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Incremental Implementation Model for
Relational Databases with Transaction Time

Christian S. Jensen, Leo Mark, and Nick Roussopoulos, Member, IEEE

Abstract— The database literature contains numerous con-
tributions to the understanding of time in relational database
systems. In the past, the focus has been on data model issues
and only recently has efficient implementation been addressed.
We present an implementation medel for the standard relational
data model extended with transaction time. The implementation
model integrates techniques of view materialization, differential
computation, and deferred update into a coherent whole. It is ca-
pable of storing any view —reflecting past or present states—and
subsequently use stored views as outsets for incremental and
decremental computations of requested views, making it more
flexible than previously proposed partitioned storage models. The
workings and the expressiveness of the model are demonstrated
by sample queries that show how historical data are retrieved.

Index Terms— Data and pointer caching, incremental and
decremental computation, implementation model, query process-
ing, relational model, transaction time.

I. INTRODUCTION

HERE seems to be general agreement in the database
community that efficient and user-friendly time support
is needed.

Two orthogonal concepts of time, transaction time and
logical time, have been described, see [32]. Transaction time
is time in the input subsystem of the database system and
is therefore application independent. In contrast, logical time
is time in the part of reality modeled in the database. The
orthogonality of these domains allows us to consider only
transaction time. A database supporting only transaction time
is termed a static rollback database. Once entered, data are
logically never deleted, and it is possible to rollback or time-
slice the database in order to see a previous state. The main
objective behind the design of the static rollback database
with tuple time-stamping is to create a small yet powerful
extension of the standard relational model. Thus, the model
is a first normal form transparent extension of the standard
relational model. By giving access through the query language
to so-called backlogs recording the change history of relations,
the model makes it easy to retrieve detailed rollback data.
For surveys and further references to work on time exiended
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relational data models, see [38], [32], [3]; for a comparison of
some of the best documented temporal data models, see [37].

As a contrast to the extensive amount of work on data
models, there has been little work dome on the efficient
implementation of temporal databases [33]. Substantial efforts
have been put into the investigation of partitioned storage
strategies where the fundamental assumption is that fast re-
trieval is needed for current data while a gracefully degrading
performance is allowed for the retrieval of older data [33],
[36]. Thus, only current states are efficiently maintained. Our
strategy is more flexible because it allows for the storage of old
states when they are first computed and subseguently provides
efficient support for access to arbitrary time-slices of arbitrary
relations. The overhead paid for this flexibility and efficiency is
increased space consumption. Another approach [35] suggests
grid files as a means of implementation. They assume an
ordering on surrogate domains, and indexes on other attribute
domains are not allowed—both restrictions are inappropriate.
For an overview and further reference to efforts relevant to
storage of temporal databases, see [24], [12], [22], [31].

In our implementation model, updates to relations are en-
tered as time-stamped change requests into backlogs [19].
Propagation to the affected relations can be done according
to protocols ranging from eager to lazy. When a query is
computed, an access path consisting of intermediate views and
a final view is generated. An access path can be stored as both
a collection of pointers and as data, but it might not be stored
at all—the model allows for dynamic control of redundancy.
Finally, the computation and recomputation of views are done
differentially (the term “differentially” is employed to mean
“incrementally or decrementally”) from already computed and
stored views.

The view concept is central in the implementation model.
The idea of storing access paths as pointer structures is
presented in [28] and [29] where the standard relational data
model is the framework, and the ADMS= system [27] utilizes
lazy evaluation and incremental update based on access paths
stored as pointers [30]. The implementation model of the
present paper can be seen as a natural extension of this
work. Work on how to efficiently maintain views stored as
materialized data can be found in [39], [5], and [4]. This
work focuses on how to detect irrelevant and (conditionally)
autonomously computable updates. Related works can be
found in [16], [6], [11], [2], and [26].

The remaining sections have the following contents:
Section II, “Data Structures of the Implementation Model,”
initially defines the transaction time concept supported. Next,
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we introduce the concepts of backlog and base relation. Then,
we discuss storage of fixed and time dependent time-slices
of base relations and generalize the discussion to include
views. Lastly, we present the concept of differential file and
summarize the section. Section III, “Query Evaluation and
Redundancy Control,” consists of two parts. The subject of
the first is the function of a query evaluation subsystem.
We briefly outline the decisions to be made by the system
in order to efficiently evaluate queries. In the second part,
we describe how the system differentially evaluates queries
under a number of simplifying assumptions. In Section IV,
“Querying a Database,” we show how sample queries are
evaluated in the model, and we put special focus on the
helpfulness of backlogs in answering queries on the change
history of relations. The last section contains the “Conclusion
and Future Research.”

II. DATA STRUCTURES OF THE IMPLEMENTATION MODEL

In this section, we present the basic concepts of the imple-
mentation model: the transaction time concept and the different
kinds of relations, i.e., backlog, base relation, view, backlog
view, differential file. We characterize these relation types
according to traditional understanding of base relations and
views, and according to persistence and time dependence.

A. Transaction Time Concept

In Fig. 1 we characterize the time concept supported, and
it is discussed below.

