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Abstract

‘We present a framework for query processing in the relational model extended with transac-
tion time. :I‘he framework integrates standard techniques for query optimization and computa-
tion with techniques for incremental and decremental, i.e. differential, computation from cached
and indexed results of previous computation in order to provide efficient processing of queries
on very large temporal relations. Alternative query plans are integrated into a state transition
network, where the state space includes backlogs of base relations, cached results from previous
computations, the cache index, and intermediate results; transitions include standard relational
algebra operators, operators for constructing differential files, operators for differential com-
putation, and combined operators. A rule set is presented to prune away parts that are not
promising, and dynamic programming techniques are used to identify the optimal plan of the
resulting state transition network. An extended logical access path serves as a “structuring”
index on the cached results and contains in addition vital statistics for the query optimiza-
tion process, including statistics about base relations, backlogs, about previously computed and
cached, previously computed, or just previously estimated queries.

The framework exploits eager, threshold triggered, and eager propagation of update to ensure
consistency betwgen base data and cached data. It integrates previously proposed approaches
to supporting views, i.e. recomputation, storage of data snapshots, and storage of pointer struc-

tures, and it generalizes incremental computation techniques to differential computation tech-

niques.
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1 Introduction

The introduction has three parts. First, we introduce the subject of the paper along with some
motivation. Second, we discuss the relation to previous research efforts, and third, we outline the

structure of the paper.

1.1 The Main Ideas

The relational model as formulated by E. F. Codd about twenty years ago [Cod70, Cod79] has gained
immense popularity and is today regarded as a defacto standard for business applications.

A main reason for the success is the generality of the model; it makes very few assumptions
about specific application areas. This, however, is a disadvantage as well, because the relational
model does not provide detailed, and customized, support for its application areas. Extensions that
make the relational model more suitable for the application areas have been an area of interest in

the database research community ever since the relational model was proposed.

This paper presents an implementation model, IM/T, for an extension of the relational model
supporting transaction time, DM/T [JMR89, JM89]. Once entered into a database of a data base
management system (DBMS) supporting DM/T, data are never deleted, and it is possible to see
the database as of any time during the .past. Comnsequently accounting for the past is supported,;
decision support tools are provided with access to historical data, and future business policy can be
based on detailed analysis of the past. It is possible to relate past states and analyze change history.
Many applications will benefit from efficient transaction time support. In the literature, economet-
rics, banking, inventory control, medical records, and airline reservations have been mentioned as

candidates [MS89). Also, engineering applications will benefit.



As can be imagined, efficient transaction time support is not without complications. Retaining
not only the current state, but any past state makes relations very large and ever growing. Traditional
implementation models are not sufficient to cope with huge, ever growing quantities of historical data.
The predominant approach taken to solve this problem has been partitioned storage, where data
of individual relations are partitioned, and a storage hierarchy is maintained which favors efficient
support of queries solely accessing recent data. Partitioned storage is inflexible in that only recent
data are accessed efficiently. The motivation for transaction time support, in the first place, was that
historical data actually were of interest. While still allowing for partitioned storage, IM/T organizes
data as changes to frequently accessed states, recent or old, of individual relations thus providing

efficient support of any state.
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Figure 1: Overview of IM/T. There are three stores, one for backlogs containing base data, one for

materialized views, and one for the ELAP containing statistics and representing the structure of

base and derived data. During query optimization plans using the stored data are enumerated in

STN’s.

IM/T exploits caching of query results. Caching is the idea of storing on secondary memory
results of previous computations and subsequently using them to avoid doing expensive computations
over and over again. Caching trades replication of data for speed of retrieval. It is potentially a very
powerful technique, but a number of issues must be dealt with intelligently in order to gain the full
benefits. Let us mention the most important ones.

First, there is the question of how to store results. In IM/T query results can be stored as actual
data or as pointers, pointing, possibly via several levels of indirection, to base data. Pointer cache
storage gives a fixed, small tuple size and makes results very compact thus allowing for efficient use
of main memory. In extreme cases, however, to retrieve a result stored as pointers, one base data

page must be read for each pointer. Data cache storage solves the potential problem, because 1t



allows for control of locality of reference, and it in addition allows to eliminate references from the
cache to base data on slow storage.

Second, the utility of caching can be improved by means of cache indexing. The index of IM/T,
the Extended Logical Access Path (ELAP), allows for efficient identification of all results potentially
useful during processing of queries. It can be thought of as a persistent query graph with nodes
for all cached results. Apart from a reference to the result, a node contains statistics about the
result useful during query processing. In addition, the ELAP contains nodes for results not cached,
if statistics are available.

Third, to gain full benefit of caching, results should be used in conjunction with differential
computation techniques. The application of such techniques prolongs the lifetime of cached views
because slightly outdated views need not be discarded and then recomputed, but can instead be
efficiently incremented/decremented to the requested state. IM/T generalizes incremental compu-
tation to differential computation (i.e. both incremental and decremental) and unifies traditional
recomputation and differential computation.

Fourth, the issue of cache management must be dealt with. Only potentially beneficial results
should be cached, and if the cache is full, appropriate replacement strategies must be used. Cache
management is part of IM/T| but it is not a topic of this paper.

Fifth, the fact that cached results get outdated must be addressed. A result is outdated if it
does not correctly reflect its defining query expression given the current state of the base data. In
IM/T cache update is done differentially. Also any strategy ranging from eager (i.e. when relevant
base data are entered) over threshold triggered to lazy (when the result of the defining expression
is requested) update is possible. Eager update favors retrieval speed at the expense of overall work
load and insertion speed. Lazy update, on the other hand, favors insertion and overall work load at
the expense of retrieval speed. We can control these trade-offs. The details of cache update are not
part of this paper.

In IM/T there is a choice of caching computed queries. The motivation is that neither no caching
(and recomputation) nor caching of all computed queries (and differential computation) is superior
to the other in every given situation. In particular, when the database environment is characterized
by relatively many updates, recomputation is superior. This is so because update of existing views
becomes costly when there are many updates to be processed. Caching is attractive iﬁ environments
characterized by (1) many queries and few updates, (2) very large underlying base relations, (3)
comparably small views.

In a temporal setting the maintenance of stored views is likely to be more feasible than in snapshot

settings. This is so because (1) relations are large because previous states are retained (2) different



kinds of views have different characteristics when it comes to storage feasibility; for example are fixed
views primary candidates of caching because they never get outdated (3) the future outdatedness of
time-dependent views issued against past states can be estimated at the time of computation. The
temporal setting provides for essential additional semantics for the process of selective caching of

views.

Now, let us outline how cached results, differential computation, and recomputation are inte-
grated in query processing in IM/T. Query processing consists of (1) transformation into an internal
representation, (2) query plan generation, (3) plan selection, and (4) query computation.

We use relational algebra for the internal representation of queries. Query plan generation in
IM/T is based on the general concept of State Transition Networks (STN’s). An STN is a directed
acyclic graph. To optimize a query, IM/T generates a STN where the initial node contains the
uncomputed query. A transition takes place when cost estimation of a partial computation towards
the total computation takes place. In this way a cost is associated with each transition. A final
state is reached when there are no more computations to estimate. By following each path from
the initial to the final state, costs of alternative processing strategies can be accumulated, and upon
comparison, the most promising can be chosen for actual processing. We use dynamic programming
for plan selection. See figure 1.

Candidate results from the cache are used, and both recomputation and differential computation
versions of the operators of the query language of DM/T are possible transitions. Apart from
defining the operators, we discuss how to efficiently implement the differential versions. In addition,
combined operators are introduced to minimize the need for storage of intermediate results during
query computation.

In the context of very large relations, accessing data is likely to be costly compared to accessing
statistics (meta data) and main memory processing. Therefore, it is desirable to spend considerable
efforts during query optimization. Never the less, we put forward a set of rules aimed at pruning
the STN’s generated, the idea being to avoid generating inferior paths and thus save both cost
estimation time and space. The rule set includes standard rules for query optimization, and new

rules. Therefore, IM/T builds on and further extend standard optimization techniques.

1.2 Related Work

The work presented in this paper touches upon several issues within databases that have been subject
to previous research, including design of temporal data models, storage and retrieval of temporal

data, caching techniques, support for persistent views, incremental computation techniques, query



optimization, and state transition networks. In this subsection we outline related research in these

areas.

This paper is about optimizing and computing queries of the data model, DM/T, which was
originally presented in [JMR89], and its expressive power was investigated in [JM89]. One of the
major concerns in the design of DM/T was to provide a small yet powerful extension of the relational
model. Consequently, DM/T was designed to be completely transparent to a naive user only expect-
ing a standard relational model. Although increasingly intense efforts have been put into design of
temporal extensions of the relational model (see, for instance, [SS88, SA85, BADW82, Sno87, MS89]

for surveys and further references) none so far shares this characteristic.

Efficient implementation of transaction time data models is difficult and has not been addressed
until recently. As already mentioned, traditional implementation models fall short of meeting the
requirements for efficient support of transaction time. Their performance is inversely proportional to
the total amount of data. While the total amount grows, the amount of current data is a relatively
stable quantity. This observation, and the assumption that current data are needed more frequently
and urgently than old data, served as the motivation for partitioned storage, where tuples of relations
are partitioned according to the values of their time attribute. To avoid waste of space, the technique
of storing previous states as changes to the current has been advocated (reverse chaining). Then
old states can be decrementally computed. Aspects of partitioned storage, in different settings, have
been addressed by [DLW84, LDE*84, Ahn86, SA88, S1.89]. We regard it as one step along the
path towards efficient and flexible support. Therefore we include it in IM/T where both reverse and
forward chaining are possible.

In [KS89] the problem of maintaining R-tree like indices on historical data migrating from mag-
netical disk to write-once read-many optical disk is discussed. Indices residing on either magnetical
disk only, on optical disk only, or on both types of disks are compared.

Grid files have been suggested as a means of implementation [SK86], but seems inappropriate
since surrogates, for which no natural ordering exists, should be one dimension (and time the other).
In addition, indexing of other attributes is not allowed, which again is unsatisfactory. The work
reported in {[RS87a] is similar in that data of a temporal database is perceived as multi dimensional,
time being one dimension. The subject of that paper is the problem of multi dimensional file partition
for static files.

The research reported in [GS89, SG89, GSS89] is concentrated on different kinds of temporal

joins (time-union, time-intersection, and event-joins) and temporal selectivity estimation. We do



not address these issues.

The work most closely related to the present is presented in [McK88] where a data model support-
ing both transaction time and what is termed valid time is formally defined, and an implementations
based on incremental techniques is discussed. Our work share the basic assumptions behind the dis-
cussion of implementations, i.e. application of incremental techniques based on persistent views,
and the integration of a logical access path into the framework. The focus of [McK88] is, however,
different from ours. His main focus is on the data model level. As a part of those efforts incremental
relational algebra operators, resembling those of our state transition space, are formally defined.
In addition a thorough survey of previous efforts on applying incremental techniques in settings
supporting the standard relational model is given, and this is extended into a discussion of ways
to combine the benefits of previous efforts into an advantageous implementation in a setting where
both transaction time and valid time is supported. Our work contrasts by concentrating on imple-
mentation and on transaction time, only. We present a detailed design of an implementation model

where the main concern is the description of a framework for query optimization and processing.

IM/T exploits caching of views. There are many aspects of this technique and the literature
contains many contributions to its understanding.

