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Abstract—Innovations in transportation, such as mobility-on-
demand services and autonomous driving, call for high-resolution
routing that relies on an accurate representation of travel time
throughout the underlying road network. Specifically, the travel
time of a road-network edge is modeled as a time-varying
distribution that captures the variability of traffic over time and
the fact that different drivers may traverse the same edge at the
same time at different speeds. Such stochastic weights may be
extracted from data sources such as GPS and loop detector data.
However, even very large data sources are incapable of covering
all edges of a road network at all times. Yet, high-resolution
routing needs stochastic weights for all edges.

We solve the problem of filling in the missing weights. To
achieve that, we provide techniques capable of estimating stochas-
tic edge weights for all edges from traffic data that covers only a
fraction of all edges. We propose a generic learning framework
called Graph Convolutional Weight Completion (GCWC) that
exploits the topology of a road network graph and the corre-
lations of weights among adjacent edges to estimate stochastic
weights for all edges. Next, we incorporate contextual information
into GCWC to further improve accuracy. Empirical studies using
loop detector data from a highway toll gate network and GPS
data from a large city offer insight into the design properties of
GCWC and its effectiveness.

I. INTRODUCTION

We are witnessing increasing needs for high-resolution
routing that takes into account the dynamics and uncertainty
of traffic [1], [2]. For instance, consider a person taking an
autonomous taxi to catch a flight. If the taxi takes into account
the travel speed distributions of different candidate paths,
rather than just average speeds, it is able to choose the path
with the highest probability of arriving on time [3]. Using
only average speeds often leads to unreliable path choices [4].
Consider an example where two paths P1 and P2 lead to the
airport. Based on the speed distributions of the edges in the
paths, we are able to derive the paths’ travel time distribu-
tions: P1 has travel time distribution {(30, 0.2), (40, 0.8)},
meaning that traversing P1 may take 30 or 40 mins with
probabilities 0.2 and 0.8, respectively; and P2 has distribution
{(30, 0.5), (40, 0.3), (50, 0.2)}. If the passenger needs to arrive
in the airport within 40 mins, taking P1 is the best since it
guarantees an on-time arrival. In contrast, taking P2 has a
0.2 probability of arriving late. However, if considering only
average travel times, P2 is recommended since its average 37
mins is smaller than that of P1, i.e., 38 mins.

Such high-resolution routing calls for a road network graph
where every edge has a time-dependent, stochastic edge weight

that captures uncertain traffic dynamics [5], [6]. Various types
of traffic data, ranging from GPS data to loop detector data [7],
[8], can be used to obtain time-dependent and stochastic edge
weights. However, such traffic data often lacks the coverage
needed to assign weights to all edges. Loop detectors are
typically deployed only on some edges due to high deployment
costs; and some loop detectors may be malfunctioning during
some periods [9]. Next, a recent study shows that GPS data is
often skewed, making it almost impossible to collect sufficient
GPS data to cover all edges, during all time intervals [10], [11].
We call this the data sparseness problem.

In this paper, we formalize a stochastic weight completion
problem. Given a traffic data set that only covers a subset of
the edges in a road network, the objective is to associate each
edge with accurate stochastic weights. Consider the example
in Figure 1 where the road network has 6 directed edges.
Assume that during [8:15, 8:30], only edges e5 and e6 are
covered by GPS data and can be associated with stochastic
weights in this interval. These weights are represented as travel
speed histograms, as shown in the figure. For instance, when
traversing edge e5 during [8:15, 8:30], it may take 5 m/s to 10
m/s with probability 0.3, 10 m/s to 15 m/s with probability 0.5,
and 15 m/s to 20 m/s with probability 0.2. The weights for the
remaining edges, i.e., e1, e2, e3, and e4, are missing. During
other intervals, different edges may have GPS data and thus
can be assigned weights, while the remaining edges cannot.

Figure 1: Example of Stochastic Weight Completion.

We convert this information into a matrix representation to
facilitate processing, where each row represents the stochastic
weight of an edge. For example, the first four rows in W
are empty since weights for e1, · · · , e4 are missing. The 5-th
and 6-th rows represent the stochastic weights of e5 and e6.
The goal of the stochastic weight completion is to estimate



the stochastic weights for the edges that are not covered by
traffic data, i.e., e1, · · · , e4. The final result is a new matrix
Ŵ , where the empty rows in W are filled with values so that
the stochastic weights are available for all edges.

Travel speeds of different edges in a road network exhibit
high dependencies. In particular, studies addressing the data
sparseness problem often assume that adjacent edges [9],
[12], [13] tend to have similar (travel speed based) weights.
Thus, the weights of the edges covered by traffic data can
be propagated to their adjacent edges that are not covered
by traffic data, using regression with judiciously designed
loss functions that consider the discrepancies of the weights
between the adjacent edges.

However, similarity assumptions may not always be true,
since the correlations among the travel speeds of different
edges can be very complex. Considering only the weight sim-
ilarities between adjacent edges is unable to model complex
correlations accurately. Further, existing studies only consider
deterministic weights (e.g., average travel speeds). It is non-
trivial to extend them to support stochastic weights such as
travel speed distributions. A data driven approach that is
able to capture complex correlations and to support stochastic
weights is desirable.

We propose a data-driven, deep learning based framework,
with the goal of capturing complex correlations among edge
weights in a road network which in turn helps us estimate
stochastic weights for edges without data. In particular, we
first encode the topology of a road network using spectral
graph theory [14] into a graph convolutional neural network
(GCNN). Then, we feed available traffic data into the GCNN
as both the input and the labeled output to let the GCNN learn
complex correlations of edge weights in an “unsupervised”
manner, i.e., without requiring additional labelled data as
output. The learned GCNN is then employed to complete
stochastic weights for the edges without data. Further, we
propose an advanced model that takes as input additional
context information, e.g., time intervals, day of week, etc.,
which is able to further improve accuracy of the completed
weights. The proposed framework is generic in the sense that
it is able to support both stochastic and deterministic edge
weights, and it also outperforms the state-of-the-art method
when completing deterministic edge weights.

To the best of our knowledge, this is the first study of
stochastic weight completion. In particular, we make four con-
tributions. First, we formalize the stochastic weight completion
problem. Second, we propose a data-driven framework using
a graph convolution neural network to solve this problem.
Third, we extend the framework by taking into account ad-
ditional contextual information, which further improves ac-
curacy. Fourth, we conduct extensive experiments using both
GPS and loop detector data sets to provide insight into the
effectiveness of the framework.

The remainder of the paper is organized as follows. Sec-
tion II covers related work. Section III defines the setting and
formalizes the problem. Section IV and Section V detail the
framework of graph convolutional weight completion (GCWC)

and context aware graph convolutional weight completion (A-
GCWC), respectively. Section VI reports experiments and
results. Section VII concludes.

II. RELATED WORK

Data Spareness in Road Networks: Although traffic predic-
tion has been studied extensively [15], [16], only a few studies
[9], [12], [13], [17] consider the data sparseness problem in
road networks. The basic ideas of the trajectory regression
problem [12], [13], [17] have been covered in Section I.
More recently, a latent space model (LSM) is proposed to
estimate the weights of edges that are not covered by loop
detector data [9]. Non-negative matrix factorization is used
as an encoder to learn the latent space features, which helps
estimate the weights of edges without data. LSM is the state-
of-the-art method.