First, the time concept is a transaction time concept—thus it
models time in the part of reality that surrounds the database,
the input subsystem. This means that the time stamps of tuples
reflect the times when they were entered into the database.
This implies that the model supports queries on the update
activity on the database—it only supports queries on temporal
aspects of the modeled reality if a well-defined mapping
exists between when events took place and when the events
were registered in the database. In many applications—e.g.,
satellite surveillance of crops and weather, and the monitoring
of power plants—this is a very realistic assumption, and
we have chosen to adopt it in the examples of this paper.
Other candidate applications for transaction time support are
econometrics, banking, inventory control, medical records, and
airline reservations [25]. Second, a domain is regular if the
distances between consecutive values of the active domain are
identical; otherwise, the domain is irregular. We support an
irregular time domain. Third, a time domain can be discrete
or stepwise continuous. Facts with discrete time stamps are
only valid at the exact times of their time stamps. In contrast,
the facts in a stepwise continuous domain have an interval
of validity. Our time concept has this property (also termed
stability), because the values of a relation remain the same
until the relation is changed by a new transaction. Fourth,
we support true time as opposed to arbitrary time. True
time reflects the actual time while an arbitrary time domain
needs only to have a metric and a total order defined on
it (e.g., the natural numbers). Fifth, we support automatic
time stamping—the natural choice for transaction time while

manual, user-supplied time-stamp values are natural for logical
time.

We have chosen tuple stamping as opposed to attribute
value stamping. The major motivation has been to provide
a first normal form model that is a simple, yet powerful
extension of the basic relational model. The price paid for the
simplicity is that we cannot capture independence of attributes
of relations—an obvious conceptual drawback and in addition
a potential cause of redundancy at the implementation level
[8], [13]. Redundancy problems can be alleviated through the
use of compression techniques which in some applications
have proven not only to reduce space consumption but also
to speed up query processing.

B. Backlogs

A backlog, Bg, for a relation, R, is a relation that contains
the complete history of change requests to relation R. The
schema of relation R and its corresponding backlog are shown
in Fig. 2.

The tuples of backlogs are termed change requests because
a backlog contains change requests to its corresponding base
relation. As shown, Bg contains three attributes in addition
to the attributes of R. Attribute Id is defined over a do-
main of surrogates. Surrogates are logical system generated
tuple identifiers that can be referenced but neither seen nor
modified by users/application programs [17], [9]. The values
of Id represent the individual change requests. Attribute Op
is defined over the enumerated domain of operation types
where values of Op indicate whether an insertion (Ins), a
deletion (Del), or a modification (Mod) is requested. Fi-
nally, attribute 7ime is defined over the domain of trans-
action time stamps, TTIME, as discussed in the previous
subsection. The value of a time stamp of a change request
is the time when the transaction—the request is a result
of —commits. Requests are not entered into backlogs until
they have been stamped, and they are entered in the sequence,
that they were stamped, i.e., sorted on time stamps. This
ensures that backlogs only contain valid change requests sorted
on time.

The database management system (DBMS) automatically
generates a backlog for each base relation. A backlog, Br, of
change requests is illustrated in Fig. 3.

Also, the DBMS maintains the backlog relations. Fig. 4
shows the logical effect on backlogs of update requests to
their corresponding relations.

Example: We introduce a sample database to illustrate the
concept of backlog and other concepts to be presented later in
the paper. The database consists of one user-defined relation,
Emp, with three attributes: Emp_Id, Name, and Salary. Fig. 5
shows the schema of Emp and its backlog, Bgm,.

When nothing is deleted from backlogs, constant growth
will eventually become a problem. The model can be aug-
mented with vacuuming facilities to solve the problem. The
idea is to provide facilities for pinpointing historical data not
needed by any application running against the database and
delete these without changing the history as recorded in the
database. See [18].
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Fig. 1. Characterization of the time concept.
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Fig. 2. Schema for the relation R and its backlog, Bgmy.

Br Time

<X~
Change requests

Fig. 3. A backlog, B, consists of change requests which are both logically
and physically ordered by unique, increasing time stamp values from left to
right.

C. Base Relations

As a consequence of the introduction of time stamps, a base
relation is now a function of time. To retrieve a base relation
it must first be time-sliced. Let R be any base relation, then
the following are examples of time-slices of R:

def
R(twul) é R‘H’Mt

R(t.) Y Roat time t,”, ty > tin
RY r(NOW)

When the database is initialized, it has no history, and every
relation is equal to the empty set. If R is parameterized with
an expression that evaluates to a time value, the result is the
state of R as it was at that point in time. The use a time from
before the database was initialized or after the present time
is undefined. R used without any parameters indicates the
current R. Note that this feature helps provide transparency
(subsection IV-A) to the naive user. We also introduce the
special variable NOW which assumes the time when the
query is executed.

Time-slices of base relations can be either stored or re-
computed when needed. There are two ways of storing base
relations:

* index cache

* materialized data.

First, a base relation can be stored as an index cache (or
just cache for short). A cache is a pointer array where the
entries contain physical pointers to the associated backlog.

We use the name index cache because the structure inherits
both characteristics from caches and indexes. Like a cache, it
avoids search—all it has to do is to fetch the data to which it
points. Like an index, it stores pointers to actual data records,
is buffered into main memory, and is read in its entirety [30].
Second, a relation can be stored as actual materialized data.
The co-existence of caches and materialized data is shown in
Fig. 6.

The choice between materializing data or creating a cache
reflects a tradeoff between replication of data and speed, as
does the choice between creating a cache or not using a cache.
Time-slices of base relations can be

* fixed

* time dependent.