The concept of snapshot addressed in [AL80, Adi81] resembles that of a view. A snapshot is
defined in terms of a query expression involving base relations, and it is persistent. However, once
computed it is separated from its defining relations and perceived as a base relation on its own; it
can not be updated, but can be refreshed, i.e. recomputed. Since a snapshot shows a selected part
of the database “as of” a past time it can be thought of as a primitive support for transaction time.

In [SR88] an analytical queueing model and a classification of algorithms for maintenance of
materialized views is presented. The model enables policies for when to update views to be proven
optimal for differing processing environments, considering both response time and processing cost.

Several researchers have applied the idea of materialized views to processing in distributed set-
tings, where materialized views can be seen as a compromize between fully synchronized replicated
data and single copies of data. The problems of how and when to update views have been addressed.
One of the most recent publications is [SF89b], where the problem of determining optimal policies
for updating distributed materialized views is addressed, and an analytical model incorporating a
minimum-cost objective function is put forward. Optimization is constrained by specifications of
maximal allowable user response times, maximal allowable outdatedness (currency) of materialized

views, and a particular view update policy. See this work (and [SF89a]) for expositions to aspects

of materialized views relevant to distributed processing.



The performance of three techniques, lazy incremental computation, eager incremental compu-
tation, and recomputation has been compared in {Han87]. It was demonstrated that none of the
techniques were superior to the others at all times. This supports the decision of including them all
in IM/T.

In [Sel87, Sel88a] caching of query results is addressed, the motivation being to support efficiently
query language procedures (programs, rules) stored in relational fields. Which results of procedure
invocations to cache and cache replacement strategies are relevant topics addressed. See also [Jhi88],
where separate caching of results of procedure invocations is compared and found generally superior
to caching in tuples.

Techniques aimed at reducing the cost of maintaining materialized views have most recently been
reported in [BCL86, BCL89, TB88]. The ideas are to detect updates to base data that do not affect
a view, and to detect when a view can be correctly updated using only the data already present in
the view. We do not address these techniques.

For references to work on general caching (i.e. caching of disk blocks of data), see [AHHS9)
where an analytical cache model is proposed, [EB84], where the conventional buffer is generalized
to a database cache and issues related to transaction management are addressed, and [RD89] where

frequency based replacement is explored.

IM/T generalizes and unifies traditional recomputation and incremental computation into a
setting where a single query can be computed partly using both recomputation, incremental compu-
tation, and decremental computation. Traditional systems use recomputation (e.g. Ingres [WY76],
System R [SAC*79], and more recent systems). In [KD79, KD84] it is described how to extend the
RAQUEL II database management system to support dynamic derived relations using eager incre-
mental update. In ADMS(:), a database management system implementing the standard relational
model, incremental computation of views stored as pointer structures is used [Rou82, Rou89, Rou87|.
The system employs deferred update based on differential files. In the database sytem Cactis, based
on the Cactis Data Model, a two-pass graph traversal, incremental update algorithm for derived
attributes is used [DKH]. In the first pass of the lazy algorithm, outdated derived attributes of

an attribute dependency graph are identified; in the second pass recomputation of only identified

attributes is done.

There is some resemblance to Postgres, where previous history also is retained. The temporal
support, however, never was the point of focus, and neither time stamps nor backlog queries including

distinction of insertions, deletions, and modifications is supported. Postgres exploits caching, but



since indexing and differential cache maintenance and query execution are missing, the full potential

of caching is not achieved [RS87b].

IM/T benefits from and builds on previous work on query optimization as reported in e.g.

[SC75, SACt79, JK84, JKS84, $$85, STNOSS].

State Transition Networks have to our knowledge never been applied in a temporal setting and
in settings involving caching. In [LW86] STN’s are used as a framework for query optimization in
a distributed environment. There a state is a vector of the same dimension as the number of sites,
and each entry contains the relations located at a site. A transition happens when a set of pairs
of relations in one state are joined and then possibly projected and selected. In order to apply
dynamic programming to the problem of finding optimal paths in STN’s, the separation assumption
is made. Therefore, it is not possible to take into account the physical ordering of tuples in relations,
and the contribution is limited to a strictly logical level. In [HW89] STN’s have been applied to
multiple query optimization. The particular state and transition spaces of IM/T are new, and so,

consequently, are the issues that arrive from dealing with them.

1.3 Structure of the Paper

The next section, Transaction Time in the Relational Model, DM/T, section 2, presents the
data model of IM/T and serves as a specification of the functionality to be supported. First, the
transaction time concept of DM/T is characterized; second, the data structures of the model and
third, the query language is presented; fourth, physical and logical aspects of the data model are
related to the standard relational model. The remaining part of the paper is devoted to IM/T, i.e.
the efficient processing of DM /T queries.

Section 3, Structures of the Implementation Model, IM/T, describes the three stores of
IM/T. First, storage of base data is considered. Second, the architecture of the cache is presented,
and third, the ELAP is described.

Secf.ion 4, Query Plan Generation and Selection, is the most central part of the paper. First,
the general notion of State Transition Network is presented as a means of enumerating alternative
query plans. Second, the graph search problem of how to collect costs of entire plans from costs of
single transitions is discussed. We choose a dynamic programming approach. Third, the concrete
state and transition spaces incorporating the use of cached results and differential computation
along with standard query computation techniques and support for combined operators is presented.

Then, fourth, an example that shows how the STN of a query, for a specified state of the cache, is



generated. Fifth, it is discussed how the ELAP is used to find promising results from the cache, to
be considered when STN’s are generated. Finally, some of the trade-offs made during the design of
IM/T are discussed.

In section 5, Implementation of Operators of STN’s, we look at the operators of STN’s in
more detail, and point to ways of implementation. An overview ot the operators is given, genral
assumptions are presented, and the three types of operators, recomputation operators, operators
that construct differential files, and differential operators, are discussed in turn.

The topic of section 6, Pruning the Search Space, is further query optimization. Rules, to be
integrated into the framework of section 4, that specify preferred state transitions, are presented.

Section 7, Conclusion and Future Research, is the final section. We review the features of

the implementation model point to an extensive set of very interesting current and future areas of

research.

2 Transaction Time in the Relational Model, DM/T

In this section we briefly introduce the data model DM/T, a transaction time extension of the basic
relational model [Cod70, Cod79], which was first introduced in [JMR89].

The purpose is to define the functionality to be supported by the query evaluation system, i.e. the
kind of queries to efficiently support. We only present the data structures and the query language

of DM/T and will mainly focus on how it differs from the basic relational model.

2.1 Transaction Time Concept

In this subsection we briefly characterize the the time concept supported by DM/T.

Within the area of temporal databases two orthogonal time dimensions have been studied [SA85).
Logical time models time in the reality modeled by a database. Transaction time models time in
the part of the reality that surrounds the database, the input subsystem. While logical time is

application dependent, transaction time depends only on the database management system, and is

inherently application independent.

DM/T supports transaction time. Figure 2 characterizes the particular transaction time concept

we have chosen.
First, the time domain is characterized as transaction time as opposed to logical time.

Second, a domain is regular if the distances between consecutive values of the active domain are

identical. Otherwise the domain is irregular. We support an irregular time domain.
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regular discrete _
X X X X
logical arbitrary manual

Figure 2: The time concept supported by DM/T.

Third, a time domain can be discrete or stepwise continuous. Facts with discrete time-stamps
are only valid at the exact times of their time stamps. In contrast, in a stepwise continuous domain
facts have an interval of validity. Our time domain has this property, because, until a relation is
changed by another transaction, the data as they were after the previous transaction are valid, i.e.
they are part of the current state of the database.

Fourth, we support true time as opposed to arbitrary time. True time reflects the actual time of
the input subsystem while an arbitrary time domain only needs to have a metric and a total order
defined on it.

Fifth, we finally have automatic time-stamping, which is the natural choice for transaction time.

Manual, user supplied time-stamp values are natural for logical time.

We have chosen tuple stamping as opposed to attribute value stamping. The major motivation

has been to provide a 1.NF model which is a simple and yet powerful extension of the basic relational

model.

2.2 Backlogs, Base Relations and Views

Here we present the data structures of DM/T as seen by the user. These structures are the arguments
that can be manipulated by the operators of DM/T.

In order to record detailed temporal data and still be able to use the operators of the basic
relational model we have introduced the concept of a backlog relation.

A backlog, Bg, for arelation, R, is a relation that contains the complete history of change requests
to relation R [RK86].

The schema of relation R and its corresponding backlog is shown in figure 3.

Each tuple in a backlog is a change request. As shown, B contains three attributes in addition
to the attributes of R. Id is defined over a domain of logical, system generated unique identifiers,
i.e. surrogates. The values of Id represent the individual change requests, they can be referenced
but not read by users/application programs. The attribute Op is defined over the enumerated
domain of operation types, and values of Op indicate whether an insertion (Ins), a deletion (Del)

or a modification (Mod) is requested. Finally, the attribute Time is defined over the domain of

11



Relation name

R

Atiribute name

Domain name

A D,
As Dy
A, D,

Relation name Br
Atiribute name | Domain name
Id SURROGATE
Op {Ins, Del, Mod}
Time TTIME
A Dy
Az D,
An D,

Figure 3: Schema for the relation R and its backlog, Br.

transaction time stamps, TTIME, as discussed in the previous subsection.

A DBMS supporting DM/T automatically generates and maintains a backlog for each base

relation (i.e. user defined relations and schema relations). Figure 4 shows the effect on backlogs

resulting from operation requests on their corresponding relations. When an insertion into R is

requested the tuple to be inserted is entered into Br. When a deletion is requested key information

is entered into the backlog and in the case of modification both key information and new values are

inserted into the backlog!.

The Effect of Requested Operations on Backlogs

Requested operation on R:

Effect on Bpg:

insert R(tuple)

insert Br(id, Ins, time, tuple)

delete R(k)

insert Bgr(id, Del, time, tuple(k))

modify R(k, new value)

insert Br(id, Mod, time, tuple(k,new value))

Figure 4: System controlled insertions into a backlog. The function “tuple” returns the tuple

identified by its argument.

As a consequence of the introduction of time stamps, a base relation is now a function of time.

To retrieve a base relation it must first be time sliced. Let R be any base relation, then the following

are examples of time slices of R:

R(tinit)

def

R»im't

10n a lower level modifications are modeled by a deletion followed by an insertion, each with the same time stamp.

12




R(t,)
R ¥ Rvow)

R”at time 1,7, 1z > tinit

When the database is initialized, it has no history and it is in an initial state, possibly with
every relation equal to the empty set. If R is parameterized with an expression that evaluates to a
time value, the result is the state of R as it was at that point in time. It has no meaning to use a
time from before the database was initialized and after the present time. If R is used without any
parameters this indicates that the wanted relation is the current R. Time sliced relations have an
implicit time stamp attribute, not shown unless explicitly projected. Note, that these features help
provide transparency to the naive user. We also introduce the special variable NOW which assumes

the time when the query is executed.

If the expression, E, of a time sliced relation, R(E), contains the variable N OW, then R is
time dependent. Otherwise, it is fized. While fixed time slices of relations never get outdated, time
dependent time slices of relations do and are consequently correctly updated by the DBMS before
subsequent retrievals.

