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Queries on Change in an Extended Relational Model

Christian S. Jensen and Leo Mark

Abstract— Change is often an important aspect in database system
applications. We provide a data model that allows for the storage
of detailed change history in so-called backlog relations. Its extended
relational algebra, in conjunction with the extended data structures,
provides a powerful tool for the retrieval of patterns and exceptions
in change history. We introduce an operator, T, based on the notion
of ¢ t active d It groups data, not in predefined groups,
but in groups that fit the data. This novel operator further expands
the retrieval capabilities of the algebra. The expressive power of the
algebra is demonstrated by examples, some of which show how patterns
and exceptions in change history can be detected. Sample applications of
this work are statistic and scientific databases, monitoring (of databases,
manufacturing plants, power plants, etc.), CAD, and CASE.

Index Terms— Change history, historical queries, relational algebra,
relational model, retrieval of exceptions, retrieval of patterns, rollback
databases, statistical queries, temporal databases, transaction time.

I. INTRODUCTION

Shortcomings of current commercially available database products
have been recognized for some time. For instance Jackson [13]
writes in the introduction of the Jackson Systems Development (JSD)
method:

“A database is essentially a snapshot; it captures a

single state of the reality it models, just as a photo-

graph captures a single state of its subject at a single

moment in time. [ ... ] A fundamental principle of

JSD is that a dynamic real world cannot be modeled

by a database.”
In order to support retrieval of change history, we need the capability
to store not only the most recent snapshot, but the changes that lead
to it as well.

DM/T (Data Model with Time) is an extension of the basic
relational model that supports transaction time. Using its extended re-
lational algebra, one can retrieve information about previous database
states and about normal and exceptional change behavior.

An extension or generalization of functionality should always
be augmented with proper default behavior, making the extension
transparent to users that do not exploit it. DM/T obeys this principle.
We remain within first normal form, in that the relational algebra
operators of the extended query language, except for the time-slice
operator, manipulate only standard, “flat” relations where the time
dimension is eliminated. Thus, the standard relational operators keep
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their standard semantics. In this sense, the model is a minimal
extension of the relational model. In part, the transparency is achieved
by introducing a separate, system generated and maintained relation,
a backlog, for each user defined relation. The backlog contains the
complete change history of its associated relation. To our knowledge,
we are the first to use this approach in temporal databases. Previously,
history information has been put in the relation itself. The backlog
approach allows for convenient storage of more historical information
than does traditional approaches, thus making it possible to store
and conveniently retrieve requests for insertions, modifications, and
deletions.

In order to facilitate retrieval of patterns and exceptions related
to the change history, an extended query language is required. The
operator T is the central extension provided by the relational algebra
of DM/T. Based on the notion of compactness of active domains, this
operator groups under given restrictions the elements of a domain in
a relation so that the elements of each group are contiguous. Several
results can be returned by X: the tuples of all groups generated, tuples
of single groups, cardinalities of groups, and ranges of groups. The
extension also includes an aggregate formation operator (£), a unit
operator (1), a fold and an unfold operator (o and 6™, respectively),
and a when operator ().

The backlogs of DM/T, paired with the standard relational algebra,
provides many new possibilities for formulating queries on change
history. When the algebra is extended with the operators ¢, Y, o,
oL, Q, the expressive power increases, and when the operator T is
added, the possibilities are further expanded.

We neither address the issue of integrity constraints nor efficient
implementation of DM/T in this paper. An implementation model
for the relational model extended with transaction time is presented
in [14]. This model exploits techniques of differential (incremental
and decremental) computation in the context of deferred update
of persistent views and is a natural generalization of the work of
Roussopoulos [23]-[25].

The contents of this paper are related to issues of temporal
databases where numerous temporally oriented extensions of the
relational model have already been proposed, e.g., [34], [8], [4],
[31], {2], [35], [5], [6], [20], [33]. While we support transaction
time, the vast majority of the work has focused on logical time.
Our approach has been to make a simple, transparent, first normal
form extension which contrasts the previous ones that generally are
elaborate NF extensions. The contributions most closely related to
ours are a relational algebra that supports transaction time [19] and the
relational algebra extended to support logical time while remaining
in first normal form [18].

The operator T is based on the notion of compact domain, also
used in scientific and statistical databases [11]. While compactness
has been used as the basis for the definition of statistical normal forms
[11], we use a generalized form of compactness as the basis for the
definition of a relational algebra operator. In statistical and scientific
databases, the focus has been on sampling, nearest neighbor search,
estimation and interpolation, transposition and summary operators;
and efforts have been put into creation and manipulation of summary
tables [22], [30], [28], [10). The operator © presents an attempt
to group data according to the data themselves, not according to
predefined intervals, in order to retrieve information about normal
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Fig. 1.

and exceptional change behavior. In [36], a statistical interface for
historical relational databases is presented. A so-called enumeration
operator is added to the relational algebra of a data model supporting
logical time. This operator can be used for generating meaningful
summary data in the presence of the time dimension. However, it
does not resemble the ¥ operator. We have not found a similar
operator, and there have been no attempts to combine a transaction
time extension and advanced statistical operators into a single data
model.