If the expression, E, of a time-sliced relation, R(F), contains
the variable NOW then R is time dependent; otherwise, it is
fixed. While fixed time-slices never get outdated, time de-
pendent time-slices do. Thus, stored time dependent relations
must be updatable. Update strategies ranging from eager to
lazy can be adopted. In an eager approach, change requests are
immediately propagated to the time-slices. In a lazy approach,
change requests are propagated to a time-slice when the current
state of the time-slice is requested.

Example: Fig. 7 shows the extension of Emp at two points in
time. The extension of the corresponding backlog is shown in
Fig. 8. Note that surrogate values cannot be seen by the user.

D. Views on Base Relations and Backlogs

In the previous subsection, we considered only base rela-
tions. Here we generalize the presentation to cover views.
Views can be created from other views, base relations, or
backlogs. What was said about base relations in the previous
subsection is also true for views:

* Views can be stored as index caches or as materialized

data. )

* Views are either time dependent or fixed.

However, some explanation and qualification is needed.
Cached views have references to the relations and views they
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The Effect on Backlogs of Update Requests
Effect on Bg:
insert Bgr(id, Ins, time, tuple)
insert Bg, (id, Del, time, tuple(R, key, -))
insert Br(id, Mod, time, tuple(R, key, new values)

Requested operation on R:

insert R(tuple)
delete R(key)
modify R(key, new values)

Fig. 4. The table defines system-controlled insertions into a backlog. The function ruple takes as arguments a relation name, valid key information for that
relation, and an optional list of changes to the identified tuple; it returns the identified tuple of the specified relation with possible changes reflected properly.

Relation name Bemp
Attribute name Domain name
Id SURROGATE
Relation name Emp Op {Ins, Del, Mod}
Attribute name Key Domain name Time TTIME
Emp_Id nil SURROGATE Emp_Id SURROGATE
Name Iy STRING(20) Name STRING(20)
Salary nil INT Salary INT
Fig. 5. Schema for the user-defined relation, Emp, and its backlog Bey,-
Emp(NOW — 20 days) Emp
Br Emp_Id Name Salary Emp_Id Name Salary
emp 2 Mark 90 000 emp 4 Smith 30 000
emp 3 Brown 32 000 emp 3 Brown 32000
emp 1 .| Jensen 10 000 emp 1 Jensen 11 000
& = =
E Fig. 7. Time-slices of a relation where NOW = May 1, 1990 4:00p.m.
R(May 1, 90) R(NOW) NOW. For an example, see Fig. 10.

Fig. 6. Differently stored time-slices of a base relation can co-exist. The
time-slice R(May 1, 90) is stored as an index cache (to the left), and the
time-slice R(ZNOW)is stored as data (to the right).

are derived from and consist of pointers to these; views can
only be cached if the relations they are derived from are
stored (as data or as pointers). Time dependent views stored
as materialized data need only references to the relations and
views they are derived from to facilitate update. Views of
this kind also require the relations and views they are derived
from to be stored. Finally, fixed views stored as data need no
references to the relations and views they are derived from
because they never become outdated. Consequently, they can
be stored independently, whether the relations and views they
are derived from are stored or not.

A view is time dependent if at least one of the relations
and views it is derived from is time dependent; otherwise, it
it fixed. Fig. 9 illustrates a view.

Traditional views are derived, possibly via levels of indirec-
tion, solely from time-sliced base relations. If a view ultimately
is derived directly, i.e., not via a time-sliced base relation, from
at least one backlog, then we term it a backlog view. Backlog
views are time-sliced as are base relations and views:

def
BR(t:v) =e O'szeStTBR

Br % Br(NOW)

Backlog view time-slices involving NOW are time depen-
dent, as well as backlog views derived from views involving

Example: We can use Bpy,p to retrieve all the employees
that were modified during the last month. The query and its
result is shown in Fig. 11.

E. Differential Files

Stored, time dependent relations (base relations, views,
and backlog views) generally get outdated as time passes
and change requests are entered into backlogs—the change
requests have to be reflected in the relations when they are
retrieved.

When a base relation (time-slice) is to be retrieved, the
relevant change requests can be found in the backlog of the
base relation. For example, if we want to retrieve a previously
computed and stored time-slice R(NOW), the needed change
requests are the ones entered into Bg since R(NOW) was most
recently brought up-to-date. A set of change requests needed
to update a stored relation (R) is referred to as a differential
file (6R). The differential file of a view is derived from the
differential files of the relations and views the view is derived
from, and it contains the change requests relevant for updating
the view. Differential files of base relations and backlog views
directly derived from backlogs are physically stored as parts
of backlogs—differential files of all other relations (views)
are purely conceptual constructs. Fig. 12 shows differential
files for a time-dependent time-slice, R(NOW), and for a
(traditional) view, R(NOW) 1 S(May 1, 90), stored as an
index cache. (Time-slice S(May 1, 90) is fixed and does not
have a differential file.)
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Bgmp
Id Op Time Emp_Id Name Salary
id 1 ins March 31, 1990 11:31 a.m. emp 1 Jensen 10 000
id 2 Ins April 2,1990 2:56 p.m. emp 2 Mark 90 000
id 3 Ins April 8, 1990 10:34 a.m. emp 3 Brown 32 000
id 4 Del April 15, 1990 12:09 p.m. emp 2 Mark 90 000
id5 Ins April 20, 1990 9:02 a.m. emp 4 Smith 30 000
id 6 Mod April 20,1990 12:38 p.m. emp 3 Brown 42 000
id 7 Mod April 20, 1990 12:45 a.m. emp 3 Brown 32 000
id 8 Mod May 1, 1990 3:55 p.m. emp 1 Jensen 11 000

Fig. 8. The backlog shown corresponds to the time-slices in the previous figure.