A view is time dependent if at least one of the relations and views it is derived from is time
dependent. Otherwise it it fixed. Traditional views are ultimately derived directly and solely from
time sliced base relations. If a view ultimately is derived directly, i.e. not via a time sliced base
relation, from at least one backlog, then we term it a backlog view. Backlog views are time sliced

as are base relations and views. We define:

Br(t:) o OTime<t, BR
def
Br & Br(NOW)

Backlog view time slices involving NOW are time dependent, and, as above, so are backlog views

derived from views involving NOW.

2.3 Query Language of DM/T

By introducing the time slice operator that makes a temporal relation into a normal “flat” relation
it has become possible to basically use the standard relational algebra as the query language. Fig-
ure 5 outlines the query language. Together with the types of arguments outlined in the previous
subsection it describes the functionality supported by DM/T. The solid horizontal lines partition
the operators into: the time slice, the fundamental operators, and derived and extended operators.
We adopt a set of precedence rules to simplify the appearance of query expressions. The prece-

dence of all unary operators are the same, the precedence for all binary operators are the same,

13



and unary operators have the highest precedence. Parenthesis are used to control precedence in the

standard way, and application takes place from left to right.

Operators of the Query Language

Notation Name Description

R(tz) time slice This operator already was introduced and discussed earlier in the
paper. In the literature the notation 7=, R is common, but in

the present setting the function application notation is the most
convenient.

T Projection The standard projection operator. In the context of backlogs we
will use Tpypi. to mean projection on all attributes of the associated
user-defined or schema relation.

oF Selection The standard selection operator. The condition F can contain an
arbitrary subquery.

X Cartesian product | The standard Cartesian product operator.
- Difference The standard difference operator.
U Union The standard union operator.

N Intersection The usual definition applies: RNS e R (R—S)=5S—-(S—R)
J3 (Theta) Join | The standard definition: R Mg S ' op R x S. If no condition
F is specified natural join is assumed.

DF Semi join RbFpS def Tau(r)(R XF S), where Att(R)is the attributes of R.
“aggregate functions” We allow for a full range of aggregate functions: max, min, mean,

count, avg, sum, product, unit.

Figure 5: Notation, names and descriptions of standard operators.

EXAMPLE: Let a sample database contain the relation Emp having attributes Name, Height, and
Salary with the obvious meanings; the domains are irrelevant for the purpose of the example.

The tables following show four simple queries possible. For all queries, NOW = 4:00 pm, May ~
1. 1989.

14



BEmp

Id Op Time Name | Height| Salary
“surrogate” | Mod | 0420891238 [ Brown | 178 |42 000
“surrogate” | Ins |0408891034 | Brown | 178 |32 000
“surrogate” | Ins | 0402891456 Mark | 177 |90 000
“surrogate” | Mod | 0420891245 | Brown | 178 |32 000
“surrogate” | Ins | 0331891131 ]Jensen | 188 |10 000
“surrogate” | Del [0415891209{ Mark | 177 |90 000
“surrogate” | Ins |0419890902{ Smith | 170 |30 000
“surrogate” | Mod [ 0501891555 Jensen | 188 |11 000

ONOW —30 days < Time < NOW A Op = Mod BEmp

2.4 Logical and Physical Aspects

Id Op Time Name | Height| Salary
“surrogate” | Mod | 0420891238 | Brown | 178 {42 000
“surrogate” | Mod | 0420891245 | Brown | 178 |32 000
“surrogate” | Mod | 0501891555 | Jensen | 188 |11 000
mp(NOW - 20 days) Emp
Name | Hetght| Salary Name | Height | Salary
Mark | 177 | 90 000 Smith | 170 |30 000
Brown | 178 | 32 000 Brown | 178 |32 000
Jensen| 188 | 10 000 Jensen | 188 |11 000
]

Let us characterize the different kinds of relations of DM/T according to two dimensions. The

first is related to the question of physical storage. Traditionally, base relations are stored while

views are computed or virtual. The second is related to the question of logical derivability. Base

relations are not derivable from other relations, while views are. See figure 6 where generally accepted

characterizations of base relation and view are summarized [Dat86, Ull82, Cod79).

In DM/T the relation concepts have new meaning. Every base relation has a backlog, and all
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Traditional relation concepts

Concept Description

base relation | Actual data are stored in the database. The relation physically
exists, in the sense that there exists records in storage that directly
represent the relation. A base relation cannot be derived from other
relations. A base relation definition is part of the schema.

view A view is characterized as a virtual, derived or computed relation.
It is not physically stored, but looks to the user retrieving infor-
mation from the database as if it is. A view definition is part of a
subschema.

Figure 6: The usual definitions of relation types.

data of base relations are stored in the backlogs in the form of change requests. This makes backlogs
act as base relations and base relations act as views, derived from backlogs. The new meanings are

described in figure 7. In the sequel, we will use the definitions presented there.

Redefined relation concepts

Concept Description

backlog | Backlogs are the relations that now function as base relations in the
sense that they are stored and that all other relations (ultimately)
are derived from these.

base relation | Base relations are not necessarily stored, and they are derived (di-
rectly) from backlogs.

view The data of a view still is - directly or indirectly - constructible
from base relations - or backlogs. However, even though a view
still is derived, it is not necessarily virtual or computed. Views can
be persistent.

Figure 7: Redefinitions of relation types.

Views can be stored in two ways. First, a view can be stored as a pointer structure, consisting
of pointers to the relations (view or base) the view is derived from. Second, a view can be stored as

actual materialized data [Rou89, JIMR89].

We can summarize the concepts presented in this section as illustrated in figure 8.

We distinguish between backlog views, traditional views and base relations. The only difference
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view
time dependent

fixed

base relation X

backlog view

Figure 8: Different types of persistent views.

between views and base relations are that the former are derived indirectly from backlogs while the
latter are derived directly. A view is valid only at a single point in time: The time-value specified
when it was produced using the query language. Backlogs have an associated lifespan: From the
time when the corresponding base relation was created till the current time - if they still exist - or
otherwise till they were deleted. Backlog views inherit this notion of lifespan.

The second dimension in figure 8, time dependence, distinguishes between fized and time de-
pendent views. The valid time of fixed time slices of base relations and views and the lifespan of
fixed backlog views never change and therefore they never get outdated. Because it is possible to
use the special variable NOW in query expressions, both base relations, views and backlog views
can, however, be time dependent. A time dependent base relation can be visualized as a view that
slides along a backlog as time passes. Similarly a backlog view can be thought of as a filtering
window where one or both ends (start time and end time) move along a backlog. Let E be an
expression which maps into the domain TTIMFE and R a relation. For each time dependent time
slice, R(E(NOW)), there is a differential file, SR(E(NOW)). This differential file is a sequence of

change requests in the backlog of the relation, that are not yet reflected in the actual state of the

time slice.

3 Structures of the Implementation Model, IM /T

In the previous section we described the data model, DM/T. The subject of this and the remaining
sections is the implementation model, IM/T, supporting the data structures and functionality of
DM/T.

_An implementation model is neither a data model nor an actual implementation, but something
in between. A data model is for the user of the system and it describes structuring mechanisms and
ways to manipulate structures. Typically, a data model is said to contain data structures, constraints
specification mechanisms and a query language. An implementation model is irrelevant to the user
and it describes how the functionality of the data model is supported in terms of lower level concepts.

Yet it - unlike an implementation - still focuses on principles, ideas, and logical aspects.
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In this section we present the three different stores of IM/T, i.e. (1) the store containing backlogs
and indices, (2) the cache containing views, and (3) the Extended Logical Access Path (ELAP),

which contains information about queries, and is an index to the cache.

3.1 Storage of Backlogs

Backlogs assume the role of base relations, and are always stored. They are stored like traditional
base relations with the possibilities of traditional indexing. Through-out this paper we will assume
that the blocks with tuples of a backlog only contain tuples of that backlog, and that, for each
backlog, its tuples are clustered according to the values of their time stamp attribute. Also, mainly
for simplicity, we assume that backlog tuples actually contain all the data of their attributes. Com-
pression techniques [Bas85] can, however, be applied to backlogs. Note, that only an identifier is
required for a deletion (insertion) request to serve its purpose during incremental (decremental)
update, “property attributes” are not needed. On the other hand backlog queries (see subsection
2.2) can be specified in terms of property attributes and will thus benefit from the replication of
these data instead of having to infer them through decompression.

The amount of data to be stored in backlogs can grow arbitrarily. To cope with the bulk of
historical data we allow for partitioning this store. In this paper we will not present a specific
design for this facility that allows for migrating seldomly used data to slow and cheap mass storage
(e.g. write-once, read-many (WORM) optical disk). Instead we refer the interested reader to the
literature: [DLW84, LDE+84, Ahn86, SA88, SL89, KS89, Chr87]. As mentioned in the introduction
views cached as data can help eliminate references to data on slow storage, a feature that improves
the usability of partitioning.

Finally, realizing that even WORM storage is limited and that some historical data might not be
needed by any user we offer advanced facilities for pruning historical data. For example, it is possible
to only keep the current state of selected base relations. We have devoted a separate, forthcoming
paper to the presentation of a subsystem that allows for the specification of which historical data to

maintain, where issues of query processing in the context of missing historical data are addressed,

too.

3.2 The Pointer and Data Cache of IM/T

The cache of IM/T is simply a collection of query results stored as either pointers or data. Physically,
a part of secondary memory is allocated for the cache. We denote by C the number of disk pages
available for the cache. Each entry of the cache is of the form (rid, result), where rid uniquely

identifies an entry and result is of the format
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result «— array of ptr | array of (ptr x ptr) | relation

Tuples of the same entry are stored consecutively and are sorted on tid’s (pointers) or surrogate
attribute values (data). There can exist indices on the tuples of results.

Indexing of the results is available. The ELAP to be discussed in the next subsection is a
structuring index on the cache and is used to identify cache entries to be used in query processing.
In the ELAP a cache entry is represented by its rid, and therefore an index on rid’s of results is
desirable.

Clustering of results according to the structure of the ELAP is an interesting topic not addressed
in this paper.

Differential files computed as intermediate results during query processing are not stored in the
cache. It can, however, be beneficial to store statistics about such files. The statistics can (1) help
estimate the cost of processing future differential files, and (2) help choose between different ways
of processing a differential file. The design of a data structure that maintains the statistics and its
use during query optimization is a subject of current research.

The cache contains the current states of all base relations, and they are updated eagerly. The
motivation is as follows: We saw that the extensions of the data model DM/T were transparent to
the naive user only expecting the relational model. IM/T now takes the transparency further by
allowing efficient retrieval of current data and immediate and efficient checking of standard integrity

constraints.

3.3 The Extended Logical Access Path of IM/T

The system has three stores: One for backlogs, one for views (the cache), and one for query expres-
sions. This last one is the ELAP. It stores relevant information computed by the query evaluation
subsystem about query expressions and possible materializations of query expressions.

The the ELAP is a directed acyclic graph (DAG). With each node there is an associated set
of equivalent query expressions, a list of statistics about each query expression, and an optional
reference to a cached result. The edges are labeled by operators, and an edge (or a pair, possibly
ordered) from node N, to node N indicates that the operator constructs an expression associated

with N, from an expression associated with N,.

ExaMpPLE: The ELAP consisting only of the expression R(t1) Xr S(t1) will be visualized the fol-

lowing way:
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First there will be leaf nodes for the two backlogs Br and Bg - backlogs are always leaf nodes, and
conversely. These will be connected to nodes labeled R(t;) and S(2;), respectively. The connecting
edges signify the time slice operator. Finally, the node representing R(f1) Mr S(t1) is connected to
both R(t;) and S(¢;) with the join operator (Mr). See figure 9.

