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Finding Top-k Shortest Paths with Diversity
Huiping Liu, Cheqing Jin �, Bin Yang, and Aoying Zhou

Abstract—The classical K Shortest Paths (KSP) problem, which identifies the k shortest paths in a directed graph, plays an important
role in many application domains, such as providing alternative paths for vehicle routing services. However, the returned k shortest
paths may be highly similar, i.e., sharing significant amounts of edges, thus adversely affecting service qualities. In this paper, we
formalize the K Shortest Paths with Diversity (KSPD) problem that identifies top-k shortest paths such that the paths are dissimilar with
each other and the total length of the paths is minimized. We first prove that the KSPD problem is NP-hard and then propose a generic
greedy framework to solve the KSPD problem in the sense that (1) it supports a wide variety of path similarity metrics which are widely
adopted in the literature and (2) it is also able to efficiently solve the traditional KSP problem if no path similarity metric is specified. The
core of the framework includes the use of two judiciously designed lower bounds, where one is dependent on and the other one is
independent on the chosen path similarity metric, which effectively reduces the search space and significantly improves efficiency.
Empirical studies on 5 real-world and synthetic graphs and 5 different path similarity metrics offer insight into the design properties of
the proposed general framework and offer evidence that the proposed lower bounds are effective.

Index Terms—Top-k shortest paths, diversified top-k query, path finding, path similarity, path diversity.
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1 INTRODUCTION

P ATH-FINDING [6], [26] is one of the most prominent and ubiq-
uitous requirements of our daily lives. Although shortest path

finding has enabled highly useful services in many application
domains, we are still witnessing increasing interests in other types
of path-finding [14], [35], [41], [42], [47]. For instance, if the
shortest path involves many traffic lights, a driver may prefer to use
a slightly longer path but with less traffic lights. Such applications
call for efficiently finding the top-k shortest paths, but not merely
the shortest one, which provides flexibilities for users to make
personalized decisions.

The classical k shortest path problem (KSP) [3], [19], [30],
[45] returns the top-k shortest paths between a source and des-
tination pair, which has been widely adopted in many applica-
tions, including path recommendation, robot motion planning,
and candidate paths selection in scheduling. However, the top-
k shortest paths may be quite similar [2], due to a large number of
shared edges among the top-k shortest paths. This is undesired
as it adversely reduces the provided flexibilities. For instance,
if an accident happens on an edge and thus blocks the traffic,
and the edge is shared by all top-k shortest paths, then all the
returned k paths become unavailable and need to be recomputed.
This situation is undesired and should be avoided especially in
the applications of hazardous material shipments [9], evacuation
routing [34], robotic motion planning [40] and wireless sensor
networks [29]. In addition, highly overlapped paths reduce the
possibility that such paths suffice to satisfy various users’ diverse
driving preferences. To contend with the aforementioned limita-
tions, efficiently finding spatially dissimilar top-k shortest paths
from a source to a destination is called for.
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Figure 1 shows a weighted, directed graph. The top-4 shortest
simple paths (i.e., paths without cycles) from source A to desti-
nation D are listed in Table 1. When k is set to 3, the classical
KSP problem returns P1, P2, and P3. However, P2 and P3 are
highly similar as they share two long sub-paths A → B and
H → E → D. Thus, returning both P2 and P3 to users does not
significantly increase the flexibility for the users. In contrast, the
fourth shortest path P4, though slightly longer, is more different
from the first two. In this sense, P1, P2, and P4 form the top-3
shortest paths that are mutually dissimilar, which may satisfy more
users with diverse preferences.
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Fig. 1. A weighted, directed graph G

TABLE 1
Top-4 shortest simple paths from A to D in Fig. 1

Path Length
P1 A → B → C → D 21
P2 A → B → F → H → E → D 28
P3 A → B → H → E → D 29
P4 A → B → C → E → D 30

To this end, we consider the problem of finding top-k shortest
simple paths with diversity (KSPD), where the similarity between
any pair of the returned k paths must be below a threshold that is
specified by users and the total length of the returned k paths
should be minimized. However, solving the KSPD problem is
non-trivial as there may exist a huge number of paths between
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a source and a destination and thus it may take prohibitively
long time to enumerate all such paths. Moreover, we prove that
the KSPD problem is NP-hard (see Section 4) and we propose
an approximation algorithm for solving the KSPD problem with
provable approximation ratios.

In particular, we propose a general framework to efficiently
solve the KSPD problem. The framework enables us to choose
the next most promising path, instead of the next shortest path, to
explore. The “promisingness” of a path is defined based on a path
length lower bound that is derived by the chosen path similarity
metric and user specified threshold. The framework is designed
in a way which is loosely coupled with the choices of path
similarity metrics, and thus is applicable to a wide variety of path
similarity metrics. In addition, the framework utilizes a reverse
shortest path tree [8] from the destination to estimate path length
lower bounds for partially-explored paths. Moreover, we also
introduce path classification that groups partially-explored paths
into different classes. These together enable effective pruning
of considerable partially-explored paths and thus enable efficient
enumeration of next shortest paths. Thus, the framework is also
able to improve the efficiency of the classical KSP problem when
no path similarity metric is specified.

To the best of our knowledge, this paper is the first to consider
the KSPD problem and propose a general framework that efficient-
ly solves both the KSP and KSPD problems and supports a wide
variety path similarity metrics when solving the KSPD problem.
In particular, the paper makes the following contributions. First,
we formally define the top-k shortest simple paths with diversity
(KSPD) problem and prove that the KSPD problem is NP-hard.
Second, we propose a general greedy framework for efficiently
solving the KSPD problem, which supports various path similarity
metrics. Moreover, when no path similarity metric is specified,
the proposed framework is also able to efficiently solve the tradi-
tional KSP problem. Third, we carefully design two path length
lower bounds and a set of heuristics, which effectively prune
a large number of unnecessary partially-explored paths and in
turn improves the efficiency. Fourth, we conduct a comprehensive
empirical study on five real-world and synthetic graphs and five
different path similarity metrics to demonstrate that our proposal
is efficient and effective.

The remainder of this paper is organized as follows. Section
2 summarizes related works. Section 3 gives the preliminary of
our work and defines the KSPD problem. Section 4 proves the
NP-hardness of KSPD problem and proposes a heuristics idea for
KSPD problem. Section 5 introduces our proposed framework for
KSPD problem. Section 6 and Section 7 elaborate the two lower
bounds respectively, used in our framework. Section 8 gives our
final algorithm in detail. Section 9 reports the evaluation and a
brief conclusion is given in Section 10.

2 RELATED WORK

In general, our problem on finding top-k shortest simple paths with
diversity is related to three problems in the literature, including the
top-k shortest paths, diversified top-k query, and diversified paths
finding.

The top-k shortest paths The KSP problem aims at finding the
top-k shortest paths in weighted graphs. Yen proposes a general
method to get the k shortest simple paths in weighted directed net-
works [45]. Initially, the shortest path is computed. Subsequently,
all candidate paths that deviate from the shortest path are generated

by performing Dijkstra’s algorithm for many times, among which,
the shortest one is selected as the next shortest simple path. The
above steps repeat until k shortest paths have been found. Several
prior works [10], [30] try to improve Yen’s algorithm. [30] divides
the previous shortest paths into different equivalence classes, then
the candidate paths in each equivalence class can be found by a
replacement-path-based algorithm. Finally, the next shortest path
is selected among the candidate paths. [10] divides all simple
paths from the source to destination into smaller subspaces, and
each candidate shortest path comes from a subspace. For each
subspace, they iteratively compute and tighten its corresponding
lower bound, then candidate shortest paths in the subspaces are
computed in best-first paradigm based on their lower bounds, so
that lots of subspaces can be pruned without the time-consuming
shortest path computations. Although the above improvements are
efficient in practice, they share the same worst-case complexity as
Yen’s algorithm.

Finding top-k general shortest paths is studied in [3], [19],
[32], where undirected graphs and cycles in paths are allowed.
In undirected graphs, [32] proposes a much faster algorithm to
find the top-k shortest simple paths by using a path branching
structure. For the case that cycles are allowed in a path, the best
result is an algorithm proposed by [19]. By using an indexing
method, [3] efficiently answers the general top-k distance queries
on large networks.

However, none of the above studies considers path diversity.

