The speci�c change is to timestamp tuples, not with temporal elements, which are �nite unions

of periods, but rather with multisets of (possibly adjacent, overlapping, or identical) periods. This

allows duplicates in timeslices. Also, relations themselves are no longer sets, but are multisets, as

in SQL{92.

This change to the data model necessitates changes throughout the language, the full extent

of which is beyond the scope of this paper. Coalescing, which occurs automatically in TSQL2,

must be accommodated only with explicit directives from the user in Applied TSQL2. Ordering,

which is not relevant when relations are sets, becomes an issue in Applied TSQL2. While SQL{92

includes a construct to order a relation in terms of explicit attributes, ordering in terms of time

should be considered in Applied TSQL2.

6.3 Achieving Full Snapshot Reducibility

In Section 4.2.2, we saw how the valid clause of TSQL2 was unsuccessful in guaranteeing that

all snapshot queries in SQL{92 have similar valid-time counterparts in TSQL2 that are snapshot

reducible to them.

It is our contention that too much is expected from the valid clause in TSQL2. It is used for

three often related purposes.

1. De�ning the default valid times of query result tuples, as well as of tuples that are inserted,

modi�ed or deleted.

2. Letting the users control the valid times of result tuples freely (arbitrary temporal expressions

can be speci�ed in the valid clause).

3. Overriding snapshot reducibility (see the \superstar" example in [Sno87, p.257]).

As discussed in Section 4.2.2, Item 1 interferes with snapshot reducibility in the presence of sub-

queries and set operations. Speci�cally, the default valid clause, which takes the intersection of all

of the participating tuple variables, does not ensure snapshot reducibility: there are cases where

this default does not work. It is our contention that it is impossible to de�ne a single default valid

clause that will work in all situations. Therefore, we propose to abandon the �rst use of the valid

clause while retaining the latter two uses.

Abandoning Item 1 means that we no longer explicitly specify the valid time of result tuples

in the default situation. Instead, the valid times of result tuples are computed as de�ned by

snapshot reducibility. The presence of a valid clause in an Applied TSQL2 query then explicitly

signals that snapshot reducibility is being overridden, and the absence of a valid clause guarantees

by de�nition snapshot reducibility. In Section 7 we will provide a snapshot reducible semantics for

Applied TSQL2 that computes the appropriate tuple timestamps.

16

6.4 A New Valid Clause

In the previous section, we dropped the use of the valid clause for specifying default timestamps of

result tuples. It is still used for explicitly specifying the timestamps of result tuples when snapshot

reducibility is not desired. The clause still retains the problem identi�ed in Section 5.2.1, namely

that it cannot control the timestamps of tuples that result from set operations because they are

outside its scope.

The solution is thus to enlarge the scope of the valid clause to include arbitrary queries. To

syntactically re
ect this change in semantics, we place the valid clause in front of the select clause,

i.e., as the �rst part of a query. Thus, instead of, e.g.,

SELECT r.a

VALID PERIOD(CURRENT_DATE, DATE 'forever')

FROM r

we propose to write the following.

VALID PERIOD(CURRENT_DATE, DATE 'forever')

SELECT r.a

FROM r

We emphasize that this syntactical change is intended to re
ect that the valid clause now applies

to set operations (e.g., EXCEPT, UNION, etc.) and can thus override snapshot reducibility semantics

for these.

In Applied TSQL2, the expression following the VALID keyword, takes two di�erent forms.

VALID SNAPSHOT VALID expression

<statement> <statement>

First, note that in both cases <statement> is evaluated with (standard) Codd semantics, i.e., no

implicit valid time is computed (c.f., Section 7). The form VALID SNAPSHOT returns the result

computed by <statement>, i.e., a snapshot relation. The form VALID expression, where expression

is a temporal expression possibly containing temporal constants and column names of the relations

introduced in <statement>, evaluates expression for every result tuple and returns the result of

expression as the tuple's valid time.

6.5 Supporting User-Speci�ed Valid Times

In Section 5.2.2, we showed that relations in TSQL2 are always coalesced. We saw that this violates

temporal completeness and means that TSQL2 does not respect the valid times as entered by the

users.

To satisfy temporal completeness, the data model is changed so that relations record the

valid timestamps of tuples as they were entered by the users. The changes to relations proposed

in Section 6.2 help in achieving this change.