All existing studies that address the data sparseness problem
only consider deterministic weights and cannot be extended
to support stochastic weights in a straightforward manner. In
addition, they all employ linear models to cope with corre-
lations among edge weights. However, such correlations can
be highly non-linear [18]. We propose a graph convolutional
weight completion framework that enables stochastic weight
annotation while considering non-linear weight correlations.
Deep Learning in Transportation: RNNs with auto-encoders
are proposed to enable traffic forecasts using traffic sensor
data [18]. However, this proposal ignores spatial correlations
among the sensors. To address this problem, another method
uses diffusion convolutional networks, which are able to model
spatial correlations, together with RNNs to enable traffic fore-
casts [19]. Alternatively, classic convolutional networks can
also model sensor correlations [20]. However, these methods
are restricted to deterministic traffic values and do not support
stochastic values. In addition, it is assumed that sufficient
traffic data is available to cover all edges in a road network
while our proposal considers the case when data is sparse.
A more recent study focuses on travel time estimation for
origin-destination pairs, but not for edges [21], using multi-
task learning. Multi-task learning is also applied to distinguish
trajectories from different drivers [22]. To the best of our
knowledge, this paper proposes the first deep learning frame-
work for stochastic weight completion in road network graphs.

III. PRELIMINARIES AND PROBLEM FORMULATION

A. Road Network

A road network is often represented as a directed graph
H = (V,E), where vertex set V represents road intersections
and edge set E ⊆ V ×V represents directed edges. We model
a road network as an edge graph G = (E,A), where E is the
edge set, and A is an |E|× |E| adjacency matrix that captures
how the directed edges are connected. In particular, Ai,j = 1
if travel is possible from edge ei to edge ej or from edge ej to
edge ei via a single vertex; otherwise, Ai,j = 0. This makes
matrix A symmetric and the edge graph undirected.

Figure 2 shows a road network and its corresponding edge
graph and adjacency matrix. For example, A5,2 = 1 because



a vehicle can travel from e5 to e2 by traversing one vertex
in the road network. However, since travel from e2 to e1 and
travel from e1 to e2 via a single vertex are not possible, we
have A2,1 = 0.

Figure 2: Road Network and Its Edge Graph.

B. Stochastic Weights

To capture time-dependent traffic, we partition a day into a
number of intervals, e.g., 96 15-min intervals. Based on this,
we introduce a stochastic weight function F : E × TI → D,
where TI is the whole time domain of interest and D is a
set of all possible speed distributions. Given a specific edge
ei ∈ E and a time interval Tj ∈ TI , function F(ei, Tj) returns
a stochastic weight that represents the speed distribution on
edge ei during interval Tj .

To instantiate the weight function F , we need to assign
stochastic weights to all edges for each interval Tj ∈ TI . In
the following discussion, we focus on instantiating F for a
specific interval Tj .

We first identify the traffic data available in Tj . Next, we
partition all edges into subsets Ec and Em, the edges with and
without traffic data, respectively. This means that Ec∪Em = E
and Ec ∩ Em = ∅. In Figure 1, we have Ec = {e5, e6} and
Em = {e1, e2, e3, e4} for interval [8:15, 8:30].

For each edge ec ∈ Ec, which is covered by traffic data,
we are able to derive a stochastic weight and thus able to
instantiate F(ec, Tj). However, we are unable to instantiate
F(em, Tj) if edge em ∈ Em. For example, during [8:15, 8:30],
GPS trajectories exist for edges e5 and e6, and thus we are
able to use them to build speed distributions, i.e., stochastic
weights for e5 and e6, during [8:15, 8:30], thus instantiating
F(e5, [8:15, 8:30]) and F(e6, [8:15, 8:30]).

We use equi-width histograms to represent speed distribu-
tions. In particular, an equi-width histogram is a set of bucket-
probability pairs {(bi, pi)}. A bucket bi = [li, ui) represents
the speed range from li to ui, and all buckets have the same
range size. Next, pi is the probability that the speed falls into
range bi. For example, the speed histogram {([0, 20), 0.5),
([20, 40), 0.3), ([40, 60), 0.2)} for edge e5 means that the
probability that the speed (m/s) on e5 falls into [0, 20),
[20, 40), and [40, 60) is 0.5, 0.3, and 0.2, respectively.

We use the same finest bucket range size for all edges’ speed
histograms. Thus, we can ignore the buckets and represent the
speed histogram of each edge as a vector. For example, when
choosing 20 m/s as the bucket range size, e5’s speed histogram
can be represented as 〈0.5, 0.3, 0.2〉.

Assume that we have n = |E| edges in the road network
and we use a histogram with m buckets to present a stochastic

weight. Then, the stochastic weights of all edges in interval
Tj can be represented as an n ×m matrix W . A row vector
wi· in W corresponds to the vector representation of edge ei’s
stochastic weight, i.e., its speed histogram. If an edge ei ∈ Em,
wi· is an empty vector. For example, the first four rows in W
in Figure 1 are empty vectors.

C. Problem Formulation

Consider a time interval Tj of a day. Given the instantiated
stochastic weight matrix W , the stochastic weight completion
problem is that of completing the empty rows in W to produce
a new stochastic weight matrix Ŵ without empty rows. This is
equivalent to instantiating F(em, Tj) for each edge em ∈ Em
that is not covered by traffic data.

To ease the presentation, Table I lists important notation that
we use throughout this paper.

Notations Definition
G Edge graph of a road network
E, V Edge set, Vertex set
A Adjacency matrix of G
n Total number of edges
m Total number of buckets in a histogram
W Input Weight Matrix
WG Ground Truth Weight Matrix
Ŵ , W̃ Estimated, complete weight matrix
Xi A context variable

Table I: Notation.

D. Solution Overview

We propose a basic model and an advanced model to solve
the problem. The basic model takes as input an instantiated,
incomplete stochastic weight matrix W and the edge adjacency
matrix A. The basic model is able to learn correlated edge
features from W and A using graph convolution filters and
thus derives a complete stochastic weight matrix Ŵ .

However, the basic model does not make use of important
contextual information, e.g., time intervals and the day of the
week. For example, traffic in peak vs. off-peak intervals may
be different and traffic on weekdays vs. weekends may also
be different. To better utilize such contexts that are missing in
the basic model, but may be useful for completing weights,
we propose the advanced model. This model also takes as
input the available contexts and applies a Bayesian inference
model to construct dependency relationships between contex-
tual features and the output of the basic model with the goal
of improving the accuracy of the complete Ŵ .

We present the basic and the advanced models in Sec-
tions IV and V, respectively.

IV. GRAPH CONVOLUTIONAL WEIGHT COMPLETION

A. Intuitions and Framework Overview

Since traffic on one edge may influence traffic on many
other edges [9], [17], it is intuitive to assume that stochastic
weights of different edges share correlated features. We model
such features by transform stochastic weight matrix W into a
set C = {Ci}fi=1 of latent variables that captures correlations
among the weights of edges. Based on the latent variables in



Figure 3: System Architecture for GCWC.

C, we construct a new stochastic weight matrix Ŵ without
empty rows. The whole process can be regarded as an auto-
encoder [23], [24], where we first encode incomplete weight
matrix W into a set of features C in a latent space and then
decode C back to a complete weight matrix Ŵ .

Figure 3 shows an overview of the basic model for Graph
Convolutional Weight Completion, denoted as GCWC, where
we adopt the intuition of the auto-encoder.

We provide stochastic weight matrix W and adjacency
matrix A to GCWC as input. Next, we use convolutional and
max pooling layers to encode W into a set of features C,
which can be regarded as the encoding process. Finally, we
map the encoded features C to the final output layer with the
help of a fully connected layer and thus obtain an estimated
weight matrix Ŵ , where each edge has a stochastic weight.
This corresponds to the decoding process.