Br

Bs

R(NOW:

RYNOW) X S(May 1, 90)

S(May 1, #0)

Fig. 9.

The figure shows a cached view (R >« S) derived from a materialized (R) and a cached relation (S). The derived relation is time dependent

because the materialized view is time dependent.

Br

Fig. 10. Views can be derived directly from backlogs.

Fig. 13 shows the differential file of a backlog view (e.g.,
TNOW — 3yrs<Time< NOW —2yrs BR). As time passes and the
window slides, old change requests must be discarded (to the
left) and newer ones must be included (to the right).

Example: Suppose that we compute the time-slice
Emp(NOW — 20 days) on May 1, 1990 4:00 p.m. (Fig. 7).
The time-slice (assuming it is a view cache) will consist of

pointers to the change-requests that indicate the valid tuples
on April 12, 1990 4:00 p.m., ie., it will be pointers to
change requests issued before April 12, 1990 4:00 p.m. If
we look at this time-slice on May 6, 1990 4:00 p.m., the
change requests after April 12, 1990 4:00 p.m. and up till
April 17, 1990 4:00 p.m. will constitute the differential file of
Emp(NOW — 20 days) because we now need to display the
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TNOW =30 days < TimeA Op=Mod Bemp

Id Op Time Emp_Id Name Salary
id 6 Mod April 20, 1990 12:38 p.m. emp 3 Brown 42 000
id 7 Mod April 20, 1990 12:45 a.m. emp 3 Brown 32 000
id8 Mod May 1, 1990 3:55 p.m. emp 1 Jensen 11 000

Fig. 11. A backlog query and its result. NOW = May 11, 1990.

Br
Srms
R(NOW
Bs

&

S(May 1, #0)

Fig. 12. The differential file (8 prqs) of a view (R »< S) is derived from the differential file(s) (§5) of the relations (R and S) it is derived from.

Fig. 13. A “sliding window” backlog view.

tuples valid on April 17, 1990 4:00 p.m.

F. Summary of Data Structures

It is common practice to distinguish between views and base
relations. In this section we have presented several kinds of
relations. To get a better understanding of these, let us look
at the generally accepted characterizations of views and base
relations. Two dimensions are used to distinguish them. The
first dimension concerns physical storage: traditionally, base
relations are stored while views are computed or virtual. The
second dimension concerns logical derivability: base relations
are not derivable from other relations while views are. See
Fig. 14 where generally accepted characterizations of base
relation and view are summarized [9], [40], [7].

We have given the relation concepts new meaning. Every
base relation has a backlog. All data of such relations are
stored in the relations backlogs in the form of change requests.

Traditional relation concepts

Concept Description

Actual data are stored in the database. The relation
physically exists in the sense that there exists
records in storage that directly represent the relation.
The Emp relation is an example. A base relation
cannot be derived from other relations, and a base
relation definition is part of the schema.

base relation

A view is characterized as a virtual, derived, or
computed relation, and it can be queried as if it
actually were a physically stored relation. A view
definition is part of a subschema.

view

Fig. 14. The usual definitions of relation types.

This makes backlogs act as base relations, and base relations
act as views, derived from backlogs. The new meanings are
described in Fig. 15. Henceforth, we will use the definitions
presented there.

We can summarize the concepts presented in this section as
illustrated in Fig. 16.

We distinguish between backlog views, traditional views,
and base relations. The only difference between views and
base relations is that the former are derived indirectly from
backlogs while the latter are derived directly. A view is valid
only at a single point in time, namely at the time-value
specified when it was produced using the query language.
A backlog has an associated lifespan from the time when
the corresponding base relation was created till the current
time—if the base relation still exists—or otherwise, till it
was deleted. Backlog views inherit this notion of lifespan.

The second dimension in Fig. 16, time dependence, distin-
guishes between fixed and time dependent views. The time of
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Redefined Relation Concepts

Concept Description
Backlogs are the relations that now function as base
relations in the sense that they are stored and that all
backlog

other relations are derived, possibly indirectly, from
these.

Base relations are not necessarily stored, and they are
derived (directly) from backlogs. Thus, the base
relation Emp is derivable from Bgy,;, and is not
necessarily physically existent.

base relation

The data of a view still is, directly or indirectly,
constructable from base relations, or backlogs.
However, even though a view still is derived, it is not
necessarily virtual or computed. Views can be

view

materialized.

Fig. 15. Redefinitions of relation types.

view . materialized data
. time dependent .
base relation » x X view cache

backlog view fixed query modification

Fig. 16. Different types of views.

validity of fixed time-slices of base relations and views and
the lifespan of fixed backlog views never change. Because it is
possible to use the special variable NOW in query expressions,
both base relations, views, and backlog views can be time
dependent. A time dependent base relation can be visualized
as a view that slides along a backlog as time passes. Similarly,
a backlog view can be thought of as a filtering window where
one or both ends (start time and end time) move along a
backlog. Let E be an expression which maps into the domain
TTIME and R a relation. For each time dependent time-slice
R(E(NOW)) there is a differential file, §R(E(NOW)). This
differential file is a sequence of change requests in the backlog
of the relation. These change requests are not yet reflected in
the stored state of the time-slice.

