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Abstract—Motivated by many practical applications in lo-
gistics and mobility-as-a-service, we study the top-k optimal
sequenced routes (KOSR) querying on large, general graphs
where the edge weights may not satisfy the triangle inequality,
e.g., road network graphs with travel times as edge weights. The
KOSR querying strives to find the top-k optimal routes (i.e., with
the top-k minimal total costs) from a given source to a given
destination, which must visit a number of vertices with specific
vertex categories (e.g., gas stations, restaurants, and shopping
malls) in a particular order (e.g., visiting gas stations before
restaurants and then shopping malls).

To efficiently find the top-k optimal sequenced routes, we
propose two algorithms PruningKOSR and StarKOSR. In Prun-
ingKOSR, we define a dominance relationship between two
partially-explored routes. The partially-explored routes that can
be dominated by other partially-explored routes are postponed
being extended, which leads to a smaller searching space and
thus improves efficiency. In StarKOSR, we further improve the
efficiency by extending routes in an A∗ manner. With the help of
a judiciously designed heuristic estimation that works for general
graphs, the cost of partially explored routes to the destination can
be estimated such that the qualified complete routes can be found
early. In addition, we demonstrate the high extensibility of the
proposed algorithms by incorporating Hop Labeling, an effective
label indexing technique for shortest path queries, to further
improve efficiency. Extensive experiments on multiple real-world
graphs demonstrate that the proposed methods significantly
outperform the baseline method. Furthermore, when k = 1,
StarKOSR also outperforms the state-of-the-art method for the
optimal sequenced route queries.

I. INTRODUCTION

Optimal sequenced route (OSR) querying [28], [29], a.k.a.,
generalized shortest path querying [25], aims at finding a route
with minimum total cost (e.g., travel distance or travel time),
passing through a number of vertex categories (e.g., restau-
rants, banks, gas stations) in a particular order (e.g., visiting
banks before restaurants). This problem has many practical
applications in route planing [13], [17], crisis management,
supply chain management, video surveillance, mobility-as-a-
service [12], and logistics [25], [28]. However, it is often the
case that the optimal sequenced route with the minimum total
cost may not be the best choice for all users since different
users may have different personal preferences [9], [24], [32].

Consider the example shown in Figure 1, where a vertex
represents a point-of-interest and is associated with a category,
e.g., shopping mall (MA), restaurant (RE ), or cinema (CI )
and edge weights represent travel costs, e.g., travel time or
fuel consumption. Suppose that Alice plans a trip which starts
from location s and wishes passing through a shopping mall, a
restaurant, and then a cinema and finally reaching destination t.
This plan can be formalized with an OSR query with category
sequence 〈MA,RE ,CI 〉. The optimal sequenced route for
Alice is s → a → b → d → t with a cost of 20.
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Figure 1. A road network graph G

However, if Alice prefers restaurant e to restaurant b, route
s→ a→ e→ d→ t with a cost of 21 is more preferable. In
addition, if the shopping mall at vertex c has sale promotions,
route s→ c→ b→ d→ t with a cost of 22 can also be a good
candidate. In these cases, returning only the optimal sequenced
route may not sufficiently satisfy users’ varying preferences.
This motivates us to study the top-k optimal sequenced routes
(KOSR) querying that returns k routes that satisfy the given
category order and have the k least total costs.

In this paper, we focus on finding the top-k optimal se-
quenced routes in general graphs, where edge weights may not
satisfy triangle inequality. Unfortunately, the KOSR problem
on general graphs has not been addressed carefully before,
though the OSR problem has been extensively studied. In
[28], the progressive neighbor exploration algorithm PNE is
proposed to solve the OSR problem on general graphs. In [25],
a dynamic programming based algorithm GSP is formulated,
which outperforms PNE significantly and is considered as the
state-of-the-art for solving the OSR problem on general graphs.

However, by simply extending existing solutions for the
OSR problem, it is unlikely, if it is not impossible, to achieve
efficient solutions for the KOSR problem. In particular, dy-
namic programming based GSP is unable to be extended to
solve the KOSR problem due to lack of sufficient information
for other sequenced routes. Although PNE can be extended
to handle the KOSR problem by iteratively finding the next
optimal sequenced route, the efficiency is low since all partially
explored sequenced routes whose costs are less than the cost of
the k-th optimal sequenced route must be examined, whereas
most of them can be avoided being extended.

It is non-trivial to devise an efficient solution for solving
KOSR due to two challenges. The first is how to filter un-
necessary partially explored sequenced routes when exploring
the graph. To conquer this challenge, we propose a dominance
relationship between two partially explored sequenced routes r
and r′. If r dominates r′, the optimal (i.e., least-cost) feasible
sequenced route extended from r is always better than that
of r′. Thus, the exploring of routes that are extended from r′

can be postponed until a complete sequenced route extended
from r occurs in the result set. Furthermore, inspired by A∗



algorithm [18], we estimate the cost of each partially explored
sequenced route to the destination, and explore the partially
explored routes according to their estimated total costs, which
further reduces the searching space.

The second challenge is how to efficiently find the i-th
nearest, not merely the nearest, neighbor in a category, as
this operation is invoked frequently when solving KOSR. For
example, recall that we may want to recommend the top-3
optimal sequenced routes to Alice in Figure 1. More than one
nearest neighbors in category MA for vertex s, i.e., a and c, are
required to be explored. A simple and intuitive implementation
of the operation is to apply Dijkstra’s algorithm, which is
however very costly. To overcome this weakness, we build
an inverted label index for each category by employing hop
labeling technique [2]–[5], [8] on the original graph in an off-
line manner. In this way, the i-th nearest neighbor in a category
can be identified efficiently in an on-line manner by simply
looking up the inverted label index.

To the best of our knowledge, this is the first compre-
hensive work to study the KOSR problem. The paper makes
four contributions. First, we propose a dominance relationship
between partially explored sequenced routes and develop an
algorithm based on the dominance relationship to reduce the
searching space significantly when solving the KOSR problem.
Second, we propose a heuristic method that is able to estimate
the minimal total cost of partially explored sequenced routes,
which enables the develop of an A∗ like algorithm to further
reduce the searching space for solving the KOSR problem.
Third, we propose an inverted label index which facilitates
the operation that identifies the i-th nearest neighbor in a
category for a given vertex, which improves the efficiency
of both algorithms. Finally, we report on a comprehensive
empirical study over different real-world graphs, showing that
the proposed algorithms significantly outperform the baseline
method for KOSR and the state-of-the-art method for OSR.