The rest of the paper is structured as follows. Section II, “Time
in the DM/T Data Model,” describes the time concept supported
by DM/T. Section III, “Data Structures of the DM/T Data Model,”
presents the different types of relations in DM/T with special focus on
the backlog relation. Section 1V, “Query Language of the DM/T Data
Model,” presents the basic query language, consisting of the operators
of the standard relational model and the aggregate formation, unit,
fold/unfold, and when operators. Section V, “Query Language Exten-
sion based on Compactness,” introduces the ¥ operator, based on the
concept of compact domain, which allows for retrieval of patterns
and exceptions. The underlying conceptual framework is presented,
the operator is defined, and the expressive power of the operator is
illustrated by sample queries. The last section is “Conclusion and
Future Research.”

II. TIME IN THE DM/T DATA MODEL

The topic of this section is the time concept that we have chosen
to support in DM/T. Its characteristics are outlined in Fig. 1. For a
more elaborate discussion of time concepts, see [29].

To understand the distinction between transaction time and logical
time, observe that a database models a part of reality and is itself a
part of (a different part of) reality. Transaction time is the time when
facts are entered into the database; it belongs to the world of the
database system, and it is independent of the part of reality modeled.
In contrast, logical time is the time when facts took place in the
modeled reality, and it is independent of when this is registered in
the database. User-defined time is merely an uninterpreted domain
(e.g., string, integer, and real). DM/T supports transaction time, and
its databases are termed (static) rollback databases [19], [32].

A time domain can be either regular or irregular. It is said to
be regular if the distances between consecutive values of the active
domain are identical. Otherwise, it is irregular. Our transaction time
domain is irregular; transactions updating relations occur irregularly.

A time domain can be either discrete or stepwise continuous.' Facts
with discrete time stamps are valid only at the exact time of their time
stamps. In contrast, in a stepwise continuous domain, facts have an
interval of validity. Our time domain has this property because, until a
relation is changed by another transaction, the data as they were after
the previous transaction are valid, i.e., they are part of the current
state of the database.

We use true time as opposed to arbitrary time. True time reflects
the actual time. Thus, we assume the existence of a system clock
correctly reflecting the real time. A domain characterized by arbitrary

'We talk about virtual, simulated continuity.

The figure outlines the characteristics of the time concept of DM/T.

time needs only to have a total order and a metric. A simple count
mechanism would be sufficient to support such a domain.

Time stamping can be done automatically and manually. We use
automatic time stamping, which is a natural choice for recording
transaction times. Manual time stamping is a natural choice for
supplying logical time stamps.

The minimal time unit is arbitrarily chosen to be seconds. Thus,
we do not provide limitless precision. It is possible to control the
granularity using a unit operator, Y. The default unit is minutes (At
the implementation level, time stamps are unique.)

Finally, there still remains the question as to what to attribute
with time, i.e., where time enters our data model. The two relevant
alternatives are attribute value stamping and tuple stamping. Each
alternative has its advantages and disadvantages [5]. We have chosen
the latter because it allows DM/T to remain within first normal form.

III. DATA STRUCTURES OF THE DM/T DATA MODEL

In this section, we present the different kinds of relations in the
model, i.e., backlog, base relation, view, and backlog view.

A. Backlogs

A backlog, Bpr, for a relation, R, is a relation that contains the
complete history of change requests to relation R [26]. Let the
schema of a relation R be R(A4, : D1, 42 : Dy, A, Dy).
The corresponding, system generated and maintained backlog, Br, is
defined as Br(Ild : SURROGATE. Op : {Ins, Del, Mod}, Time :
TTIME.A[ H Dl. A'z . Dz. tety An H Dn )

Each tuple in a backlog is a change request. Backlog Br contains
three attributes in addition to the attributes of R. Id is defined
over a domain of surrogates, i.e., logical, system generated unique
identifiers. Surrogate values can neither be changed nor seen by
users/application programs, but they can be referenced [12]. Each
Id represents a change request. The attribute Op is defined over the
enumerated domain of operation types, and values of Op indicate
whether an insertion ( Ins), a deletion (Del), or a modification (Mod)
is requested. Finally, the attribute Time is defined over the domain of
transaction time stamps, TTIME, described in the previous section.

The effects on backlogs resulting from update requests on their
corresponding relations are described in Fig. 2. Change requests that
request the deletion or modification of a nonexisting tuple and change
requests that request the insertion of an existing tuple are illegal. It
is assumed that the implementation of DM/T rejects such requests.

Physically, backlog relations of tuples of change requests are stored
as files of records. Insertion and deletion requests are stored as
insertion and deletion records, and modification requests are stored
as ordered pairs of a deletion and an insertion record, both with the
same time stamp (to distinguish them from unrelated deletion and
insertion records).

Example: We introduce a sample relation Mac with information
about machines: their name, id, size, temperature, material
consumption, and yield. The relation has this schema: Mac(Name :
STRING.Id : SURROGATE. Size : {Sm,Med, Lg}, Temp :
INT. Cons REAL. Yield REAL). If we use the
notation “Tuple: Mac” as a shorthand for the attribute definitions
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The Effect on Backlogs of Update Requests

Requested operation on R:

Effect on Bg:

insert R(tuple)

insert Br(id, Ins, time, tuple)

delete R(key)

insert Bp(id, Del, time, tuple(R key,-))

modify R(key, new values)

insert Br(id, Mod, time, tuple(R key,new values))

Fig. 2 - The table defines system controlled insertions into backlogs. The function tuple takes as arguments a relation name, valid key
information for the relation, and an optional list of changes to the identified tuple. It returns the identified and possibly updated tuple.