Br Bg
Y to
Rs,) Rlty)
\/
Rit,) 4 Ry)

Figure 9: Sample ELAP.

The ELAP is not just a query graph, it integrates graphs of query expressions that have been
computed or just have been subject to estimation of statistics into a unifying structure. Common
(sub-)expressions among the set of query expressions are represented by the same node, or sub-DAG,
of the ELAP. Consequently, there can exist several different sub-DAG’s with backlog relations as
leaves for the same node. The crucial observation is that while the expressions of a node all produce
the same result the expressions might be far from equivalent when it comes to cost of processing.
The ELAP can be thought of as a generalized AND/OR graph where at a single node there is a
choice of one (“OR”) of several sets of “AND” edges [MB85, Ric83], where “AND” edges correspond

to binary operators.

EXAMPLE:

Consider the following equivalent query expressions:
TEmp(t1).Name, Emp(tz).Salary UEmp(tl).Salary230(Emp(tl) NEmp(t1). Name=Emp(tz).Name Emp(t2))
7rEmp(t1).Namc,Emp(tg),Salary(USaIaryZ30Emp(t1) NEmp(t1).Namc=Emp(tg).Name Emp(tZ))
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TEmp(t,).Name,Emp(t3).Salary (WNameUSalaryZZiOEmP(tl) M Emp(t;).Name=Emp(t;).Name FName,Salary Emp(tz))

They all return the names and salaries at time ¢, of employees that were employed at both time
t; and £ and that earned more than 30K at ¢;. Yet they are different expressions with different

processing characteristics. The ELAP consisting of these expressions is shown in figure 10.

t‘ t2
4 ™ > 1
(%
i
X
54
g
ST B e S N
W
n

Figure 10: The view corresponding to a node can be computed from several query language expres-

sions.

It follows that a cached result of a node could have been computed in several ways, and that it
subsequently can be computed in several ways. A node tells from which expression a cached result
was most recently computed. There is at most one cache entry per node.

Nodes can belong to the following six categories depending on the computational status of the

labeling query expressions:

case 1 the result of the query expressions is a cached pointer structure

case 2 the result of the query expressions is stored as actual data in the cache
case 3 the result of the query expressions previously was a cached pointer structure

case 4 the result of the query expressions previously was stored as actual data in the cache
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case 5 no result for the query expressions has ever been stored, but results might have been com-

puted or just estimated

case 6 the query expression denotes a backlog

The transition structure of these types of nodes is illustrated in figure 11.

Figure 11: Transition structure of the six categories of nodes in the ELAP. For example, a node for
a previously cached pointer structure (case 3) can change to a node for cached data or for cached

data.

Edges of the ELAP are labeled by operators that correspond to those in section 2.3. In addition,
we allow for combined operators: A projection and a selection can be done as part of another
operator (including a projection/selection). Sample labels are: 74, Ta0Fr, op(oFp - X - ma).
Combined operators are used in IM/T to avoid storage of intermediate results. Unary operators

label a single edge, and binary operators label two edges.

Now, let us consider which types of statistics should be kept in the six types of nodes. Below is
a listing of the different kinds of statistics; after the list is a cross tabulation of types of statistics

with respect to node types.

fixed/time-dependent If the variable “NOW?” occurs in an underlying time slice expression or
selection on a time stamp attribute, the query expressions of the node are time dependent.

Otherwise they are fixed.

cardinality This statistics has different interpretations for different node types. When an expres-
sion has actually been computed it is the cardinality of the most recently computed result. In

case 5 it is an estimate, and in case 6 it is the exact number of tuples.
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result type Tells whether the cached result of a node is stored as data or pointers.

tuple size For pointers there is a fixed size. The tuple size is the actual size of a data tuple. Implicit

attributes are not considered. There is only one tuple size per node.

cached expression The immediate subexpression(s) (i.e. successor node(s)) used in the most recent

computation of the nodes result is (are) registered.

up-to-date status For cached results it is indicated how up-to-date the result is, i.e. how faithfully
its defining subexpression(s) reflect the current state of the backlogs. This is used to estimate
the cost of bringing a stored result up-to-date. It also indicates the validity of statistics based

on the stored result.

number of references The number of times a cached result of a node has been used. For case
5 the value is zero. For backlogs this information can be made more specific as to aid in
deciding which parts should remain on fast storage, which parts should be migrated to slow

mass storage, and which dependent views should be cached as data.

first reference In order to be able to estimate the frequency of reference it is registered when a

cached result of a node was first referenced.

computation cost Each expression of a node has this information. Both the cost of compute the

actual data result and the cost of retrieving both data and pointers is included.

usage cost This is the cost of retrieving a result from the cache and bring it up-to-date. It can be

computed from information about node type, tuple/pointer size, cardinality, and up-to-date

status.
when deleted When the last deletion of a cached result took place.

why deleted Applies to case 3 and case 4. This is useful when deciding if a deleted result should

be rematerialized.
indices A list of which indices are available.

node type Which one of the six types of nodes.
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case 1 | case 2 | case 3 | case 4 | case 5 | case 6

fixed /time-dependent v Vv Vv Vv Vv
cardinality V4 Vv Vv Vv Vv Vv
tuple size V4 Vv Vv Vv Vv i
cached expression Vv Vv Vv Vv

up-to-date status V4 Vv Vv Vv

number of references V4 Vv Vv Vv Vv Vv
first reference V4 v Vv Vv Vv Vv
computation cost V4 Vv v v Vv

usage cost Vv V4 Vv Vv

when deleted Vv Vv

why deleted V4 Vv

indices V4 Vv Vv
node type Vv ivIiviv]v

The motivation for maintaining statistics as above is that the cost of maintaining them is less
than the benefits achieved during query optimization from having them available at hand. Practical
experiments are needed to decide for which ones this the case.

Integration of parse trees for query expressions into the ELAP, deletion of parts of the ELAP,
and restructuring of it is beyond the scope of this presentation.

We assume that the ELAP can be kept in main memory and ignore the cost of using it during

query optimization.

4 Query Plan Generation and Selection

To efficiently compute a query, the system generates a State Transition Network (STN) where the
initial state contains the uncomputed query, the backlog relations it is defined in terms of, the cache,
and the ELAP. A state transition occurs when the cost of a partial computation toward the total
computation of the query is estimated. The new state is identical to the predecessor state except
it is assumed that the cost estimated computation has been performed. A final state is reached
when all computations have been estimated. By following all paths from the initial to a final state
and accurnulating costs for each path, the total costs of computing the query in different ways, are

obtained, and we can choose the query plan with the lowest cost.

The purpose of this section is to formalize and elaborate on the generation of query plans as
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just described. We formalize the general notion of STN and discuss plan selection using dynamic
programming and the A* algorithm [Ric83]. Then the state and transition spaces of IM/T are

defined, an example is given, and the role of the ELAP is described. Finally, trade-offs in the design
of IM/T are presented.

4.1 State Transition Network

A STN for a query, Q, is a labeled DAG, and can be defined as
STN(Q) = (S)P)P)I‘)xO:Xf) y (1)

where S is a set of states (nodes); each node contains what remains to be calculated of query @
along with the data structures that can be used to compute the query? (i.e. intermediate results,
the ELAP, the cache, backlogs). P is a set of operators, which describe the query processing and
label the edges of the DAG. P is a mapping: S — 2%, which maps the state space into the power set
space of operations, and describes the set of operations applicable at a given state. Thus, an edge
is a triplet, (z1,p, z2) € (8, P(S),S), containing a start state, a label, and an end state. The last
two elements of (1), zo € S, and Xy C S are the initial and the final states, respectively. The initial
state contains the uncomputed query, and a final state contains the computed query, and possibly
various intermediate results.

A plan for a query, @, and a state, z, tells which sequence of operators to apply to the partially
computed query @ at state z in order to arrive at the final state. If £ # zo then the plan is partial.

If we let p; o z denote the application of operator p; at state z, then a plan can be expressed as

P1,P2,P3,--.,Pn ,Where ppo... opgopyopioz € Xy

We associate a cost C with each plan in the obvious way. First, we define cost : (S, P(S), ) —
[0; 0o[ to be the cost of applying an operator to a state to get a new state (i.e. the cost of an edge
in our DAG). The function cost is of the form I/O + wCPU, where I/O is the number of page
transfers and CPU is the number of comparisons made by the CPU; the constant w specifies the

relative weight of I/0O’s and CPU’s. Then the cost of a plan is

C(z,p1,p2,P3, - - -,Pn) = cost(z,p1, 52) + cost(sa, pa, 53) + cost(ss,ps, 54) + ... + cost(sn,pn,25) ,

where z; € Xy; figure 12 shows this plan as a part of a larger network.

The minimal cost of a query @ is defined as the minimum over all possible plans for @ and z:

2Note that no computations are actually carried out. We are merely estimating assumed computations.
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Figure 12: An outline of a STN.

Cq(z) = min{C(z,p1,p2,P3,---,Pn) | Pno... Opsopropi 0oz € Xy}

A plan py,p2,ps, ..., pn for which C(z,p1,p2,ps,--.,Pn) = Co(x) is optimal.

4.2 Plan Selection

Above we have defined the general framework of State Transition Networks for query optimization.
Assuming we have costs for all single state transitions, the cheapest query plan in the network can be

found by applying dynamic programming techniques. The function Cg(z) of the previous subsection

can be expressed as:

Cq(z) = pg})’(l;) {cost(z,p,z') + Cq(z)}

Dynamic programming is applicable because the cost of a single transition in a STN depends
only on local information and not e.g. on the nature of previous transitions that lead to the state of
the current transition. This has been termed the separation assumption [LW86).

When we use dynamic programming, the task of finding a good query plan is conceptually divided
into two phases, (1) generation of the STN of the query to be computed, (2) estimation and selection
of the optimal path in the STN. In practice, the whole STN need not be computed before phase
(2) is initiated; parts needed during phase (2) must, however, be made available when needed, and
upon completion all of the STN will be needed. For this reason dynamic programming requires a

relatively large amount of storage space [Sed88, RND].
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Heuristic techniques are the obvious alternatives to dynamic programming. They have the ad-
vantage, that they do not require two phases. Instead they interleave phases by only generating
paths as they are explored and afterwards discarding of them. Thus, they require much less storage
space. The disadvantage is that they do not necessarily compute the optimal solution.

Let us consider the A* algorithm [Ric83]. At each step in the process of plan generation, the
algorithm will choose the most promising transition among all possible transitions not previously
chosen. In doing so, it uses a heuristic function f =g+ h that estimates the true cost (f) of the
plan being generated. The term g is the lowest cost found of getting from the initial to the current
node, and h estimates the true cost (h) of getting from the current node to a final node. Observe
that the next transition chosen at a node n only depends on h. Therefore the applicability of A*
depends heavily on the quality of the estimate h. In the ideal case where h = h, no search is done at
all; the algorithm immediately converges. The better k estimates h the closer it comes to the ideal
case, and if it can be guaranteed that k never overestimates h, an optimal plan will eventually be
generated. In the general case A* does not return the optimal plan.

Due to the lack of easily computable and high quality candidates for h we have chosen a dynamic
programming approach. To improve performance we introduce pruning rules (section 6), that specify
the function P. They allow us to eliminate paths that are generally not competitive, and therefore

limit the search space with little chance of eliminating advantageous plans.