II. RELATED WORK

We categorize relevant studies on sequenced route querying
in Table I. This categorization considers three different aspects.
First, we consider whether the algorithms work for general
graphs. When edge weights represent Euclidean distances be-
tween vertices, the edge weights satisfy the triangle inequality.
We call such graphs Euclidean graphs. When edge weights
represent other costs such as travel times and fuel consump-
tion [16], [31], the edge weights do not necessarily satisfy
triangle inequality anymore. We call such graphs general
graphs. Note that Euclidean distance and indexing structures
based on the Euclidean space, such as R-trees, cannot be
utilized in general graphs. The proposed algorithms in this
paper work for general graphs. Second, we consider whether
the algorithms support returning the top-k optimal sequenced
routes. Most existing studies only work for the case when
only the top-1 optimal sequenced route is required. Third, we
consider whether a specific category order is given. Table I
clearly shows that this paper is the first comprehensive study
for addressing the sequenced route problem on general graphs,
with specific category orders, and k ≥ 1, i.e., the top-k optimal
sequenced route (KOSR) problem.

The optimal sequenced route querying [28], [29], a.k.a., the
generalized shortest path querying [25], is the most relevant

Table I. CATEGORIZATION OF SEQUENCED ROUTE QUERIES

Euclidean Graphs General Graphs
k = 1 Specific order: [28]

Arbitrary order: [7], [22], [23]
Specific order: [25], [28], [29]
Arbitrary order: [6], [26]

k ≥ 1 Specific order: [19], [20], [27]
Arbitrary order:∅

Specific order: This paper
Arbitrary order:∅

problem. [28] is the first work that addresses the problem, in
which three algorithms are proposed, namely LORD, R-LORD
and PNE. The first two algorithms, LORD and R-LORD,
are designed for edge weights in Euclidean spaces where R-
trees can be utilized to enable efficient query processing. The
PNE algorithm works for general graphs. In this paper, we
extend PNE to solve the KOSR problem, which is regarded
as the baseline method. [29] tries to improve the efficiency of
optimal sequenced route querying on general graphs by pre-
constructing a series of additively weighted voronoi diagrams
(AWVD). However, this approach requires a prior knowledge
of the category sequence in a query, thus limiting its applicabil-
ity for online queries, because it is prohibitive to pre-construct
AWVDs for all possible category sequences. [25] addresses the
optimal sequenced route queries on general graphs by using
a dynamic programming formulation. In their formulation,
the optimal costs of all vertices in each category from the
start and passing through all the categories before them are
computed by using a transition function between consecutive
categories. In their solutions, contraction hierarchy technique
[14] is utilized to compute the optimal costs of the vertices
in the next category according to above recurrence. Though
efficient, this approach cannot be extended to KOSR queries,
because the transition function only suits the optimal cost.

Group optimal sequenced routes problem [19], [20], [27] is
also relevant to KOSR. Given a group of users with different
sources and destinations and a set of ordered categories, group
optimal sequenced routes querying aims to find the top-k
optimal sequenced routes that pass through the categories in
order and minimize the aggregate travel costs of the group.
Specifically, when the group only has one user, then the
problem becomes the KOSR problem. However, all existing
methods are based on Euclidean space. Thus, they cannot be
applied in general graphs.

[6], [7], [22], [23] study the problem on finding the
optimal route that visits a given set of categories, but without
a specific category order. Sometimes, additional constraints,
such as partial order [7], [23] and budget limit [6], are also
considered. Such problems are NP-hard and can be reduced to
generalized traveling salesman problem [26]. Therefore, ap-
proximate methods are proposed to solve such problems. Due
to different problem natures, above methods cannot be directly
applied for KOSR. Other advanced routing strategies [15], e.g.,
skyline routing [16], [31], stochastic routing [10], [21], [30],
and personalized routing [32], are also different from KOSR.

III. PRELIMINARIES

We formalize the KOSR problem and introduce baseline
solution. Frequent notations are summarized in Table II.

A. Problem Definition

Definition 1 (Graph): A directed weighted graph
G(V,E, F,W ) includes a vertex set V and an edge set
E ⊆ V × V . Category function F : V → 2S takes as input



Table II. NOTATION

Notation Meaning
Ps,t A route from s to t
C A category sequence C = 〈C1, · · · , Cj〉
|C| The number of categories in category sequence C
VCi

The vertex set of category Ci

|Ci| The number of vertices that belong to category Ci, i.e., |VCi
|

Ps,t,C Witness Ps,t,C=〈C1,··· ,Cj〉 = 〈s, v1, · · · , vj , t〉, such that
vi ∈ VCi

for 1 ≤ i ≤ j
|P | The number of vertices in route or witness P

w(P ) The weight of route or witness P
dis(vi, vj) The least cost from vertex vi to vj

k Top k results are needed

a vertex v ∈ V and returns a set of categories F (v), where
S denotes a set of all possible categories. Weight function
W : E → R+ takes as input an edge (u, v) and returns a
non-negative cost of the edge W ((u, v)), e.g., the travel time
when traversing edge (u, v).

For example, in Figure 1, we have S = {MA,RE ,CI },
F (a) = {MA}, and W ((s, a)) = 8. Note that the edge weights
can be arbitrary and may not satisfy the triangle inequality.

Definition 2 (Route): A route Ps,t from vertex s to vertex
t in graph G is a sequence of vertices, where each two adjacent
vertices are connected by an edge, denoted by Ps,t = 〈v0 =
s, v1, · · · , vq = t〉. Let w(Ps,t) =

∑
0≤i<qW ((vi, vi+1)) be

the weight, or cost, of route Ps,t and |Ps,t| be the size of route
Ps,t which equals to the number of vertices in route Ps,t.

Definition 3 (Category Sequence): A category sequence
C = 〈C1, C2, · · · , Cj〉 represents an order in which each
category must be visited, where each Ci ∈ C, 1 ≤ i ≤ j,
represents a specific category in category set S, and each Ci

corresponds to a vertex set VCi = {v|v ∈ V
∧
Ci ∈ F (v)}.

We refer |C| and |Ci| to the size of the category sequence C
and the size of VCi , respectively.

Definition 4 (Feasible Route): Given a source-destination
pair (s, t), and a category sequence C = 〈C1, C2, · · · , Cj〉, a
route Ps,t = 〈v0 = s, v1, · · · , vq = t〉 is feasible if and only if
there exists a subsequence of vertices 〈vr1 , vr2 , · · · , vrj 〉 from
Ps,t, such that 0 < r1 ≤ r2 ≤ · · · ≤ rj < q and for 1 ≤ i ≤ j,
vri ∈ VCi or Ci ∈ F (vri). We call 〈s, vr1 , vr2 , · · · , vrj , t〉 the
witness1 of Ps,t w.r.t category sequence C, denoted as Ps,t,C .