BMIM'

Id Op Time Mac.id Name Size Temp Cons Yield
1 Ins Jan. 1, 1991 11:31 am. o A Med 73 0 02
2 Ins Jan. 1, 1991 1:09 p.m. 3 B Sm 77 0 0
3 Ins Jan. 1, 1991 1:34 p.m. ¥ C Lg 78 0 0
4 Mod Jan. 7, 1991 8:00 a.m. a A Med 343 34 70
5 Mod Jan. 7, 1991 8:04 a.m. 3 B Sm 386 2.1 84
6 Mod Jan. 7, 1991 9:00 a.m. a A Med 361 2.9 74
7 Mod Jan. 7, 1991 9:46 a.m. a A Med 358 3.0 75
8 Mod Jan. 7, 1991 10:39 a.m. a A Med 359 31 73

Fig. 3. The figure illustrates a sample extension of backlog relation By, with NOW = Jan. 7, 1991 11:00 a.m.

Mac(NOW — 90 minutes) Mac

Id Name | Size Temp | Cons | Yield Id Name | Size Temp | Cons | Yield

a A Med 361 29 74 a A Med 359 3.1 73

3 B Sm 386 2.1 84 3 B Sm 386 2.1 84

~ C Lg 78 0 0 5 C Lg 78 0 0

Fig. 4. Time-slices of relation Mac, where NOW = Jan. 7, 1991 11:00 a.m.
of the relation Mac, then the backlog of Mac has this Example: Fig. 4 shows the extension of Mac at two points in time.

schema: B (Id : SURROGATE. Op : {Ins. Del. Mod}. Time :
TTIME, Tuple : Mac). A sample extension of By, is given in
Fig. 3. O

B. Base Relations and Views

As a consequence of the introduction of time stamps, a base relation
is now a function of time. To retrieve a base relation, it must first
be time-sliced. Let R be any base relation, then the following are
examples of time-slices of R:

R( tinat )défomt

def . .
R(t.)=R “at time #,”, t, > tinit

R¥ R(NOW).

When the database is initialized, it has no history, and it is in an
initial state, possibly with every relation equal to the empty set. If R
is parameterized with an expression that evaluates to a time value,
the result is the state of R as it was at that point in time. It has
no meaning to use a time from before the database was initialized
and after the present time. If R is used without any parameters, this
indicates that the wanted relation is the current R. We also introduce
the special variable NOW which assumes the time when the query
" is executed.

If the expression, E, of a time-sliced relation, R(F), contains
the variable NOW, then R(FE) is time dependent. Otherwise, it
is fixed. While fixed time-slices of relations never get outdated,
time dependent time-slices of relations do and are consequently kept
up-to-date by the DBMS.

See also Fig. 3. O

A view is time dependent if at least one of the relations and views,
from which it is derived, is time dependent; otherwise, it it fixed. A
traditional view is derived from time-sliced base relations. A view
derived directly from at least one backlog, i.e., not via a time-sliced
base relation, is a backlog view. Backlog views are time-sliced as
are base relations and views:

Br(t,) & O Time<t, Br
Br % Br(NOW).
Backlog view time-slices involving NOW are time dependent, and so
are backlog views derived from views involving NOW.

C. Overview of Data Structures

We have introduced six types of derived relations:

view

base relation {
backlog view

time dependent
fixed ’

We distinguish between base relations, traditional views, and backlog
views. The only difference between base relations and views is that
base relations are derived directly from backlogs while views are
derived indirectly, via base relations. A view is valid only at a single
point in time, namely the time specified when it was produced, using
the query language. A backlog has an associated lifespan. It ranges
from the time when the corresponding base relation was created until
the current time, if the backlog still exists, or until the backlog was
deleted. Backlog views inherit this notion of lifespan.
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The second dimension distinguishes between fixed and fime depen-
dent. The valid time of fixed time-slices of base relations and views
and the lifespan of fixed backlog views never change. Because it is
possible to use the special variable NOW in query expressions, both
base relations, views and backlog views can be time dependent. A
time dependent base relation can be visualized as a view sliding along
a backlog as time passes. Similarly, a backlog view can be thought
of as a window where one or both ends (start time and end time)
move along a backlog.

IV. QUERY LANGUAGE OF THE DM/T DATA MODEL

To take full advantage of the time extension and the additional data
structures, we need an extended query language. We use the standard
relational algebra as a basis for such an extension. In Section IV-A,
we present and briefly discuss the operators of our data model. In
Section IV-B, we illustrate the utility of parts of the query language.

A. Operators and Notation

We have already introduced the time-slice operator. Because any
relation must be time-sliced before it is manipulated by other op-
erators, the time dimension is eliminated, and standard relational
operators can be used. We include the fundamental operators: pro-
jection (), selection (¢), Cartesian product (x), difference (=), and
union (U). For projection, we will use the shorthand 77, Br to
mean projection on all attributes of R. Temporal expressions, i.c.,
expressions that evaluate to a value of domain TTIME (or a derived
domain, see the unit operator below), can be used in selection criteria.
We will also feel free to use derived operators such as natural join
(>), semi-join (>), and intersection (N).