Next, the query language must also provide means of accessing these timestamps. TSQL2

already provides a construct for doing so, the partitioning unit. Speci�cally, the partitioning unit

PERIOD may be placed in parentheses after a relation name or a table expression in the from

clause. This yields a partitioning of the valid times of tuples into maximal periods (by default,

tuples are associated with sets of maximal periods). Not specifying a partitioning unit is equivalent

to specifying the default partitioning.

In Applied TSQL2, we eliminate the default partitioning unit. Thus, Emp in the clause below

denotes Employee tuples with the (uncoalesced) timestamps that were provided by the users.

17

FROM Employee AS Emp

We also saw that results of TSQL2 queries are always coalesced. This is changed so that

there is no automatic/default coalescing at all in queries in Applied TSQL2.

Still, Applied TSQL2 retains the ability to do coalescing, but leaves it to the control of

the user. While TSQL2 allowed partitioning in the from clause only, Applied TSQL2 additionally

allows a partitioning at the outermost level. This leads to three distinct locations where partitioning

(\(PERIOD)") may be speci�ed, as illustrated below.

SELECT r.a

FROM r(PERIOD)

SELECT *

FROM (SELECT r.a

FROM r

)(PERIOD)

(SELECT r.a

FROM r

)(PERIOD)

The second and third statements yield the same result, which means that a partitioning at the

outermost level is a syntactical shorthand for a table expression. However, because it reduces the

syntactical complexity of query expressions and because it makes the language more orthogonal,

it is reasonable to include all three possibilities into the language.

6.6 Migrating from TSQL2 to Applied TSQL2

In previous sections we have evaluated TSQL2 against a suite of completeness properties, and

found it lacking. Applied TSQL2, a modi�cation of TSQL2, was shown to satisfy temporal semi-

completeness and temporal completeness with respect to SQL{92. In this section, we explore

further the semantics of Applied TSQL2, and address the impact of these changes on the user and

on the algebra.

6.6.1 E�ects on the Users

For a user the transition from TSQL2 to Applied TSQL2 is quite subtle because Applied TSQL2

properly subsumes TSQL2. If standard TSQL2 semantics is desired all that is necessary is strictly

enforcing a coalesced representation by explicitly specifying a partitioning unit. Apart from that

Applied TSQL2 should be more user-friendly to use than TSQL2. First Applied TSQL2 enforces

snapshot reducibility by default and, second, it is more orthogonal than TSQL2 because, e.g.,

snapshot reducibility can always be overridden.

One thing Applied TSQL2 users have to be aware of is that the user-speci�ed format of

timestamps, e.g., [10�20) versus [10�17); [17�20), has become relevant if no partitioning unit is

speci�ed. We do not expect this to be a problem because usually the user has a good reason for

specifying a particular timestamp (see Section 4.2.1) and wants the database system to respect

and support it.

6.6.2 Implications for the Underlying Algebra

The algebra for TSQL2 [SJS94] assumes that valid times are stored in an arbitrary format. This

means that all valid times have to be coalesced before they are accessed (e.g., before one of Allen's

operators is applied or before a temporal set di�erence is computed). Note that without prior

coalescing it is impossible to ensure that answers are independent of the representation of valid

time. Also the de�nitions of some valid-time relational algebra operators (e.g., valid-time set

di�erence) require coalesced input relations.

In Applied TSQL2 it is no longer possible to store timestamps in an arbitrary format and it

is also no longer possible to enforce coalescing. Supporting user-speci�ed timestamps requires that

all timestamps are stored as speci�ed by the user. Furthermore coalescing is now an operation

18

controlled by the user. Because coalescing usually changes program semantics it can be executed

upon a user request only. In particular, this means that the de�nition of valid-time operators may

not assume coalesced input relations.

6.7 Summary

To achieve semi-completeness, we have allowed value-equivalent tuples in Applied TSQL2 relations.

This represents a substantial departure from TSQL2 because it involves nontrivial changes to the

data model.

We also ensured that queries by default return tuples with timestamps that guarantee snap-

shot reducibility with respect to SQL{92. This change is a minor departure from TSQL2. It does

not change the intended semantics of TSQL2, but repairs TSQL2 by making the syntax properly

re
ect the intended semantics.

In addition to the two changes above, two more modi�cations were necessary to make Applied

TSQL2 temporally complete. First, we changed the scope of the valid clause so that it can be used

for overriding snapshot reducibility of set operations. Syntactically, we re
ected this changed

semantics by placing the valid clause at the front of a query expression, rather than within, or

after, the select statement. Second, by giving the users full control over coalescing, we made

Applied TSQL2 respect the timestamps entered by the users. By default, Applied TSQL2 does

not coalesce, but the users can still use the partitioning units from TSQL2 for explicit coalescing.