In many cases, there exist multiple feasible routes for a
given source-destination pair and a category sequence. We
distinguish two feasible routes according to their witnesses.
This means that if two feasible routes share the same witness
w.r.t a category sequence, they are regarded as the same fea-
sible route and only the route with smaller cost is considered.
Formally, for a witness Ps,t,C = 〈v0, v1, · · · , vq〉, its cost
w(Ps,t,C) is defined as w(Ps,t,C) =

∑
0≤i<q dis(vi, vi+1),

where dis(vi, vi+1) is the least cost from vertex vi to vi+1.

Definition 5 (KOSR query): Given a graph G, the top-
k optimal sequenced routes (KOSR) query is a quad-tuple
(s, t, C, k), where s, t ∈ V denotes a source-destination pair,
C is a category sequence, and k is a positive integer. The
query returns a set of k different feasible routes w.r.t C,
Ψ = {P 1

s,t, P
2
s,t, · · · , P k

s,t}, such that there does not exist any
other feasible route P ′s,t in G where P ′s,t /∈ Ψ

∧
w(P ′s,t) <

max1≤i≤k w(P i
s,t).

1Note that a witness may not represent a route according to Definition 2 as
consecutive vertices in a witness may not be connected by an edge.

Example 1: Consider the graph G in Figure 1, the
KOSR query (s, t, 〈MA,RE ,CI 〉, 3) returns Ψ={〈s, a, b, d, t〉,
〈s, a, e, d, t〉, 〈s, c, b, d, t〉} that includes routes with costs of
20, 21, and 22. There does not exist another feasible path
whose cost is smaller than 22.

To simplify later discussion, we focus on identifying the
witnesses of top-k optimal sequenced routes, rather than identi-
fying the actual routes. However, given the witness, its actual
route can be easily reconstructed. For simplicity, all routes
we discuss in the following sections refer to witnesses unless
stated otherwise. Moreover, given a category sequence C, we
introduce two dummy categories C0 = {s} and C|C|+1 = {t}
to include the source vertex s and destination vertex t.

B. Baseline Solution

Since OSR can be considered as a special case of KOSR
where k is set to 1, we first present PNE, one of state-of-the-art
methods for solving OSR. Then we present the baseline KPNE,
which is extended from PNE, for solving KOSR. Another state-
of-the-art method GSP for OSR is included in the full version
[1].

The progressive neighbor exploration (PNE) algorithm [28]
is able to find the optimal sequenced route in general graphs.
Algorithm 1 shows the sketch of PNE. During the processing,
a priority queue is maintained for partially explored routes
(witnesses). At each iteration, the route 〈v0, v1, · · · , vq−1, vq〉
with minimal cost in the priority queue is chosen to be
examined, where vi ∈ VCi for each 1 ≤ i ≤ q. To extend
from the route, we need to consider vertices in the next
category Cq+1. Instead of extending the route via all its
neighbors in category Cq+1, only the nearest neighbor vq+1

of vq , such that dis(vq, vq+1) = arg minv∈VCq+1
dis(vq, v),

is considered. Moreover, to guarantee the correctness, an-
other candidate route derived from 〈v0, v1, · · · , vq−1, vq〉 is
incrementally generated by extending 〈v0, v1, · · · , vq−1〉 via
vq−1’s next nearest neighbor v′q in Cq , such that v′q 6= vq
and dis(vq−1, v′q) ≥ dis(vq−1, vq). The algorithm returns the
optimal route as it passes through all categories in order and
reaches the destination. Since a vertex’s neighbors in the next
category Ci(1 ≤ i ≤ j) can be as many as |Ci|, it is
impractical to compute the least costs from the vertex to all
its neighbors. By progressively extending route via its nearest
neighbors and generating candidate route derived from it, PNE
carefully examines all the possible partially explored candidate
routes on demand to find the optimal sequenced route. It is
possible to extend PNE to solve KOSR problem, we only need
to add a result set and each time we find an optimal sequenced
route (line 5), it will be added to the result set, when the result
set consists of k routes or the priority queue is already empty,
the set will be returned as the result of KOSR. We refer to this
method for solving KOSR as KPNE.

Although KPNE which is extended from [28] is able to
solve KOSR on general graphs, it is inefficient since all par-
tially explored candidate routes whose costs are smaller than
the cost of the k-th optimal sequenced route must be examined.
In the worst case, the number of examined partially explored
candidate routes at category Ci can reach

∏
1≤j≤i |Cj |, as a

result, the total number of routes to be examined by KPNE can
be

∑
1≤i≤|C|+1

∏
1≤j≤i |Cj |, which is too huge to process on

large graphs.



Algorithm 1: PNE(G, s, t, C)

Input: Graph G(V,E), source-destination pair
s, t ∈ V , category sequence C = 〈C1, · · · , Cj〉.

Output: The optimal sequenced route.
1 Priority queue Q← {〈s〉};
2 while |Q| > 0 do
3 〈v0 = s, v1, · · · , vq−1, vq〉 ← Q.extractMin();
4 if q = |C|+ 1 then
5 return 〈v0, v1, · · · , vq−1, vq〉;

// extend route.
6 vq+1 ← vq’s nearest neighbor in category Cq+1;
7 Q.insert(〈v0, v1, · · · , vq, vq+1〉);

// generate candidate route.
8 if q > 0 then
9 v′q ← vq−1’s next nearest neighbor in Cq;

// v′q 6= vq
∧
dis(vq−1, v

′
q) ≥ dis(vq−1, vq)

10 Q.insert(〈v0, v1, · · · , vq−1, v′q〉);

IV. PROPOSED SOLUTIONS FOR KOSR

In this section, we propose two efficient methods to solve
KOSR. We first describe a method based on the route dom-
inance relationship to filter unnecessary partially explored
candidate routes in Section IV-A, which reduces the searching
space. Moreover, we demonstrate the extensibility of the
proposed method by incorporating an optimization technique
that is able to find the i-th nearest neighbor in a category for
a given vertex efficiently. Subsequently, we further reduce the
searching space by integrating a heuristic estimation in an A∗
manner in Section IV-B.