Conceptually, time-slices have transaction time attributes. In order
to comply with the transparency principle, the transaction time
attribute in time-slices of user-defined relations is not displayed. A
transaction time attribute can be displayed by means of an explicit
projection. In a backlog relation, the time stamp attribute is displayed,
and a projection is required to remove it.

We allow for a full range of aggregate functions: max, min, mean,
count, avg, sum, and product.

To accommodate the aggregate functions, we introduce a general-
ization, &, of the aggregate formation operator [17], [1]. The operator
£ is used for application of an aggregate function to sets of values of
an attribute. We use the notation £ a_name=agy_st B where X is a
grouping specification, att_name is a new attribute name, and agg fct
is an aggregate function. The result of the query is computed the
following way: first, the tuples of R are partitioned into the groups
implied by X; second, agg fct is applied to each group, and the
resulting value is associated with each tuple in the group as a value
of the attribute, att.name. For example, the following query would
return the current average temperature for each machine size:

T Size, Avg_temp Esize. 4 vg_temp=avg( Temp) Maec.

Avg_temp is the new attribute to be generated. One group is generated
for each distinct value of Size. In general, X can be any sequence of
distinct attributes in relation R. In addition, the keyword Interval can
be substituted for X, meaning that the intervals previously generated
by the operator T (see the next section) are the groups to be used.
We extend the query language with the unit operator, Y. It is
used for changing units and precision of attribute domains. We focus
on the precision aspect of the operator and we will not discuss
the important aspects of conversion of compatible units. From the
literature [16], [9], it follows that such conversions can be done
algorithmically, applying simple linear algebra techniques. Also, the
issue of information loss due to finite arithmetic is beyond the scope

Units
Domain, Domain, Factor Decimals
’ N 3
D, Dzl kiy Ciy
’ .. 3
D, D12 ki Cip
! . .
D;, Du\- Rig Ciy

Fig. 5. The relation Units.

of this presentation. The syntax is as follows:

Ta=D! . A=D1, 44 =D1,

: Dy)

2-

B(Al N D].AQ B Dz. e .An

where 1 < i; < n . j = 1.2, ---. k. The result of this query
is relation R with domain D;; of attribute A;; changed to D!,
1<j<h

A special relation, Units, contains information about conversions
between domains. It has four attributes: Domain; and Domain, are
character strings listing domain names; Factor is a real number, and
Decimals is an integer. See Fig. 5.

The jth entry in relation Units tells that an element in domain Dy,
can be transformed into an element in domain Dﬁ] by multiplying
it with k;; and, using scientific notation, allowing ¢;; decimals.
The user can insert, delete and modify tuples from this relation. In
accordance with the normal convention, the operator rounds off to
the closest value.

We have chosen the default unit of the domain TTIME to be
minutes and the lowest unit to be seconds. Tuples, allowing for
Second, Minute, Hour, Day, Week, Month, and Year, have been
inserted into Units.> When possible, without causing ambiguity, we
do not distinguish between the domain TTIME and its compatible
domains.

We stamp change request tuples with time values that indicate when
the requests were issued. In addition, it sometimes is convenient to
know when a requested change is superseded by a more recent change
request and is no longer effective. Thus, we integrate a fold operator
(o) and an inverse unfold operator (¢~ ') [18]. The operator, ¢, can be
used on an unfolded relation,® and it transforms the attribute defined
over the domain TTIME into two attributes, From and To, both defined
over domain 7TIME. Used on an already folded relation, it produces
the identity. Similarly, ¢~" produces the identity when applied to an
already unfolded relation. Fig. 6 shows a sample query and its result.
See also Fig. 3.

First, the query in Fig. 6 time-slices Mac, then attributes are
projected—note that Time is projected. Finally, the backlog is used
to expand the attribute Time of the qualifying tuples into attributes
From and To. Note that an interval of validity of a change request
may expand beyond the time used in the time-slice and up to NOW.

The next extension is the time related operator, when () [5]. It is
used for retrieval from backlogs of times when a specified condition
became true (unfolded argument) or was true (folded argument). The
following query returns as result Jan. 7, 1991 8:00 a.m. (see Fig. 3)

QName=4A300<Temp<aso Barac(Jan. 7, 1991 10:34 a.m.).

The attribute name of the unary relation returned is From. If the Q
operator is used on a folded relation, it returns intervals of validity.

2For further discussion of units, see [7].

* Application of ¢ to other relations than backlogs has been permitted due
to its practicality. However, note that By is needed to compute &R which
may be theoretically inappropriate.
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The query below returns the interval Jan. 1, 1991 11:31:07 a.m. = Jan.
7, 1991 7:59:39 a.m.

Y From=Second, To=Second S Name= 4A Tonp <300

© Byuc(Jan. 7, 1991 10:34 a.m.).

The attribute names of the binary relation returned by  are From
and To.