4.3 State and Transition Spaces

We now present the specific design of the type of STN to be used in IM/T. We describe what

constitutes a state and which transitions are possible on the states.

State Spaces of IM/T

IM/T generates a separate STN for each query it optimizes, and each STN has its own state space;
A state space is a set of states, each consisting of a set of objects. All the types of objects in a
state space are stored on secondary memory, and can be read®, manipulated, and the result can be
written to secondary memory as a new object of that state space.

The types of objects include:

1. Intermediate results A query result can be any kind of relation. Generally a state will
contain a set of intermediate results to be used in further computations in order to achieve

the evaluation of the query of the STN at hand. Such results are temporary, but can later be

3Objects still exist after they have been read.
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stored in the cache if they are part of the plan chosen for actual execution. In this case the
ELAP is updated to reflect the new state of the cache. Even if the state of the cache is not
changed, the ELAP can be updated with statistics of computed or just estimated temporary

results.

2. Backlogs The query of a STN is ultimately defined in terms of a set of backlogs. These are
part of all the states for that STN.

3. The ELAP As mentioned it describes the structure of the cache and in addition stores

statistics about queries in general. Each state of each STN contains this object.

4. The cache Cached results constitute together with backlogs the outsets for differential compu-
tation of queries, and it is part of all states. The cache is not changed during plan enumeration

and selection, but can be updated when the selected plan is processed.

Two states with mutually equivalent objects are identical states.

Transition Space of IM/T

Below we define the transition space. In section 5 we will discuss implementation of the operators

of the transition space.

1. The relational operators of figure 5 are included. For brevity we will only consider the most

important ones, projection (), selection (¢), and equi-join (M) in detail.

2. Incrementing or decrementing a computed result obtainable by performing a selection or
a projection on a relational algebra expression, or a join of two relational algebra expres-
sions for which differential files are computed: DIF(orR,6r), DIF(naR,ér), DIF(R ™
S,R,6Rr, S, bs). The differential file of relation R, 6g consists of a set of insertions, 6;, and a
set of deletions, 65 such that R updated with the differential 6r is given by (R — 65) U 8.
There are no references from 65 to 61"5, i.e. no deletions of insertions. For example, if we al-

ready have o R(t;) and 6g (1, +,) We can get o R(ts) by computing DIF(ar R(ts), 6R (1. 1.))-
Generally, if R' = (R - 65) U 6%:

DIF(O'FR, 63) = (O'FR)I
DIF(WAR, 63) = (WAR)I
DIF(RX S,R,6r,S,65) = (RXS)
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3. Constructing a differential file of a computed result obtainable, as above, by selection, projec-
tion, or join of intermediate results: DELT A(or,6r), DELTA(w4,6r), DELT A(M, R, R, S, 65s).
Thus, if 6r exists, we can get 6,,r of or R by computing DELTA(or,6r). We have:

DELTA(G’F, 63) = 60;.-R

DELTA(W_A,§R) 61AR

DELTA(M,R,6r,S,6s) = &rms

4. Combined operators. To increment, say, the result of m4or R(t;) we can get first ép(s,), then,
second, 6,5 R(1,), and third we can apply the incremental operator for projections to finally
obtain the new, incremented result. This implies storage of 6g(;,). A combined operator,
DIF(ns0pR,6r) would eliminate storage of an intermediate result by processing 74 and of
in a single pass and would therefore be more efficient. This is the motivation behind introducing
combined operators. More gpecifically we conceptually allow for combining a selection or a

projection with another operator (o, 7, X, or combined) into a combined operator.

Identity Transformations

A user query can be processed in many ways to produce the desired result. Identity transforma-
tions [SC75, Ull82, JKS84, JK84] for relational expressions are utilized to generate at any state all
applicable operations that will contribute towards the complete processing of the query. In addi-
tion, identity transformations are used to decide whether two states of a STN are identical or not.

Following is a list of such transformations that are also useful when applying pruning rules to a
STN:

commutative law for joins

E1NE25E2NE1

associative law for joins

(E1 X E3) M E3 = Ey X (Ey X Ej)

cascade of projections

wp (nr,E) = np, E , where F1 C Fy

commuting and cascade of selections

om0 E=0p,0p FE =0par, E
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commuting selections and projections
WFIUF,E = WFIGFQWF{E,

where Fy = Ay, Aj,As,..., A, , F] = A1,As, As,...,Anym , and Fy only involves some
attributes among A;,7 = 1,2,3,...,n in addition to all attributes A4;,1 = n+1,n+2,n+
3,...,n+m.

commuting selections and joins
UF(EI ] Ez) = UF;(O’FgEl N o'psEz) ,

where F' can be expressed as Fy A F3 A F3, so that Fy involves attributes in both E) and Ej,

F5 only involves attributes in E;, and F3 involves attributes in Fs.

commuting selections and unions

O'F(E1 U Ez) =opE1UorE,

commuting selections and differences

(Tp(El e Ez) = (TFEl - O'FE'2

commuting projections and unions

WF(El U Ez) =npFEiUnpE,

substituting selection and differential selection
DIF(crR,6g) = cr DIF(R, 6p)

substituting projection and differential projection
DIF(maR, 8g) = n ADIF(R, 5g)

substituting join and incremental join

DIF(RM S, R,6g, S,65) = DIF(R,g) X DIF(S, §5)

4.4 An Example

Let us illustrate the use of STN’s in IM/T with an example. Assume we have a relation, Emp, with

two attributes:

Emp(Id : Int, Salary : Int),

where Salary is the annual pay in thousands of dollars. Assume that the cache contains these

results, properly reflected by the ELAP:
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Cached Results

rid  Query representing the result Data/Pointer (D/P)

(R-1) Emp(tinit) -
(R-2) X Salary Emp(ty) P
(R-3) Q1= osalary>20Emp(ta) b
(R-4) Q2 = Osalary>40Q1 D
(R-5) O Salary>55Q2 p
(R-6) OSalary>25 Emp(ts) P

The results (R-4) and (R-5) are defined in terms of the results (R-3) and (R-4), respectively and
recursively. The pointers of (R-5) therefore point to (R-4). Let the query to be answered be given

as Q = 0satary>30Emp(ts). We have

QE(R-1), QL (R3), QE(R)

This means that we can use (R-1), (R-3), and (R-6). The tables below show all possible plans

after application of the pruning rules following:

rule a Only combine a differential with its outset if exactly the selections (projections) performed on
the outset have been performed on the differential, too. For example, if we want satary>30 Emp(ta)
and have osaiary>20Emp(ty) and 60 5atary>s0Emp(ts); then Osalary>20Emp(ts) should not be

updated with 6,,5‘”"”?_30 Emp(t,) until after o'satary>30 has been performed.

rule b Apply operators as early as possible. If the arguments in state z; of an operation p trans-

forming z; into z. are present in an predecessor state, z4, of z; then p should be applied to

z4 instead of to xp.

rule ¢ Only compute a differential of an outset, if the outset already exists.
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STN for osatary>30Emp(ts) - Part]

argument state transition result state

0 DIF(0satary330 Emp(tinit), (tinits ta)) s
0 DELTA(Emp(tinit), (tinit, ta)) 1

0 DELT A(65salary>30, Emp(tinit, ta)) 2

1 OSalary>300Emp(tinis) 3

1 DIF(0satary>30 Emp(tinit), SEmp(tinis)) zs
1 DIF(Emp(tinit), SEmp(tinie)) 4

2 DIF(0salary>30 Emp(tinit), 805 1aryzs0Emp(tinie) zy
3 DIF(0satary>30 EMp(tinit), 6os.1aryss0Emp(tinis)) zy
4 OSalary>30 Emp(ta) *s
0 DELTA(0satary>20, Emp(ta,ta)) 5

0 OSalary>300 Salary>20Emp(ta) 1
0 DIF(0satary>20 Emp(ta), (ta,ta)) 14
5 0Salary>30005010rys20Emp(ta) 7

5 O Salary>300 Salary>20 Emp(ta) 12
5 DIF(05atary>20 EMp(ta), 80s,10ryz20Emp(ta)) 8

5 DIF(0satary>30 Emp(ta), b05atery>30 Emp(ta ) zs
11 DELT A(0satary>20, Emp(ta,ta)) 12
1 DELT A(0'5atary>30, Emp(te, ta)) 19
11 DIF(0satary>30 Emp(ta), (ta,ta)) zs
8 OSalary>30 OSalary>20Emp(ta) zy
12 DIF(05atary>30 EMp(ta); $05a10ry»20Emp(ta)) zs
19 DIF(05atary>30 Emp(ta), $os,10rys s0Emp(ta)) 21
7 O Salary>300 Salary>20Emp(ta) 13
12 DELT A(0salary>30; 65510ry520Emp(ta)) 13
13 DIF(0satary>30 EMP(ta), 605010 ryss0Emp(ta)) rs
14 ' OSalary>300Salary>20 Emp(ts) zy
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STN for osatary>30 Emp(ta) - PartII

argument state

transition

result state

0

18

DELTA(0salary>25, Emp(tp,ta))
OSalary>300 Salary>25 Emp(tp)
DIF(0satary>25 Emp(1p), (ts,1a))
OSalary>30005,10ry> 25 Emp(ts)

O Salary>300 Salary>25 Ep(tp)
DIF(05alary>2s EMP(tp), 6050100y325 Emp(is))
DIF(0Satary>30 EMP(tp), 805010ry>25 Emp(ts))
DELTA(05atary>25, Emp(tp,ta))
DELT A(0satary>30, Emp(tp,ta))
DIF(05atary>30Emp(ts), (ts,ta))
OSalary>30 OSalary>25 Emp(ta)
DIF(0salary>30 EMP(t); 655a10ry325 Emp(is))
DIF(05alary>30 EMP(16), 005010 ryss0Emp(ts))
O Salary>300 Salary>25 omp(ts)

DELT A(0Salary>30) 605010 ry52s Emp(ts))
DIF(05alary>30 EMP(tp), 655a1ary3 30 Emp(is))

OSalary>300 Salary>25 Emp(ta)

6

Note that the final state z; actually is a set of states fi, f2,..., fi € X that each contain the
query to be computed and in addition different sets of intermediate queries. A sequence of change
requests with time stamps between t, and t, of a backlog are denoted (Z4,%s), O BEmp(ta,ts)
to avoid ambiguity. Also, we have only included reasonable transitions in the STN. Transitions
that do not help us get closer to the goal or only marginally does so have been left out. For

example, the selection o'satary>270 Satary>25 Emp(ts) is not considered relevant because the selection

0 Salary>300Salary>25Emp(ta) can be done instead.

Due to the simplicity of the query to be processed there are not many applications of combined
operators. However, the transitions from states 5 and 6 to the set of final states z; illustrate

simultaneous selection on a differential file, selection on an outset and the incremental/decremental

update of the (selected) outset with the (selected) differential file.
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4.5 Getting Views from the Cache

We have included a cache for views in IM/T, and we have defined an ELAP as a “structuring index”
on the cache. Let us now in more detail consider its role.

We saw in the example of subsection 4.4 that it is often the case that cached results can be used
in many ways to compute a query.

Let DB be a database instance, i.e. an instance of the backlog store, and Q¢ the defining expres-
sion of a cached result, then Q°(DB) is the cached result of Q° on DB.