A. Dominance Based Algorithm

We first illustrate the intuition of the route dominance
relationship. Consider a KOSR query (s, t, 〈MA,RE ,CI 〉, 2)
in Figure 1. In order to find the first optimal sequenced route
〈s, a, b, d, t〉 with the cost of 20 (shorten as 〈s, a, b, d, t〉(20)),
KPNE will attempt to examine and extend 〈s, a, b〉(13) and
〈s, c, b〉(15), because both 〈s, a, b〉 and 〈s, c, b〉 have a smaller
cost than 〈s, a, b, d, t〉. However, there is no need to extend
〈s, c, b〉 to find 〈s, a, b, d, t〉, because the cost of the optimal
feasible route extended from 〈s, c, b〉 won’t be smaller than that
of 〈s, a, b〉 (i.e., 〈s, a, b, d, t〉). Hence, 〈s, c, b〉 can be excluded
to be extended until the optimal sequenced route 〈s, a, b, d, t〉
is found. In this case, we say 〈s, c, b〉 is dominated by 〈s, a, b〉.
Next, we formally define the dominance relationship.

Definition 6 (Dominance): Consider a given category se-
quence C = 〈C1, · · · , Cj〉 and two partially explored can-
didate routes (witnesses) P1 = 〈s, v11 , · · · , v1q 〉 and P2 =
〈s, v21 , · · · , v2q 〉 (1 ≤ q ≤ j). If v1q = v2q and w(P1) ≤ w(P2)
holds, P1 dominates P2 w.r.t C, denoted as P1 ≺C P2.

Lemma 1: Given a KOSR query (s, t, C=〈C1, · · · , Cj〉, k)
and two partially explored routes P1 and P2, if P1 ≺C P2, then
w(P ∗1 ) ≤ w(P ∗2 ), where P ∗1 and P ∗2 are the optimal feasible
routes that are extended from P1 and P2, respectively.

Proof: Suppose P1=〈s, v11 , · · · , v1q 〉, P2=〈s, v21 , · · · , v2q 〉
(1 ≤ q ≤ j) and P ∗1 =〈s, v11 , · · · , v1q , vq+1, · · · , vj , t〉, since

Algorithm 2: PruningKOSR(G, s, t, C, k)

Input: Graph G(V,E), source-destination pair s, t∈ V ,
category sequence C = 〈C1, · · · , Cj〉, and k.

Output: The top-k optimal sequenced routes.
1 ∀v ∈ V , initialize v.HT≺C

and v.HT�C
;

2 Ψ← ∅;
3 Priority queue Q← {(〈s〉, 1)}; /* (route, x) */
4 while Q is not empty and |Ψ| < k do
5 p = (〈v0, v1, · · · , vq−1, vq〉, x)← Q.extractMin();
6 if q = |C|+ 1 then
7 Ψ← Ψ

⋃
{p};

// reconsider dominated routes
8 for each i = 1 · · · q − 1 do
9 if 〈v0, · · · , vi〉 = vi.HT≺C

.getValue(i+ 1)
then

10 p′ = (〈v0, v′1, · · · , vi〉, x)←
vi.HT�C

.getValue(i+ 1).extractMin();
11 Q.insert(p′ = (〈v0, v′1, · · · , vi〉,−));
12 vi.HT≺C

.remove(i+ 1);

13 else
// pruning dominated routes

14 if |p| /∈ vq.HT≺C
.KeySet then

15 vq.HT≺C
.add(|p|, 〈v0, · · · , vq〉);

16 vq+1 ← FindNN(vq, Cq+1, 1);
17 Q.insert((〈v0, v1, · · · , vq, vq+1〉, 1));
18 else
19 vq.HT�C

.getValue(|p|).insert(p);
20 if q > 0 then
21 v′q ← FindNN(vq−1, Cq, x+ 1);
22 Q.insert((〈v0, v1, · · · , vq−1, v′q〉, x+ 1));

23 return Ψ;

P ∗1 is the optimal feasible route extended from P1, P =
〈v1q , vq+1, · · · , vj , t〉 must be the optimal sequenced route for
category sub-sequence 〈Cq+1, · · · , Cj〉 from v1q to t. Because
P1 ≺C P2, we have v2q = v1q and w(P1) ≤ w(P2), thus,
P ∗2 can be represented by 〈s, v21 , · · · , v2q , vq+1, · · · , vj , t〉, then
w(P ∗1 ) = w(P1) + w(P ) and w(P ∗2 ) = w(P2) + w(P ), since
w(P1) ≤ w(P2), we have w(P ∗1 ) ≤ w(P ∗2 ).

According to Lemma 1, there is no need to extend the
dominated partially explored routes until the optimal feasible
route extended from their dominating route become one of the
top-k optimal sequenced routes. This is because the partially
explored candidate routes that are dominated by other partially
explored candidate routes with smaller costs can never be
extended to be the next optimal sequenced routes before
their dominating routes. On the other hand, after an optimal
sequenced route is found, we need to reconsider its corre-
sponding dominated routes, so that they can be extended to
be the next optimal sequenced routes. Based on the dominance
relationship, we propose PruningKOSR method (Algorithm 2).

To check the dominance relationship and maintain the
dominated routes, for each vertex v, we introduce two hash
tables in the form of (key, value) pairs. One is HT≺C

for
dominating routes, where key is the size of the partially



explored dominating route that has been extended at v, and the
value is the route itself. Another one is HT�C

for dominated
routes, where key represents the size of dominated route, and
value is a priority queue for the routes with the size of key
that have reached v and been dominated, the dominated routes
are ordered according to their costs in an ascending order. We
also maintain a result set Ψ for the top-k optimal sequenced
routes and a global priority queue Q for partially explored
routes (witnesses) sorted by their costs in an ascending order.
Moreover, for each route p = 〈v0, v1, · · · , vq−1, vq〉, we
introduce an additional attribute x to indicate that vq is the
x-th nearest neighbor of vq−1 in category Cq when generating
p. Initially, only the source with x = 1 is added to the queue
Q. Then we begin a loop until Q is empty or the top-k optimal
sequenced routes have been found.

Pruning dominated routes: At each iteration, the route with
the minimum cost is chosen to be examined. If it already
reaches the destination, we add it to the result set and recon-
sider the dominated routes (lines 6–12). Otherwise, we check
whether it is dominated. For a route p = 〈v0, v1, · · · , vq−1, vq〉
to be examined, if p is the first route with size |p| that reaches
vertex vq , we add p to the HT≺C

of vq and extend it via vq’s
nearest neighbor in category Cq+1 (lines 14–17). Otherwise,
if its size |p| is in the HT≺C

of vq , it means that another
route with size |p| and smaller cost has been reached and
extended at vq , so that p is dominated. According to Lemma
1, there is no need to extend p anymore, therefore, we insert
it into the HT�C

of vq instead of the priority queue Q(line
19). Subsequently, we generate a new candidate route derived
from p. Since the candidate route via the x-th nearest neighbor
of vq−1 has been generated in previous iterations, we need
to find vq−1’s (x + 1)-th nearest neighbor in category Cq ,
v′q , by invoking algorithm FindNN, and create candidate route
〈v0, v1, · · · , vq−1, v′q〉 with incremental x and insert it into the
priority queue (lines 20–22).

