Cursors in TSQL2

September 16, 1994

A TSQL2 Commentary

The TSQL2 Language Design Committee

Title Cursors in TSQL2
Primary Author(s) Christian S. Jensen, Richard T. Snodgrass and T. Y. Cliff Leung
Publication History September 1994. TSQL2 Commentary.

TSQL2 Language Design Committee

Richard T. Snodgrass, Chair University of Arizona
rts@cs.arizona.edu Tucson, AZ

Tlsoo Ahn AT&T Bell Laboratories
ahn@cbnmva.att.com Columbus, OH

Gad Ariav Tel Aviv University
ariavg@ccmail.gsm.uci.edu Tel Aviv, Israel

Don Batory University of Texas
dsb@cs.utexas.edu Austin, TX

James Clifford New York University
jcliffor@is-4.stern.nyu.edu New York, NY

Curtis E. Dyreson University of Arizona
curtis@cs.arizona.edu Tucson, AZ

Ramez Elmasri University of Texas
elmasri@cse.uta.edu Arlington, TX

Fabio Grandi Universita di Bologna
fabio@deis64.cineca.it Bologna, Italy

Christian S. Jensen Aalborg University
csj@iesd.auc.dk Aalborg, Denmark

Wolfgang Kéfer Daimler Benz
kaefer/fuzi.uucp@germany.eu.net Ulm, Germany

Nick Kline University of Arizona
kline@cs.arizona.edu Tucson, AZ

Krishna Kulkarni Tandem Computers
kulkarni_krishna@tandem.com Cupertino, CA

T.Y. Cliff Leung Data Base Technology Institute, IBM
cleung@vnet.ibm. com San Jose, CA

Nikos Lorentzos Agricultural University of Athens
eliop@isosun.ariadne-t.gr Athens, Greece

John F. Roddick University of South Australia
roddick@unisa.edu.au The Levels, South Australia

Arie Segev University of California
segev@csr.1lbl.gov Berkeley, CA

Michael D. Soo University of Arizona
soo@cs.arizona.edu Tucson, AZ

Suryanarayana M. Sripada European Computer-Industry Research Centre
sripada@ecrc.de Munich, Germany

Copyright © 1994 Christian S. Jensen, Richard T. Snodgrass and T. Y. Cliff Leung. All rights reserved.

Abstract

This document proposes syntax and informal semantics for cursors in TSQL2.

1 Introduction

The cursor facility of SQL2, to be useful in TSQL2, must be revised. Essentially, revision is needed because
tuples of TSQL2 have associated valid-time elements, i.e., finite unions of periods.

2 Informal Definition

The data model of TSQL2 was designed as a conceptually minimal valid-time extension of the standard relational
model. Facts in a valid-time table have associated the times when they are assumed to be true in the modeled
reality. Tuples encode facts (atomic or composite), and the adopted data model associates valid times with facts
at the level of tuples. In order to not replicate facts, i.e., have several value-equivalent tuples with different
associated time periods, tuples are associated with valid-time elements, finite unions of periods.

Storage and display of valid-time tables is not restrained by the above choice of data model. Indeed,
several formats may coexist for both storage and display. As will be described, we have here adopted a very
simple display format that is well-suited for accessing valid-time tables via cursors. Other display formats may
be added later.

The association of tuples with valid-time elements necessitates modifications of the SQL2 cursor mechanism
before it can be adopted for TSQL2. This document proposes such modifications. When the cursor mechanism
was designed, it was attempted to make only minimal modifications of the SQL2 cursors.

To illustrate the use of cursors in TSQL2, consider an example. First, a valid-time table schema and
(empty) instance is defined which records the names of employees, their departments, and salaries.

CREATE TABLE Employee (Name CHAR(10), Dept CHAR(10), Salary INTEGER)
VALID AS PERIOD

Next, a tuple is inserted which records Ben’s salary and indicates that he was in the Toy department in January,
March, and May of 1993. A subsequent insertion records that he was in the Book department in February and
April of 1993. His salary remains 30 throughout these periods. Conceptually, the table shown next results.

Name Department | Salary \

[1 Jan 1993, 31 Jan 1993] U

Ben Toy 30 [1 Mar 1993, 31 Mar 19931 U
[1 May 1993, 31 May 1993]
Ben Book 30 [1 Feb 1993, 28 Feb 1993] U

[1 Apr 1993, 30 Apr 1993]

We use this example for describing the design of the cursor mechanism of TSQL2.

For accessing valid-time tables, we will use the display format described next. The format resembles that
of the table above. Specifically, the only addition is that timestamps are not finite unions of periods, but are
instead lists of maximal periods. Further, each period is represented by pairs of delimiting datetimes. Each pair
is ordered with the smallest value first. When a valid-time table is transformed as described, a cursor may access
the full valid-time table by simply iterating (using OPEN, FETCH, and CLOSE) through the tuples. This is a very
minimal extension.

For the example above, this table is created.

Name | Department | Salary

Ben Toy 30 [1 Jan 1993, 31 Jan 1993]
Ben Toy 30 [1 Mar 1993, 31 Mar 1993]
Ben | Toy 30 [1 May 1993, 31 May 1993]
Ben Book 30 [1 Feb 1993, 28 Feb 1993]
Ben | Book 30 [1 Apr 1993, 30 Apr 1993]

Next, it is convenient to map the period-valued attribute to two datetime-valued attributes. Thus, in the display
format adopted for cursor manipulation, two unnamed attributes are assumed which contain the start and end
valid times of the corresponding maximal periods. Thus, the table above would be mapped to the following.