Diversified top-k query Diversified top-k query, which aims at
computing the top-k results that are most relevant to a user query
by taking the diversity into consideration, has been extensively
studied in a wide variety of spectrum, such as, diversified keyword
search in documents [5], structured databases [15] and graphs [25],
diversified top-k pattern matchings [22], cliques [46] and struc-
tures [31] in a graph, and so on. However, due to different problem
natures, none of the above approaches can be used to efficiently
find the top-k diversified paths. A survey for different query result
diversification approaches is provided by Drosou and Pitoura [18].
The complexity of query result diversification is analyzed by Deng
and Fan [16]. Some other works [7], [36], [37], [39] focus on a
general framework for top-k answer diversification. [7], [36], [39]
focus on maximizing the diversity of k results in a given set,
while in our problem, we only require that the similarity of any
two paths in the result set should be less than a given threshold
and then their length should be as short as possible. [37] finds
the top-k diversified results, where the similarity of each pair of
results should be less than a given threshold and the total score
of all results should be maximized. Although the problem in [37]
is similar to our problem in this paper, they are still different due
to different object function. In our problem, we aim at finding
the top-k diversified paths with minimal total length. Accordingly,
all above frameworks cannot be directly applied to finding top-k
shortest simple paths with diversity.

Diversified paths finding [2], [11], [38] studies how to find the
dissimilar paths with different similarity functions, while our paper
also requires to explore the graph to find the shortest simple paths.
[29] and [40] focus on the diverse short paths in wireless sensor
networks and robotic motion planning, respectively. In [29], edges
in previous shortest paths are removed from the graph to get the
next diverse shortest path to achieve trustful communication levels.
In [40], edges near previous shortest paths are removed to avoid
obstacles. Both works cannot be applied to our problem due to



3

TABLE 2
Notation

Notation Meaning
G(V,E) graph with vertex set V and edge set E
m,n cardinality of edge set E and vertex set V
P (s, t) path from s to t
L(P ) length of path P
SP edge set of path P

Sim(Pi, Pj) similarity between path Pi and Pj

τ similarity threshold
k top k results are needed

LB1(P ) shortest path lower bound of path P
LB2(P ) diversified path lower bound of path P

different problem and application domains. Skyline path queries
identify non-dominated paths when considering multiple travel
costs [4], [27], [43], while our paper considers a single travel cost.

3 PRELIMINARIES

We introduce important concepts and formalize the problem.
Frequently used notation is summarized in Table 2.

Definition 1 (Graph). A directed weighted graph G = (V,E)
includes a vertex set V and an edge set E ⊆ V × V , where
|V | = n, and |E| = m. Edge e = (u, v) ∈ E, which connects
vertex u ∈ V to vertex v ∈ V , is associated with a nonnegative
weight, denoted as w(e).

Definition 2 (Path). A path from vertex s to vertex t in graph G
is a sequence of vertices, where each two adjacent vertices are
connected by an edge, denoted by P (s, t) : s = v1 → v2 →
· · · → vq = t, where s = head(P ) and t = tail(P ) are the
head and tail vertices of path P . Path P is a simple path if P
consists of distinct vertices. The set of edges on path P is defined
as SP = {(vi, vi+1)|1 ≤ i < q}. ∀i, j (1 ≤ i < j ≤ q),
P (vi, vj) is the subpath of P (s, t) from vi to vj . We use ‘+’ to
concatenate two subpaths if the tail vertex of a subpath is the head
vertex of another subpath.

Definition 3 (Length of Edge Set). The length of an edge set S is
the sum of the edge weights in S, i.e., L(S) =

∑
e∈S w(e).

Then, the length of path P , denoted as L(P ) equals to L(SP ).
To find dissimilar paths, we next formally define the similarity of
paths.

Definition 4 (Path similarity). The similarity between two paths
Pi and Pj , denoted as Sim(Pi, Pj), can be defined using different
similarity functions. Such a similarity function returns a value that
ranges from 0 to 1 such that the more edges shared by the two
paths, the higher value it returns.

We consider a wide variety of widely used path similarity
functions in the literature [2], [12], [13], [20], [21], [44], as
summarized in Table 3. All the path similarity functions return
a value between 0 and 1. If two paths are identical, their similarity
is 1; while if two paths share no edges, their similarity is 0. Note
that all similarity functions use L(SPi

∩ SPj
), i.e., the length of

the common edges between two paths. We call L(SPi
∩ SPj

) the
intersection length.

In particular, function Sim1(·, ·) returns a ratio between the
intersection length and the length of the union of the two paths,
which can be regarded as a weighted Jaccard similarity [33];
function Sim2(·, ·) is the arithmetic average of two ratios—the
ratio between the intersection length and the length of path Pi
and the ratio between the intersection length and the length of

TABLE 3
Similarity functions

Notation Definition References Sim(P2, P3) in Table 1

Sim1(Pi, Pj)
L(SPi

∩SPj
)

L(SPi
∪SPj

)
[13], [20], [21], [44] 26

31 = 0.84

Sim2(Pi, Pj)
L(SPi

∩SPj
)

2L(Pi)
+

L(SPi
∩SPj

)

2L(Pj)
[2], [20], [21] 26

56 + 26
58 = 0.91

Sim3(Pi, Pj)

√
L(SPi

∩SPj
)2

L(Pi)L(Pj)
[20], [21]

√
262

28×29 = 0.91

Sim4(Pi, Pj)
L(SPi

∩SPj
)

max {L(Pi),L(Pj)} [20], [21] 26
29 = 0.90

Sim5(Pi, Pj)
L(SPi

∩SPj
)

min {L(Pi),L(Pj)} [12] 26
28 = 0.93

path Pj ; function Sim3(·, ·) is the geometric average of the
aforementioned two ratios; function Sim4(·, ·) (or Sim5(·, ·))
returns a ratio between the intersection length and the length of
the longer (or shorter) path of the two paths.

The paper’s proposal is a general framework that solves the
problem of identifying k-shortest paths with diversity, which is
loosely coupled with the choice of similarity functions. Although
we use the above similarity functions to exemplify the proposed
framework, the framework itself is not limited to the specific
similarity functions. Without loss of generality, in the following
discussions, we use Sim1(·, ·) as the default similarity function
to exemplify the paper’s proposal.

Next, we formally define the KSPD problem below.

Definition 5 (Top-k Shortest Paths with Diversity
KSPD(G, s, t, Sim(·, ·), k, τ)). Let s, t ∈ G.V denote
two vertices in graph G, Sim(·, ·) be a path similarity function,
and τ ∈ [0, 1] be a similarity threshold and k be an integer.

We introduce Ω to denote a path set that consists of all simple
paths from source vertex s to target vertex t. Next, we introduce
ξ ∈ 2Ω to denote a set of dissimilar path sets. In particular, for
each dissimilar path set Ψ ∈ ξ, the similarity of every pair of
paths in Ψ is not greater than the threshold τ , i.e., ∀Pi, Pj ∈ Ψ,
Sim(Pi, Pj) ≤ τ .

The KSPD problem aims at finding a dissimilar path set Ψ ∈ ξ
such that |Ψ| ≤ k, and there does not exist another dissimilar path
set Ψ′ ∈ ξ with |Ψ′| ≤ k such that

• |Ψ′| > |Ψ|; or
• |Ψ′| = |Ψ| and

∑
Pi∈Ψ′ L(Pi) <

∑
Pj∈Ψ L(Pj).

The intuitions of Definition 5 are two folds. First, the result
dissimilar path set Ψ of KSPD should have the maximal cardinal-
ity constrained by k. Second, its total length of paths should be
minimized.

4 NP-HARDNESS OF KSPD
We first prove that the KSPD problem is NP-hard and then propose
an approximation algorithm to solve the KSPD problem.

Lemma 1. The KSPD(G, s, t, Sim(·, ·), k, τ) problem is an NP-
hard problem.

Proof. We prove Lemma 1 by reducing the KSPD problem to the
Maximum Independent Set (MIS) problem which is a well-known
NP-hard problem [23]. MIS aims to find a maximum vertex set
in a graph, such that each pair of vertices in this set cannot be
connected by an edge.

Following the notation used in Definition 5, we use Ω to denote
a path set that consists of all simple paths from s to t on G. In
order to reduce the KSPD problem to the MIS problem, we need
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to construct a graph G′. In particular, each vertex in graph G′

represents a path in Ω, then we connect two paths Pi and Pj by
an edge (Pi, Pj) if Sim(Pi, Pj) > τ . Next, we consider a special
case of the KSPD problem, where all paths in Ω have the same
length, e.g., ∀P,L(P ) = 1, and k = |Ω|. Then, finding KSPD in
G is equivalent to finding the maximum independent set on G′,
which is an NP-hard problem. Thus, the KSPD problem is also an
NP-hard problem. A concrete example of reducing KSPD to MIS
is included in the supplementary document [1].