Reconsider dominated routes: After an optimal sequenced
route p has been found, we need to reconsider the partially
explored routes that are dominated by sub-routes of p, since
these routes now can possibly be extended to be the next
optimal sequenced route. Therefore, for each vertex vi in p,
if 〈v0, · · · , vi〉 dominates the routes with size of i + 1 in the
HT�C

of vi (line 9), we only reconsider the dominated route
p′ with the least cost in the HT�C

of vi, because other routes
in HT�C

of vi are dominated by p′. This also explains why
we use a priority queue as the value in hash table HT�C

.
Since p′’s x+1 nearest neighbor has been computed after it is
dominated, we set its x to ‘-’ (which means there is no need
to generate candidate route that is derived from p′) and re-add
it to the priority queue (lines 10–11). Meanwhile, we remove
〈v0, · · · , vi〉 from the HT≺C

of vi, so that the next candidate
route that reaches vi can be extended (line 12).

Lemma 2: Algorithm 2 returns the correct result for a
KOSR query.

Proof: To find the next optimal sequenced route, all
possible partially explored candidate routes are considered
(lines 14–17 and 20–22) except for the dominated routes (line
19) which can be removed from extending according to Lemma
1. After an optimal sequenced route is found, the dominated
routes that can be extended to be the next optimal sequenced

Table III. RUNNING EXAMPLE OF ALG. 2 FOR FIG. 1

(a) Routes in the priority queue Q

Step Routes (route(cost), x)
1 (〈s〉(0), 1)
2 (〈s, a〉(8), 1)
3 (〈s, c〉(10), 2),(〈s, a, b〉(13), 1)
4 (〈s, a, b〉(13), 1),(〈s, c, b〉(15), 1)
5 (〈s, a, e〉(14), 2),(〈s, c, b〉(15), 1),(〈s, a, b, d〉(16), 1)
6

::::::::::::
(〈s, c, b〉(15), 1),(〈s, a, b, d〉(16), 1),(〈s, a, e, d〉(17), 1)

7 (〈s, a, b, d〉(16), 1),(〈s, a, e, d〉(17), 1),(〈s, c, e〉(27), 2)
8

::::::::::::::
(〈s, a, e, d〉(17), 1),(〈s, a, b, d, t〉(20), 1),(〈s, c, e〉(27), 2),
(〈s, a, b, f〉(40), 2)

9 (〈s, a, b, d, t〉(20), 1),(〈s, a, e, f〉(24), 2),(〈s, c, e〉(27), 2),
(〈s, a, b, f〉(40), 2)

10 (〈s, c, b〉(15),−),(〈s, a, e, d〉(17),−),(〈s, a, e, f〉(24), 2),
(〈s, c, e〉(27), 2),(〈s, a, b, f〉(40), 2)

11 (〈s, a, e, d〉(17),−),(〈s, c, b, d〉(18), 1),(〈s, a, e, f〉(24), 2),
(〈s, c, e〉(27), 2),(〈s, a, b, f〉(40), 2)

12 (〈s, c, b, d〉(18), 1),(〈s, a, e, d, t〉(21), 1),(〈s, a, e, f〉(24), 2),
(〈s, c, e〉(27), 2),(〈s, a, b, f〉(40), 2)

13 (〈s, a, e, d, t〉(21), 1),(〈s, c, b, d, t〉(22), 2),(〈s, a, e, f〉(24), 2),
(〈s, c, e〉(27), 2),(〈s, a, b, f〉(40), 2),(〈s, c, b, f〉(42), 2)

(b) Hash tables of vertex b with respect to Table III(a)

Step HT≺C HT�C

1 ∅ ∅
4 (3, 〈s, a, b〉) ∅
6 (3, 〈s, a, b〉) (3, {〈s, c, b〉(15)})
9 ∅ (3, {})

10 (3, 〈s, c, b〉) (3, {})

route are reconsidered. Therefore, Algorithm 2 returns the
correct result for a KOSR query.

Example 2: Consider Figure 1. Suppose the given query
is (s, t, 〈MA,RE ,CI 〉, 2). Table III shows the routes in the
priority queue Q at each step and the hash tables of vertex b
at different steps. At step 1, route 〈s〉 is added to the queue,
then it is extended via a (s’s nearest neighbor in category
MA), and no candidate route can be generated. At step 2,
〈s, a〉 is examined, it is extended via b (a’s nearest neighbor
in category RE ) and candidate route 〈s, c〉 is generated via
s’s 2nd nearest neighbor in category MA. At step 4, 〈s, a, b〉
is examined and extended at b, we insert it into the HT≺C

of b. Subsequently, at step 6, since 〈s, c, b〉 is dominated by
〈s, a, b〉 in the HT≺C

of b , 〈s, c, b〉 won’t be extended at b,
instead, we insert 〈s, c, b〉 into the HT�C

of b, and generate
candidate route 〈s, c, e〉 via c’s 2nd nearest neighbor e in
category RE . At step 9, the first optimal sequenced route
〈s, a, b, d, t〉 is found. Since both 〈s, c, b〉 and 〈s, a, e, d〉 in
HT�C

of b and d, respectively, are dominated by 〈s, a, b〉
and 〈s, a, b, d〉 in HT≺C

of b and d, respectively, we re-add
them into the queue with x=‘-’ and remove the corresponding
dominating routes from HT≺C

. Finally, at step 13, the second
optimal sequenced route 〈s, a, e, d, t〉 is found, and we return
{〈s, a, b, d, t〉, 〈s, a, e, d, t〉} as the result.

By pruning the dominated routes and the candidate routes
derived from them, both the capacity of the priority queue
and the searching space are reduced, which improves the
efficiency. Given a KOSR query 〈s, t, C, k〉, to find the first
optimal sequenced route, for each vertex v in Ci(0 ≤ i ≤
|C|), at most one route with size (i + 1) (plus the source)
is extended at v (line 16 in Algorithm 2), and at most
|Ci+1| − 1 candidate routes can be generated via v’s next
nearest neighbors in category Ci+1 (line 21 in Algorithm 2).