The result Q°(DB) is only useful for the computation of a (sub-)query, Q,, if the data of Q,(DB)
are all contained in Q°(DB), and can be extracted from Q°(DB) using an expression, F, of the query
language (confer [LY85]). If this is the case for any database instance, we say that Q° covers Q,,

Qs C Q°. Coverage is an intensional property. Formally,
Q. CQ° ¥ vDB3E: §,(DB) = E(G*(DB)),

where Q denotes Q where temporal information (time slice) is ignored. Thus, o:>15R(t1) C
oz>10R(t2), even if t; # 13, because VDB : 0:>15R = 05>150z>10R.

The covering queries we are most interested in are the ones that are most cheaply modified to
the requested query, i.e. the minimal covering queries. Certainly, if @1 C Q2 C Qg then, considering
only coverage, we would prefer to use Q2 instead of Q3 to compute ;.

The ELAP is an efficient means of identifying all covering cached results for a given query.

Orthogonally to the issue of coverage there is the issue of temporal match, which we have disre-
garded so far. There is both an intensional and an extensional aspect.

'We address the intensional aspect first. When we have retrieved a result from the cache it might
not reflect the state we are interested in. If we let Q, = 0z>10R(t1) and let Qf = 02>10R(ts), then
the two queries are identical under coverage, but if ¢; # t, the operator DIF' (probably) still need
to be applied to Q and an appropriate differential file to make it correctly reflect the desired state.

Assume the existence of Q5 = a,,sz(tb). If the temporal expressions ¢, and t; are both fixed,
then we would choose Qf if t, is closer to t; than is t;. Otherwise we would choose Q5. The concept
of closeness is defined in terms of the cost of the differential computation that has to be carried
out in order to reach the desired state, and it depends on the size of the portions of the associated
backlog that has to be processed. The distance between time stamps is an intensional property
which can be used for comparing closeness. However, if t;, < ) < tp or {3 < 11 < 14, the distance
between time stamps is not a reliable means of comparison.

The extensional aspect of closeness is important because cache entries generally get outdated.
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In the context of time dependent views it is not sufficient only to look at the intensions of queries
as we did above where we compared #1, t,, and ¢;. For example, if @, = 0z>10R(t1), and the cache
contains Qf = 0z>10R(t1) and Q§ = 0:>10R(t2), where t; # t2 then Q5 still can be more useful than
Q$. This is so because t; could be time-dependent and Qf could be very outdated. Outdatedness of
a cached query result is defined as the closeness between the defining query expression at the time
it was computed and the current defining query expression. Because of the variable NOW query
expressions in general change over time.

For each cached result the ELAP stores the value of the variable NOW at the time when the
result was computed so that the states of cached results can be inferred without actually accessing
them. Also the ELAP holds statistics can help estimate the outdatedness of results (i.e. estimate the

number of change requests between two points in time and the cost of processing them appropriately).

In summary, we have described how the notion of coverage supported by the ELAP is used
to identify cache entries useful in the computation of a query. We have the greatest interest in
minimally covering entries. Orthogonally, we are interested in the covering queries that are the
temporally closest to the desired queries. The overall best query might be neither the temporally
closest query nor the minimally covering query. It is the query from which the desired data can be

computed (by both differential update and additional processing) with the lowest cost.

4.6 Trade-offs

In this subsection we have presented a general framework for query optimization. When we designed
the framework we had to consider several trade-offs and make reasonable choices. Let us look back

and discuss some of the issues.

The over-all goal is to process queries as efficiently as possible. Since processing involves both
query plan generation and query computation it is a poor strategy to identify a very efficient query
plan if the process of doing so is very expensive. On the other hand it is equally foolish not to
consider alternative ways to carry out a query. Thus we have a trade-off between the cost of the
selected query plan and the cost of selecting it. A lot of factors influence this trade-off. In our
framework, the granularity of atomic operators that cause a state transition is such a factor. With a
fine granularity the size and complexity of the STN’s increase with more expensive calculations but
also potentially more efficient plans as a result. A coarse granularity decreases the STN’s, results
in less computation and considers fewer alternative plans. Consequently we are likely to get lower

quality query plans. Another factor is how faithfully cost functions reflect the actual computations
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they estimate - analogically we have a trade-off between the quality of cost estimates and the cost
of getting them. Without good cost functions it is not feasible to consider query plans that only
differ slightly. E.g. if we only include I/O when computing costs it does not make sense to generate
query plans that only differ in CPU cost. It is not only the granularity of operators that affect the
trade-off. Selecting carefully which operators to apply at a given state can reduce the size of a STN
without seriously affecting the quality of the generated plans. This is the motivation behind the

pruning rules of the next section.

In the present version a state transition network models queries on a logical level. It is a topic of
future research to investigate the feasibility to extend this to a physical level, where nodes include
information on how/whether relations (files) are sorted, indexed etc., and transitions include sort,

merge—join, nested-loop-join,....

A major disadvantage of logical level operators is that, in order to achieve good performance,
they should be carried out in an interleaved fashion on a lower level?. Thus logical level query plans
do not represent faithfully the plans that are carried out and a the selected logical level plan might
not be competitive when translated to a physical level. This suggests physical level operators of our
STN’s. But physical level operators as transitions result in very large STN’s. We have chosen to
include logical level combined operators to gain the advantages of logical level operators without at

the same time inheriting the disadvantages.

5 Implementation of Operators of STN’s

In this section we discuss the operators of STN’s in more detail. Initially, we outline the different

cases to consider. Based on these we discuss alternatives for implementation of the operators.

5.1 Overview of Operators

In order to completely account for the implementation of the operators of the STN’s of IM/T, a
large number of cases must be considered. Disregarding for the moment combined operators, the .
cases are outlined in figure 13.

The figure has 22 entries each corresponding to a separate case. In IM/T stored results, possibly
cached, can be stored as either actual data or pointers that point to the data. The entries “data”

and “pointer” indicate the type of arguments. As can be seen all operators must work on both

4See [UNI82], where operations to be done in an interleaved fashion are detected after plan selection.
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Figure 13: Implementation of operators of STN’s.

kinds of arguments. The only exceptions are that the base cases for DIF and DELTA only work
on data, since it does not make sense to store base data of backlogs as pointers. The figure does
not include information about the type of result returned by the operators. If the arguments are
pointers, then the results are pointers as well, and if the arguments are data the results can be both
data and pointers, the only restriction being that differential files are assumed to be data. This adds
an additional 8 cases.

We find, as the first six entries, the ordinary operators o, 7, and X°. These operators have their
standard semantics and can be implemented as suggested in the literature (e.g. [Sha86) [SACT79]).

The remaining sixteen cases concern the two new operators, DIF and DELTA. The operator
DELTA derives differential files. The base cases are the incremental and decremental processing
of sequences of change requests to get differential files. The step cases are the computations of
differential files of relations from the differential files of relations from which they are derived by
either projection, selection, or join.

The operator DIF differentially updates a stored result to correctly reflect a desired state. In
the two base cases a time sliced base relation is either incrementally or decrementally updated
with change requests from the backlog of the relation. The three step cases for pointer and data
arguments differ on how the outset is related to the differential file(s) to be used. It is possible
to use the differential file of a relation from which the outset is derived by a projection (including
the identity projection) or a selection, and the differential files of relations from which the outset is
derived by a join can be used.

Finally, we will mention combined operators. Selections and projections can be done on the fly,

and therefore a projection can be part of a selection, a selection can be part of a projection, and

5In the following M denotes equi-join.
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selections and projections can be parts of a join. This is to be interpreted recursively. For example,
if we have a projection operation then a selection can be done on the fly, and a projection can be
done as a part of the selection, again on the fly. Combined operators are useful because they avoid

writes and subsequent reads of intermediate results.

5.2 General Observations, Assumptions and Notation

One of the strengths of the implementation model is that it generally does not make assumptions
about physical details such as particular indexing techniques (B-tree/hash-index/etc. ) and buffer
management strategies. The orthogonality of such issues allow us to disregard them. Consequently
we are also forced to disregard development of precise cost formulés for the operators of STN’s since
this relies on such assumptions.

Below we make some general observations and assumptions relevant for our discussion of imple-

mentations of the operators of STN’s. Let the following self-explanatory parameters be given:

Cost Parameters

notation explanation

P page size (space usable for tuples) [bytes]
#r cardinality of R
t_sizer  tuple size of relation R [bytes]

p-size size of a pointer [bytes]

Prior to the application of any operator the argument is read from secondary memory and, upon

completion, the result is written back to secondary memory. The cost of read and write af a relation

(stored as data) is®:
|'t_size R # R-|
p
The cost of retrieval of an unary and a binary pointer relation is:

_size 2 p.st
e ).,y [L2 4]y,

where C¥%,, and C},,, are the costs of materializing the pointers. In the case where they point

directly to Br we have:

i ) .
[_#_R_%g] < CY < in, and [M] <Ch <2 #n
‘ p

5In order to simplify notation we have assumed that stored relations start on a new page.
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The lower boundaries assume that the tuples of R are clustered in Br. For the binary case we
assume that each pointer occurrence is actually materialized. An intelligent approach would be
to only materialize each distinct pointer. The upper boundaries assume that only one pointer is
materialized for each page read. If the cost of materializing a pointer relation is unacceptable there
are two possibilities in IM/T. First, the relation can be deleted from the cache, and second, the
relation can be stored as data.

The costs of writing binary and unary pointer views are given as

|'p_size #R] and [2 p-size #R1
p p

Stored relations are clustered on the values of their key attribute in the case of data, and on
tid’s in the case of pointers. Change requests are clustered on time stamp values.

The only difference between incremental and decremental computation is that the role of deletions
and insertions is reversed. Therefore, when we only talk about incremental computation in the sequel,
it is without loss of generality.

We will, when not explicitly stated otherwise, assume that operators take data arguments and

produce data results.

5.3 Selection, Projection, and Join

‘The traditional relational algebra operators, selection, projection, and join can be applied to any
relation, including differential files (§g) and their constituent relations (63, 87).

The expression F of the selection operator, cr R, can contain a conjunction of selection criteria:

F « term|termAF
term «— Att Name op Att. Name | Att Name op Value

op — =|<|>2I<IFILIFIZIL

Att Name is an attribute identifier of the relation R.

The most advantageous implementation of selection depends on numerous factors, and has been
addressed in many settings. Here we just outline some possible approaches. It can be implemented
by sequential scan, by binary search, and using an (clustering) index (e.g. a hash-function, a B-tree,
etc.). While sequential scan is always possible it might not prove the most advantageous. Binary
search is possible if the tuples of the relation at hand are sorted on the values of the attribute in the
selection criteria. Using an index obviously requires the index to exist already or to be build for the
purpose. A clustering index is generally superior to a non clustering one. In the cases of selections

specified on more than one attribute, multi-attribute techniques (access structures for spatial data)
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can be beneficial, or a multi-attribute selection can be carried out as a sequence of single attribute
selections.

The projection expression, A, of 74 R is any subset of attributes of R. When we mix projection
and difference, as we do in differential computations, a problem can occur since projection does not

distribute over difference:

EXAMPLE: Assume that we want to compute Tgaiary Emp(ts) and that we have Emp(ts) in the
cache. A possible way of computing the result would be to compute the differential égmp(r,) =
(62,"?(“), 6;3”,?(“)) from the change requests Emp(ts,1,), then do the projection on the outset and
on the differential, and finally increment the (projected) outset with the (projected) differential.