In the training phase, input matrix W is also used as a
source of labels for conducting back-propagation. We learn the
parameters of our framework with the objective of minimizing
a loss function that is defined based on the KL-divergence
between the estimated stochastic weights and the ground truth
stochastic weights, i.e., the instantiated stochastic weights of
the edges that are covered by traffic data (details to be provided
in Section IV-E).

B. Convolutional Layer

In classical convolutional neural networks (CNNs), 2D
convolutional filters are applied in convolutional layers based
on the assumption that nearby elements in the input matrix
share local features [14]. For example, when representing an
image as a matrix, nearby elements, e.g., pixels, share local
features, e.g., represent parts of the same object. However, in
our setting, the input stochastic weight matrix may not always
satisfy this assumption—two adjacent rows in matrix W may
represent two geometrically distant road network edges and
may not share any features. In Figure 1, although the rows
for e5 and e6 are adjacent in W , e5 and e6 are not adjacent
in the road network. This renders classical 2D convolutional
filters ineffective in our setting and calls instead for new
filters that take into account the topology of the road network,
e.g., through the use of adjacency matrix A. Our solution
utilizes recently invented graph convolutional neural networks
(GCNNs) [14], [25].

Background on GCNNs: In GCNNs, graph convolutional
filters [14], [25], [26], which take into account the topology
of a road network based on spectral graph theory, are em-
ployed to replace the classic 2D convolutional filters in the
convolutional layers. Graph convolutional filters consider that
topologically adjacent elements in a graph share local features.
By using graph convolutional filters, we can “propagate” the
input stochastic weights to adjacent, correlated edges during
convolutions via the road network topology. In the literature,
different variations of graph convolutional filters exist. We use
Simplified ChebNet [26], due to its efficiency and effectiveness.
Simplified ChebNet: Since graph convolutional filters are
based on spectral graph theory, the central component of a
graph filter is the graph Laplacian [14], [26]. To construct
the graph Laplacian L, we utilize adjacency matrix A that
captures the topology of the edge graph of a road network
(see Section III). In particular, L = D − A, where D is the
diagonal degree matrix with Di,i = ΣjAi,j . Next, we derive
the scaled Laplacian L̃ = 2L/λmax − I , where λmax is the
maximum eigenvalue of L and I is an identify matrix.

In the convolution layer, we apply graph convolutional
filters to the input stochastic weight matrix W by using scaled
Laplacian L̃. Recall that column vector w·j ∈ Rn×1 of the
input stochastic weight matrix W represents the weights of
all n edges in the j-th bucket (where j ∈ [1,m]). Based
on w·j and L̃, we first generate a matrix Yj ∈ Rn×k and
Yj = [x̂0, x̂1, · · · , x̂k−1], where x̂i ∈ Rn×1 is a column vector
and k is a hyper-parameter. Specifically, we have x̂0 = w·j ,
i.e., the original input column vector. Next, x̂1 = L̃x̂0. When
k ≥ 2, x̂k is defined recursively: x̂k = 2L̃x̂k−1 − x̂k−2.
Further, we define a filter τ as an Rk×1 matrix, and we use a
total of f filters.

Based on the above, the convolution using graph convolu-
tional filters on an input vector w·j is defined based on τ and
Yj using Equation 1.

Hj = tanh(Yj ·τ +b) = tanh([x̂0, x̂1, · · · , x̂k−1] ·τ +b) (1)

Here, · denotes matrix multiplication, and thus we have Hj ∈
Rn×1.

The example in Figure 1 features 6 edges and 3 buckets,
which yields the first column vector w·1 = [0, 0, 0, 0, 0.3, 0.2]T

for the [5, 10) bucket (i.e., the first bucket). Assuming k = 2,
we construct the corresponding Y1 from adjacency matrix A as



(
0 0 0 0 0.3 0.2

−0.3 −0.3 −0.2 −0.2 0.3 0.2

)T
. Next, we apply a filter

τ = [1,−1]T to Y1 and get H1 = [0.3, 0.3, 0.2, 0.2, 0, 0]T .
Thus, data for edges e5 and e6 are propagated to edges
e1, · · · , e4 by means of graph convolution.

Given an input stochastic weight matrix W , we apply
all f filters, τ1, . . . , τf , to each column vector w·j in W ,
j ∈ [1,m]. Thus, for each column vector w·j , we obtain its
f corresponding matrices H1

j , . . . ,H
f
j . Next, for each filter

τl, 1 ≤ l ≤ f , we sum the convoluted results of all column
vectors w·j , 1 ≤ j ≤ m as an Rn×1 vector Ql =

∑m
j=1H

l
j .

Next, we concatenate a total of f vectors as an Rn×f matrix
Q = [Q1, . . . , Qf ], as the final result from the convolutional
layer. Referring back to the auto-encoder model, here the f
filters will eventually construct a set of f features in the latent
space.

C. Pooling Layer

Although the convolutional layer tries to propagate stochas-
tic weights to the edges that are not covered by traffic data,
some edges may still have zero values. Therefore, we further
compress the convoluted results, i.e., Q1, Q2, . . ., Qf , via
max-pooling layers, which follows the design principles of
traditional CNNs. Specifically, we employ a multi-level graph-
based pooling algorithm [14] to first identify clusters of
edges using the graph topology and distributions of available
stochastic weights, and then the identified clusters are used
as pools to perform max-pooling operations. For example,
Figure 3 shows an example where e1, e2, e4, e5 are clustered
into one pool and e3 and e6 are clustered into another pool.
Based on the pools, each convoluted matrix Ql is further
compressed into a more compact matrix Cl, where 1 ≤ l ≤ f .
Now, we regard such compact matrices as the feature set
C = {C1, C2, . . . , Cf} in the latent space.

D. Output Layer

After pooling, we obtain compact matrices that capture
representative features of input matrix W . Next, we per-
form decoding that uses the compact matrices to produce
a new stochastic weight matrix Ŵ . We first utilize a fully-
connected (FC) layer to obtain a matrix Z, representing
stochastic weights of all edges decoded from feature set C. In
particular, Z = [z1·, · · · , zn·]T , where n is the total number
of edges, and zi· ∈ Rm, with m being the number of buckets
in histograms, is used to estimate the stochastic weight vector
for the i-th edge.

The final output Ŵ ∈ Rn×m must meet two requirements
to be a meaningful histogram: (1) for each value ŵi,j of Ŵ ,
we have 0 ≤ ŵi,j ≤ 1, with 1 ≤ i ≤ n and 1 ≤ j ≤ m; (2)∑
j ŵi,j = 1, meaning that the sum of values in a histogram

for the i-th edge equals 1, thus aligning with our definition of
stochastic weights (see Section III-B).

To this end, a softmax function is applied to every zi·:

ŵi· = softmax (zi·), 1 ≤ i ≤ n, (2)

where ŵi· is the estimated histogram for the i-th edge. Thus,
we have Ŵ = [ŵ1·, · · · , ŵn·]T .

E. Loss Function

The loss function L(W, Ŵ ) of GCWC measures the discrep-
ancy between the input stochastic weight matrix W ∈ Rn×m
and the estimated stochastic weight matrix Ŵ ∈ Rn×m using
KL-divergence, as shown in Equation 3.