In this paper, we propose a greedy algorithm to incrementally
find an approximate result to solve the KSPD problem. Algorith-
m 1 shows the pseudo code of the greedy algorithm. First, we add
the shortest path into the result set (lines 1–4). Next, in a greedy
fashion, we always pick the next shortest path and insert it into
the result set if the path is qualified (lines 5–9). Here, a path is
qualified if it is dissimilar with paths that are already in the result
set. Finally, the process stops when the result set has already k
diversified paths or all paths in Ω have been examined (line 5).

Algorithm 1:ApproximateKSPD(G, s, t, Sim(·, ·), k, τ)

Input: Graph G, source s, destination t similarity function
Sim(·, ·), k and τ .

Output: The top-k diversified shortest simple paths from s
to t.

1 Ω← set of all simple paths from s to t;
2 P ← the shortest path in Ω;
3 Ω← Ω \ {P};
4 Ψ← {P};
5 while |Ψ| < k and |Ω| > 0 do
6 P ′ ← the next shortest path in Ω;
7 Ω← Ω \ {P ′};
8 if ∀P ′′ ∈ Ψ, Sim(P ′′, P ′) ≤ τ then
9 Ψ← Ψ ∪ {P ′};

10 return Ψ;

Note that Algorithm 1 cannot always find the optimal results
, i.e., Top-k Shortest Paths with Diversity according to Definition
5. An example is included in the supplementary document [1].
Lemma 2 shows the the approximate ratios of the proposed greedy
algorithm.

Lemma 2. Let Ψ denote the set of paths return by Algorithm 1
and let Ψ∗ denote the set of paths returned by an exact algorithm.
The approximate ratio of Algorithm 1 is defined in two-fold as
the KSPD problem is defined as two sub-problems. The first sub-
problem is a maximization problem, which identifies dissimilar
path sets with the largest cardinality while being not greater
than k. The second sub-problem is a minimization problem, which
identifies, among all dissimilar path sets that are with the largest
cardinality, the set with the smallest total length. For the first
sub-problem, the approximation ratio of Algorithm 1 is k; for the
second sub-problem, the approximation ratio of Algorithm 1 is
maxP∈Ψ{L(P )}

L(P1) , where L(P1) is the length of the shortest path.
Note that both approximation ratios are not constant.

Proof. For the first sub-problem, Algorithm 1 always include the
shortest path in Ψ. In the worst case, |Ψ∗| = k, i.e., there are
k dissimilar shortest path, while Algorithm 1 returns Ψ that only
includes the shortest path. Thus, the approximation ratio for the
first sub-problem is α = |Ψ∗|

|Ψ| ≤
k
|Ψ| ≤ k.

Next, we consider the second sub-problem when |Ψ| = |Ψ∗|.
The approximate ratio α between approximate result Ψ and exact
result Ψ∗ is α = ΣP∈ΨL(P )

ΣP∗∈Ψ∗L(P∗) ≤
|Ψ|·maxP∈Ψ{L(P )}
|Ψ∗|·minP∗∈Ψ∗{L(P∗)} ≤

|Ψ|·maxP∈Ψ{L(P )}
|Ψ∗|·L(P1) = |Ψ|

|Ψ∗|
maxP∈Ψ{L(P )}

L(P1) = maxP∈Ψ{L(P )}
L(P1) .

The worst case of the approximate ratio for the first sub-
problem can be k. This occurs when Algorithm 1 only returns
the shortest path and the optimal result consists of k diversified
paths. However, in practice, k is not large. Further, this worst case
seldom happens in real world graphs (see experimental results
reported in Section 9).

5 A GENERAL SOLUTION FRAMEWORK

We first propose a baseline algorithm that applies the greedy
strategy. Next, we propose a general framework that utilizes two
lower bounds to further improve the performance.

5.1 Baseline algorithm
The baseline method based on the greedy strategy enumerates
shortest paths using existing algorithms that solve the KSP
problem, e.g., Yen’s algorithm [45]. In particular, in line 6 of
Algorithm 1, we call Yen’s algorithm to obtain the next shortest
path.

In the Yen’s algorithm, we call Dijkstra’s algorithm [17] to
identify the shortest path from source s to destination t, denoted
as P1(s, t), and insert it into an empty priority queue where the
priority is based on path lengths. If the priority queue is not
empty, we keep calling the following procedure until we get k
simple paths. First, we get the path with the shortest length in the
priority queue as the next shortest path Pi(s, t). Second, for each
edge (u, u′) in Pi(s, t), we repeatedly call Dijkstra’s algorithm
to identify the shortest path P ′(u, t) from u to t via a different
outgoing edge (u, u′′) where u′ 6= u′′ and without using any
vertex in Pi(s, u) to avoid cycles. A candidate path P ′′(s, t) is
generated by concatenating Pi(s, u) and P ′(u, t). We call Pi, u,
and (u, u′′) the deviation path, deviation vertex and deviation edge
of P ′′(s, t), respectively, because P ′′(s, t) deviates from Pi(s, t)
at u via (u, u′′). Third, all obtained candidate paths are added to
the priority queue.

Suppose κ is the number of shortest simple paths that are
evaluated by the baseline method to find the k diversified shortest
paths. The complexity of the baseline method by using Yen’s algo-
rithm is O(κn(m + n log n)), because O(n) times of Dijkstra’s
algorithms are invoked to find the next shortest simple path. Note
that κ� k often occurs.

The baseline algorithm is inefficient, especially when τ is
small or k is large. Because some shortest paths can never be
qualified before they reach the destination due to high overlaps
with the diversified paths that are already in Ψ, meaning that there
is no need to explore such paths. This motivates us to early prune
such unpromising paths that can never be qualified.

5.2 Our Solution Framework
To efficiently find the top-k shortest simple paths with diversity,
we try to improve the performance in two aspects. The first one is
on finding the shortest paths and the other is on finding the diver-
sified paths. To achieve this goal, we propose a framework (Figure
2) by using two lower bounds. Instead of directly generating the
shortest complete paths from the source to the destination by
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Fig. 2. Our general framework for KSPD problem

baseline method, our framework maintains all partially explored
paths that are from source but have not reached destination during
our process, and each path is attached with a lower bound lb that
initially equals to its length. All paths are kept in a priority queue
sorted by their lower bounds in ascending order.

The proposed general procedure adopts a best-first search
strategy. Each time we get the path P with the minimal lower
bound in the queue. If it has not reached the destination yet, we
extend path P by creating new simple paths that are derived from
P via tail(P )’s neighbors (where loop paths are discarded), and
add these paths to the queue. Otherwise, we check if it is feasible
for P to become a diversified path. If so, we add it into the result
set. The above process does not terminate until k diversified paths
have been found or the path queue is empty.

To accelerate the above process, we introduce t-
wo lower bounds, namely shortest path lower bound and
diversified path lower bound. For each newly created partially
explored path, we compute its shortest path lower bound that
is the lower bound of the length of its shortest simple path that
reaches the destination, so that we can efficiently find the shortest
complete paths by exploring partially explored paths according to
their shortest path lower bounds like A* algorithm [28]. On the
other hand, we also compute the diversified path lower bound for
each partially explored path according to the similarity function
and threshold before extending, such that the longer the length of
a path’s overlap (with the paths in the result set) is, the greater its
diversified path lower bound is. So the paths that highly overlap
with paths in the result set can be postponed to be explored,
and the “best” path with the minimal lower bound which is the
most promising shortest path to become a member of k diversified
paths, is chosen to be explored. We note that the lower bounds
are like some plugin boxes which can be put or removed without
changing the correctness of our framework, but just efficiency.
Moreover, when diversity is not required or τ = 1, our framework
can also support KSP problem.

In the next few sections, we first introduce how to compute
shortest path lower bound and then diversified path lower bound,
finally we elaborate our detail algorithm that uses the above lower
bounds to efficiently find the top-k diversified shortest paths.

6 SHORTEST PATH LOWER BOUND

We present how to calculate the shortest path lower bound, and
then introduce path classification to filter unnecessary paths.

6.1 Reverse Shortest Path Trees
We compute the shortest path lower bound of a partially explored
path by using reverse shortest path trees [8], [10]. Given a graph
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Fig. 3. Reverse shortest path tree G(D)

G(V,E) and a vertex t ∈ V , the reverse shortest path tree of
vertex t is denoted as G(t) = G(V ′, E′), where V ′ contains
t and the vertices that are reachable by a path from t, and E′

contains the edges in the shortest paths from vertices in V ′ to t.
For each vertex u ∈ V ′ \{t}, only one shortest path from u to t is
considered, so that there exists exactly one outgoing edge (u, u′)
in G(t) and t has no outgoing edge. Thus, G(t) is rooted at t. We
call u′ the parent of u, denoted by u.parent, and refer u.sp as
the shortest path from u to t in G(t) and u.dis as its length, i.e.,
u.dis = L(u.sp). It is convenient to construct G(t) by invoking
Dijkstra’s algorithm from t in the reverse graph of G [10], [43].