We end by listing the speci�c changes to TSQL2 that yield Applied TSQL2.

� The data model is changed. Relations in TSQL2 are coalesced sets of tuples timestamped

with temporal elements. Relations in Applied TSQL2 are (potentially uncoalesced) multisets

of tuples timestamped with multisets of periods.

� By default, the from clause in TSQL2 coalesces value-equivalent tuples. In Applied TSQL2,

there is no automatic coalescing. Partitioning on maximal periods is still available using the

syntax \(PERIOD)".

� The \VALID [SNAPSHOT j expression] <statement>" is new in TSQL2. This statement signals

overriding of snapshot semantics for the contained <statement>.

� \SELECT VALID expression FROM : : :" in TSQL2 is syntactic sugar for a similar (though more

complex) \VALID expression SELECT : : :" in Applied TSQL2.

� \SELECT SNAPSHOT : : :" in TSQL2 is replaced with \VALID SNAPSHOT SELECT : : :" in Ap-

plied TSQL2. \SELECT : : : VALID SNAPSHOT" is syntactic sugar for the latter, e�ectively

moving the keyword SNAPSHOT from the SELECT portion down to the VALID portion, thereby

not requiring an enclosing VALID statement.

� \VALID INTERSECT expression" in TSQL2 (as syntactic sugar) is eliminated in Applied TSQL2.

This alternative was included in TSQL2 when snapshot reducibility was produced via a

default valid clause. As Applied TSQL2 does not use a valid clause to ensure snapshot

reducibility, the need for this syntax no longer exists.

As can be seen, the syntactic changes are fairly minimal.

7 Outline of a Formal Semantics

As mentioned earlier, statements without a valid clause are evaluated with temporal semantics, i.e.,

according to snapshot reducibility (see Figure 1), whereas statements with a leading valid clause

19

are evaluated with nontemporal semantics, i.e., according to Codd semantics. In this section we

formalize this imprecise distinction. Note that the semantics described here applies recursively to

every table expression. In other words, for every table expression (i.e., in the from clause), we have

to specify whether it has to be evaluated with temporal semantics or not. We do not consider here

built-in predicates and functions to support (valid) time, as well as other TSQL2 extensions, such

as partitioning in the from clause.

For the formal discussion we use some syntactic conventions. First, ti to denote a tuple, and

ti � tj denotes the concatenation of two tuples. Next, c is a boolean condition on a tuple, and f

is a function that maps between tuples. Roughly, condition c represents the where clause, and

function f corresponds to the select clause. We assume that temporal operations are implemented

as extensions of standard relational database operations. A valid-time tuple is denoted by htj[S�E)i

where t represents the explicit attributes and [S�E) is the implicit valid timestamp, consisting

of the times in the half-open period with start point S and end point E. As before, rvi denotes a

valid-time relation, and ri denotes a snapshot relation.

We use denotational semantics to de�ne Applied TSQL2. Furthermore, we de�ne (temporal)

relational algebra operators in terms of tuple relational calculus expressions. We emphasize that,

as in SQL{92, duplicates and ordering are preserved, thereby necessitating the use of multisets.

Nevertheless, we continue to use standard set notation.

As a �rst step in de�ning Applied TSQL2, we de�ne [[<statement>]]standard(r1; : : : ; rn) to

be an algebraic expression utilizing conventional relational algebra operators �;[; n; �; �. (Here,

<statement> is mapped to a relational algebra expression as usual.) The relational algebra ex-

pression is evaluated according to the following (standard) de�nitions.

r1 � r2
4

= ft1 � t2 j t1 2 r1 ^ t2 2 r2g

r1 [r2
4

= ft j t 2 r1 _ t 2 r2g

r1 n r2
4

= ft j t 2 r1 ^ t 62 r2g

�f(r)
4

= ft1 j t2 2 r ^ t1 = f(t2)g

�c(r)
4

= ft j t 2 r ^ c(t)g

As the next step, we de�ne [[<statement>]]temporal(r
v
1; : : : ; r

v
n) to be an algebraic expression

which identical to [[<statement>]]standard(r1; : : : ; rn), except that it uses valid-time relations instead

of snapshot relations and uses valid-time relational algebra operators (e.g., �vf ;�
v;[v) instead of

snapshot relational algebra operators (e.g., �;�;[). The valid-time relational algebra operators

are de�ned next.