L(W, Ŵ ) =

n∑
i=1

Ii ·KL(wi·||ŵi·),where

KL(wi·||ŵi·) =

m∑
j=1

ŵij · log
ŵij + ε

wij + ε
. (3)

Specifically, we have n edges in total and the function focuses
on the edges that are covered by traffic data, i.e., the non-empty
rows in W , since we use the loss function to measure whether
the estimated weights are similar to the original weights. Thus,
we apply an indicator Ii, and we set Ii = 1 if the i-th edge is
covered by traffic data; otherwise, we set Ii = 0.

Then, the KL-divergence measures the divergence of the
estimated weight ŵi· from the actual stochastic weight wi· on
the i-th edge, where wij and ŵij are the actual and estimated
weights for the i-th edge at the j-th bucket. In total, we have
m buckets. We apply a positive small value ε to prevent having
a zero when using the log function.

V. CONTEXT AWARE GRAPH CONVOLUTIONAL WEIGHT
COMPLETION

A. Context Aware Graph Convolution Neural Network

We proceed to present how contexts can be integrated into
GCWC to enable an advanced model A-GCWC, as presented
in Figure 4.

When we consider stochastic weight matrix W that is
instantiated during time interval Tj of a day, we can consider
a set X of contexts. Specifically, we consider three contexts—
time interval XT , day of the week XD, and row flag XR.

Assume that a day is partitioned into 96 15-min intervals.
We are able to use a one-hot vector with 96 bits to represent
a specific time interval. For example, if a weight matrix W is
instantiated during [0:15, 0:30], the 2-nd bit in the vector is set
to 1 and all remaining bits are set to 0. This vector is used as
the time interval context XT . Next, we use a 7-bit vector for
XD to represent the week days. Finally, the row flag XR of a
weight matrix W indicates the non-empty rows. In particular,
XR is a vector with n bits, where n is the number of edges.
If the k-th edge is not empty, the k-th bit in XR is set to 1;
otherwise, it is set to 0.

Figure 4 gives an overview of the A-GCWC framework,
which consists of a basic GCWC, a context embedding module,
and a Bayesian inference module.

The basic GCWC takes as input an incomplete weight ma-
trix W and an adjacency matrix A, and it outputs an estimated
complete weight matrix. The intuition is to learn stochastic
weights of all edges without considering the contexts. Recall
that in GCWC, we apply a softmax function on the output
of the fully connected layer, i.e., Z, to produce a valid
weight matrix Ŵ . Here, we use P (Z) to denote the output
of GCWC Ŵ where P (·) denotes the softmax function (see



Figure 4: Context Aware Graph Convolution Neural Network.

Section IV-D), which can also be interpreted as a probability
function.

The context embedding module first embeds the provided
contexts XT , XD, and XR into a space with the same di-
mensionality. Then, together with the output from the GCWC,
i.e., P (Z), it represents the conditional probability of having
weight matrix Z conditioned on each context, denoted as
P (Z|XT ), P (Z|XD), and P (Z|XR), respectively.

The Bayesian inference module takes as input P (Z) from
the GCWC, and P (Z|XT ), P (Z|XD), and P (Z|XR) from
the context embedding module, and it infers the conditional
probability for all contexts. Thus, more accurate stochas-
tic weights given all types of context can be learned as
P (Z|XT , XD, XR). We denote the estimated weight matrix
from A-GCWC as W̃ = P (Z|XT , XD, XR), which is dif-
ferent from the estimated matrix from the basic GCWC,
Ŵ = P (Z).

B. Context Embedding Module

The proposed context embedding module is generic—
although we only use three types of context, the module is
extendable to include, e.g., weather conditions, wind speeds
and traffic flows, that may further improve the overall accu-
racy, if they are available.

Due to different representations of XT , XD, and XR, we
apply two different models, i.e., an embedding layer and a
fully connected layer, to incorporate the different types of
contexts into A-GCWC.

1) Embedding Layer: We apply an embedding layer (EL)
for time interval context XT and day of the week context
XD, since both are represented as one-hot vectors. The
embedding method [27] was initially proposed in order to
effectively transform a categorical value represented by a high-
dimensional, one-hot vector into a low-dimensional vector. As
a result, neural network can process the categorized value more
efficiently.

For generality, we assume that a total of α time intervals
are considered. Thus, we have vector XT ∈ Rα×1 as the one-
hot representation for the time interval. The embedding layer
is able to transform XT into X̂T ∈ Rβ×1 where β � α.
Next, we apply the softmax activation function to compute a
distribution for XT using X̂T , denoted as P (XT ). Specifically,
P (XT ) represents the probability of having each embedded
context value in X̂T . Similarly, we are able to derive P (XD).

2) Fully Connected Layer: A row flag vector XR may
have more than one occurrence of “1”. Since some embedding
methods, especially those based on lookup tables [28], require
inputs represented as one-hot representations, we instead apply
a fully connected layer (FCL) to embed XR ∈ Rn×1 into a
smaller space X̂R ∈ Rβ×1, where β � n, as follows.

P (XR) = σ(X̂R) where X̂R = M ×XR + b, (4)

where M ∈ Rβ×n is a weight matrix, b ∈ Rβ×1 is a bias
vector, and σ is a softmax function. Based on the above,
P (XR) represents the probability of each value occuring in
X̂R.

3) Computing Conditional Probabilities: We utilize a con-
ditional probability convolutional neural network (CP-CNN)
to capture the dependency between the stochastic weight of
an edge zj· and each type of context, as shown in Figure 5.
To simplify our discussion, we use Xi to denote a context,
where Xi can be XT , XD, or XR, in the following.

Figure 5: Conditional Probability CNN (CP-CNN).
As shown in Figure 5(a), we multiply P (Xi) with P (zj·),

where P (Xi) ∈ Rβ×1 is the probability distribution of the
embedded context values for context Xi and P (zj·) ∈ R1×m

is the estimated stochastic weight for the j-th edge obtained by
GCWC, with m being the bucket size. As a result, we obtain
a matrix, denoted as P (zj·, Xi) ∈ Rβ×m, that associates each
bucket of the j-th edge’s weight with each embedded context
value in context Xi, based on which we learn whether a bucket
and an embedded context value exhibit a dependency.

Next, we capture such possible dependencies using classical
convolutional filters. Following the running example in Fig-
ure 1, we have m = 3 buckets as [0, 20), [20, 40), and [40, 60).



If we apply a filter of size 2× 2 to the 4 shadowed squares in
the leftmost matrix of Figure 5(b), we are able to capture the
dependency between 2 buckets, e.g., [0, 20), [20, 40), and 2
values of context Xi. This is intuitive, since the probabilities
of speeds falling into [0, 20) and [20, 40) influence each other,
and they may also be influenced by similar contexts, e.g.,
intervals [8:00, 8:15] and [8:15, 8:30].

As shown in Figure 5(b), we utilize f ′ filters and obtain a
total of f ′ matrices, each of the same sizes as Rβ×m. Next,
a classical max-pooling layer with window size 2 is applied
to learn more representative dependencies, giving rise to a
total of f ′ matrices, each of the same size as R

β
2×m. We

apply a fully connected layer to concatenate f ′ matrices into
an R1×m matrix as the conditional probability between the
stochastic weight of the j-th edge and context Xi, denoted as
P (zj·|Xi).

After we conduct the same procedure for all n edges, we
obtain P (Z|Xi), i.e., the weight matrix when considering
context Xi.

C. Bayesian Inference

We utilize the Bayesian Inference module to derive a
probability distribution for weight matrix Z given all types
of contexts XT , XD, and XR.