B. Sample Queries

In Fig. 4 of Section IlI-B, we illustrated how simple retrievals
involving base relations are formulated. Here, we present a number of
more complicated queries. First, queries on traditional base relations
and views are presented. Then, it is discussed how queries on
backlogs are helpful in answering queries on change history, and
we show some queries using the new operators. Retrievals involving
base relations and views:

Run_Mac(t) = 0 cons>0 Mac(t) 6
T Temp<375 R'(UZ-M(MT(NOW) (2)
0 Size=Med Run_Mac(NOW ). 3)

In (1), we define a view. A definition does not result in any
computation, all that happens is that the query expression itself is
stored in the DBMS. The first step in evaluating any query is to time-
slice the constituent relations. So, to retrieve data from the view, an
expression that evaluates to a value in the domain 7TIME must be
supplied and substituted for ¢. Then, the selection is computed. In
(2) all currently cool and running machines are retrieved This is a
time-dependent time-slice that involves several levels of computation.
First, Run_Mac is substituted by its definition. Second, the time-slice
is computed. Third, the selections are performed. In the last query (3),
all currently running medium machines are retrieved. Note that our
descriptions of execution steps merely serve to define the semantics
of the queries; optimization may give different sequences or sets of
computation steps [15].

Retrievals involving backlogs: Before we turn our attention toward
queries directly involving backlog relations, let us look at how the
use of backlogs supplement that of usual relations. Suppose we want
the changes to Mac between t, and t,, then these are all plausible
candidate queries:

Mac(t,) — Mac(t,) “)
Ot <Time<ty, Batac &)
TTupleTt, <Time<t, Biac (6)
T Luple T 1, < Time <ty A Op= Ins\ Op=Mod) Bac. 7

The result of query (4) is the tuples in Mac at ty, not in Mac at
tr. This does not tell us what took place between ¢, and ty. For
example, we might not retrieve any deletions that took place in the
time interval. If we really want to know what took place between ¢,
and t,, we would be better off using the backlog of Mac. We have to
make clear precisely what we want. Let us look at some possibilities.
Query (5) retrieves all possible information about what happened
to Mac. Insertions, deletions, and modifications are distinguished,
and the times when the requests were placed are available. Query
(6) eliminates the special backlog attributes from the result. Thus,
several changes back and forth between identical Mac tuples will

Retrievals involving backlogs, views, and new operators:

O Time T Name, Time, Temp Mac(Jan. 7, 1991 8:30 a.m.)

Name From To Temp
B Jan. 7, 1991 8:04 a.m. NOW 386
A Jan. 7, 1991 8:00 a.m. Jan. 7, 1991 9:00 a.m. 343
C Jan. 1, 1991 1:34 p.m. NOW 74

Fig. 6. The figure illustrates the retrieval of a folded relation. The query is
issued on Jan. 7, 1991 10:00 a.m.

be eliminated due to duplicate removal, and it will not be possible
to distinguish between operation types anymore. Finally, in (7), we
have retrieved all machines that changed, either because they were
inserted or because their previous properties were updated.

The list of possibilities is by no means exhaustive, but it illustrates
how a large number of detailed queries are easily formulated using
backlogs.

In query (8), we change the domain of attribute Time to Day and
select all Del change requests inserted after Jan. 5, 1991. Then,
the time of the first deletion is found and tagged to each of the
selected tuples. To find all existing machines, at ¢,, that changed
properties between t, and t,, we issue query (9) which involves both
a time-sliced base relation and a backlog. Query (10) results in a
list (Name, Time) of machines with property changes in the given
interval. It is assumed that the tuple (TTIME. Hour, 1/60. 0) is
present in Units. We achieve a coarser granularity. Thus, if a machine
changed more than once within the same hour, it will not be visible
in the result.

In summary, we have shown how to conveniently retrieve detailed
information about change history of relations. In particular, we have
demonstrated the usefulness of backlog relations.

V. QUERY LANGUAGE EXTENSION BASED ON COMPACTNESS

This section presents the operator . First, we motivate the need
for a query language extension that allows for retrieval of patterns and
exceptions from a database. Second, we present a general framework
for compactness of active domains. Third, we base the © operator
on this framework and present a notation for compactness queries.
Fourth, we illustrate with sample queries, how to use the operator.

A. Motivation

Databases provide us with the technical ability to store very large
amounts of constantly changing data. In databases where the amount
of data is larger than users can ever consume, single database states
often become less important, whereas the question of whether or not
states are reasonably close to what should be expected becomes more
important. Similarly, in databases where the rate of change is higher
than users can follow, the change itself often becomes less important,
whereas the question of whether or not it is reasonably close to what
it should be becomes more important.

Powerful abstraction tools must be developed to allow users to
identify and subsequently ignore database states that are normal so
they can concentrate on unusual and unexpected states. Similarly,
powerful abstraction tools must be developed to identify and sub-
sequently ignore changes that reflect normal and expected patterns

§— Mi=min(Time) O Jan. 5, 1991 < TimenOp=Del X Time=Day Biac 8)

Mac(t:) X T Puple 0t < Time<tynOp=ttod Batac 9)

T Name, Time O Jan. 2, 1991 10 p m.<Time<Jan. 6. 1991 10 p.m.AOp=Mod Y Time=Hour Bitac.

(10)
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of change, making it possible to concentrate on changes that reflect
unusual and unexpected changes of reality.

Our goal is to provide the database with capabilities for identifying
relevant and representative states and changes, and exceptional states
and changes. Applications of these capabilities include a number of
surveillance and monitoring systems.