The third dimension of Fig. 16 is persistence. When the
system chooses to store a view, it can be dene in two
ways. First, a view can be stored as actual materialized data.
Second, a view can be stored as a pointer array, where entries
contain pointers to the relations (view or base) from which
the view can be derived. The schema entry for a view contains
information on how to use the data to materialize the view. As
the third possibility, a view might not be stored at all. We have
indicated this with the entry query modification in the figure.

[II. QUERY EVALUATION AND REDUNDANCY CONTROL

Evaluation of queries and management of storage are closely
tied together in the implementation model. First, we discuss
the problem of query evaluation and control of redundancy in
the general setting presented in this paper. Second, we make
simplifying assumptions to reduce complexity and describe an
algorithm for differential computation.

A. A General Framework

We are now in a position to outline the function of the
query evaluation subsystem. We will present only the choices

that the query evaluation subsystem must make in order to
evaluate queries—how it actually makes these choices is left
for future research.

Assume that a query is issued against our database. To
evaluate it, we have to make decisions along the dimensions
outlined in Fig. 17.

It is decided whether the result (subresults are treated the
same way) shall be stored or not, and in the case of storing,
whether a view cache or materialized data shall be chosen.
Some restrictions apply. If we choose to store (see subsection
I1-D) a time dependent result, the subresults that it is derived
from must be stored, too. Also, subresults of any (fixed or time
dependent) view cached result must be stored. The decision is
made by consulting usage and profile statistics for the database.
Statistics should include update and retrieval frequencies for
relations, relation sizes and cardinalities, attribute sizes and
cardinalities, domain cardinalities, etc. [28], [30], [34], [23].
The idea is to estimate whether the results to be computed
might come in handy when future queries are issued against
the database, and the fundamental tradeoff is one between
space/redundancy versus overall computation and retrieval
speed.

If we did choose to store the result and if it is time
dependent, we must then choose an update strategy. Global
system workload is one among several possible triggers for
strategies between eager and lazy. The choice is restricted so
that a relation derived from another relation not is updated
more eagerly than that relation. The choice of update strategy
is one of when and how much to process: a lazy strategy
might compromise the responsiveness of the system for spe-
cific queries, but allows for minimal overall processing time,
too.

The subsystem decides how to most efficiently compute
the query. In general, a strategy—where already computed
and stored, partial results are either decremented or incre-
mented—is selected on the basis of estimated costs. Usage
and profile statistics are used for cost estimation.

Previous decisions on what to store and how to maintain
stored views are reconsidered and possibly changed. This is
necessary to dynamically control the level of redundancy and
the tradeoff between system overhead and response time.

The sequence in which to carry out the above decisions
is not obvious. Even though the activities are interdependent,
there are still many alternative interleavings.

There is definitely a need to investigate a general framework
as the one presented above because no single choice is optimal
in all situations. Due to the overwhelming complexity of the
general framework, we suggest that less general, but stili
promising settings are investigated one at a time.

B. Lazy Evaluation and Cache Indexes

To reduce the complexity of the problem, we make a number
of simplifying assumptions on the query evaluation scheme
discussed above. We choose to consider only lazy evaluation
of time dependent base relations (and views). We disregard
base relations, views, and backlog views that are fixed. Base
relations and views are stored as index caches. The views
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update strategy

redundancy
not store result

store result
index cache

materialized data

lazy

eager

threshold triggered

initial computation
computation procedure is
selected using cost
estimation

Fig. 17. Dimensions for decisions made by the query evaluation subsystem.

corresponding to subresults of queries are stored the same
way as are the final results. Our choices are outlined in
Fig. 18. They coincide with the way the ADMS= system is
designed.

The task of computing a query is now reduced to computing
and storing time-sliced base relations and views efficiently.
This implies the usage of differential techniques. A time-slice
can be either incrementally or decrementally computed from
either older or more recent, stored time-slices. The empty
relation is the oldest possible time-slice, and the current state of
the relation is the newest possible, but not necessarily stored
time-slice.

In Fig. 4 we showed how insertion, deletion, and modifica-
tion requests are entered into backlogs. A modification request
is only a logical construct: at the implementation level, a
modification is represented by an ordered pair of a deletion
request and an insertion request. They have identical time
stamps to distinguish between logical modifications and pairs
of deletions and insertions.

Below, the algorithm freeze produces a time-slice R(t) of R
at time ¢ from the backlog B of R. The time-slice is produced
from the neighbor on the left or right whichever is the most
promising. See Fig. 19. Note that the existence of differential
files of neighbor time-slices is irrelevant; only the references
to the backlog telling when the time-slices were up-to-date
are required. See Fig. 19.

Algorithm freeze identifies the closest neighbor time-slices,
chooses the most promising, and calls procedure increment, if a
left neighbor time-slice is chosen, or procedure decrement, if a
right neighbor is chosen. These two procedures are described
as follows.