For generality, we assume that we have N types of con-
texts X1, . . . , XN and that we have obtained P (Z|X1), . . .,
P (Z|XN ) as the conditional probability of Z given each
context Xi, where i ∈ [1, N ] (cf. Section V-B3). Further,
we have obtained P (Z) from the basic GCWC. We aim to
infer P (Z|X1, . . . , XN ) as the stochastic weight W̃ , i.e., the
conditional probability of Z given all contexts X1, . . . , XN ,
from P (Z|X1), . . ., P (Z|XN ) and P (Z).

To this end, we make the assumption that different con-
texts are independent, and thus we have P (X1, . . . , XN ) =∏N
i=1 P (Xi). This is a reasonable assumption because, for

example, time intervals, day of week, and row flags do not
have obvious correlations. Then, we have

P (Z|X1, . . . , XN ) (5)

=
P (Z,X1, . . . , XN )

P (X1, . . . , XN )
=
P (Z,X1, . . . , XN )∏N

i=1 P (Xi)
(6)

=
P (Z)P (X1, . . . , XN |Z)∏N

i=1 P (Xi)
=
P (Z)

∏N
i=1 P (Xi|Z)∏N

i=1 P (Xi)
(7)

=

∏N
i=1(P (Xi|Z)P (Z))

[P (Z)](N−1)
∏N
i=1 P (Xi)

=

∏N
i=1

P (Xi,Z)
P (Xi)

[P (Z)](N−1)
(8)

=

∏N
i=1 P (Z|Xi)

[P (Z)](N−1)
(9)

Here we keep using Bayesian rule and the independence
assumption in Equations 6, 7, and 8.

According to Equation (9), we compute W̃ =
P (Z|XT , XD, XR) using Equation (10).

P (Z|XT , XD, XR) =
P (Z|XT )P (Z|XD)P (Z|XR)

[P (Z)]2
, (10)

where P (Z|XT , XD, XR) is the estimated stochastic weight
given context XT , XD, and XR, which is further normalized
to get W̃ . The normalization makes sure that: (1) for each
w̃i,j ∈ W̃ , 0 ≤ w̃i,j ≤ 1, with 1 ≤ i ≤ n and 1 ≤ j ≤ m; (2)∑
j w̃i,j = 1.

D. Loss Function

The loss function for A-GCWC is based on KL-
divergence—we compute L(W, W̃ ) using Equation 3.

VI. EXPERIMENTS

A. Experimental Setup

1) Data sets: We use two traffic data sets for studying the
effectiveness of the proposed models. In both data sets, we
report results on the setting of HIST-8, where a histogram has
8 buckets. In particular, the bucket length is 5 m/s, and the
range is from 0 to 40 m/s, yielding a total of 8 buckets. Due to
the space limitation, we do not report results for the setting of
HIST-4 where 4 buckets are used. This setting yields similar
results as the HIST-8 setting.
Highway Tollgates Network (HW): HW consists of 1.07
million travel time records from loop detectors located in
n = 24 links in a highway tollgate network. The records
cover the period from 19/07/2016 to 31/10/2016. This data
is obtained from a big data challenge. We partition a day into
96 15-min intervals. Given the m = 8 buckets used in HIST-8,
each input matrix W ∈ Rn×m, i.e., the stochastic weights, is
an R24×8 matrix, and we have a total of 96 matrices per day.
For each matrix W , we use the corresponding time interval,
day of the week, and row flag vector of W as the contexts of
the matrix.
City Road Network (CI): CI consists of 1.4 billion GPS
records from 14,864 taxis obtained in the period from
03/08/2014 to 30/08/2014 in Chengdu, China. This data is
obtained from a big data competition. To get reliable results,
we use n = 172 connected road segments with sufficient
GPS data in the experiments. In particular, we choose a dense
subgraph with 172 edges where almost all edges have GPS
data in most time intervals. This design decision is made
because we need to ensure that each edge has sufficient data
to derive ground truth weights, such that we can evaluate the
accuracy of the estimated weights. Specifically, 1) we select
edges with the top-5000 largest amounts of GPS records; 2)
we derive the connected subgraphs using the 5000 edges; 3)
we use the largest connected subgraph with 172 edges in the
experiments.

Similarly, we have 96 time intervals per day in CI. Each
interval has a stochastic weight matrices W ∈ R172×8, which
is associated with three types of context.

2) Ground Truth and Input Data: We first introduce ground
truth weight matrix WG and then show how we generate input
matrix W from WG.

Given a time interval, we are able to instantiate a ground
truth matrix WG from the available traffic data. We only
instantiate weights for edges with at least 5 speed records.
Next, we randomly select n × rm edges from a total of n



edges, where rm is a removal ratio. We set the stochastic
weights of the chosen edges in WG to be zeros, giving rise to
the incomplete input matrix W . We use four values for rm:
0.5, 0.6, 0.7, and 0.8. Taking W as input, we use a method to
estimate a complete weight matrix Ŵ that covers all edges.
Then we evaluate the accuracy of Ŵ by comparing Ŵ with
the ground truth matrix WG.

Note that the matrix WG may already have empty rows for
some edges since the available traffic data in an interval may
not cover these edges. Although there are edges with empty
rows, we do not estimate a complete weight matrix based on
WG directly. If we simply did so, although we would be able
to fill in weights for the edges without data, we are not able
to evaluate the accuracy of the estimated weights. This is why
we instead remove n× rm edges’ weights from WG to create
input matrices.

For each data set, we order all input matrices in ascending
time order, and we partition these into 5 equal-sized portions.
Then we use 5-fold cross validation in all the experiments—
in each run, 4 folds of matrices are used for training and
validating, and the remaining 1 fold of matrices are used for
testing. We run this workload 5 times in total, so that each
fold of matrices is used for testing once.

3) Model Functionalities: The proposed models, GCWC
and A-GCWC, are generic and extendable, and they are able to
support different functionalities when changing the configura-
tions slightly. Here, we consider three different functionalities:
estimation and prediction of stochastic weights, in the form of
histograms, and estimation of average speeds, in the form of
deterministic values. We use W@T to denote weight matrix
W during interval T .

Estimation: Given input matrix W@Ti that represents
stochastic weights at time interval Ti, where some edges do
not have weights, we estimate Ŵ@Ti that has the estimated
stochastic weights at Ti for all edges.

During training, we have a set of training matrices
{W@Tk}. For each training matrix in {W@Tk}, we use the
matrix itself as a label to train the two models. During testing,
given input matrix W@Ti, the estimated Ŵ@Ti is compared
with the ground truth matrix at Ti, i.e., ŴG@Ti, to evaluate
the accuracy.

Prediction: Given input matrix W@Ti that represents
stochastic weights at time interval Ti, where some edges do not
have weights, we predict Ŵ@Ti+1 that contains the predicted
stochastic weights in the next time interval Ti+1 for all edges.

During training, we have a set of training matrices
{W@Tk}. For each training matrix W@Tk, we use the ground
truth matrix in the next interval, i.e., WG@Tk+1, as a label to
train the two models. We make sure that WG@Tk+1 has the
same rm as the input matrix W@Tk. For example, when rm is
0.6, both the input matrix W@Tk and label matrix WG@Tk+1

have 60% empty edges. During testing, given input matrix
W@Ti, the estimated Ŵ@Ti+1 is compared with the ground
truth weight matrix at Ti+1, i.e., ŴG@Ti+1, to evaluate the
accuracy. Table II summarizes the settings of estimation and
prediction.

Training Testing
Input Label Input Ground Truth

Estimation W@Tk W@Tk W@Ti WG@Ti

Prediction W@Tk WG@Tk+1 W@Ti WG@Ti+1

Table II: Settings, Estimation vs. Prediction.