We will present a framework that opens to a new world of summary
and statistics queries that allow for retrieval of change behavior and
of common patterns and exceptions in the change behavior.

Queries like the following will be possible.

* Given a unit of measure and an attribute of a relation, group
the values into intervals and return the interval which has the
smallest cardinality (number of tuples).

* Given a cardinality and an attribute of a relation, group the
values into intervals and return all intervals with at least the
given cardinality.

* If the given attribute is Time, with domain TTIME, of the
backlog Br of a relation R, it will be possible to answer queries
like these

—  When were there many insertions into relation R?

—  What is the average number of deletions per time unit
from relation R?

—  When were deletions most frequent?

The exact meanings of the sample queries above are not specified.
It is the purpose of the next subsections to formalize what they can
mean.

B. Compact Domains

Let a relation S be given as S(C.Cy.---,Cp. Dy, Do,
-+, Dy ). We assume that domain names are unique and omit attribute
names. We are interested only in finite domains for which there exist
a metric and a total order.* Let the domains D; be of this kind and let

D; = {o;}72

J=1 i1=1,2.---.n.

We drop the top and/or bottom indexes whenever possible without
causing ambiguity. Associated with each domain D; in S is an active
domain, D;(t), consisting of the values from D, present in S at time
t. Denote the metric and total order on D;, i = 1,---.n, dist; and
>, respectively. We will feel free to use the derived predicates <,
=, <, and > where it is convenient.

We want to include both simple domains, as above, and domains
composed from the simple domains into our framework. Thus, we
have to equip composite domains with both metrics and total orders.
Consider the observations:

Observation 5.1: For any composite domain D;, x --- x D;, the
induced metric, dist’, given below is a metric.
dist'( (o't a2, atk) (3,32, %))

k
= Z(]isfij(a‘i,ﬁlf)?.
=1

Observation 5.2: The induced metric dist” defined as one plus
the number of elements between two elements if the elements are
distinct and zero otherwise, is a metric.

These observations are significant because they tell that if we are
given metrics of the simple domains, then induced metrics exist for all

*Compare this distinction between domains with both a metic and an order
and domains without to the distinction in statistical and scientific databases
between category data (measured data) and summary data (parameter data)
[31]. The domains of interest here include all summary data and some category
data.

composite domains, and because they tell that the user has a choice of
metric. By construction, the next observation ensures the existence
of an order on composite domains given orders on the constituent
domains.

Observation 5.3: A composite domain D;, x ---x D;, has a total,
lexicographic order > defined as follows in terms of the total orders

2i; of the domains D,;, j = 1.2...., k
a=(aa k) = (30,37 30
a > 38l >0 3
VIVIS (AZH (@ =, 39) Aa't >, 3))

VAL (el = 39),

We are now in a position to define the concept of compact domain
which informally is a domain without holes. Formally, we have

Definition: Let > be a total order on D. The active domain D(t),
of domain D in a relation S is compact if and only if

Va.3. v €D :(a,3 € Dit)Aa >~ > 3) =~ € D(t).

O

Note that compactness is an extensional property of a relation
(attribute). Also, observe that D can be a composite domain (Ob-
servation 5.3), and finally observe that the domains we consider do
not include null values.

Some properties of compactness should be mentioned.

Observation 5.4 Compactness is not preserved under subsequence
formation. E.g., for some #, let D(t) = D;(t)x Da(t)Xx---x D, (t)
be compact. Then, for the same ¢, D'(t) = D (t)xX D, (t)yx---x
D (t).1 < iy <z < -+ < ix < nis not generally compact. Let
us illustrate this observation by means of an example. We define

D
D(t) =

Il

{1.2.3.4,5} x {1.2.3.4.5} x {1.2.3.4.5} and
{(1.2.4). (1.2.5). (1.3.1). (1.3.2) }.

It can be seen that D(t) is compact. Now we project out the second
domain to get D’(t) which is not compact because the element (1. 3)
is missing

D'(t) = {(L.4), (1.5). (1.1). (1.2) }.

This same example also demonstrates that compactness is not pre-
served under permutation (e.g., switch the second and third domain).
We defined an active domain to be compact if its elements are
consecutive. We term a set of consecutive elements an interval, and
we now generalize compactness to partial compactness by relaxing
the restriction that there be only one interval to instead allowing the
existence of a set of intervals that fullfil various restrictions.

Definition: The active set of values of a domain D in a relation S,
D(t), is a partially compact domain with respect to given restrictions
if and only if the set of intervals partitioning D(t) satisfy the
restrictions.

We consider only maximal intervals (i.e., given any two intervals
I; and I}, then I; U I; is not an interval). The following types of
restrictions are possible:

number of intervals The number of intervals can be restricted.
Generally, conjunctions and disjunctions of restrictions of the number
of intervals can be specified. Let / denote this quantity.

size of intervals The size of intervals can be restricted. Here we
rely on the existence of a metric for D, see Observations 5.1 and 5.2.
Combinations of conjunctions and disjunctions can be specified. Let
& denote this quantity.

cardinality of intervals The number of elements in an inter-
val can be restricted. Again, conjunctions and disjunctions can be
specified. Let # denote this quantity.
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mixed restriction Constraints on the number of intervals, their
sizes, and cardinalities can be specified. O

Note that the intervals of a partially compact domain partitions
the domain. Also, the requirement that intervals be maximal implies
that there must be a hole between any two legal intervals. Partial
compactness is a generalization of compactness: when we impose
the restriction that the maximum number of allowed intervals in a
partially compact domain be one, we have a compact domain. As in
the case of compactness, partial compactness of composite domains
is not in general preserved under subsequence formation and under
permutation of the sequence of composition.