As a result, in the worst case, the number of routes to be
examined by Algorithm 2 for the first optimal sequenced route
is

∑
0≤i≤|C| |Ci| · |Ci+1|, in which

∑
0≤i≤|C| |Ci| routes are

extended. Then, for each of the next k− 1 optimal sequenced
routes, at most |C| dominated routes are reconsidered once
an optimal sequenced route is found, which results in at
most

∑
2≤i≤|C|+1 |Ci| examined routes, and in which at most

|C| routes are extended at |C| different categories, respec-
tively. That is, to find the top-k optimal sequenced routes,
at most

∑
0≤i≤|C| |Ci| · |Ci+1| + (k − 1) ·

∑
2≤i≤|C|+1 |Ci|

partially explored routes need to be examined, in which∑
0≤i≤|C| |Ci|+ (k − 1) · |C| routes are extended. Compared

to KPNE, the searching space is reduced from exponential
complexity (

∑
1≤i≤|C|+1

∏
1≤j≤i |Cj |) down to polynomial

complexity (
∑

0≤i≤|C| |Ci|·|Ci+1|+(k−1)·
∑

2≤i≤|C|+1 |Ci|).
Lemma 3 shows the time complexity of Algorithm 2.

Lemma 3: Given a KOSR query (s, t, C, k), let M =∑
0≤i≤|C| |Ci| · |Ci+1| + (k − 1) ·

∑
2≤i≤|C|+1 |Ci|, N =∑

0≤i≤|C| |Ci|+(k−1)·|C|, the time complexity of Algorithm
2 is O(Mρ + M logN), where ρ is the time complexity of
Algorithm FindNN.

Proof: Since at most M partially explored candidate
routes are generated during the process of Algorithm 2, which
means Algorithm FindNN will be called M times at most, in
which, at most N routes are extended via the nearest neighbor.
So that the complexity of this part is O(Mρ). In addition,
each time we examine a candidate route from the priority
queue, if the route is extended via the nearest neighbor, two
candidate routes are generated in total, in this case, the capacity
of the priority queue will be increased by 1. Otherwise, if
the route is dominated, then it cannot be extended and only
one candidate route is generated via the next nearest neighbor,
and the capacity of the priority queue will not change. Since
at most N candidate routes are extended via their nearest
neighbors, the capacity of the priority queue is at most N .
As a result, the complexity of the maintenance of the priority
queue is O(M logN). In summary, the total time complexity
of Algorithm 2 is O(Mρ+M logN).

Finding the x-th nearest neighbor. Next, we introduce how
to find the x-th nearest neighbor, the core operation FindNN
in PruningKOSR. A straightforward way to find the x-th
nearest neighbor of vertex vi in category Ci+1 is that by using
Dijkstra’s search. We start from vi and extend vertices via
their adjacent vertices until the x-th vertex in VCi+1

is settled.
However, each time we find the x-th nearest neighbor, Dijk-
stra’s search actually finds the top-x nearest neighbors from
scratch, which results in duplicate search effort throughout the
graph. Moreover, since FindNN is frequently invoked, frequent
Dijkstra’s searches on large graphs are practically inefficient.
Hence, a more efficient method without duplicate searches is
called for. To this end, we propose a method to incorporate the
use of 2-hop labeling technique [2], [3], [8] to find the x-th
nearest neighbor.

Given a directed weighted graph G(V,E), for each vertex
v ∈ V , 2-hop labeling maintains two labels Lin(v) and
Lout(v). In particular, Lin(v) consists of a set of label entries
in the form of (u, du,v), where u ∈ V is a vertex that is able to
reach v, and du,v=dis(u, v). Similarly, Lout(v) consists of a
set of label entries in the form of (u′, dv,u′), where u′ ∈ V is

Table IV. A LABEL INDEX FOR FIG. 1

Vertex Lin(v) Lout(v)
a (a, 0), (s, 8), (t, 33) (a, 0), (b, 5), (e, 6), (s, 10),

(t, 12)
b (b, 0), (s, 13), (t, 20) (b, 0), (s, 5), (t, 7)
c (c, 0), (s, 10), (t, 15) (b, 5), (c, 0), (d, 3), (s, 10),

(t, 7)
d (b, 3), (d, 0), (e, 3), (s, 13),

(t, 13)
(d, 0), (t, 4)

e (e, 0), (s, 14), (t, 10) (e, 0), (t, 7)
f (e, 10), (f, 0), (s, 24), (t, 20) (f, 0), (t, 3)
s (s, 0), (t, 25) (s, 0), (t, 17)
t (t, 0) (t, 0)

Table V. THE INVERTED LABEL INDEX OF CATEGORY MA, IL(MA)

Inverted label IL(v) Label entries
IL(a) (a, 0)
IL(c) (c, 0)
IL(s) (a, 8), (c, 10)
IL(t) (c, 15), (a, 33)

a vertex that can be reached by v, and dv,u′=dis(v, u′). Note
that Lin(v)’s entries may only contain a subset of vertices that
can reach v; similarly, Lout(v)’s entries may only contain a
subset of vertices that can be reached by v. In addition, the
labels must satisfy the cover property: for any two vertices s
and t, there exists a vertex u on the shortest path from s to t
that belongs to both Lout(s) and Lin(t). Based on which, to
answer a least cost query from s to t, we compute as follows:

dis(s, t) = min{ds,u+du,t|(u, ds,u) ∈ Lout(s), (u, du,t) ∈ Lin(t)}.

Hence, the least cost from s to t can be computed by scanning
Lout(s) and Lin(t) to find their matching label entries. If the
label entries in each label set are sorted by their vertices, then
we can compute dis(s, t) in O(|Lout(s)|+|Lin(t)|) time using
a merge-join like algorithm.

We note that building the 2-hop labeling with the min-
imal size (where the size of the index is defined as∑

v∈V (|Lin(v)|+ |Lout(v)|)) while satisfying the cover prop-
erty is NP-hard [8]. Thus, existing methods [2]–[4], [8] are
all heuristic to approximate the minimal 2-hop labeling index.
Alternatively, we may use an all-pairs shortest path algorithm
to generate index. Although it works, it requires index size of
O(|V |2), which is not acceptable for large graphs.

Example 3: For the directed weighted graph in Figure 1,
a possible 2-hop label indexes Lin and Lout is shown in
Table IV. Suppose we compute the least cost from vertex a to
vertex c, i.e., dis(a, c), we look up Lout(a) and Lin(c), and
find the matching label entries (s, 10), (t, 12) in Lout(a) and
(s, 10), (t, 15) in Lin(c), respectively. Since 10 + 10 = 20 <
12 + 15 = 27, we return 20 as the result of dis(a, c).

By using the label index, an easy way to find the x-
th nearest neighbor of vi in category Ci+1 is, for each
u ∈ VCi+1 , compute dis(vi, u) by looking up Lout(vi) and
Lin(u). By maintaining a min heap of size x, the x-th nearest
neighbor of vi is the vertex u with the x-th least dis(vi, u)
among all vertices in VCi+1 . Therefore, the time complexity is
O(Σu∈VCi+1

(|Lout(vi)| + |Lin(u)|) + |Ci+1| log x), which is
inefficient for categories with many vertices in large graphs.
To improve the efficiency of FindNN, we construct an inverted
label index for each category, so that we can quickly identify
the matching label entries between vi and all vertices in Ci+1.