rv1 �
v rv2

4

= fht1 � t2j[S�E)i j ht1j[A�B)i 2 rv1 ^ ht2j[C�D)i 2 rv2 ^

S = max(A;C)^E = min(B;D)^ S < Eg

rv1 [
v rv2

4

= fhtj[S�E)i j htj[S�E)i 2 rv1 _ htj[S�E)i 2 rv2g

rv1 n
v rv2

4

= fhtj[S�E)i j htj[A�B)i 2 rv1 ^A � S ^ B � E ^

9C(htj[C�S)i 2 rv2 _ S = A) ^

9D(htj[E�D)i 2 rv2 _ E = B) ^

:9U; V (htj[U�V)i 2 rv2 ^ V > S ^ U < E)g

�vf(r)
4

= fht1j[S�E)i j ht2j[S�E)i 2 r ^ t1 = f(ht2j[A�B)i)g

�vc (r)
4

= fhtj[S�E)i j htj[S�E)i 2 r ^ c(htj[S�E)i)g

Among these operators, [v; �vf , and �vc are straightforward generalizations of their nontemporal

counterparts. The valid time of tuples in the output relation is the same as the valid time of

20

respective tuples in the input relation(s). For a valid time Cartesian product �v, we have to

compute the intersection of the input valid times whereas valid-time negation nv restricts the valid

time of tuples in rv1 to those parts that are not overlapped by the valid time of value-equivalent

tuples in rv2 .

Example 7.1 To exemplify the use of snapshot versus valid-time relational algebra operators,

consider the following SQL{92 statement.

SELECT r.a

FROM r, s

WHERE r.a=s.a

If r and s are snapshot relations, then the semantics of the above statement is �r:a(�r:a=s:a(r � s))

(that is, [[<statement>]]standard), whereas if r and s are valid-time relations, the semantics is

�vr:a(�
v
r:a=s:a(r �

v s)), that is, [[<statement>]]temporal.

Given these de�nitions we need one other operator in order to de�ne the semantics of Applied

TSQL2. SN takes a valid-time relation and returns a snapshot relation with an additional (explicit)

attribute, holding the valid time of the original valid-time relation.

SN(rv)
4

= fht; [S�E)i j htj[S�E)i 2 rvg

Now, the semantics of Applied TSQL2 (ATSQL2) can be de�ned as follows.

[[VALID SNAPSHOT <statement>]]ATSQL2(r
v
1; : : : ; r

v
n)
4

= [[<statement>]]standard(SN(rv1); : : : ; SN(rvn))

[[VALID expr <statement>]]ATSQL2(r
v
1; : : : ; r

v
n)
4

=

fhtj[S�E)i j t 2 [[<statement>]]standard(SN(rv1); : : : ; SN(rvn)) ^ [S�E) = expr(t)g

[[<statement>]]ATSQL2(r
v
1; : : : ; r

v
n)
4

= [[<statement>]]temporal(r
v
1; : : : ; r

v
n)

This semantics ([[]]ATSQL2) emphasizes that in the presence of the valid statement Codd semantics

([[]]standard) is used, whereas legacy SQL{92 statements utilize temporal semantics ([[]]temporal).

8 Summary and Future Research

This paper has evaluated the consensus temporal query language TSQL2 using existing notions of

completeness, some of which were further formalized in the paper.

In consistency with its design goals, TSQL2 was shown to be upwards compatible with SQL{92

and thus to be relationally complete. TSQL2 was also characterized as temporally ungrouped

and not temporally grouped. The evaluation of the temporal semi-completeness of TSQL2 with

respect to SQL{92 pointed to two important de�ciencies: not all SQL{92 relations can be produced

taking timeslices of TSQL2 temporal relations, and not all SQL{92 queries have a similar temporal

counterpart in TSQL2. Without these de�ciencies, TSQL2 would be a \cleaner" extension of

SQL{92. The evaluation of temporal completeness of TSQL2 with respect to SQL{92 pointed to

two additional problems: with set operations in TSQL2 queries, it is not possible to freely control

the valid timestamps of result tuples, and TSQL2 does not respect the valid timestamps of tuples

as entered by the users (because value-equivalent tuples are coalesced).

A minimally modi�ed TSQL2, Applied TSQL2, was proposed that recti�es the de�ciencies.