Example: To understand why partial compactness is not preserved
under permutation of the aggregation sequence, let Dy = {1.2.3},
Dy = {a,b.c}, and let an interval of D (t) x Dy(t) be given by
{(2.5).(2,¢).(3.a)}. Then the set {(a.3).(b.2). (c. 2)} of elements
on the permuted domain is not an interval. 0

The definitions of compactness rely heavily on the notion of order.
Every simple has an order. The lexicographic order on a composite
domain, induced by the orders of its constituent atomic domains,
assigns a monotonic decreasing importance to atomic values of the
composite domain. The first elements are the most significant, the
second ones are the next most significant, etc.

C. Notation for Compactness Queries

We introduce the operator, I, for expressing queries based on
compactness. The operator takes a relation as an argument and returns
a relation, thus preserving the closedness of the extended relational
algebra. The general notation is given by

D RIICLE

Some explanation is in order. The first subscript E is an expression
consisting of any combination of conjunctions, disjunctions, and
negations of restrictions of the variables ¢, 6, and #. It is defined
as follows

E—-EANE|EVE|-E|(E)|Exp
Erp= N<T|VSN|V=N|NST N
)\'_,‘..l_l()l _9|...|9|1()|...

Vi—lo)#

The expression E' restricts the process of generating intervals: inter-
vals are only generated if the set of intervals fulfills the specified
restrictions.
Example: The E expression below makes the operator © generate
intervals only if
¢ the total number of intervals (¢) to be generated is less than or
equal to 10;
* the width (6) of any generated interval is larger than or equal
to 8;

init #, 8, « boundaries

* there are at least 1000 elements in each generated intervals (#).
1 <10A8 < AAL000 < #

If any of the restrictions cannot be met, then the empty relation is
returned. O

The second subscript, D, specifies which active domain (possibly
composite) of the argument relation (R) should be used in the interval
generation process. If the schema of R is given by

R(:h : D1. A‘zi Dz. R Ani Dn) .

then any sequence A, . A;,. --- . A, where 1< i; < iz <+ <
it < n, can be specified, provided a metric and a total order exist for
each constituent subdomain. If the cardinality of the active domain
is zero, then we have an empty interval, and ¢ = 1, 6 = 0.

The third subscript, O, is used for specifying which part of the
computed result is to be returned. The syntax is

0O —- X:Y

where X' specify which of the intervals that fulfill £ should be part
of the result; ¥ is a specification of exactly which information about
the intervals should be in the result.

X=X X|4B|C

A4 — max | avg | min

B — range | card
C — all
Y — Y. Y| data | range | card.

Example: The expression “max range: card” returns only the car-
dinality of the computed interval(s) with the largest range. The
expression “all: data” returns a selection on the argument relation
with all the tuples that were placed in the generated intervals. Finally,
“avg card: range” returns the range of the interval(s) with average
cardinality. O

The schemas of the various types of results that can be returned
are listed below. If combinations of the keywords, data, range, card
are specified, the schemas are simply aggregated.

DATA: (A] : D].A-z M D') ...... 411 : Dn)
RANGE: A; .From D;,, A, From
Diy . Ai . To: D; .4, To: Di,.---
CARD: (Card : Integer)

D,,.---.A;, .From
“4;,..To: D;,)

D. Sample Compactness Queries

Now that we have introduced the general notation for compactness
queries, let us consider some examples.

The query X(z)( Timel{ait: data] Bisac Tetrieves all the tuples of By,
if the restrictions on «, #, and & are met. The following algorithm
defines the result:

\# initialization of restrictions implied by E

init Res \* the result relation is initially empty

init ¢ \* the number of generated intervals, initially 1
init 6[7) \* the size of the ith interval, initially 0

init #[2] \# the cardinality of the ith interval, initially 0

\# a clustering index on the domain TTIME is assumed, so no sorting on Time is required

while unread elements in Time



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 2, APRIL 1992 199

do pick next element e
#li+ +
Res — Res U {e}

\* tuple of Bjs,. with the lowest Time value
\* one more element in interval

while unread elements in Time, and succ(e) is an immediate successor of e

do e «— succ(e)

#[i] + +

Res «— Res U e
check # boundaries
compute 4[i]
check 6 boundaries
if unread elements in Time
then ¢ + +
check ¢ boundaries

If any of the checks in the algorithm fail, then By, with an empty
extension is returned. Note that the algorithm is linear in n, (i.e.
O(n)), where n is the cardinality of the attribute, Time (i.e. the
active domain).