The inverted label index for a category Ci, denoted as
IL(Ci), consists of label elements IL(u′), where u′ ∈ V
is the vertex in the label entry belongs to Lin(u) for each
u ∈ VCi . That is, IL(u′) consists of a list of label entries
(u, du′,u), such that u ∈ VCi and (u′, du′,u) ∈ Lin(u), and
all label entries in IL(u′) are sorted by their costs, i.e., du′,∗,
in an ascending order. With the inverted label index IL(Ci),
for each label entry (u′, dv,u′) ∈ Lout(v), the vertices with
matching label entry in Ci can be found in IL(u′) ∈ IL(Ci).
Since the label entries in the inverted label index are sorted,
to find the x-th nearest neighbor of v in category Ci, only one
label entry in each IL(u′) needs to be checked.

Example 4: Table V shows the inverted label index of
category MA with respect to the label index in Table IV.
Let’s find the nearest neighbor of s in category MA. Since
Lout(s) = {(s, 0), (t, 17)}, we look up IL(s) and IL(t) in
IL(MA). Because label entries are sorted, only (a, 8) in IL(s)
and (c, 15) in IL(t) need to be considered, then the nearest
neighbor of s in MA is a with the cost of 0 + 8 = 8.

Based on the inverted label index, the detail process of
finding the x-th nearest neighbor of vi in category Ci+1

is described by Algorithm 3. To avoid overlapping search,
we maintain an array list NL for vi to keep its nearest
neighbors that have been found. Moreover, to avoid searching
from scratch every time, we keep the candidate label en-
tries (u′, dv′,u′) in matching inverted label IL(v′) such that
(v′, dvi,v′) ∈ Lout(vi) that have been found so far into a
priority queue NQ and all entries are sorted by dvi,v′+dv′,u′ in
an ascending order. In addition, to keep the entry position that
we have scanned for each IL(v′), we introduce a hash table
structure KV , where key is vertex v′ and value is the entry
position of IL(v′). NL, NQ and KV are all global variables
and initialized to be empty. By using above data structures, to
find the x-th nearest neighbor of vi in Ci+1, we can start
from last nearest neighbor searching instead of finding the
top-x nearest neighbors from scratch, so that no overlapping
search is needed. Specifically, if the x-th nearest neighbor is
in NL, it can be retrieved and returned (lines 4–5). Otherwise,
for the first time to find the 1st nearest neighbor of vi, we
retrieve all the matching inverted labels IL(v′) ∈ IL(Ci+1),
then insert the first label entry of each IL(v′) into NQ and
initialize KV (lines 6–10). Subsequently, we get the minimal
label entry (u, dv′,u) in NQ which is the next nearest neighbor
(line 11). In addition, we add the next label in IL(v′) into
NQ and update its entry position for latter nearest neighbor
search (lines 12–16). Since nearest neighbors are incrementally
needed, the next nearest neighbor will be the x-th nearest
neighbor, so we add it to NL and return (lines 17–18).

Example 5: Consider the inverted label index in Table
V, we find the 2nd nearest neighbor of s in category MA.
Let’s follow Example 4, since the 1st nearest neighbor of
s is a from IL(s), after finding a, for s, NL = {a},
NQ = {(c, 10), (c, 15)} and KV = {〈s, 2〉, 〈t, 1〉}. Hence,
we get the minimal label (c, 10) in NQ . Because all the labels
in IL(s) are scanned, we set the entry position of IL(s) to
‘-’. At this point, KV = {〈s,−〉, 〈t, 1〉}, NL = {a, c} and
NQ = {(c, 15)}. We return c as the 2nd nearest neighbor of
s with the cost of 0 + 10 = 10.

After the inverted label index is constructed offline, finding
the 1st nearest neighbor of v takes O(|Lout(v)| log |Lout(v)|)

Algorithm 3: FindNN(vi, Ci+1, x)

Input: Vertex vi, category Ci+1, integer x.
Output: The x-th nearest neighbor of vi in Ci+1.

1 NL← list of vi’s neighbors in Ci+1 that have been
found;

2 NQ ← priority queue of vi for the label entries in
IL(v) ∈ IL(Ci+1);

3 KV ← vi’s hash table structure for IL(v) ∈ IL(Ci+1);
4 if |NL| ≥ x then
5 return NL[x];

6 if |NL| = 0 then
7 for each label entry (v′, dvi,v′) ∈ Lout(vi) do
8 (u′, dv′,u′)← IL(v′)[1];
9 NQ .insert((u′, dv′,u′));

10 KV .add(v′, 1);

11 (u, dv′,u)← NQ .extractMin();
12 do
13 KV .add(v′,KV .get(v′) + 1);
14 (u′, dv′,u′)← IL(v′)[KV .get(v′)];
15 while u′ /∈ NL;
16 NQ .insert((u′, dv′,u′));
17 NL.add(u);
18 return u;

time, because it scans all label entries in Lout(v) and adds the
first label entry of the matching inverted label to the priority
queue, and it only takes O(log |Lout(v)|) time to find the
next nearest neighbors, which is very efficient. Let’s reconsider
Lemma 3, suppose the average index size of Lout(v) for all
v ∈ V is |Lout|, the expected complexity of Algorithm 2 will
be O(N |Lout| log |Lout|+ (M −N) log |Lout|+M logN).

Given a witness that we have found, to get the corre-
sponding actual route, we need to restore the route between
consecutive vertices in the witness. By adding a parent vertex
in each label entry of the hop labeling, it is easy to construct
the actual route between two vertices [3]. Hence, the actual
route can be restored by concatenating all sub-routes between
consecutive vertices in the witness.

B. Integrating A∗ Heuristic Estimation

Inspired by A∗ algorithm [18], the efficiency of KOSR can
be further improved by using a destination-based strategy. To
quickly find the feasible route, the partially explored candidate
routes with a smaller cost but far away from the destination
should be given lower priority to be examined, so that the
number of candidate routes can be reduced. To this end, for
each partially explored candidate route p, we heuristically
estimate the cost of the optimal feasible route extended from
p, so that we can examine routes according to their estimated
costs instead of their real costs in an A∗ manner.