Example 1. Figure 2 illustrates the reverse shortest path tree
G(D) of the graph in Figure 1. For example, B.parent = C ,
B.sp = B → C → D, and B.dis = 11.

Lemma 3. Given an arbitrary path P (s, t) in G and the reverse
shortest path tree G(t), for any vertex v in P (s, t), L(P (s, v)) +
v.dis ≤ L(P (s, t)).

Proof. The proof is straightforward.

According to Lemma 3, the shortest path lower bound of
P (s, v), denoted as LB1(P (s, v)), is computed as L(P (s, v)) +
v.dis. For example, in Figure 1, the shortest path lower bound of
A→ I to D is 32 (= 20+ I.dis), which happens to be the length
of the shortest simple path. And the shortest path lower bound of
A → B → F is 25 (= 11 + F.dis), which is shorter than the
length of the shortest simple path P2, which is 28 (see Table 1).

Constructing a full reverse shortest path tree that from a
vertex that covers all reachable vertices in the graph may not be
necessary, because not all vertices’s dis are needed, especially
for the vertices that are far away from the source, as they may
never be visited during processing. Instead, inspired by [10], we
build a partial reverse shortest path tree and incrementally update
it. Algorithm 2 shows how to incrementally construct the reverse
shortest path tree. Once we compute LB1(P (s, v)), Algorithm 2
is invoked to get v.dis. If v has been settled, then we directly
return v.dis which has been already computed. Otherwise, we
continue to build the partial reverse shortest path tree based on a
priority queue Q for vertices ordered by their dis until v has been
settled. Finally, if priority queue is empty, it means that v cannot
be reached from the destination, we return ∞. Initially, Q only
contains the destination t with t.dis = 0, and all other vertices
with dis = ∞. Moreover, if landmarks [24] are available, the
ordering key of vertex u in the priority queue can be computed as
u.dis+maxw∈L{d(w, s)−d(w, u)} instead of u.dis, where s is
the source vertex, L is the landmark vertex set and d(w, ∗) is the
shortest distance from landmark w to ∗ that can be precomputed
offline. That is, algorithm 2 can traverse the network in an A*
fashion and the vertices near source can be visited early. In this
incremental way, the vertices that are never be visited won’t be
computed, which is more efficient than building the full reverse
shortest path tree.
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Algorithm 2: ConstructPartialSPT (G,Q, v)

Input: Reverse graph G, priority queue Q, vertex v ∈ G.
Output: v.dis.

1 if v.isSettled = true then
2 return v.dis;

3 while Q is not empty do
4 u← Q.extractMin();
5 u.isSettled← true;
6 if u = v then
7 return u.dis;

8 foreach outgoing edge (u, u′) of u and u′.isSettled =
false do

9 if u.dis + w(u, u′) < u′.dis then
10 u′.dis← u.dis + w(u, u′);
11 u′.parent← u;
12 Q.insert(u′) if u′ is not in Q;

13 return∞;

s tu

v

P2 P1

P

Case (1)

Case (2)
x

P'

Fig. 4. An illustration of Lemma 4

6.2 Path Classification

A surprising observation is that a path may not need to be extended
even if its lower bound is minimal. For example, in Figure 1,
after the shortest simple path from A to D has been found, we
attempt to look for the next shortest simple path. First, we extend
A → B → F (with minimal shortest path lower bound 25) via
F → H → I → B → C → D. Then we detect the repeated
vertex B and choose A → B → H (with minimal shortest path
lower bound 26) to extend. However, there is no need to extend
A → B → H though it has the minimal lower bound, because
A → B → H is either cyclic via H → I → B → C → D or
longer than A→ B → F → H via H → E → D. Hence, such
path can be avoided being extended since there always exists at
least one better path. This phenomenon is summarized by Lemma
4.

Lemma 4. For any two simple partially explored paths P1(s, v)
and P2(s, v) that deviate from a common shortest path at the
same vertex. Let P1(s, t), P2(s, t) be the shortest simple paths
from s to t beginning with P1(s, v) and P2(s, v) respectively. If
L(P1(s, v)) < L(P2(s, v)), then L(P1(s, t)) < L(P2(s, t)).

Proof. Suppose P1(s, v) and P2(s, v) deviate from the common
shortest path P at vertex u, as illustrated in Figure 4. To ease the
following discussions, we distinguish two cases.

Case 1: If P1(s, v) + P2(v, t) is simple, since P2(s, t) =
P2(s, v) + P2(v, t) and L(P1(s, v)) < L(P2(s, v)), then
L(P1(s, t)) ≤ L(P1(s, v)) + L(P2(v, t)) < L(P2(s, v)) +
L(P2(v, t)) = L(P2(s, t)).

Case 2: If P1(s, v) + P2(v, t) is not simple, then there exists
at least one repeated vertex between P1(u, v) and P2(v, t), say
x for simplicity, forming one or more loops. Then, we can

generate a new path P ′(s, t) based on P1(s, v) + P2(v, t), but
removing all vertices in each loop. Thus, P ′(s, t) = P (s, u) +
P1(u, x) + P2(x, t) is simple and L(P ′(s, t)) < L(P1(s, v)) +
L(P2(v, t)) < L(P2(s, t)). If L(P1(s, t)) ≤ L(P ′(s, t)), then
we have L(P1(s, t)) < L(P2(s, t)). Otherwise, P ′ is shorter
than both P1(s, t) and P2(s, t), then P ′ should be found before
P1(s, t) and P2(s, t). As a result, P1(s, v) deviates from P ′

at vertex x, then P1(s, v) and P2(s, v) actually deviate from
different shortest paths at different vertices, which is a contra-
diction.

According to Lemma 2, there is no need to extend P2(s, v)
at v before P1(s, t) is found. We introduce the concept of path
classification to avoid unnecessary path extending using Lemma 4.
We partition all partially explored paths that deviate from different
shortest simple paths at different vertices into different classes.
Each class is denoted by p · v, where p is the deviation path,
and v is the deviation vertex. In other words, the paths which
deviate from the same shortest path at the same vertex belong to
the same class. Once a partially explored path, say P , has been
extended at a vertex, say u, we call u has been covered by the
class that P belongs to. Hence, according to Lemma 2, u has no
necessity to be covered again by P ’s class before the complete
shortest simple path which begins with P has been found. That is,
each vertex is covered by each class at most once before the next
shortest simple path is found. For example, the shortest simple
path from A to D in Figure 1 is P1 : A → B → C → D. Then
paths P ′ : A → B → H and P ′′ : A → B → F → H
belong to the same class “1 · B”, indicating that they deviate
from the 1st shortest path P1 at vertex B. Since L(P ′′) = 12
is smaller than L(P ′) = 13, after P ′′ is extended at H , there is
no need to extend P ′ at H before the next shortest simple path
P2 : A → B → F → H → E → D is found. We say P ′

is dominated by P ′′ and call P ′ an inactive path in this case,
which can be temporarily removed from the path queue. After P2

is found we activate it by re-adding it to the queue.

7 DIVERSIFIED PATH LOWER BOUND

To filter the shortest paths that highly overlap with paths in the
result set, we compute another lower bound for each path before
extension for each similarity function mentioned in Table 3.

We begin with Sim1(P ′′, P ′), where P ′′ is a complete path
and P ′ is a path in the result set Ψ. If P ′′ is feasible, i.e.,
Sim1(P ′′, P ′) ≤ τ , we have:

Sim1(P ′′, P ′) =
L(SP ′′ ∩ SP ′)

L(P ′′) + L(P ′)− L(SP ′′ ∩ SP ′)
≤ τ. (1)

That is,

L(P ′′) ≥ L(SP ′′ ∩ SP ′)× (1 +
1

τ
)− L(P ′). (2)

In this way, the diversified path lower bound of partially ex-
plored path P , denoted as LB2(P ), is computed as Equation 3. We
note that the diversified path lower bound of a partially explored
path is monotonically increasing as it is extended, because the
intersection length never decrease when the path grows. In other
words, for any complete path which begins with P to be inserted
into Ψ, its length is not smaller than LB2(P ).

LB2(P ) = max
P ′∈Ψ

{L(SP ∩ SP ′)× (1 +
1

τ
)− L(P ′)}. (3)
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Algorithm 3: FindKSPD(G, s, t, Sim(·, ·), k, τ)

Input: Graph G, source s, destination t similarity function
Sim(·, ·), k and τ .

Output: The top-k shortest simple paths with diversity
from s to t.