Average: This setting is similar to Estimation. Given input
matrix W@Tj , we estimate a deterministic average speed
value for each edge during the same interval Tj , rather
than a speed histogram. To achieve this, we replace the
softmax function in Equation (2) of Section IV-D with the
sigmoid function and thus obtain P (Z) ∈ Rn×1 in the latent
space (see Figure 4). We also replace the normalization on
P (Z|XT , XD, XR) in Equation (10) of Section V-C with the
sigmoid function so that the output Ŵ ∈ Rn×1 represents the
estimated average speeds for all edges in time interval Tj . The
ground truth matrix WG@Tj of average speeds during Tj is
derived by averaging all speed records for each edge.

4) Model Settings: Model Construction: We present hy-
perparameters of all models in Table III. We refer to the
models constructed for the estimation and prediction of speed
histograms as being of type HIST, and for the average as being
of type AVG. For both types, we describe the hyperparameters
used for GCWC and A-GCWC, including the learning rate
(LR), learning rate decay (Decay), Dropout, and regularization
(Regul). The column with header “#Para” indicates the total
number of parameters used in a deep learning model (e.g.,
parameters for convolution filters, full-connected layers, biases
used in activation functions, etc.). This reflects the complexity
of different neural networks. The higher the value is, the
more complex the corresponding neural network is. The #Para
column in Table III shows that the total number of parameters
in CNN, GCWC, and A-GCWC are similar, meaning that,
compared to classical CNN, the proposed GCWC and A-
GCWC do not significantly increase the model complexity.

We use the following notation to describe the model con-
struction: Ck1×k2f denotes a convolution layer that has f filters,
each of which is a k1 × k2 matrix; Pk denotes a pooling
layer of size and stride k; FCk denotes a fully connected
layer with k hidden units. For example, GCWC for HW,
HIST is constructed as C8×1

16 -P4-C8×1
16 -P2-FCn, where n is

the number of edges, which varies across data sets.
Further, β, the dimension of the embedded context space,

is set to 4 for A-GCWC for all data sets.
We obtain an optimal set of hyperparameters with Bayesian

optimization using Gaussian Processes search.
Model Complexity: The time complexity of the training of
GCWC and A-GCWC is O((F 2K + n2F ) × m × S) and
O((F 2K+n2F+nKF )×m×S), respectively, where F is the
maximum number of convolutional filters, K is the maximum
size of the convolutional filters, n is the number of edges, S is
the batch size, and m is the number of histogram buckets. The
average running time on CI for training is 36 ms (16 ms) per
training batch for A-GCWC (GCWC), where each training
batch has 20 training instances, i.e., 20 input matrices. The
average running time on HW for training is 19 ms (14 ms)



Type Data Model Configuration #Para LR Decay Dropout Regul

HIST

HW
CNN C8×1

16 -P4-C8×1
16 -P2-FC24 18,840 3.5e-3 0.95 0.3 0.001

DR C8×1
16 -C8×1

16 -C8×1
16 -C8×1

8 39,680 6.4e-3 0.92 0.0 0.004
GCWC C8×1

16 -P4-C8×1
16 -P2-FC24 19,224 2.0e-4 0.999 0.17 0.001

A-GCWC C8×1
16 -P4-C8×1

16 -P2-FC24 + C2×2
4 -P2-C2×2

8 -P2-FC1 20,184 5.0e-4 0.98 0.2 0.045

CI
CNN C8×1

8 -P2-C4×1
8 -P2-FC172 32,412 2.2e-3 0.97 0.12 0.001

DR C8×1
16 -C8×1

16 -C8×1
16 -C8×1

8 39,680 0.01 1.0 0.6 0.1
GCWC C8×1

8 -P2-C4×1
8 -P2-FC172 46,860 1.5e-3 0.99 0.13 0.002

A-GCWC C8×1
8 -P2-C4×1

8 -P2-FC172 + C2×2
4 -P2-C2×2

8 -P2-FC1 48,296 1.0e-3 0.99 0.19 0.004

AVG

HW
CNN C8×1

16 -P4-C8×1
16 -P2-FC24 3,384 3.5e-3 0.95 0.3 0.001

DR C8×1
16 -C8×1

16 -C8×1
16 -C8×1

1 33,520 0.1 0.9 0.0 0.1
GCWC C8×1

16 -P4-C8×1
16 -P2-FC24 3,768 2.0e-4 0.999 0.17 0.001

A-GCWC C8×1
16 -P4-C8×1

16 -P2-FC24 + C2×2
4 -P2-C2×2

8 -P2-FC1 4,728 5.0e-4 0.98 0.2 0.045

CI
CNN C8×1

8 -P2-C4×1
8 -P2-FC172 30,088 2.2e-3 0.97 0.12 0.001

DR C8×1
16 -C8×1

16 -C8×1
16 -C8×1

1 33,520 0.013 0.9 0.6 0.1
GCWC C8×1

8 -P2-C4×1
8 -P2-FC172 44,536 1.5e-3 0.99 0.13 0.002

A-GCWC C8×1
8 -P2-C4×1

8 -P2-FC172 + C2×2
4 -P2-C2×2

8 -P2-FC1 45,972 1.0e-3 0.99 0.19 0.004

Table III: Model Construction and Hyperparamter Selection.

per training batch for A-GCWC (GCWC), where each training
batch has 20 training instances.

5) Baselines: We compare GCWC and A-GCWC with five
baselines: (1) Historical Average (HA): for each edge, we
use all the travel speed records on the edge in the training
data to derive a histogram. The histogram is used as the
estimated histogram in the testing phase. (2) GP: a Gaussian
process regression model. (3) RF: a random forest regression
model. (4) LSM [9]: the state-of-the-art for filling in missing
weights in road networks using a latent space model. Note
that GP, RF, and LSM are originally only able to fill in
deterministic weights. To support filling in stochastic weights,
we fill in values for each bucket separately. For example, in
the setting of HIST-8, we consider 8 individual regression
problems, where each regression is able to fill in values for
each bucket. (5) CNN: classical convolutional neural network,
whose hyperparameters are set by following the same notations
as for GCWC and A-GCWC, as shown in Table III. (6) DR:
diffusion convolutional recurrent neural network [19], which
is the state-of-the-art for predicting deterministic edge weights
based on historical data.

6) Evaluation Metrics: We describe the metrics for evalu-
ating the estimation, prediction, and average functions.
Estimation and Prediction: To assess the effectiveness of
the models for estimation and prediction, we use the Mean
Kullback-Leibler divergence Ratio (MKLR) and the Fraction
of Likelihood Ratio (FLR) to measure the accuracy of the
estimated (or predicted) stochastic weights Ŵ .

Specifically, MKLR is defined as follows.

MKLR =

∑T
i=1

∑n
j=1 IijKL(wG

(i)
j· ||ŵ

(i)
j· )∑T

i=1

∑n
j=1 IijKL(wG

(i)
j· ||HAj·)

, (11)

where T is the total number of testing time intervals, n is the
total number of edges, and Iij ∈ [0, 1], with i ∈ [1, T ] and
j ∈ [1, n], is an indicator of whether the stochastic weight of
the j-th edge at the i-th time interval needs to be evaluated.
In particular, we set set Iij = 0, if in the i-th interval, edge
ej is not covered by traffic data; otherwise, we set Iij = 1.
Next wG

(i)
j· and ŵ

(i)
j· are the ground truth and estimated (or

predicted) stochastic weights for the j-th edge at the i-th time
interval, respectively.