Expressed in relational algebra this corresponds to

WSalaryEmp(ta) = 7"Salar‘y((Efnp(tb) - 6;3mp(¢,,)) U 5;,,.,,(“))

F (WSalary Emp(tb) — TSalary 6E7mp(n)) U TSalary‘sEmp(tb)

- +
(Wsalary Emp(tb) - 6TS¢l¢ryEmP(tb)) U 6"S¢laryEmp(tb)

The reason for this is that the projection has made unique identification of tuples impossible. By
always retaining the primary key of a relation and remembering whether it was removed by a

projection or not we are able to carry out correctly the computation above. o

The equi-join operator R M S can be used on any two relations. The condition F is a list of

elements:

F « Att Name 1 = Att.Name 2 | Att Name 1 = Att Name 2, F' |

where Att Name_1 is an attribute of relation R (S) and Att_Name 2 is an attribute of relation S
(R). Several ways have been suggested for doing binary joins, e.g. Hash-Join, Nested-Loop-Join,
Sort-Merge-Join. For a thorough treatment, see [Sha86].

We allow for combined application of projection, selection, and join. Selection and projection can
be combined with any operator (possibly combined) to form a combined operator. This is done to
store only as few intermediate results as possible during a computation. For example, the expression

ma0rmpR(t;) can be computed from R(¢;) without writing and reading intermediate results to and

from secondary storage.

5.4 Computing Differential Files

The operator DELTA computes differential files, and can be applied to a number of different

arguments. Here we discuss each case.
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First, however, a differential file for a relation R is denoted g, and é6g = (6;;, 07 )- A differential

is relative to an outset, and it is used to update it to a desired state. If R’ is the result of updating

R with g, we have: R’ = (R~ §5) U 6%.

The Base Cases

The base case is the process of generating a differential file, 6;0,)’ directly from a backlog, Bg,
i.e. DELTA(R(t,),(ts,ts)), where t, is the requested state of R. This corresponds to the case
DELTA(w 4, R) on page 29, with an identity projection. The base case differs from all other appli-
cations of DELT A because the argument is a list of change requests while the arguments of other
applications are relations.

If t, < t, the requested state of R is a future state relative to its current state, and we are in
the “incremental” case. If t; > £, we are in the “decremental” case.

The construction procedure for 6}*;(,“) and 6§(t‘) starts with the initialization of these to empty
relations. The schema of 6;0.) is that of R, and 6};(,“) only contains the primary key attribute of R”.
Then we process change requests from the outset in the direction of ¢, until the next change request
to be processed has a time stamp that is not in the half open interval from ¢, to, and including, ¢,.

Each request is projected to remove superfluous attribute values. Let us assume we are in the
incremental case. Insertion requests go into 6§(t.)’ which optionally can be kept sorted on key values,
or/and an (hash) index on key values can be maintained. A deletion request refers either to a tuple
in the outset or to a tuple in 6;;(‘“)8. First 6;(10 is searched for a tuple matching the deletion
request, and if a match is found, then the request is disregarded, and the matching tuple of the
current 5$(t.) is deleted, since the net effect is that no change takes place. Otherwise the projected
deletion request goes into 61;(,‘). Note that no action was taken above when we encountered an
insertion request of a previously encountered deletion request no action was taken. This was so,
because there in this case is an effect. Tuples of base relations have implicit time stamp attributes
that are hidden, but can be seen by an explicit projection. The effect is that the values of this
attribute in R are updated. We have so far ignored this implicit attribute and will continue to do
so. Tuples of 6;0“) and 6}_2( 1) 2Te written to secondary memory one page at a time. Note that there
are no references from 6§(t°) to 6;““), ma.king the sequence of operation in the formula above valid
in the sense that the outcome is, in fact, R(;). Also note that there can be references from 6;““)

to 6};(“), making the sequence of operation in the formula the only valid one.

"In algebra expressions we assume, for simplicity, that the schema is that of R. -
8Note that the eagerly maintained current states of base relations allow for checking that deletions and insertions

actually make sense, i.e. that deletions actually delete something existing and, conversely, that insertions actually

insert something not already existing. These are system enforced integrity constraints.
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When there are no more change requests, the optional index on 5;00 is deleted and both

differentials are stored sorted on key values.

In the decremental case the only change is that deletion requests assume the role of insertion

requests and insertion requests that of deletion requests.

The Step Cases

What is left now is the cases where a differential file of a result is constructed from the differential
file of another result. In DELT A(oF,6r) the operator constructs the differential file of or R from

the differential file of R, 6g, where R denotes any query expression. This is just a selection:
DELTA(oF,ér) = orbr = (0Fbg,0rb})
Similarly, in DELT A(74,6r), we make a projection:
DELTA(ma,0R) = mabr = (7péyg, 7rp6§)

Remember, that key information is retained to overcome the problem of indistinguishable tuples
when distributing a projection over a difference. Figure 14 is a schematical representation of selection

and projection for DELTA.

=

|

+
U 7

1

i

Lo

Figure 14: Schematic representation of DELT A for projection and selection.

The last case is the join: DELTA(M, R,6g,S,6s). To construct the differential file of R X S,
we need both R, S, 6r, and és. If we let R/, S’, and (R X S)' denote the updated versions of R, S,

and R M S respectively, then we want to compute égns such that equality 2 below is obeyed, and
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there are no deletions of insertions. For this purpose we in addition use the equalities 3 and 4:

RNS = (RMS) @)
(RXSY = [(RXS)—bzus]VUbfns (3)
Rws = [(R-65)Usklm[(S—65)udl] )

We derive §pms by transforming the right hand side of equality 4 into an equivalent expression

of the form [(R X S) —[x]] U. Then, by equality 2 and 3, (6pus, Shms) = ([X], )

To do the transformation we need two transformation rules:

(RUS)KT

(RMT)U(SXT)

(R=-8S)WT (RXT)—(S™NT)

1l

To derive the first, observe that (RUS) x T'= (R x T)U (S x T). Since, in addition, RX 5 =

or(R x S), where F is the equi-join condition, then

(RUS)NT or[(RUS) x T}

= or[(RxT)U(S xT)]

1l

= op(RxT)Uop(SxT)
= (RXT)U(SXT)
The second is proven as follows. First, assume that ¢ € (R — S) X T; then we prove that
z € (RXT)—(S X T). The element z is of the form z;x3, where z; € (R—-S) and z € T'. Further,
z1€ERandz) € S. Hence 2122 € RN T and 2120 ¢ SHT.

Second, we assume the converse and prove that ¢ € (R—S)XT. Herex € RXM T andz ¢ S™HT.
Consequently, £ € R and z2 € T, and also z; € S. But then z; € R - 5.

We now have
[(R~67) U8RI (S~ 85) U]
= {(R-ép)™[(S-b5)ussl}u
{8 ™ (s - 85) L&}
= {[(R—65)™(S—65)]U[(R—6g) ™ 6§10
{[8% 2 (S — 65)] U (65 ™ 8%)}
= {[R™(S~85)]— g X (S - &)} U[(R™ 6F) — (65 M 8T N}V
{[(6% > 5) — (6% ™ 85)]U (6 X 68)}

= {{[(R%S) - (RM63)] = [(6g ™ 8) — (8 M &5)]} U [(R ™ 6F) — (6 M 65T} U
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{[(6% ™ 5) — (6% w0 65)] U (5% 11 88}
= (RMS) - (RME5)~ [(65 ¥ 5) — (6 X 55)] U[(R™ 8F) — (65 M 82)] U
(5% M 5) = (6% @ 65)} U (6% ¥ 63)

The two last right hand sides contain different equivalent expressions for DELTA(M, R, g, S, 6s).

For example, using the last, we have

DELTA(M, R, 8g, S, 6s) 6rms

= (61_tws’61+ms)
= ([RX 63, (85 M S) — (6g M 65)],

(R 68) — (65 2 8%), (6% M 5) — (8% ™ 65), 6% ™ 63))

The components of §5, ¢ are: The deletions to R X S due to deletions from S and the deletions to
R ™ S due to deletions from R, but with overlapping deletions (i.e. 5 ™ é5) removed.

The components of 6}, are: (1) insertions to the outset due to tuples from R matching insertions
to S, but not including tuples due to matches between insertions to S and deletions to R; (2) a
component symmetric, in R and S, to (1); (3) insertions to the outset due to matches between
insertions in R and insertions in S.

Figure 15 shows all the constituent joins of gy and 67,5 by means of dotted lines connecting

two relations.

Deletions

Insertions

Figure 15: Computation of differentials of joins.

As can be appreciated the differential of a join is a complex query, and it can be computed in

many ways [BCL86]. Techniques from multiple query optimization can be exploited [CM86, Kim84,
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Sel86, Mat84, Sel88b]. For example, keeping all six argument relations sorted, joins can be done

interleaved, and pagewise (pipe-line join).

Lastly we will address “combined operators”. It is possible to use DELT A with arguments as
in DELT A(ws0rR,6g), where a combined projection and selection has to be carried out. This is
done by means of the combined operators of the previous subsection. Also “combined” generation

of differential files directly from change requests and selections/projections is possible.

5.5 Incrementing/Decrementing Relations

Now we discuss how to incrementally update a relation, and again we distinguish between the base
cases and the step cases.

Time Slicing Base Relations - The Base Cases

The simplest case of differential computation is time slicing of base relations, DIF(R(t;), (tz,ty)),
see figure 16. Both incremental and decremental computation are always possible (with t;, = tin;:

and ty = NOW, respectively).

“init _ Now

Figure 16: Time slicing a base relation.

We will discuse two basic strategies for time slice with distinct characteristics that make them
useful in different contexts. The first is the simplest. Change requests are processed one at a
time from the outset towards the requested state until the stamp of the next change request to be
considered exceeds the time of the desired state. The result of an insertion request is that the tuple
of the request is entered into the current outset, and the result of a deletion request is that the tuple

identified by the request is removed from the current state.
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The second makes use of two temporary relations, 6t and §~, and it resembles the base case
procedure for computation of differentials. As there insertions are entered into 61 which optionally
can be kept sorted and/or indexed on the key of the relation. Deletion requests can be deletions
of tuples of the outset or deletions of insertions, and they make sense. Thus the tuple to delete is
in either 6% or the current outset. 8% is searched for the tuple to be deleted, and if it is found the
request is discarded and the tuple is removed from §%; if not key information is stored in 6~. Tuples
of 6% and 6~ are written one page at a time. When there are no more change requests, 6~ is sorted,
and 6+ is sorted if it was not sorted already. Both 6-files are then simultaneous “merged” with
the outset: First a page of deletions is read, then the first relevant page of the outset and the first
relevant page of the insertions are read. Deletions are performed on the outset first, then relevant
insertions are performed. Whenever a page is totally read the next page of the relation is read. In
the case of the outset processed pages are written, and only pages that are relevant for the deletions
are read (irrelevant pages can be considered processed and written already). When there are neither
deletions nor insertions left, the processing terminates. Following this procedure pages of the three
relations are only read once, and irrelevant pages of the outset need not be read at all.

The choice between the first and a variation of the second strategy is based on the characteristics
of the arguments, i.e. the size of the outset used, and the differential file. IM/T contains a component

that, given the name of a backlog and a start and an end time, returns estimates:

#1 number of insertions
#pr  total number of change requests

#Do; number of deletions of insertions

The input to the component is produced during from non-eager processing of change requests. If
the first strategy is used, counts of insertions and deletions are used; if the second strategy is used,
again counts of insertions and deletions-are available, but so is also the final number of insertions.
How these inputs are most efficiently used to generate the output is a topic of current research.