Incremental Freezing

increment(R, t,, t)
Res — R(ty)
tt e t,
while change requests with time stamps between ¢t and
t do
pick oldest change request, at ¢¢', bigger than t¢
update ¢t — ¢t/
case request type
DELETE: remove from Res the pointer pointing to
delete-requested tuple
INSERT: insert into Res pointer to change-request
tuple
return(R(t) « Res)

Decremental Freezing

decrement(R, t,, t)
Res — R(t,)
Ho— t,
while change requests with time stamps between
tt and ¢, do
pick newest unmarked change request, at ¢t’, less
than ¢t
update tt — tt’
case request type
DELETE: insert into Res the pointer pointing to
delete-requested tuple
INSERT: remove from Res the pointer pointing to
insert-requested tuple
return(R(¢) «— Res)

Top Level Freezing

freeze (R, t)
Find R(t,), where t, = max{tt < ¢ A
exists a time-slice at time ¢¢}
Find, if it exists, R(¢,), where t, = min{tt > ¢t A
exists a time-slice at time ¢}
if two time-slices are found
then estimate costs of using each time-slice as the outset
if cost(ty, t) < cost(t, t,)
then increment(R, t,, t)
else decrement (R, t,, t)
else increment (R, t,, t)

Computation of Views: Above we covered only base re-
lations. Here we give an example of how a view can be
computed. Assume that we have base relations R, S, and T,
and V(¢) is defined as follows

V() € op R() s (0r, S(t) s w4 T(2)).

To compute V(NOW), ignoring (for clarity) all the permuta-
tions from standard query optimization, we break the defining
expression into subexpressions and look for stored results that
can be chosen as outsets for differential computations:

1) If V(¢), for some ¢, has been computed already, then at
least one—possibly outdated—version of V' exists, and
becomes the chosen view. If several views containing
V(t) exist, again for arbitrary values of t, then the one
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relation type

backlog view

time dependence

X time dependent X

fixed

update strategy
redundancy
—_— eager
not store result

store result X

index cache

materialized data

threshold triggered

Fig. 18. The boxed choices are considered.

o
«
o

o

%

3 cost(t,,t) cost(t,t,) |
— Incr. dec -
R(t,) R(t) R(t,)
Fig. 19. Costs are estimated, compared, and a strategy is chosen.

with the lowest estimated cost is chosen. The chosen
view is, then, used in a differential computation of
V(NOW).

2) If V(t) has never been computed, time-slices containing
o, R(t) are located; one is chosen, and o, R(NOW) is
computed using the algorithms above.

3) If V(t) had not already been computed, we now continue
with the next subexpression of V(¢). If a view containing
or,S(t) b m4T(t) has already been computed, the
most promising is used in the differential computation
of the subview. Otherwise, the two subexpressions are
computed similarly to the computation involving R.

4) Finally, when subexpressions are differentially com-
puted, they are combined in recomputations and the final
result is achieved.

Many details of the computations of views are left unspec-
ified in the description above. Specifically, easily computable
and good cost estimation formulas for choosing between
candidate views are subject to current research.

IV. QUERYING A DATABASE

The time extension and the additional data structures require
an extended query language. We use the standard relational
algebra as a basis for such an extension. In subsection IV-A,
we present and briefly discuss the operators of our data model.
In subsection IV-B, we illustrate the utility of parts of the query
language. Also, we describe how to evaluate queries in terms
of the storage model and algorithm in the previous section.

A. Operators and Notation

A relation (e.g., Emp) is conceptually three-dimensional,
the dimensions being attributes, tuples, and time. However,
no operator can be applied to a relation before it is time-
sliced, which eliminates the time dimension and results in a
flat, two-dimensional time-slice. Therefore, the operators of the
standard relational algebra need little or no change to work in
our setting—the fundamental ones are presented in Fig. 20
along with time-slice. In the next subsection, we will also use
some of the standard, derived operators such as join (><) and
semi-join ().

The special variable NOW has as value the current time,
and it is useful when specifying conditions on transaction
time attributes. Also, observe that tuples of base relations
and schema relations have time stamps. These are hidden to
obtain transparency, but they can be displayed by an explicit
projection. In system generated relations, time stamp attributes
are displayed, but they can, of course, be removed by a simple
projection. Finally, in projections of backlogs, e.g., Br, we
will use the shorthand 7 7ypi Br to mean a projection on all
attributes of R.

The introduction of backlogs, accessible from the query lan-
guage, helps make the extension transparent. It is a transparent
extension of the standard relational model since any query of
the latter model needs no syntactical modifications to work
in the former and retrieves the data intended; updates have
the similar property. Thus, a naive user expecting only the
standard relational model will be able to use the database. This
is a major advantage in practical situations when switching
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Fundamental Operators of the Query Language

Notation Name Description

R(t.)

Time-slice This operator wasintroduced
earlier. The expression ¢, must
evaluate to an element of domain
TTIME. In the literature, the
notationt¢=¢, R is common. It
is slightly more general than our
function application notation
because time interval can be

easily expressed.

The standard projection operator.
In the context of backlogs, we
will use 7, to mean
projection on all attributes of the
associated user-defined relation.

" Projection

Selection The standard selection operator.
op The condition F can contain an
arbitrary subquery.

The standard Cartesian product

X Cartesian product
operator.

— Difference
U Union

The standard difference operator.

The standard union operator.

Fig. 20. Notation, names, and descriptions of fundamental operators.

from a standard model to a more sophisticated one. The
simplicity is a major advantage of our design: The fundamental
relational operators still work and the extension is transparent.

As we shall see next, the inclusion of backlogs accessible
through the query language also opens to interesting queries
related to the change history of the database. Before we do
that, we include a unir operator (), the aggregate formation
operator of [21] (£), and aggregate functions min, count, and
avg (as defined in standard SQL).

The unit operator is used for changing the units and preci-
sion of attribute domains. A detailed definition can be found
in the Appendix. Consider the query

T Time=DayTt, < Time<t, BS

In the result, the domain of attribute Time has been changed
from TTIME to Day, and the values of attribute 7ime have
been transformed into elements of domain Day.