Function KL(·||·) computes the KL-divergence between
two distributions, i.e., two stochastic weights represented as
histograms. The lower a KL-divergence value is, the more sim-
ilar the two stochastic weights are, indicating more accurate
estimation or prediction. However, since KL-divergences range
from 0 to ∞, it is hard to judge how small a KL-divergence
value must be for an estimation or prediction to be considered
accurate.

To solve this problem, we use HAj· as a reference stochastic
weight for the j-th edge, which is derived from all speed
records in the training data that traversed the j-th edge, i.e.,
using the HA baseline. Here, we interpret HAj· as the worst
estimation or prediction of the stochastic weight for the j-
th edge. Next, we derive a ratio MKLR between the KL-
divergence of another method and the KL-divergence of HA.
This ratio suggests how much a method can improve over HA.
Lower MKLR values indicate higher improvements over HA.

We also measure the accuracy of estimated or predicted
stochastic weights using FLR, defined as follows.

FLR =

∑T
i=1

∑n
j=1 Iij |LRij > 1|∑T
i=1

∑n
j=1 Iij

, (12)

where the meanings of T , n, and Iij are the same as those
in Equation (11), and LRij denotes the likelihood ratio [29]
on the j-th edge in the i-th testing time interval. Specifically,

LRij =
∑Nij
k=1 log(Pŵ(ok)+ε)∑Nij
k=1 log(PHA(ok)+ε)

, where Nij is the total number

of ground truth speed records on the j-th edge in the i-th test
time interval, ok is the k-th ground truth speed record, and ε
is a small value introduced to avoid zeros in log functions.

Given the j-th edge in the i-th testing time interval, we
have an estimated or predicted stochastic weight ŵ(i)

j· and the
reference stochastic weight HAj·. We compute Pŵ(ok) and
PHA(ok) as the likelihoods of observing ok from the two
distributions, i.e., ŵ(i)

j· and HAj·. Here, if LRij > 1, the
estimated (or predicted) weight ŵ(i)

j· has a higher likelihood of
observing the ground speed records than the reference weight



HAj·, thus indicating a more accurate prediction of ŵ(i)
j· than

when using HAj·. We set |LRij > 1| as 1 if the LRij value
exceeds 1; otherwise, it is set to 0.
Average: We use Mean Absolute Percentage Error (MAPE)
to measure the accuracy of the estimated average speeds.

MAPE =

∑T
i=1

∑n
j=1 Iij

|yij−ŷij |
yij∑T

i=1

∑n
j=1 Iij

× 100%, (13)

where T , n, and Iij have the same meaning as before. Further,
yij and ŷij represent the ground truth and estimated average
speeds for the j-th edge in the i-th time interval, respectively.

B. Experimental Results

We proceed to cover experimental results using data sets CI
and HW with different removal ratios rm . We compare our
models for estimation and prediction with baseline approaches
and report MKLR and FLR values for both data sets. We also
compare our models for the average function with the baseline
approaches and report MAPE values. Finally, we report on a
study of the scalability of the proposed models.

1) Estimation: Tables IV and V show MKLR values on
HW and CI, respectively. As lower MKLR values indicate
higher accuracy, we highlight the least MKLR values in each
rm setting. A-GCWC has the best accuracy under all settings.

rm GP RF LSM CNN DR GCWC A-GCWC
0.5 1.00 0.91 1.54 0.45 0.48 0.43 0.43
0.6 1.00 0.93 1.57 0.47 0.52 0.44 0.43
0.7 1.00 0.95 1.58 0.49 0.52 0.45 0.44
0.8 1.00 0.98 1.61 0.56 0.57 0.52 0.46

Table IV: MKLR for the HW Dataset, Estimation.

rm GP RF LSM CNN DR GCWC A-GCWC
0.5 1.00 0.96 1.08 0.55 0.85 0.48 0.48
0.6 1.00 0.97 1.17 0.59 0.68 0.50 0.49
0.7 1.00 0.98 1.26 0.58 0.55 0.50 0.49
0.8 1.00 0.99 1.35 0.66 0.61 0.49 0.49

Table V: MKLR for the CI Dataset, Estimation.

For both data sets, the MKLR values of all methods increase
as the removal ratio rm increase. The reason is that as the rm
value increase, fewer edges are covered with traffic data, and
therefore more edges need to be assigned estimated stochastic
weights, which is more challenging. We observe that LSM,
the state-of-the-art method in weight completion, fails in the
considered settings, since all MKLR values exceed 1, meaning
that HA is better than LSM. This suggest that LSM cannot be
extended to support stochastic weights and LSM cannot deal
with the case where many edges lack traffic data.

The MKLR values reported for CNN vary significantly as
rm increases, while those reported by GCWC and A-GCWC,
especially A-GCWC, are rather stable. This is because CNN
is unable to capture the spatial correlations of a road network
well, while GCWC and A-GCWC are.

DR achieves much better accuracy on HW than on CI—in
particular, DR has MKLR as large as 0.85 at rm = 0.5 on CI.

This indicates that although DR has good propagation abilities
on small graphs, this ability is weakened on large graphs.

Finally, GCWC and A-GCWC show stable accuracy, and
they double the accuracy of HA, i.e., the MKLR values of
below 0.5 for both data sets. A-GCWC reports more stable
MKLR values when rm values increase and higher accuracy,
i.e., lower MKLR values, than GCWC.

Next, we report FLR values for each rm setting, as show
in Tables VI and VII. We highlight the highest FLR values
for each rm setting since higher FLR values indicate higher
accuracy.

For both data sets, we observe that the FLR values of all
methods decrease as rm increases, which is because the tasks
become more challenging. LSM also fails and reports FLR
values less than 0.5, meaning that HA behaves better than LSM
in most cases. In most settings, GCWC and A-GCWC can
achieve the highest FLR values, and A-GCWC outperforms
GCWC, which is consistent with the results reported by the
MKLR values. CNN slightly outperforms our models given
rm = 0.5 in HW data set. This is because for a small road
network, e.g., for HW, and when many edges are covered with
traffic data, e.g., rm = 0.5, CNN may be able to capture some
latent correlations among the stochastic weights of edges. DR
shows consistent trends—it achieves good accuracy on HW
and performs significantly worse on CI.Overall, A-GCWC
achieves the best FLR.

rm GP RF LSM CNN DR GCWC A-GCWC
0.5 0.52 0.78 0.21 0.90 0.86 0.88 0.89
0.6 0.50 0.76 0.20 0.88 0.88 0.88 0.92
0.7 0.48 0.74 0.20 0.88 0.89 0.89 0.91
0.8 0.47 0.67 0.22 0.85 0.87 0.84 0.88

Table VI: FLR for the HW Dataset, Estimation.

rm GP RF LSM CNN DR GCWC A-GCWC
0.5 0.52 0.61 0.10 0.78 0.75 0.84 0.85
0.6 0.52 0.61 0.11 0.78 0.75 0.83 0.84
0.7 0.51 0.60 0.10 0.81 0.81 0.83 0.84
0.8 0.52 0.60 0.11 0.77 0.78 0.85 0.83

Table VII: FLR for the CI Dataset, Estimation.

2) Prediction: Tables VIII and IX show MKLR values for
HW and CI, respectively. We highlight the least MKLR values
given each rm setting.