The first strategy is advantageous if the total number of change requests to be processed is low.
The choice of keeping 1 sorted or not depends on the number of insertions into §* compared to
the number of deletions to be processed against 6t. If sorting is adopted, insertion has an overhead,
and if not, then search for deletions must be done by sequential scan.

If we assume that change requests of a backlog are distributed uniformly over time with k;

requests per time unit, the cost of reading (tz,1y) is:

[l ty —t: | k1 t_sizeBR'I
Y4
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The Step Cases

There are three cases for data arguments (figure 17).

Selection, DIF(or R, 6R), can be computed as follows:

DIF(O‘FR, 6R) = (O’FR — 0'1:'6}_2) U Up(s;

This is correct, since opér = 6, g (see page 28).
When we consider projection there are two subcases, the identity projection, DIF(R, §g), and

non-trivial projections, DIF(m4 R, 6r). The computations are:
DIF(R,8g) = (R — 65) U6},

DIF(maR,65) = (TaR — maSg) Umab}

Selection/Projection Mentity Projection Join

b4 %
o/l

Figure 17: Differential computation: Selection, Projection, and join. For each case the arguments
and their relations are shown. Note that the (non-bold) “R” of “Selection/Projection” is not an

argument.

The final case is the incremental join, DIF(R ™M S, R, 6g, S, és). From the subsection about the

operator DIF| we have:

DIF(R™ S, R,6g, S, §5)

= (RMS)—(RME)~[(0g 25) — (65 X 65) V(R ™ 55) ~ (85 2 6)] U

1 2
[(&7; b4 8) — (8% b 85)] L (6% > 6F)
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Let us consider processing of the deletions to the outset. The two components can be explained
as follows: (1) R M é5 are all the deletions from the outset due to deletions to S; (2) (65 ™
S) — (6g ™ é5) are all the deletions to the outset due to deletions to R with duplicate deletions
due to overlaps between 65 and 65 and already included in (1) removed. The overlaps can be
ignored without affecting the correctness of the final result, and the deletions represented by the two
remaining terms can be performed using only R X S, 65, and 85. A tuple of the outset is of the
form zrzrs, where z g is a tuple compatible with R and zs is a tuple compatible with S. Tuples of
R ™ S where x5 match a tuple in 65 are simply deleted; similarly tuples where g match a tuple in
6x are deleted. No joins need be performed.

Now, let us turn to the insertions. It is instructive to reformulate the expression for (R M S)":

(R®S)

(R—65)™ (S~ 85)U[(R-b5) N 851U

{6F (5~ 65) L 6E}

= RMXS —8pes U[(R—87)U8E — 651 6E]U
{8 M [(S-65)usg]}

= RMS - bps U{I(R~ 67) U K] ™ 6} — [ 3] U
{84 ™ [(S-85)u s}

= RNS—&ENSU\{[(R—ég)Uég]Né;*}lu

1

[6% > (S5 - 65)]
2
The insertion, 6}y, now is defined by two joins. The first (1) has 6% as one argument, and
the second (2) has 61"5 as one argument. This explains the superiority of differential computation
when differentials are small and relations large, because in such cases an expensive join of two large
relations, R’ and ', is avoided and two joins of a small relation with a large relation is done instead®.
See [Rou89] and [Sta89] where algorithms, costs, and efficient implementation of incremental join

for pointer views in ADMS are discussed in detail.

6 Pruning the Search Space

We already have presented a complete framework for query optimization. Here we introduce the

concept of pruning a STN. Pruning is a means of further optimization of plan selection. The

9Differential and re-computation both involve additional processing apart from joins, but since join is the most

expensive operation we ignore this.
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motivation is to reduce the sizes of the STN’s generated without leaving out promising query plans.
Reduced STN’s mean reduced costs of estimating costs of single transitions and a smaller argument
of the dynamic programming algorithm which therefore executes more efficiently. The purpose of
introducing the mapping P in the definition of a STN was exactly to be able to include pruning into

the framework. The rules of this section restrict the number of possible transition at a state.

6.1 Pruning Rules

We present a list of rules that are representative for the type of rules that can be integrated into
IM/T. Some have general applicability outside IM/T, and some are specific to IM/T. Also, some

make use of the identity transformations of subsection 4.3.

Rule 1 Reduce arguments by applying selections as early as possible. This is an example of the
general heuristic of trying to minimize the arguments of joins. Instead of doing joins of large

relations, selections are done on large relations, if possible.

Rule 2 Reduce arguments by applying projections as early as possible. This is similar to the above

rule.

Rule 3 Collect projections and selections from sequences of projections and selections and apply
them together. This rule states that combined application of selections and combined appli-
cation of projections are preferable to application of “uncollected” projection and selection.
Together with the two following rules this one states that combined operators generally are

preferable to non-combined operators.

Rule 4 Carry out selections and projections on arguments to a join together with the join in the

case that the unary operators are not followed by other joins, 1.e. combine selection/projection

and join.

Rule 5 Carry out selections and projections on arguments created by joins together with the joins,

i.e. combine join and selection/projection. The next three rules were introduced in subsec-

tion 4.4.

Rule 6 Only apply a differential to its outsel if exactly the selections/projections performed on
the outsel have been performed on the differential, i0oo. Obeying this rules will ensure we do
selections/projections on only the outset or the differential, and never on the updated outset.
This is reasonable since at least the differential can be assumed to be much smaller than the

updated outset.
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rule 7 Apply operators as early as possible. If the arguments in state 23 of an operation p trans-
forming z; into x. are present in an predecessor state, z4, of x; then p should be applied to

z, instead of to zj.

rule 8 Only compute a differential of an outset, it the outset already exrists. Both sequences are
possible, but a STN should only include one of them, and a differential is not useful if the

outset is not available.

rule 9 Application of mazimal combined operators is preferable to the sequential application of the
constituent operators of the combined operators. This rule adds to rules 3,4, and 5 by including

the combined versions of DIF and DELTA.

rule 10 Only use the smallest cached result out of covering results equally outdated with respect to
the desired state. This and the following rule attempt to only consider the most promising

cached results during generation af a STN.

rule 11 Only use the least outdated cached result out of covering results of equal size.

6.2 Sample Rule Application

When we apply the rules to the example of section 4.4, we get a very simple STN as shown in this

table:

STN for osalary>30ARatinge{G,E} Emp(ta) - Pruning Rules Applied

argument state transition result state

0 DIF(0satary>30 Emp(tinit), (tinit, ta)) x5
0 DELT A(0satary>20, Emp(ta,ta)) 5

0 OSalary>300 Salary>20Emp(ts) 11
0 DIF(0satary>20 Emp(ts), (ta,ta)) 14
5 DIF(0satary>30 Emp(ta), 655010 ry520Emp(ta)) zy
11 DIF(0satary>30 Emp(ta), (ta,ta)) zf
14 OSalary>300Salary>20Emp(ts) x5
0 DELTA(US,,;{,,!,Z%, Emp(tp,ta)) 6

0 OSalary>300Salary>25 Emp(tp) 15
0 DIF(0satary>25 Emp(tp), (tg,1a)) 18
6 DIF(0salary>30 EMP(tp), 605410ry25 Emp(ts)) zy
15 DIF (0salary>30 Emp(tg), (g,1a)) zf
18 OSalary>300 Salary>25 EMp(t,) Ty
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7 Conclusion and Future Research

We introduced an implementation model, IM/T, for the standard relational model extended with
transaction time; the new data model, DM/T, stored more detailed base data than did previously
proposed transaction time extensions and its extended functionality was transparent to a naive user
only expecting the relational model. We pointed out the new and desirable extensions of functionality
following from supporting transaction time. Among those were: Analysis of change history, support
for corporate decision making based on previous experience, support for accounting applications,
etc.

The price to be paid was the introduction of very large and ever growing amounts of historical
data. When new data were entered into the database the most recently entered data were retained as
historical data, and nothing were deleted. This kind of relations differed from equally large relations
of snapshot databases by having only a comparably small current state, i.e. instead of having one
large state, a relation of a transaction time database had a sequence of smaller states.

Because of the new anatomy, traditional storage and query processing strategies has fallen short.
Instead new strategies have proven to be more advantageous, and the goal has been to provide an
efficiency comparable to that of a snapshot database with relations of the same size as single states
of relations of a transaction time database. Achievement of this would allow for efficient access to
any state of any relation, and it would extend the transparent of the data model extension to the
level of efficiency.

The main focus was efficient query processing, and we showed how a host of storage and processing
strategies could be integrated into one single, powerful, and very general framework.

Base data were stored as change requests, and were subject to partitioned storage. In addition,

the query language could be used to specify base data not to be retained as a function of their age;

this was the task of a vacuuming subsystem.

Views could be cached as both pointers and data, and they were indexed by a structuring index
also containing statistics about the cached results.

State transition networks and dynamic programming were used for query plan enumeration and
selection, and IM/T integrated differential (incremental/decremental) computation and recompu-
tation of queries; in addition, combined operators were parts of the framework. Rules for pruning

STN’s were used for speeding up plan selection.

The generality of the model fell along the dimensions, largely independent, below:

e Arbitrary compression techniques could be used for for historical data.
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o Independently, for each relation of base data the historical data to be retained could be specified

using the query language.
e Views could be cached selectively.
e Either data or pointer storage of views could be chosen.

e Cached views could be selectively updated according to protocols ranging from eager to lazy

propagation of update.

e Queries could be computed with arbitrary combinations of elements of recomputation and

differential computation.
o Different sets of pruning rules can be adopted.

e Any graph search strategy can be used for plan selection.

In this paper we had to limit the presentation to the general framework. Many interesting
extensions and additions are possible, and we very much encourage researchers to join us in our

efforts of efficient support of transaction time. Topics of current and future research include:
e Optimal algorithms for computing the operators of STN’s.

e A more detailed study of the ELAP. The following issues are considered: (1) node contents

(statistics), (2) restructuring, (3) costs of usage.

e Differential files are not cacheable in the current design, but are recreated from sequences of
change requests. A study of the reusability of differential files including algorithms for using
a differential file as an outset for the differential computation of a requested file and a study

of the cost effectiveness of such algorithms is an interesting topic.

e The design of a data structure for maintenance of statistics about previously computed differen-
tial files. The objective is to, given intensional properties of the differential file to be computed,

be able to efficiently achieve extensional properties of the differential file of relevance for its

computation (cost).

e The detailed integration of a partitioned storage strategy utilizing WORM technology into the
framework. This includes the study of cached data views as a means of eliminating references

to slow storage.
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o The design of a vacuuming subsystem. Such a system will be activated regularly to remove
temporal data not relevant to the applications supported by the DBMS. Data model extensions

that allow for the specification of how much of the history of individual relations is required

must be investigated.

o Extensions of DM/T and IM/T to support complex objects, versions, and configurations.

o Extensions of DM/T and IM/T to support logical time.
e Practical experiments with the designed query evaluation subsystem.

e Caching policies. The task of a caching subsystem is to decide which computed results to
cache. The cache only has bounded space. When there is space available the problem is to
decide whether a result considered for caching can be used advantageously later on. When

no space is free the problem becomes one of ranking results already cached or considered for

caching.
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