Among the important di�erences, relations in Applied TSQL2 are multisets of tuples, and times-

tamps are multisets of periods. TSQL2 exclusively employs sets. In Applied TSQL2, coalescing is

21

only done when explicitly indicated by the users|there is no automatic coalescing. It is felt that

the new facilities for coalescing/partitioning of tuples in Applied TSQL2 are more orthogonal than

in TSQL2. The valid clause of Applied TSQL2 di�ers from that of TSQL2. It does not control

the default timestamps of result tuples, and its scope is larger in that it also covers set operations.

Also in this respect, we feel that the design of Applied TSQL2 is cleaner than that of TSQL2.

In summary, Applied TSQL2, a temporally semi-complete and complete cousin to TSQL2,

employs a more complex and expressive data model than does TSQL2; its query language is similar

to that of TSQL2, while including some improvements.

There are several design considerations for Applied TSQL2 that should be investigated in

more depth. First, we have only considered the valid-time aspects of temporal data models. It

would be appropriate to also take transaction time, by itself and in conjunction with valid time,

into consideration. The requires generalization of some of the completeness notions. Next, we

have only conducted a preliminary study of the rami�cations of moving from sets (of tuples in

relations and periods in timestamps) to multisets. A more complete study is warranted. Yet

another direction would be to use additional completeness notions in the evaluation of TSQL2.

Finally, a comparative study of completeness notions for temporal databases that sheds light on

their implications and interrelations, and perhaps leads to new completeness notions, would be

worthwhile.

9 Acknowledgments

This work was conducted while the �rst author visited the University of Arizona. The �rst author

was supported in part by the Swiss NSF. The second author was supported in part by the Danish

Natural Science Research Council through grants 11{1089{1, 11{0061{1, and 9400911. The third

author was supported in part by NSF grant IRI-9302244.

We thank John Baer, Jan Chomicki, and Charles Kline for interesting discussions and for

sharing their knowledge of temporal databases.

References

[AC81] P. Atzeni and P. P. Chen. Completeness of Query Languages for the Entity-Relationship

Model. In P. P. Chen, editor, Proceedings of the Second International Conference on Entity-

Relationship Approach, pages 111{123, October 1981.

[All83] J. F. Allen. Maintaining Knowledge about Temporal Intervals. Communications of the

ACM, 16(11):832{843, 1983.

[AU79] A. V. Aho and J. D. Ullman. Universality of data retrieval languages. In Proceedings of

the 6th ACM Symposium on Principles of Programming Languages, pages 110{117, January

1979.

[Ban78] F. Bancilhon. On the Completeness of Query Languages for Relational Databases. In

Proceedings of the 7th Symposium on Mathematical Foundations of Computer Science. Lecture

Notes in Computer Science, Springer Verlag, September 1978.

[BM94] M. B�ohlen and R. Marti. On the Completeness of Temporal Database Query Languages.

Proceedings of the First International Conference on Temporal Logic, pages 283{300, July 1994.

[B�oh94] M. B�ohlen. The Temporal Deductive Database System ChronoLog. PhD thesis, Departe-

ment Informatik, ETH Z�urich, 1994.

22

[CCT93] J. Cli�ord, A. Croker, and A. Tuzhilin. On the Completeness of Query Languages for

Grouped and Ungrouped Historical Data Models. In A. Tansel, J. Cli�ord, S. Gadia, S. Jajodia,

A. Segev, and R. Snodgrass, editors, Temporal Databases: Theory, Design, and Implementation,

pages 496{533. Benjamin/Cummings Publishing Company, 1993.

[CCT94] J. Cli�ord, A. Croker, and A. Tuzhilin. On Completeness of Historical Relational Query

Languages. ACM Transactions on Database Systems, 19(1):64{116, March 1994.

[CH80] A. K. Chandra and D. Harel. Computable Queries for Relational Data Bases. Journal of

Computer and System Sciences, 21(2):156{178, October 1980.

[Cho94] J. Chomicki. Temporal Integrity Constraints in Relational Databases. Bulletin of the

Technical Committee on Data Engineering, 17(2):33{37, 1994.

[Cod70] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Communications

of the ACM, 13(6):377{387, June 1970.

[Cod72] E. F. Codd. Relational Completeness of Data Base Sublanguages. Courant Computer

Symposia Series, 6:65{98, 1972.

[Dat95] C. J. Date. Relational Database Writings 1991{1994. Addison-Wesley Publishing Com-

pany, 1995.

