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In our research area, query processing in the relational model extended with transaction time [1, 2, 3, 4], replication

of data combined with differential computation techniques is fundamental for the achievement of high performance.

Our research project can be described as follows.

We have defined a static rollback relational data model with tuple time-stamping [5, 6]. For each relation defined

by the user, the system maintains a backlog that records all requests for changes to its user-defined relation. The

backlogs contain all the data necessary for answering any query without replication. We have designed an extended

query language that allows access to previous states of relations (including backlogs) and allows to ask queries

about the change history of relations. We also have developed vacuuming facilities to control otherwise ever-growing

amounts of data in a transaction time database [7].

To support queries efficiently, we maintain a cache of views stored as either actual data (true replication) or

as pointer structures (pseudo replication). A special cache index is used for fast identification of cache entries

potentially useful as outsets in differential (i.e. incremental or decremental) computations of queries. The cache

index is augmented with statistics about the cache entries. We use state transition networks for enumerating query

plans. The number of alternative query plans is reduced by pruning rules, and plan selection can be done using the

statistics of the cache index in conjunction with either dynamic programming techniques or heuristic techniques (e.g.

the A∗ algorithm). Our framework is the first to integrate pointer/data storage and incremental/decremental/re-

computation.

Our replicated data management problems can be characterized as follows.

1. Which statistics should be kept about cached views?
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The cost of maintaining statistics should be lower than the advantages gained from using them (see below).

The following are possible candidate statistics: Fixed/time-dependent, cardinality, tuple size, up-to-date status,

number of times used, when materialized, first time used, last time used, initial computation cost, and cost of

usage.

Closely related problem are how precise statistics we need (precision costs) and how the statistics are efficiently

maintained.

2. Which views should be cached, and should data or pointer caching be chosen?

This is one possible application of the mentioned statistics. Statistics reflecting query patterns should be given

special interest.

3. For which cached views should eager propagation of updates be chosen? For which views are a threshold

triggered strategy appropriate, and for which should a lazy strategy be chosen?

There are obvious advantages to use eager update for views representing current states of relations, and it is

likely that threshold triggered and lazy update should be adopted for almost all other views. Statistics will

again play a central rôle.

4. How are statistics used for cache management? What is the significance of individual kinds of statistics? Are

simple protocols from buffer management (e.g. Least Recent Used) appropriate?

In the past, techniques of view materialization and incremental computation (data [8], pointers [9, 10, 11]) have been

used in centralized, non-temporal relational databases. Recently, efforts have been put into the update of distributed

materialized views [12, 13, 14, 15], also for non-temporal databases. The introduction of view-materialization together

with incremental computation has lead to significant gains in performance.

The use of the techniques is largely unexplored in temporal databases (transaction time and logical time) where

they have a great potential (cf. [16]). Furthermore, in transaction time databases as ours, we expect techniques of

view materialization and differential computation to be essential for the achievement of high performance. Other

alternatives such as no caching (and high computation costs) or no backlogs (and storage of each individual state

instead) are unrealistic for large databases. In our setting, some views never get outdated and it is possible to predict

(with arbitrarily fine precision) the outdatedness of some other views—this is not the case in the standard relational

model.
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