1 Create priority queue Q and local priority queues LQ[·];
2 P ← the shortest path from s to t;
3 Ψ← {P};
4 For each path P ′ : v1 → · · · → vi → vi+1 that deviates

from P , setting P ′.rt← P ′, P ′.len← L(P ′), P ′.lb←
LB1(P ′),P ′.cls← 1 · vi, and LQ[vi+1].insert(P ′),
Q.insert(LQ[vi+1]);

5 while |Ψ| < k and Q is not empty do
6 P ← FindNextPath(G,Q, t, Sim(·, ·), τ);
7 if ∀p′ ∈ Ψ, Sim(p′, P ) ≤ τ then
8 Insert P into Ψ;

9 return Ψ;

The diversified path lower bounds for other similarity functions
can also be computed in a similar manner. Due to the limitation of
the space, we list the results as follows:

• For Sim2(·, ·), LB2(P ) =

max
P ′∈Ψ

{
L(SP∩SP ′ )L(P ′)

2τL(P ′)−L(SP∩SP ′ )
2τL(P ′) > L(SP ∩ SP ′)

∞ 2τL(P ′) ≤ L(SP ∩ SP ′).

• For Sim3(·, ·), LB2(P ) = maxP ′∈Ψ{L(SP∩SP ′ )
2

τ2L(P ′) }.
• For Sim4(·, ·),

LB2(P ) = max
P ′∈Ψ

{
L(SP∩SP ′ )

τ L(P ) ≥ L(P ′)

L(P ) L(P ) < L(P ′).

• For Sim5(·, ·),

LB2(P ) = max
P ′∈Ψ

{
∞ L(SP ∩ SP ′) ≥ τL(P ′)

L(P ) L(SP ∩ SP ′) < τL(P ′).

It is obvious that LB2(P ) should be 0 if Ψ = ∅ for all similarity
functions.

So for each path, its lower bound lb is decided by the greater
one of the shortest path lower bound LB1 and the diversified
path lower bound LB2. As a result, the shortest paths that share
lots of common edges with paths in the result set have greater
lower bound, so that, they can be postponed to be extended, which
improves the efficiency of finding the shortest diversified paths.

8 THE FINAL ALGORITHM

Finally, based on path classification and two lower bounds, we
present the final algorithm of our framework for KSPD problem,
as listed in Algorithm 3. Initially, we create an empty result set Ψ
for k shortest diversified simple paths. In order to get the path with
the minimal lower bound and maintain the path classifications,
we use two data structures to handle the partially explored paths
during the process. At first, a local priority queue, denoted as
LQ[v], is maintained for each vertex v to record the paths from s
to v. All paths kept in LQ[v] are sorted by their lower bounds
lb in an ascending order. The second one is a global priority
queue Q to maintain the local queues for such vertices, sorted

Algorithm 4: FindNextPath(G,Q, t, Sim(·, ·), τ)

Input: Graph G, priority queue Q, destination t, and
threshold τ .

Output: The next shortest feasible path.
1 while Q is not empty do
2 LQ[v]← Q.extractMin(), P ← LQ[v].extractMin();
3 if LQ[v] is not empty then Q.insert(LQ[v]);
4 while tail(P ) 6= t do
5 Compute LB2(P ) based on Sim(·, ·) and τ ;
6 if LB2(P ) > P.lb then
7 P.lb← LB2(P );
8 AdjustPath(P );
9 LQ[tail(P )].insert(P );

10 Q.insert(LQ[tail(P )]) if LQ[tail(P )] is not
in Q;

11 break;

12 else if not ExtendPath(P ) then
13 break;

14 if tail(P ) = t then
15 AdjustPath(P );
16 return P ;

Algorithm 5: ExtendPath(P )

Input: Path P to be extended.
Output: true/false.

1 y ← tail(P );
2 foreach P ′ ∈ LQ[y], P ′.cls = P.cls ∧ P ′.len ≥ P.len do
3 Mark P ′ inactive;

4 foreach edge (y, u), u /∈ P.rt ∧ u 6= y.parent do
5 Create a new path P ′′ : P ′′.rt← P.rt + u,

P ′′.len← P.len + w(y, u), P ′′.lb← LB1(P ′′),
P ′′.cls← P.cls;

6 if u has been covered by P.cls then
7 Mark P ′′ inactive;

8 else
9 LQ[u].insert(P ′′);

10 if LQ[u] is not in Q then Q.insert(LQ[u]);

11 if y.parent ∈ P.rt then
12 return false;

13 else
14 P.rt← P.rt + {y.parent};
15 P.len← P.len + w(y, y.parent);
16 return true;

by their minimal lower bounds in an ascending order as well. In
this way, the minimal path of the minimal local queue in Q has
the global minimal lower bound. For each path P in LQ[v], we
keep pieces of information besides lb, including the detail route
rt of P which is from source to v, the path length len=L(rt),
and cls referring to its path classification. Initially, lb equals to
LB1(P ) computed as len + v.dis. In the beginning, the shortest
path P is added to the result set and all the paths that deviate from
P are inserted to the corresponding local queues and the global
queue (lines 2-4). Subsequently, we repeat invoking Algorithm



8

Algorithm 6: AdjustPath(P )

Input: Path P to be adjusted.
Output: none.

1 u← the deviation vertex of P , y ← tail(P );
2 foreach vertex v, v ∈ P (u, y) do
3 Activate the inactive paths in LQ[v] that are dominated

by P , and if P reaches the destination, find all the paths
with prefix P (s, v) in all local queues, change their
classifications to P · v;

FindNextPath to find the next shortest simple path (lines 6) and
check its feasibility (line 7-8), until the top-k diversified shortest
paths have been found or the global priority queue is empty.

Algorithm FindNextPath (Algorithm 4) repeats extending
partially explored path with the minimal lower bound until it
reaches the destination, then returns it as the candidate diversi-
fied shortest path. Before we extend path P , we first check its
feasibility by computing its diversified path lower bound LB2(P )
according to the similarity function and the threshold (line 5). If
LB2(P ) is less than P.lb, we can safely extend P at each vertex
along tail(P ).sp by frequently invoking Algorithm ExtendPath
until P reaches the destination or P is not simple (lines 4-
13), because P.lb won’t change and it is always the minimal.
Finally, if P reaches the destination t, we have successfully
found the next shortest promising path. Meanwhile, we need to
activate the inactive paths dominated by P and update the path
classification of the paths derived from P according to Lemma
4 by invoking Algorithm AdjustPath (lines 14-16). On the other
hand, if LB2(P ) is greater than P.lb, we reset P.lb to LB2(P )
and re-add P to the queue to postpone it to be extended, then
choose another path with the minimal lower bound by breaking
the loop (lines 6-11). In addition, we need to adjust P to activate
the inactive paths that dominated by P , because these paths now
may have smaller lower bound than P (line 8). In this way, we
always select the most promising shortest path to extend, which
accelerates finding the next shortest diversified path.

Algorithm ExtendPath (Algorithm 5) extends path P at
tail(P ), say vertex y, via y.parent and creates new simple paths
via the neighbors of y, then returns false if P is not simple,
otherwise, returns true. According to Lemma 4, the path P ′

that belongs to the same class with P can avoid being extended
when P ′.len ≥ P.len, we mark it inactive (lines 2-3). Then, for
each outgoing edge (y, u), if u is neither in P.rt (not a loop)
nor equal to y.parent, we extend P by creating new path P ′′

derived from P , and if u has been covered by P.cls, we set P ′′

inactive. Otherwise, we add P ′′ to the priority queue (lines 4-
10). Subsequently, we extend P at y.parent. If y.parent is in
P.rt, then P is not simple, we return false, so that Algorithm
FindNextPath can stop extending P (lines 11-12). Otherwise, we
update P ’s route and its length with y.parent (lines 13-16). Since
the shortest path lower bound of P won’t increase by following
tail(P ).sp, we leave P.lb unchanged and return true, so that
Algorithm FindNextPath can keep extending P along y.sp.

Algorithm AdjustPath (Algorithm 6) adjusts path P by ac-
tivating the inactive paths that are dominated by P , and if P
reaches the destination, the classifications of paths that derived
from P need to be updated. In other words, for each vertex v in
path from P ’s deviation vertex to P ’s tail, we activate the inactive
paths dominated by P in LQ[v]. In addition, if P is a complete
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Fig. 5. A running example of our final algorithm (The term “inactive” is
shorten as “IA”)

path, for all partially explored paths that begin with P (s, v) in all
local queues, we update their classes with P · v.

Example 2. Let’s find the top-3 diversified shortest paths from A
to D in Figure 1 with Sim(·, ·) = Sim1(·, ·) and τ = 0.5.