[Gad88] S. K. Gadia. A Homogeneous Relational Model and Query Languages for Temporal

Databases. ACM Transactions on Database Systems, 13(4):418{448, December 1988.

[GB93] S. K. Gadia and G. Bhargava. SQL-like Seamless Query of Temporal Data. In R. T.

Snodgrass, editor, Proceedings of the International Workshop on an Infrastructure for Temporal

Databases, Arlington, Texas, June 1993.

[JCE+94] C. S. Jensen, J. Cli�ord, R. Elmasri, S. K. Gadia, P. Hayes, and S. Jajodia. A Glossary

of Temporal Database Concepts. SIGMOD RECORD, 23(1):52{64, March 1994.

[Jen93] C. S. Jensen. A Consensus Test Suite of Temporal Database Queries. Technical Report R

93-2034, Department of Mathematics and Computer, Institute for Electronic Systems, Fredrik

Bajers Vej 7, DK 9220 Aalborg, Denmark, November 1993.

[JS82] G. Jaeschke and H.-J. Schek. Remarks on the Algebra of Non First Normal Form Relations.

In Proceedings of the ACM Symposium on Principles of Database Systems, pages 124{138,

March 1982.

[JS92] C. S. Jensen and R. T. Snodgrass. Proposal of a Data Model for the Temporal Structured

Query Language. Technical Report 37, University of Arizona, TempIS Technical Report, July

1992.

[JSS92] C. Jensen, M. Soo, and R. Snodgrass. Extending Normal Forms to Temporal Relations.

Technical Report TR 92-17, University of Arizona, July 1992.

[JSS94] C. Jensen, M. Soo, and R. Snodgrass. Unifying Temporal Models via a Conceptual Model.

Information Systems, 19(7):513{547, 1994.

[MS91] L. E. McKenzie and R. T. Snodgrass. Evaluation of Relational Algebras Incorporating the

Time Dimension in Databases. ACM Computing Surveys, 23(4):501{543, 1991.

23

[MS93] J. Melton and A. R. Simon. Understanding the new SQL: A Complete Guide. Morgan

Kaufmann Publishers, 1993.

[O'N94] P. O'Neil. Database Principles Programming Performance. Morgan Kaufmann, San Fran-

cisco, 1994.

[�OS95] G. �Ozsoyo�glu and R. Snodgrass. Temporal and Real-Time Databases: A Survey. IEEE

Transactions on Knowledge and Data Engineering, 7(4), August 1995.

[SAA+94a] R. T. Snodgrass, I. Ahn, G. Ariav, D. Batory, J. Cli�ord, C. E. Dyreson, R. Elmasri,

F. Grandi, C. S. Jensen, W. K�afer, N. Kline, K. Kulkarni, T. Y. C. Leung, N. Lorentzos, J. F.

Roddick, A. Segev, M. D. Soo, and S. M. Sripada. TSQL2 Language Speci�cation. SIGMOD

RECORD, 23(1):65{86, March 1994.

[SAA+94b] R. T. Snodgrass, I. Ahn, G. Ariav, P. Bayer, J. Cli�ord, C. Dyreson, F. Grandi,

L. Hermosilla, C. S. Jensen, W. K�afer, N. Kline, T. Y. C. Leung, N. Lorentzos, Y. Mitsopoulos,

J. F. Roddick, M. Soo, and S. M. Sripada. An Evaluation of TSQL2. In TSQL2 Commentary.

The TSQL2 Language Design Committee, September 1994.

[Sch77] B. Schueler. Update reconsidered. In G. M. Nijssen, editor, Architecture and Models in

Data Base Management Systems. North Holland Publishing Co., 1977.

[SJS94] M. D. Soo, C. S. Jensen, and R. T. Snodgrass. An Algebra for TSQL2. In A TSQL2

Commentary. The TSQL2 Language Design Committee, September 1994.

[Sno87] R. Snodgrass. The Temporal Query Language TQuel. ACM Transactions on Database

Systems, 12(2):247{298, 1987.

[SQL92] American National Standards Institute. ANSI X3.135:1992, American National Standard

for Information Systems - Database Language SQL, 1992.

[Sri91] S. M. Sripada. Temporal Reasoning in Deductive Databases. PhD thesis, Imperial College

of Science and Technology, University of London, 1991.

[TC90] A. Tuzhilin and J. Cli�ord. A temporal relational algebra as a basis for temporal relational

completeness. Technical Report STERN IS-90-18, Information Systems Department, Leonard

N. Stern School of Business, New York University, October 1990.

24