Now, let us consider some more interesting examples shown at the
bottom of this page. Statistical normal forms based on compactness
and uniformity are important in statistical applications [11]. A relation
is in first statistical normal form (1.SNF) if every atomic noncategory
domain is compact [11]. Let us illustrate how we can test whether a
relation is in 1.SNF. In Mac, this means that the active domains of
each of the attributes: Temp, Cons, and Yield must be compact. Query
(11) returns the current state of relation Mac if Yield is compact.
Otherwise, it returns the empty relation. Using similar queries for each
of the attributes, Temp and Cons, we can determine whether Mac is in
L.SNF. Given a relation in 1.SNF, a natural continuation would be to
ask if it is also in 2.SNF. This is the case if every atomic noncategory
(see Section V-B) domain is also uniform (i.e., whether the number
of times each value occurs is the same). It can be tested using the
aggregate formation operator and the aggregate function count.

The query (12) retrieves the data of the interval(s) during the
last seven days where the least number of changes to relation Mac
occurred. First, the part of the backlog By, for the past seven days is
selected. Second, the time unit is changed to Hour. Third, the tuples
of By are grouped according to the Time attribute, and the elements
of the interval with the least number of elements are returned as the
final result.

In query (13), intervals are again generated on the basis of the
attribute Time of By,... Here the ranges of the intervals with large
cardinalities (i.e., intervals with more than X elements) are the result.

In the next query (14), we find the time intervals over the lifetime
of Mac where the most insertions took place. Among all the intervals,
only the ranges of the one with largest cardinality and the one with
largest range are returned.

In (15), we restrict the process of interval generation. See the first
example in Section V-C. If it is possible to generate intervals under
the imposed restrictions, the whole selection on By, is returned;
otherwise, By, with an empty extension, is returned.

In query (16), we are interested in deletions to the database that
took place after Jan. 7, 1991 8 a.m. and before Jan 8, 1991 8 a.m.
Before the T operator is applied, we select the interesting parts of
the backlog and change the domain of the attribute Time. Then,
if at least four intervals result, the ranges and cardinalities of the
generated intervals are returned (the schema is defined in Section V-
C); otherwise, the empty relation (same schema) is the result.

The final query (17) returns the average number of deletion requests
per hour to the relation Mac.

In conclusion, we have illustrated the utility of the & operator. The
reader may compare the sample queries to the informal questions of
Section V-A.

VI. CONCLUSION AND FUTURE RESEARCH

In this paper, we have pursued the idea of asking questions
about the evolution of a database. In doing so, we have focused on
abstracting common patterns and exceptions in the change history.

First, we briefly described how we have added transaction time to
the standard relational model, and we gave a precise characterization
of the time concept chosen.

Second, we briefly described how we have extended the data
structures of the standard relational model to include system gener-
ated and maintained backlog relations for recording detailed change
history. The backlogs contain requests for insertions, deletions, and
modifications to their associated base relations rather than the results
of the requests. Thus, the backlogs faithfully reflect the evolution of
the database. Using only the standard relational algebra, the extended
data structures allowed for historical queries.

Sy ietd][ali: data] Mac

)\ Timel(min card: data) ¥ Twme=Hour ONOW =7 days<Time BMac

ST imel[#> X : range] Batac

114 11

e

[ [ Time)[max card, maz range: range] @ Op=Ins Btae
L[ <10A8<EAL000 <#][Time][all: data] O NOW —Tdays<Time BMac
[4>][Time][all: range,card] O Op=DelAJan.7,1991 8a.m.< Time<Jan8.1991 8a.m. Y Time= Hour B

~ Av=Avg(Su) T Tune.Su ETime. Su=count(1d) Y Time=Hour O Op=Del BMac-

(1n
(12)
(13)
(14)
s
(16)
an
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Third, we extended the standard relational algebra to include the
operators unit (1), fold (¢), unfold (¢™"), when (), and aggregate
formation (£). By means of sample queries, we demonstrated the
retrieval power of the combination of the extended algebra and the
extended data structures.

Fourth, we added the novel operator T to the query language.
Based on the notion of compactness, the operator provides a new
way to group data. Normally, data have been grouped according
to predefined groups. The idea of the © operator is to let the
data themselves determine the groups. Thus, the operator groups
consecutive data together, and starts a new group when a hole is
detected. It is possible to impose restrictions on the grouping process.
The number of allowed groups can be specified; the allowed widths
and cardinalities of the groups can be specified. Not only can the
grouping process be applied to atomic attributes, it can also be applied
to composite domains. Additionally, it is pbssible to select the result
of an application of the operator from among the generated groups.
We demonstrated the use of the operator by sample queries. The
unit operator allows for varying the consecutiveness of data, and
the aggregate formation operator allows for computing statistics on
generated groups. As a whole, the query language used in conjunction
with the extended data structures allows for retrieving patterns and
exceptions in the change history of the database.

We have not been concerned with implementation. Efficient im-
plementation of the data model DM/T has most recently been the
topic of [15].

We have introduced the notion of a ¥ operator. How to apply
the operator in different settings is an issue of further research.
This research can lead to other versions of the operator, better
suited for specific applications. Because of the ability to generate
groups from the data, the operator is well suited for usage during
the process where, for example, a statistician tries to get a feel
for the data of a database. Integration of browsing capabilities and
the operator, allowing for interactive modification of the subscripts,
E and O, is a natural future direction with some resemblance to
query generalization [21]. Also, the application of the operator to the
statistical normal forms of [11] is an interesting direction. Finally, it
would be of interest to investigate the possible application of a ©-like
operator to dependency theoretic problems.
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