Name | Department | Salary

Ben Toy 30 1 Jan 1993 | 31 Jan 1993
Ben Toy 30 1 Mar 1993 | 31 Mar 1993
Ben Toy 30 1 May 1993 | 31 May 1993
Ben Book 30 1 Feb 1993 | 28 Feb 1993
Ben Book 30 1 Apr 1993 | 30 Apr 1993

To explore the mapping of a variable-length tuple to a fixed-length record format for retrieval purposes, recall
first the (simplified) template for declaring a cursor.

We next explore how the contents of a valid-time table is accessed using cursors. To do so, recall the
(simplified) template for declaring a cursor.

DECLARE cursor CURSOR FOR query-exp

For example, a cursor may be declared for employees named Ben.

DECLARE EmpCursor CURSOR
FOR SELECT *
FROM Employee
WHERE Employee.Name = ’Ben’

The syntax for cursor declaration is not affected. The following excerpts exemplify how the cursor may be used
for retrieval.

FETCH NEXT FROM EmpCursor INTQ :nameVar, :deptVar, :salaryVar

This statement retrieves the explicit attribute values of the next tuple. Using this type of FETCH, it is possible to
iterate through a table instance. The next excerpt indicates how the lists of pairs of timestamps associated with
the tuples are retrieved.

FETCH NEXT FROM EmpCursor INTO VALID :timeStartVar, :timeEndVar

This statement retrieves the next pair of timestamps of the current tuple. In a programming language, the second
type of FETCH will typically be nested into a statement of the first type, forming a nested loop. The first type
of FETCH is identical to the conventional FETCH, and status information is passed from SQL to the programming
language via the SQLCODE parameter. Because the valid times associated with a tuple may be thought of as a
binary table, the SQLCODE parameter is used for timestamps the same way it is used for tuples. The previous two
statements may be combined.

FETCH NEXT FROM EmpCursor INTQ :nameVar, :deptVar, :salaryVar
VALID INTO :timeStartVar, :timeEndVar

This statement retrieves the explicit attributes of the next tuple as well as the bounding datetimes of the first
valid-time period associated with the explicit-attribute values. This type of FETCH is especially useful when a
cursor is declared to range over a table instance where all the valid-time elements associated with tuples are
guaranteed to consist of single periods.

We have seen that a valid-time element of a tuple is passed using cursors to an application program by
passing each maximal period in turn. By default, a period is passed by passing the delimiting datetimes. This
default has been adopted because application programs are expected to find this format most useful. However,
a period may also be passed to a period-valued programming language variable, as illustrated next.

FETCH NEXT FROM EmpCursor INTQ VALID PERIOD :periodVar

When SQL statements are embedded in a programming language, they are prefixed by EXEC SQL in all
languages. This prefix was omitted above because different programming languages indicate the termination
of the SQL statement differently (using, e.g., END-EXEC or “;”). Variables defined in the surrounding program
(written in, e.g., PL/1) are prefixed by “:”.

Cursor stability, a special, weak level of consistency, may also be applied in the context of TSQL2 cur-
sors. Employing cursor stability in a transaction that is iterating through entire tables may enhance system
performance. In snapshot databases, cursor stability ensures that the tuple that is currently being processed is
protected from writes (i.e., it is locked in shared mode) and that tuples modified by the transaction are locked
in exclusive mode until the transaction is terminated.

We have added a nested cursor mechanism to TSQL2. Thus, the notion of a current tuple in the context
of cursor stability must be redefined. Specifically, we define the current tuple to be the tuple indicated by the
outer cursor. Thus, the current tuple is a complete tuple. It has associated a complete valid-time element, not
just the current period as indicated by the inner, timestamp-level cursor. Together, the outer and inner cursors
for a query expression generally point to a partial tuple, namely an explicit-attribute component and a single
valid-time period.

In TSQL2, cursor stability ensures that the part of the current tuple pointed to by the nested cursor is
protected from writes (i.e., it is locked in shared mode). Further, if any part of a tuple is modified by the
transaction, the complete tuple is locked in exclusive mode until the transaction is terminated.

As indicated above, cursors also play a role during deletion and update. Specifically, cursors are utilized
during position delete and update statements. For example, the template for positioned delete is given as follows.

DELETE FROM <table name>
WHERE CURRENT OF <cursor name>

The delete and update statements are related to cursors because they manipulate the current tuple as indicated
by the cursor (i.e., by WHERE CURRENT OF <cursor name>). In these statements, as above, the current tuple is
always a complete tuple, namely the tuple indicated by the outer cursor (together with the complete associated
valid-time element) Consequently, positioned deletions as well as updates apply to complete tuples.

3 Acknowledgements

Support was provided in part by the National Science Foundation under grant IRI-9302244, and in part by the
AT&T Foundation. In addition, support was provided in part by the Danish Natural Science Research Council
under grants 11-1089-1 SE and 11-0061-1 SE.

A Modified Language Syntax

The organization of this section follows that of the SQL2 document. The syntax is listed under corresponding
section numbers in the SQL2 document. All new or modified syntax rules are marked with a bullet (“»”) on the
left side of the production.

Where appropriate, we provide disambiguating rules to describe additional syntactic and semantic restric-
tions. We assume that the reader is familiar with the SQL2 proposal, and that a copy of the proposal is available
for reference.

A.1 Section 13.3 <fetch statement>

<fetch statement> ::=
FETCH [[<fetch orientation>] FROM | <cursor name> [INTO <fetch target list>]
o [INTO VALID [PERIOD | <fetch target list>]

Additional syntax rules:

1. At least one of INTO <fetch target list> and INTO VALID [PERIOD | <fetch target list> must be present in
a fetch statement.

Additional general rules:

1. When a <fetch target list> follows INTO VALID PERIOD, it must contain precisely a single <target specification>.
When a <fetch target list> follows INTO VALID (without PERIOD), it must contain exactly two <target
specification >s.