1) First, we find the shortest path P1 : A→ B → C → D
via A.sp and add it to the result set Ψ. Then we create
four partially explored paths that deviate from P1 and set
their classes to “1·∗” respectively. Figure 5 (1) illustrates
the states of Q and LQ[·] after P1 is found.

2) Subsequently, we find the next shortest diversified path.
PathA→ B → F (with minimal lower bound) is chosen
to be extended via F.parent, since its diversified path
lower bound 10 × (1+1/0.5)-21=9 is less than its lower
bound 25, which results in path A → B → F → H ,
as shown in Figure 5 (2). Next, extending A → B →
F → H (LB2<lb) at H generates two paths: A →
B → F → H → I and A → B → F → H → E.
Meanwhile, since A → B → H and A → B → F →
H belong to the same class, we mark A → B → H
inactive, so that it won’t be extended again in this round,
which is illustrated in Figure 5 (3). Subsequently, A →
B → F → H → I (LB2<lb) is chosen to be extended.
After visiting B, the path is discarded directly due to the
existence of a loop, as shown in Figure 5 (4). Finally, we
process A→ B → F → H → E (LB2<lb) and get the
next shortest path P2 : A→ B → F → H → E → D,
as shown in Figure 5 (5). In addition, we adjust P2 as
illustrated in Figure 5 (6). Since A → B → H and
A → B → C → E share prefix A → B with P2, their
classes are changed to “2 · B”, and the inactive path
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A → B → H which is dominated by P2 in LQ[H], is
activated. Because Sim1(P1, P2) = 10/39 = 0.26 <
τ = 0.5, we add P2 to the result set.

3) We then find the third shortest diversified path by first
extending A→ B → H (LB2<lb) (Figure 5 (7)). Then,
we follow H.sp, but detect a loop A → B → H →
I → B, so we give up this path and extend another one:
A → B → H → E. Its diversified path lower bound is
computed as: 25× (1+ 1

0.5 )−28 = 47, which is greater
than its lower bound 29, so we reset the value of entry
lb to 47 (Figure 5(8)). Since no path is dominated by it,
nothing needs to be changed. Finally, we process path
A → B → C → E (LB2<lb) through E.sp, and find
shortest path P3 : A → B → C → E → D. Since P3

is qualified, we add it to the result set and get the top-3
shortest simple paths with diversity.

As we can see, one shortest path is avoided being checked
in the above example. We emphasize that we can distinguish
two lower bounds. One is based on similarity functions, which is
useful only when considering diversity. The other is independent
on similarity functions, which can also benefit the cases when
not considering diversity. In this way, our algorithm can not only
solve KSPD problem but also deal with traditional KSP problem
by simply setting τ = 1 or LB2=0.

8.1 Correctness
Theorem 1. Algorithm FindKSPD correctly returns the top-k
shortest paths with diversity.

Proof. Suppose a shortest diversified path found by FindKSPD is
P = P (s, v) + v.sp, then P.len = P (s, v).len + v.dis and
P.lb = P (s, v).lb (if P.lb increases, then we stop following
v.sp and won’t get P from FindNextPath). We first prove that
P.len = P.lb. If P (s, v).lb = P (s, v).len + v.dis, then we
have P.len = P.lb when we get P . Otherwise, if P (s, v).lb >
P (s, v).len + v.dis, which implies that P (s, v).lb has been
increased to the diversified path lower bound of P (s.v). Hence,
we have P.lb ≥ P (s, v).lb > P (s, v).len + v.dis = P.len.
Since P is feasible, P.len ≥ P.lb, which is a contradiction. Thus
we have P.len = P.lb. Suppose there exists another feasible path
P ′ = P ′(s, u)+u.sp which is shorter than P , then P ′.lb < P.lb,
and P ′(s, u).lb < P (s, v).lb. Since the lower bound of a path is
monotonically increasing, it means that P ′(s, u) must have been
extended before P (s, v) (otherwise there must exist a better path
than P ′(s, u) according to Lemma 4). As a result, P ′ must have
been found before P . Accordingly, Algorithm FindKSPD returns
the top-k shortest paths with diversity.

8.2 Complexity
We then analyze the performance of our approach which is based
on path classification and lower bounds. Since the lower bounds
are heuristics to improve the efficiency of our framework, they do
not change the theoretical complexity of our method. Theorem 2
shows the worst-case time complexity of our algorithm.

Theorem 2. The worst-case time complexity of Algorithm Find-
KSPD is O(κn(m+n log n)), where κ is the number of shortest
simple paths returned by Algorithm FindNextPath.

Proof. According to Lemma 4, each class covers each vertex at
most once before the class’s corresponding shortest simple path

has been found. In other words, Dijkstra’s algorithm is executed
at most once by each class to find its corresponding shortest
simple path. Every time we get a shortest simple path, O(n)
new classes are generated from the new shortest path. Hence,
there totally exist O(κn) classes after we get the top-κ shortest
simple paths. As a result, the worst-case time complexity of our
method is O(κn(m + n log n)), where O(m + n log n) is the
time complexity of Dijkstra’s algorithm.

Discussion: Although our method cannot break through the com-
plexity of the baseline method, it is worth noting that the worst
case seldom happens. In most cases, we find the next shortest
simple path without covering all the vertices by each class. In
an ideal situation, we can directly find the next shortest simple
path without trying other paths by following the reverse shortest
path tree, which only costs O(κ(n + log n)). When diversity is
not considered, compared to Yen’s algorithm [45] and its variants
[10], [30], the advantages of our framework for KSP problem are
two folds.

First, our framework applies a best-first paradigm with a
(partially explored) path granularity; while Yen’s algorithm and
its variants apply a best-first paradigm with a subspace granularity,
where each subspace corresponds to a complete candidate shortest
path which deviates from previous shortest paths. As a result, in
our framework, the path with minimum lower bound is the path
with exact global minimum lower bound and if it is simple then
it is the next shortest simple path. In contrast, in Yen’s algorithm
and its variants, the subspace with minimum lower bound is not
an exact global minimum lower bound since the shortest simple
path in the subspace with the minimum lower bound may not be
the next shortest simple path, which means the lower bound in
our framework is tighter than those of Yen’s algorithm and its
variants. Furthermore, by using path classification, the worst case
complexity of our framework can be guaranteed to be equal to
Yen’s algorithm and its variants. In summary, fewer paths need to
be examined by our framework to find the top-k shortest simple
paths due to a tighter shortest path lower bound (see experiments
in Section 9.2). Second, we do not generate complete candidate
shortest paths unless they are members of top-k shortest simple
paths. Once a partially explored path is not simple, we choose
another one until the next shortest path is found, which also shows
the flexibility of our framework with path granularity.

On the other hand, utilizing the diversified path lower bound,
we always choose the “best” path to explore by avoiding the
shortest paths that highly overlap with paths in the result set, which
helps to find the k diversified shortest paths with a smaller κ.

8.3 Implementing Optimizations
We propose some optimizations for Algorithm FindKSPD to
further improve its execution efficiency.

Extend path. Recall that we extend path by creating new paths
via all its neighbors, and add the new paths to the priority queues.
For large graph with great degree, many new paths are generated
while extending path, which dramatically increases the size of
priority queues (the size can exponentially increase in worst case)
and deteriorates the efficiency of our algorithm. In fact, not all new
paths need to be created via neighbors and added to the priority
queues, because the paths with great lower bound may never be
visited while processing. Hence, without changing its correctness,
we extend path in a lazy extending way by only inserting the new
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path with minimal lower bound into the priority queue. To this
end, we add a new attribute to the structure of path P , namely
extendingPathList, to store P ’s extending paths sorted by their
lower bounds (lb) in an ascending order. That is, when we extend
a path P (line 4 in Algorithm 5), only the new path P ′ with
smallest lower bound need to be added to the priority queues, and
all the other new paths are inserted into P ′.extendingPathList.
Then once P ′ has been visited (line 2 in Algorithm 4), the
next path P ′′ in P ′.extendingPathList is removed and added
to the priority queues and P ′.extendingPathList is passed
to P ′′.extendingPathList by setting P ′′.extendingPathList =
P ′.extendingPathList and P ′.extendingPathList = ∅. In this
way, we extend paths on demand, which reduces the size of
priority queues and improve the efficiency of our method.

Adjust path. Recall that we need to find all the paths that deviate
from the new shortest path when we adjust it (line 3 in Algorithm
6), to efficiently find all such paths, we maintain a prefix tree
rooted at the source vertex for all partially explored paths during
processing. Once a new path is created and added to priority
queues, we add it to the prefix tree. And if it has already been
visited, we remove it from the prefix tree. Then, we can search all
such paths which share the same prefix with the new shortest path
in O(n). We note that once the classification of a path is updated,
all the paths in its extendingPathList need to be updated, too.