The aggregate formation operator is used for applying
aggregate functions to groups of attribute values. Here, we
use the syntax of [1]:

é.X, att_name=agg_fcl R

where X is a grouping specification, att_name is a new
attribute name, and agg_fct is an aggregate function. The result
of the query is derived in the following way: the tuples of R
are divided into the groups implied by X, agg_fct is applied
to each group, and the resultant value is associated with each
tuple in the group as a value of the att_name attribute.

B. Sample Queries

We present a sequence of queries gradually getting more
and more complicated. In doing this, we stress the role of
differential evaluation. At first, queries on traditional base
relations and views are presented. Then, we discuss how

queries on backlogs are helpful in answering queries on change
history.

Retrieve all employees as of close of business, May 1,
1990.

Emp(May 1, 1990 4:00 p.m.)

This is an example of a fixed time-slice of a base relation. If no
other queries have been issued on the relation Emp, this view is
incrementally computed from Emp(¢;,;;). The result stored in
the database is a set of pointers to Ins tuples (from insertions
and modifications) in B, and a reference to By, that
indicates the time of validity of the time-slice.!

Retrieve all current employees.

Emp(NOW) or, alternatively: Emp

This is a time dependent time-slice of a base relation (see
Fig. 7). When this view is first computed, the previous
fixed time-slice is utilized in an incremental computation.
Later retrievals will utilize the immediate predecessor in an
incremental computation. The differential file of this view
consists of all the change requests to Emp that have arrived
after it was last retrieved/computed.

Retrieve the employees that were in the company’s
database 20 days ago (as of now).

Emp(NOW — 20 days)

This query, with NOW = May 1, 1990 4:00 p.m., was
discussed in Fig. 7 and in the example in subsection II-E.
It is very similar to the previous one, and a computation of
this query will utilize the one of the previously computed and
stored views from above with the lowest estimated cost.

Let us define a view as follows

Rich_Emp(t) = 0 sqtary>s0000Emp(t)

A definition does not result in any computation—all that
happens is that the query expression itself is stored in the
database system. The first step in evaluating any query is to
time-slice the constituent relations. Therefore, to retrieve data
from the view, an expression that evaluates to a value in the
domain TTIME must be supplied and substituted for ¢. Then,
the selection is computed.

Retrieve all very rich employees as of the close of
business May 1, 1990.

O'sa,zm-yzgooooRiCh_Emp(May ], 1990 4:00 p.m.)

This is a fixed time-slice that involves several levels of
computation. First, Rich_Emp is substituted for its definition
as in Ingres-style query modification. Second, the time-slice is
computed. Third, the selection(s) is performed. Depending on
whether the two selections are collapsed into one (the second)
the computation of the query results in two or three separate
index caches: the initial time-slice (the first selection), and the
second selection.
Retrieve all very rich employees.

0 Salary>80000Rich_Emp(NOW)

! The time of validity is the half-open interval that contains May 1, 1990
4:00 p.m. and is bounded by the two closest time stamps in Bgpy.
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This query differs from the previous one in that it is
time dependent. To compute the very rich employees, the
Rich_Emp, in general, must be brought up to date first.

Let us now turn our attention toward queries directly in-
volving backlog relations. Initially, let us look at how the
usefulness of backlog relations supplement that of usual re-
lations.

Let us suppose that we want the changes to Emp between
t, and t,. Although not the only possibility, we can write this
query (cf. [15]):

Emp(ty)—Emp(tx)

The result of this query is the tuples in Emp at t,, not in Emp
at t,. This does not tell us what took place between ¢, and
t,. For example, we will not retrieve any deletions that might
have taken place in the time interval. If we really want to
know what took place between ¢, and t,, we would be better
off using the backlog of Emp. We have to make clear precisely
what we want. Let us look at some possibilities.

Tt <Time<ty BEmp

This query retrieves all possible information about what hap-
pened to Emp. Insertions, deletions, and modifications are
distinguished, and the times when the requests were placed
are available.

T Tuple Ot < Time<t BEmp
P Y

This query eliminates the special backlog attributes from the
result. Thus, several changes back and forth between identical
Emp tuples will be eliminated, and it will not be possible to
distinguish between operation types anymore.

T Tuple, TimeOt, < Time<t, BEm,p

The result of this query differs from the above in that time
stamps are retained, potentially allowing more tuples to be
retrieved. Still, it is impossible to distinguish a modification
from a deletion which in many cases may be unfortunate.

T Tuple, TimeOt, < Time<t,AOp=Ins BEmp

Here we get the time stamped tuples that were inserted in the
interval. The result is a list containing the employees hired in
the interval.

T Tuple, TimeTt, < Time<t, /\Op:DelBEmp

Here we retrieve the employees removed from the company’s
database.

T Puple Tt , < Time<t, A(Op=InsV Op=Mod) BEmp

Finally, we have retrieved all employees that had changes
because they were either hired or their previous data were
updated.

The possibilities listed above are by no means exhaustive,
but are representative of the large number of easily formulated
queries possible on backlogs. Let us now take a look at the
evaluation of other kinds of queries.

To get the time when the first employee was removed
from the company database after April 30, 1990, we use
the aggregate formation operator and the function min.

T Min_date 6-,Min_date=min (Time)

T Apr.30,90< TimeA Op=Del BEmp

Because change requests are ordered according to time stamps,
the system need not first retrieve all Del change requests
inserted after April 30, and then, find the one with the smallest
time stamp value; instead, the qualifying tuple can be retrieved
directly.