Most observations for estimation also hold for prediction.
On HW, as rm increases, the MKLR values of all methods,
except GP and RF, follow an increasing trend. In contrast, on
CI, the MKLR values do not follow an increase trend when
rm increases. This is because CI is a larger, city network
with more uncertainty and less dependency among different
time intervals than in the case of HW, which is a highway toll
gate network. Nevertheless, GCWC and A-GCWC outperform
the other methods in almost all settings for both data sets, and
A-GCWC behaves more stable and has lower MKLR values
than does GCWC.

Next, we report FLR in Tables X and XI. In this setting,
we use real speed observations during the testing intervals to



rm GP RF LSM CNN DR GCWC A-GCWC
0.5 2.61 1.00 1.56 0.45 0.47 0.46 0.43
0.6 2.59 1.00 1.60 0.45 0.46 0.46 0.44
0.7 2.52 0.99 1.62 0.46 0.46 0.47 0.43
0.8 2.60 0.98 1.67 0.46 0.49 0.47 0.45

Table VIII: MKLR for the HW Dataset, Prediction.

rm GP RF LSM CNN DR GCWC A-GCWC
0.5 1.09 0.97 4.18 0.50 0.48 0.45 0.43
0.6 1.12 0.97 4.15 0.50 0.49 0.46 0.46
0.7 1.16 0.98 4.16 0.54 0.54 0.49 0.48
0.8 1.24 0.98 4.30 0.59 0.53 0.50 0.49

Table IX: MKLR for the CI Dataset, Prediction.

compute the likelihood ratios. Recall that higher FLR values
indicate higher accuracy.

rm GP RF LSM CNN DR GCWC A-GCWC
0.5 0.29 0.55 0.23 0.93 0.93 0.96 0.92
0.6 0.31 0.55 0.22 0.93 0.93 0.96 0.92
0.7 0.32 0.58 0.23 0.93 0.94 0.93 0.93
0.8 0.35 0.59 0.24 0.93 0.93 0.93 0.92

Table X: FLR for the HW Dataset, Prediction.

rm GP RF LSM CNN DR GCWC A-GCWC
0.5 0.50 0.58 0.12 0.84 0.82 0.86 0.85
0.6 0.49 0.58 0.12 0.83 0.83 0.84 0.85
0.7 0.49 0.58 0.13 0.84 0.82 0.84 0.84
0.8 0.47 0.57 0.14 0.82 0.82 0.84 0.83

Table XI: FLR for the CI Dataset, Prediction.

We observe that LSM also fails, with all values being
below 0.5. However, we cannot observe a clear trend with
the increase of rm for both data sets. Further, we observe that
GCWC and A-GCWC achieve the best results in most settings,
the exception being when rm = 0.7 (Table X). Overall, the
performance improvements of GCWC and A-GCWC over
DR are less obvious for prediction, because DR models
temporal dependency explicitly by using RNNs, yielding more
accurate predictions the edges with data. However, the overall
accuracies of GCWC and A-GCWC are still better due to
ability of these to propagate weights to edges without data.

We also observe that the FLR values for CNN, DR, GCWC,
and A-GCWC are closer and higher for HW than those for CI,
because speed observations for CI have more uncertainty than
for HW, making predictions for CI more challenging.

3) Average: Tables XII and XIII show MAPE when es-
timating average speeds for CI and HW with different rm
values, respectively. In this setting, LSM is the state-of-the-
art linear solution [9] and DR [19] can be regarded as the
state-of-the-art non-linear solution.

We have the following observations. (1) A-GCWC performs
overall best on both data sets; (2) LSM seems to not work
on the CI dataset. The reason may be that the citywide
road network is much more complex than the highway road
network, meaning that linear modeling is unable to capture

the latent attributes of this system. On the HW dataset, LSM
does a much better job when the rm value is 0.5, compared
to on the CI dataset. However, the performance falls markedly
when the rm value increases, meaning that LSM falls short
when many edges are not covered by traffic data. Note that in
the original paper [9], LSM shows good accuracy when up to
30% of the edges lack average speeds, i.e., when rm ≤ 0.3.
(3) CNN and DR also performs better than LSM, suggesting
that it the linear modeling correlations is the key problem. (4)
While DR is the state-of-the-art when the data is not sparse,
it performs worse than the proposed GCWC and A-GCWC
when the data is sparse.

rm LSM CNN DR GCWC A-GCWC
0.5 25.5% 12.9% 14.5% 13.0% 12.8%
0.6 28.5% 13.0% 13.5% 13.0% 12.9%
0.7 33.5% 13.0% 13.3% 12.1% 12.9%
0.8 48.3% 13.0% 13.5% 12.4% 12.9%

Table XII: MAPE for the HW Dataset, Average.

rm LSM CNN DR GCWC A-GCWC
0.5 31.0% 10.9% 11.3% 11.6% 10.8%
0.6 37.3% 11.2% 12.5% 12.2% 11.2%
0.7 44.7% 11.5% 13.6% 12.2% 11.4%
0.8 52.1% 13.0% 11.5% 12.1% 11.5%

Table XIII: MAPE for the CI Dataset, Average.

4) Scalability: We conduct this experiment to investigate
the scalability of GCWC and A-GCWC on large road net-
works. Due to the unavailability of large road networks with
sufficient amount of traffic data that cover most edges during
most intervals, we manually enlarge the road network of CI
by scales of 10, 20, 30, 40, and 50 such that the largest road
network has a total number of 172 × 50 = 8, 600 edges. Of
course, the road network can be enlarged further, e.g., 60 or
higher. However, we found that this is the largest road network
that one single K80 GPU can deal with in our setting.

If the road network is too large to fit into a single machine,
we can divide the network into smaller sub-networks and
process them either in parallel on multiple computers [30],
[31] or in sequence on a single computer. To simulate the
case of a very large road network, we consider two settings:
(1) processing a single road network using GCWC and A-
GCWC; and (2) partitioning the road network into two small
road networks and processing the two small road networks in
sequence, denoted as GCWC-M2 and A-GCWC-M2.

Figure 6(a) shows the average training time for one batch
with batch size 20. This is the time it takes to finish an
entire back propagation using 20 training instances, i.e., 20
input matrices. We observe that training A-GCWC takes more
time than GCWC, which is reasonable since A-GCWC needs
to train an extra CP-CNN. Further, if we partition a large
road network into two small sub-networks and train them
in sequence, this takes less time. However, this normally
results in lower accuracy since the partitioning destroys some
adjacency relationships in the original road network.



(a) Training Time (b) Testing Time

Figure 6: Scalability.

Figure 6(b) shows that the average testing time for one
instance, e.g., estimating or predicting a weight matrix Ŵ ,
is very fast (less than 15 ms), and there is little difference
between A-GCWC and GCWC.

VII. CONCLUSIONS AND OUTLOOK

High-resolution vehicle routing calls for road network mod-
els where each edge has a time-varying travel-time distribu-
tion. Even with massive volumes of vehicle data, it is generally
impossible to construct distributions, also called stochastic
weights, for all edges and times. We define and study the
problem of stochastic weight completion in this setting. A
data-driven deep learning model, graph convolutional weight
completion (GCWC), is proposed to fill in missing stochastic
weights. In addition, an advanced GCWC model that takes into
account contextual information is proposed to further improve
accuracy. Empirical studies with two different, real datasets—
highway loop detector data and citywide taxi GPS data—
suggest that the proposed models are capable of outperforming
other methods in all the experimental settings considered.

In future work, it is of interest to exploit temporal cor-
relations to further improving the accuracy of the stochastic
weights and to support continuous distribution models such
as Gaussian mixture models. It is also of interest to integrate
GCWC with existing routing algorithms [32], [33] to enhance
routing quality.
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