Compute LB2. The key to compute LB2 is to compute the overlap
between two paths. To quickly identify the sharing edges between
two paths, we use a hash table to find their common edges in
O(n). Moreover, since the newly created candidate path shares
the same prefix path with the path they are derived from, the
overlaps between the prefix path and the paths in the result set can
be inherited and need not to be recomputed from scratch again.
Concrete examples on the optimization of LB2 computation can
be found in the supplementary document [1].

9 EVALUATION

We report on empirical studies of the performance of the proposed
algorithms.

9.1 Experimental Setup
Graphs: We use 5 real-world directed graphs with different types
and properties (see Table 4). In particular, Google , Google+, and
WikiTalk are un-weighted graphs, where we set all edge weights
to 1. RoadCOL and RoadFLA are weighted graphs where the
weights represent the lengths of the roads in Colorado and Florida,
USA, respectively.

TABLE 4
Real-World Graphs

Dataset Type |V | |E| Avg. Degree
Google+1 Social 107,614 13,673,453 254.12
Google1 Web 875,715 5,105,040 11.66

WikiTalk 1 Communication 2,394,387 5,021,411 4.19
RoadCOL2 Road 435,666 1,057,066 4.85
RoadFLA2 Road 1,070,376 2,687,902 5.02

We also generate synthetic graphs using the SSCA2 gener-
ator3. The generated graphs are directed, weighted graphs, and

1. http://snap.stanford.edu/data/index.html
2. http://www.dis.uniroma1.it/challenge9/download.shtml
3. http://www.cse.psu.edu/∼kxm85/software/GTgraph/

made up of random-sized cliques, with a hierarchical inter-clique
distribution of edges based on a distance metric. We use all
the default parameters except for the parameter SCALE that
describes graph size. Table 5 shows the synthetic graphs we
generate by setting SCALE to 16, 17, 18, 19, and 20, respectively.

TABLE 5
Synthetic Graphs

Dataset |V | |E| Avg. Degree
S16 65,536 1,564,579 47.75
S17 131,072 3,907,909 59.63
S18 262,144 10,008,022 76.36
S19 524,288 24,974,544 95.27
S20 1,048,576 63,148,387 120.45

Queries: For each graph, we randomly choose 20 different
source-destination pairs as queries and report the average running
time and the number of visited partially explored paths. If a
query cannot stop within a pre-defined time limit (2 hours in the
following experiments) or fails due to out of memory exceptions,
we denote the corresponding running time as N/A. We vary the
values of parameters in the experiments according to Table 6,
where default values are shown in bold.

TABLE 6
Parameter Settings

Parameters Values
k (for KSP) 10, 20, 30, 40, 50
k (for KSPD) 5, 10, 15, 20

τ 0.8, 0.6, 0.4, 0.2
Sim(·, ·) Sim1, Sim2, Sim3, Sim4, Sim5

Methods: We include six different algorithms to process both
KSP and KSPD problems.

IterBound is the state-of-the-art method for solving KSP prob-
lem [10]. As a variant of Yen’s algorithm, IterBound computes the
candidate shortest paths in a best-first manner based on their lower
bounds by using an iteratively bounding approach.

div-cut is an exact algorithm for finding the top-k diversified
results [37], which is also NP-hard. This problem considers a
setting where each result r has a score S(r) and aims at finding
a diversified result set D with cardinality less than or equal to k,
in which each pair of results are dissimilar and the total score of
all results is maximized. Although this problem is different from
the KSPD problem, we can transfer the KSPD problem to this
problem by using a score mapping function S(P ) = kχ− L(P )
for each simple path P from the source to destination on graph
G = (V,E), where χ = Σe∈Ew(e). We omit the prove due
to space limitation. To solve this problem, a diversity graph is
constructed, where each node represents a result and an edge
connects two results if they are similar. Next, the diversity graph
is decomposed into a set of connected components, and each con-
nected component which is loosely connected through a set of cut
points can be further decomposed. In this way, the diversity graph
is divided into a set of small components, and each component can
be processed separately. Finally, the optimal results can be found
by combining all the results in a particular way.

KSPD-Yen is the baseline method by using Yen’s algorithm
[45] for KSPD problem.

FindKSPD is the final algorithm (Algorithm 3) we propose to
find the approximate KSPD with proposed optimizations.

FindKSP is the KSP version of our final algorithm FindKSPD
by setting τ = 1. That is the case that the diversified path lower
bounds are disabled.

http://snap.stanford.edu/data/index.html
http://www.dis.uniroma1.it/challenge9/download.shtml
http://www.cse.psu.edu/~kxm85/software/GTgraph/


11

Google+
Google

WikiTalk
RoadCOL

RoadFLA

100
101
102
103
104
105

R
un

ni
ng

 T
im

e 
(m

s)

 FindKSP
 IterBound

Google+
Google

WikiTalk
RoadCOL

RoadFLA

0
20
40
60
80
100
120
140

# 
of

 P
at

hs

 FindKSP
 IterBound

(a) Real-world graphs

S16 S17 S18 S19 S20
0

2,000

4,000

6,000

8,000

10,000

R
un

ni
ng

 T
im

e 
(m

s)

 FindKSP
 IterBound

S16 S17 S18 S19 S20
0

20

40

60

80

# 
of

 P
at

hs

 FindKSP
 IterBound

(b) Synthetic graphs

Fig. 6. Efficiency on different graphs for KSP (k=30)

TABLE 7
Average hops of the top 30 shortest simple paths

Dataset Google+ Google WikiTalk RoadCOL RoadFLA
Avg. Hops 4 13 5 710 1,013

Dataset S16 S17 S18 S19 S20
Avg. Hops 152 326 246 377 461

FindKSPD− is the simplified version of FindKSPD that only
uses the shortest path lower bound by removing lines 5-11 from
Algorithm FindNextPath.

Implementation details: All algorithms are implemented in
Java 1.6 under CentOS Linux. All experiments are conducted on
a 2.00GHz Intel(R) Xeon(R) CPU computer with 64 GB memory.

9.2 Efficiency of shortest path lower bound

Since the shortest path lower bound is used to find the shortest sim-
ple paths, we test its efficiency by finding the top-k shortest simple
paths, i.e., the KSP problem. Hence, we test the performance of
FindKSP and IterBound. In addition to running time, we also
compare the number of paths computed by the two methods to
find the top-k shortest simple paths. For FindKSP, the computed
paths are the partially explored paths that have been visited by
line 2 in Algorithm 4. For IterBound, the computed paths are the
complete candidate shortest paths that have been generated.

Figure 6 shows the performance of the two methods on
different graphs with k = 30. Clearly, FindKSP outperforms
IterBound, the state-of-the-art method, on both real-world and
synthetic graphs. Moreover, for Google , Google+ and WikiTalk ,
FindKSP performs nearly one order of magnitude faster than
IterBound. According to figures on the right side, the number
of paths tried by FindKSP is generally slightly larger than k,
while IterBound needs to generate more shortest paths. This
is because the shortest path lower bound is tighter than the
heuristic bound used in IterBound, and FindKSP directly finds
the next shortest simple path without generating candidate shortest
paths. Moreover, FindKSP tries partially explored paths instead
of generating complete candidate shortest paths in IterBound. As
a result, FindKSP is more efficient than IterBound. For example,
to find the top 30 shortest simple paths on RoadFLA, FindKSP
checks 41 partially explored paths and takes 1,745 ms, while
the IterBound generates 75 complete candidate paths and spends
2,351 ms.
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Fig. 7. Vary k on different graphs for KSP

Table 7 shows the average hops of the top 30 shortest simple
paths on each graph. For Google , Google+ and WikiTalk , they
have relatively small average hops. As a result, the top 30 shortest
simple paths have similar lengths, which makes the lower bounds
of IterBound relatively less sensitive and it needs to compute
more shortest paths. On the contrary, FindKSP keeps finding the
shortest simple path via the shortest path tree until it reaches the
destination or it is not simple. This way, other shortest simple paths
with the same length (i.e., the lower bound) are not considered.
Hence, the number of paths that are checked by FindKSP is much
smaller than that of IterBound. For synthetic graphs, the running
time of both methods increases as the graph becomes larger, and
the number of computed paths by FindKSP is more stable on
graphs with different sizes.