Find all the employees at ¢, that changed between ¢, and
ty. This query and the following involve both a time-sliced
base relation and a backlog.

Emp(t:v) X T Tuple Ot, < Time <ty AOp=Mod BEmp
The compliment is given by
Emp(tz) = T TupleTt, < szeStﬂ\Op:ModBEmp

Note that if expression ¢, does not contain variable NOW, the
results of these queries are fixed. Once computed, they never
get outdated.

The following query results in a list of name and time
pairs of employees with changes on December 27, 1988,
but with a time granularity of one hour.

T Time=Hour™ Name, Time

O Dec27,88< Time§Dec.28788/\0p=ModBE'mp

If an employee changes salary more than once within the
same hour (e.g., as a result of a typing error and a following
correction), this will not be visible in the result because the
unit operator rounds off to the closest hour. ‘

Next, we want to retrieve the employees that had their
record changed about the average number of times during
the last 2 years. It can be done with the queries:

Ql = 7'rNu,'m,e,Countgl\/'ame,C'ou,nt:cmm’r,t(Tz'me)
O Op=Mod ANOW —2 yrs< Time B Emyp
QZ = T Avg_count E—,Avg,count:avg(CaunL)Ql

QS = T NameT .8xQ2< Count<1.2%Q2 Ql

In 1, we count for each employee the number of times
the record was changed within the given 2 year period. The
attributes of the view are named Name and Count. This is
an example of a sliding time window on a backlog screening
out irrelevant tuples and aggregating relevant tuples (review
Fig. 13). Differential techniques are used to keep Q1 up to
date. In Q,, we then find the average number of changes.
In Q3, we finally compare the number of changes of an
employee’s record to the average number of changes and keep
employees that are close. Note that we use query @2 in the
selection criteria of query Q3. While this is nonstandard, it is
also well-defined and convenient.

We retrieve the employees with abnormal change pattern

by

T Name O Op=ModANOW =2 yrs.< TimeBEmp — @3
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If we want only the employees with very few record changes
during the last 2 years, we can issue this query, using @; and

Q2!
T NameO Count <0.2xQ; Ql

In summary, we have shown how to conveniently retrieve
detailed information about the change history of relations. We
have used differential computation of queries formulated in the
operation language of our extended data model. In particular,
we have demonstrated the convenience of the backlog relation.

V. CONCLUSION AND FUTURE RESEARCH

We have presented a relational data model extended with
transaction time, and a differential implementation model for
it.

The data model is a tuple time-stamping static rollback
model—its advantages are twofold. First, it is very simple;
only one new operator is fundamental for the model, the time-
slice. In addition, we have included the nonstandard operators
unit and aggregate formation, the special variable NOW, and
transaction time valued expressions. The model is, also, a
transparent extension of the standard relational model—in
part, achieved by introducing backlogs. The accessibility of
backlogs through the query language provides the second
advantage—it, is easy to retrieve detailed information about
the change history.

The implementation model exploits techniques for ea-
ger/lazy update and differential computation in the context of
materialized views stored as either index caches or data, and it
is the first to integrate these techniques into a coherent whole.

Several topics touched upon in this paper are subjects
for current research. Most prominently, we are investigating
further the general framework discussed in subsection III-A.
Sets of rules and cost estimation formulas for the decisions of
the query evaluation subsystem are being developed. These
include rules for when and how views should be stored;
rules for how often a stored, time dependent result should be
updated; and rules for which existing results should be used
in differential computations.

Topics for future research include

* Extending the query language to support queries on
change behavior. This includes investigation of facili-
ties for detection of common patterns of behavior and
deviations from these.

* The development of vacuuming subsystem that allows for
the specification and actual removal of temporal data not
needed by any application. While it deletes data, such a
subsystem never changes the history as recorded in the
database.

APPENDIX

Here we define the unit operator, Y, used for changing units
and precision of attribute domains. We focus on the precision
aspect of the operator and choose to refer to [20] and [14] from
where it follows that conversion between compatible units
can be done algorithmically applying simple linear algebra

Units
Domain, Domaino Factor Decimals
Dy D7, iy Ciy
D, Df? ki, Ciy
Dy, Df kiy iy
Fig. 21. The relation Units.

techniques. Also, the issue of information loss due to finite
arithmetic is beyond the scope of this presentation.
The syntax of the operator is as follows:

Tas =D A, =D5, 4, =D
. R(Al : Dl,AQ . DQ, . ‘~,An : Dn)

where 1 <4; <n, j=1,2, --- k.

The result of this query is relation R with domain D;, of
attribute A;, changed to D?, domain D;, of attribute A,
changed to Dy ,---, domain D;, of attribute A;, changed to

T

.

A special relation, Units, contains information about which
domains are compatible and how to make the transformations.
It has four attributes: Domain; and Domain, are each character
strings listing domain names. Factor is a real number, and
Decimals is an integer. See Fig. 21.

The jth entry in the Unit relation tells that an element in
domain D;, can be transformed into an element in domain
D7 by multiplying it with %;,, and when representing the
element in scientific notation, allowing c;, decimals. The user
can insert, delete, and modify tuples from this relation. In
accordance with the normal convention, the operator rounds
off to the closest value in a coarser domain.

In connection with domain TTIME, we have chosen the
default unit to be minutes and the lowest unit to be seconds.
Tuples, allowing for Second, Minute, Hour, Day, Week, Month
and Year, have been inserted into Units. These units have zero
decimals.
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