Effect of k. We vary k from 10 to 50 to test the efficiency of
the two methods. Figure 7 shows the results on two selected
graphs. In general, the running time of two methods increases
as k rises, and FindKSP always outperforms IterBound. Because
FindKSP tries fewer paths to find the top-k shortest simple paths
compared to IterBound, the running time of FindKSP is much
faster. Furthermore, FindKSP does not generate complete paths
unless they are members of top-k shortest simple paths, while
IterBound needs to generate complete candidate shortest paths
to determine the next shortest simple paths. As a result, the
searching space of FindKSP is smaller than that of IterBound.
For example, on S18, FindKSP only spends 1,102 ms visiting
30 partially explored paths to find the top 30 shortest simple
paths, while IterBound spends 1,891 ms generating 44 candidate
shortest paths. Although the number of paths tried by IterBound is
slightly larger than that of FindKSP, IterBound takes much more
time than FindKSP does due to larger searching space. Another
observation is that the performance gap between FindKSP and
IterBound on S18 is much greater than that on RoadFLA,
the reason is that S18 has much greater average degree than
RoadFLA, therefore, IterBound explores much more edges to
find the shortest path, while FindKSP does not need to explore all
outgoing edges of vertices due to lazy extending (see Section 8.3).

9.3 Efficiency of diversified path lower bound
We test the efficiency of diversified path lower bound by finding
the top-k diversified shortest simple paths, i.e., the KSPD problem.

Since the exact algorithm div-cut is really slow in KSPD
problem, we first use a small graph to show the efficiency of
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Fig. 9. Efficiency on different graphs for KSPD (k = 10, τ = 0.6)

div-cut and FindKSPD. The graph1 is a weighted undirected road
network of California, USA, it contains 21,048 vertices and 21,693
edges. By setting Sim(·, ·) = Sim1(·, ·) and τ = 0.8, Figure 8
shows the average performance of the two methods.

As we can see from Figure 8(a), the running time of div-cut
dramatically increases as k gets larger. For example, it takes
div-cut more than 1 hour to find the top 10 diversified shortest
paths, which is very inefficient and unacceptable. While Find-
KSPD only takes less than 2 seconds to get the result, it is orders
of magnitude faster than div-cut. Figure 8(b) shows the number of
complete shortest paths checked by both methods to find the top-k
diversified shortest paths. Obviously, div-cut checks much more
shortest paths to find the optimal result. For example, it checks top
265 shortest paths to find top 10 diversified shortest paths, which
means the shortest paths are actually quite similar. As a result,
most of the diversity graphs we construct for div-cut are strongly
connected with no cut points. Because FindKSPD aims at the
“best” path, it checks fewer shortest paths to find the diversified
shortest paths. div-cut cannot be well scaled to the KSPD problem
mainly because the (adjacent) shortest paths from a source to a
destination are generally quite similar. As a result, the diversity
graph consists of paths is usually strongly connected and cannot
be decomposed, moreover, the cut points in the diversity graph
hardly exist and cannot be further decomposed, neither. That is,
the optimization techniques in div-cut cannot be used in KSPD
problem, which makes it very inefficient.

Since the approximate results returned by FindKSPD have the
same cardinality as the optimal results, the approximate ratio of the
first sub-problem is exactly 1. Then we compute the approximate
ratio for the second sub-problem by total length. Figure 8(c) shows
the approximate ratio of FindKSPD for the second sub-problem.
As we can see, the approximate results returned by FindKSPD

1. http://www.cs.utah.edu/∼lifeifei/SpatialDataset.htm

are very close to the optimal results, only 1.5%-2.5% larger than
the optimal results.

Although div-cut is able to identify the optimal result, it takes
prohibitively long running time. Since it almost always takes more
than 2 hours and thus returns N/A in our experimental setup
with larger graph, k, and smaller τ , we omit it in our following
experiments. Instead, we test the performance of FindKSPD,
FindKSPD− and KSPD-Yen.

Figure 9 shows the efficiency of the methods on different
graphs with k = 10 and τ = 0.6. Clearly, FindKSPD with
diversified path lower bound tries fewer paths to find the top-k
diversified shortest paths, as it filters many unnecessary shortest
paths. As a result, the running time of FindKSPD is much
faster than that of FindKSPD− on both real-world and synthet-
ic graphs. Meanwhile, by using the shortest path lower bound
and path classification, FindKSPD− performs more than one
order of magnitude faster than KSPD-Yen due to fewer shortest
paths computation, and KSPD-Yen cannot get the results within
7,200 seconds in several graphs, such as RoadCOL, RoadFLA.
We note that the runtimes of FindKSPD and FindKSPD− are
close on social network graphs such as Google , Google+, and
WikiTalk . Due to the small-world phenomenon, these graphs
have small diameters. In particular, the diameters of Google ,
Google+, and WikiTalk are only 21, 6 and 9, respectively. The
short diameters make top-k shortest paths more diverse since there
are not many opportunities to follow the shortest path. Thus, on
social network graphs, the numbers of paths explored by the two
methods are small. For example, FindKSPD and FindKSPD−

try 11 and 12 paths, respectively, to find the top 10 diversified
shortest simple paths on Google+. However, since Dijkstra’s
search by Yen’s algorithm on these unweighted graphs explores
more searching space to find the shortest paths, KSPD-Yen takes
much more time than both FindKSPD and FindKSPD−. Since
KSPD-Yen is significantly slower under all experimental settings,
we remove it from the comparison for subsequent experiments.

TABLE 8
Distributions of the runtime (s) on RoadFLA

FindKSPD FindKSPD−

Overall runtime 478.649 2,241.150
LB1 computation time 0.015 0.014
LB2 computation time 3.320 0

Priority queue maintenance time 4.601 12.440
Others time 470.712 2,228.696

Table 8 shows the distributions of the runtime of FindKSPD
and FindKSPD− on RoadFLA. Obviously, the computations
of LB1 and LB2 are only small portions (less than 1%) of the
overall runtime due to the incremental partial shortest path tree
and the optimization for computing LB2 in Section 8.3. We note
that FindKSPD’s computation time for LB1 is slightly greater
than FindKSPD−, because FindKSPD explores a wider range of
vertices to efficiently find the diversified shortest paths by using
LB2. Since FindKSPD− examines more paths, its maintenance
time for priority queues is much greater than that of FindKSPD.
Apparently, the others time consist of the searching process on
the graph dominate the overall runtime of KSPD and FindKSPD
takes much less searching time than FindKSPD−.

Effect of k. We vary k from 5 to 20 to test the efficiency of two
methods. Figure 10 shows the results on RoadFLA and S18 with
τ = 0.6. In general, the runtime of both methods increases as k

http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
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Fig. 10. Vary k on different graphs for KSPD (τ = 0.6)

gets larger, since they both try much more paths. But, FindKSPD
outperforms FindKSPD− in all cases, moreover, the greater the k
is, the more advantages FindKSPD has.

Effect of τ . We vary τ from 0.2 to 0.8. Figure 11 shows the results
on RoadFLA and S18 with k = 10. Clearly, the runtime and the
number of paths tried by two methods sharply increase as τ gets
smaller, which means it costs a lot to get a little more diversified
paths. On RoadFLA, FindKSPD− cannot get the results when
τ = 0.2 due to huge shortest paths to process. In all cases,
FindKSPD runs faster than FindKSPD−, since lots of infeasible
shortest paths are filtered by FindKSPD.

Effect of Sim(·, ·). Figure 12 shows the results by using different
similarity functions on RoadFLA and S18 with k = 10 and τ =
0.6. It is straightforward to prove that Sim1(·, ·) ≤ Sim4(·, ·) ≤
Sim3(·, ·) ≤ Sim2(·, ·) ≤ Sim5(·, ·). That is, paths are the most
similar measured by Sim5(·, ·). As a result, we need to check
more paths to find the diversified shortest paths when paths are
more similar, and the running time increases as the similarity rises.
Clearly, FindKSPD performs faster than FindKSPD− in all cases
due to fewer visited paths, and FindKSPD is more insensitive to
the choice of similarity functions.

Additional experimental results, including (1) memory usage
of different algorithms for finding KSP and KSPD, (2) a case study
of KSPD, (3) using landmarks to update LB1, (4) distributions
of path diversities, and (5) the potential of dynamic updating
strategies, are included in the supplementary document [1].

10 CONCLUSION

In this paper, we study the top-k shortest paths with diversity
(KSPD). After defining the problem formally, we prove that the
KSPD problem is NP-hard. Then we propose a general greedy
framework for KSPD problem, which supports different similarity
functions and also KSP problem when diversity is not required.
Moreover, we utilize two lower bounds to improve the efficiency
by filtering unnecessary paths, and we introduce path classification
to guarantee the time complexity of our method. Experiments
show the efficiency and effectiveness of our proposal.

As for future work, we plan to further improve the efficiency of
KSPD in serval aspects, such as bidirectional search and dynamic
updating strategy, to make it more scalable.
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Fig. 11. Vary τ on different graphs for KSPD (k = 10)
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