Given a KOSR query 〈s, t, C, k〉, for a partially explored
candidate route (witness) p = 〈v0 = s, v1, · · · , vi〉, the
optimal feasible route extended from p can be represented
as p′ = 〈s, v1, · · · , vi, vi+1, · · · , v|C|, t〉, so that w(p′) =
w(p) + w(〈vi, vi+1, · · · , v|C|, t〉). That is, we need to es-
timate the cost of 〈vi, vi+1, · · · , v|C|, t〉 which is the opti-
mal sequenced route starts from vi and passes through p’s



Algorithm 4: FindNEN(vi, Ci+1, x)

Input: Vertex vi, category Ci+1, integer x.
Output: Vertex vi+1 in Ci+1 such that

dis(vi, vi+1) + dis(vi+1, t) is the x-th least.
1 ENL← list of vi’s estimated neighbors in Ci+1 that

have been found;
2 ENQ ← priority queue of vi for the candidate

neighbors in Ci+1;
3 ln ← vi’s last nearest neighbors that have been

computed in Ci+1;
4 if |ENL| ≥ x then
5 return ENL[x];

6 while (|ENL| = 0
∧
|ENQ | = 0)

∨
(ln 6=

NULL
∧
dis(vi, ln) < dis(vi, v) + dis(v, t)), where v

is the vertex in ENQ with minimal
dis(vi, v) + dis(v, t) do

7 if ln 6= NULL then
8 ENQ .insert(ln);
9 ln ← FindNN(vi, Ci+1, |ENL|+ |ENQ |+ 1);

10 vi+1 ← ENQ .extractMin();
11 ENL.add(vi+1);
12 return vi+1;

remaining categories and reaches the destination t. We say
that a heuristic estimation h for a route P is admissible if
h(P ) ≤ w(P ). Recall that dis(u, v) returns the least cost
from vertex u to vertex v along all possible routes from u
to v, and it can be easily computed by 2-hop labeling. Thus,
we have dis(vi, t) ≤ w(〈vi, vi+1, · · · , v|C|, t〉), which means
dis(vi, t) is an admissible estimation of the cost of route
〈vi, vi+1, · · · , v|C|, t〉. Therefore, the estimated cost of p′ is
w(p) + dis(vi, t). By applying this target-directed estimation,
we propose another improved method StarKOSR. Instead of
ordering the routes, i.e., p = 〈v0, v1, · · · , vi〉, in the priority
queues (Q and priority queues in HT�C

) by their real costs,
i.e., w(p), in StarKOSR, we order routes by their estimated
costs, i.e., w(p)+dis(vi, t), so that the optimal feasible routes
can be progressively found.

The detail process of StarKOSR is almost the same as
Algorithm 2 except for FindNN. Since we examine routes
by their estimated costs, instead of finding the x-th nearest
neighbor of vertex vi, we find vi’s neighbor vi+1 in category
Ci+1 such that dis(vi, vi+1) + dis(vi+1, t) is the x-th least
among all vertices in Ci+1, we call vi+1 the x-th nearest
estimated neighbor of vi. To this end, we devise the algorithm
FindNEN (Algorithm 4).

Given vertex vi, category Ci+1 and integer x, Algorithm 4
finds vi’s x-th nearest estimated neighbor, vi+1, in Ci+1. To
avoid computing vi’s x-th nearest estimated neighbor multiple
times, we maintain an array list ENL of vi to keep the nearest
estimated neighbors that have been computed. Moreover, to
continuously compute the next nearest estimated neighbors, we
maintain a priority queue ENQ of vi for candidate neighbors
that have been considered so far and sort the neighbors (v) by
their estimated costs (dis(vi, v) + dis(v, t)) in an ascending
order. Meanwhile, we store the last nearest neighbor of vi
that have been computed into variable ln , so that we can
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Figure 2. The searching space of different methods

start from last nearest estimated neighbor searching instead
of computing from scratch every time. We note that ENL,
ENQ and ln are global variables and initialized to be empty
or NULL. Then if the x-th nearest estimated neighbor of vi
has been computed, we can retrieve it from ENL instead of
recomputing it (lines 4–5). Otherwise, we find the x-th nearest
estimated neighbor for the first time. Instead of checking all
vertices in Ci+1 to find the x-th nearest estimated neighbor,
we incrementally find the next nearest neighbor ln of vi in
Ci+1 by calling FindNN (line 9), if dis(vi, ln) is greater than
the minimal cost dis(vi, v)+dis(v, t) in ENQ , then v has the
minimal estimated cost among all remaining vertices in Ci+1,
because other vertices, say v′, that have not been checked hold
dis(vi, v

′) ≥ dis(vi, ln) ≥ dis(vi, v)+dis(v, t), which means
that their estimated cost cannot be less than that of v. Since
FindNEN is incrementally called, the next nearest estimated
neighbor is the x-th nearest estimated neighbor. Finally, we
add v to ENL and return it as the result (lines 10–12). A
concrete example of StarKOSR is included in the full version
[1].

Lemma 4: Algorithm StarKOSR returns the correct result
for a KOSR query (s, t, C = 〈C1, · · · , Cj〉, k).

Proof: We include the proof in the full version [1] due to
space limitation.

In StarKOSR, though FindNN may be called multiple
times as we attempt to find the x-th nearest estimated neighbor
by applying FindNEN, however, to find the next optimal
feasible route, the total times of calling FindNN by StarKOSR
is significantly less than that by PruningKOSR. We address
this as follows: suppose we examine route p = 〈v0, · · · , vi〉,
and find the x-th nearest estimated neighbor vi+1 of vi
by calling FindNN j times, that is j nearest neighbors of
vi have been found and dis(vi, NNy) < dis(vi, vi+1) +
dis(vi+1, t) for each nearest neighbor NNy, 1 ≤ y <
j. If w(p) + dis(vi, vi+1) + dis(vi+1, t) < w(P ), where
w(P ) is the cost of the next optimal feasible route P , then
w(p) + dis(vi, NNy) < w(P ), that is, to find P , j − 1
candidate routes 〈v0, · · · , vi, NNy〉 should be examined in
PrunningKOSR by calling FindNN j times. In this case,
both methods call FindNN the same times. On the other
hand, if w(p) + dis(vi, vi+1) + dis(vi+1, t) ≥ w(P ), then
〈v0, · · · , vi, vi+1〉 won’t be examined and subsequently, all
possible candidate routes derived from 〈v0, · · · , vi, vi+1〉 can
never be considered before P is found, which in turn reduces
the searching space of StarKOSR. Thus, in summary, the times
of calling FindNN by StarKOSR is significantly less than that
by PruningKOSR.

Remarks. Figure 2 illustrates the searching space of different
methods for the first optimal sequenced route. Since KPNE



examines all possible candidate routes that with smaller costs
than the optimal sequenced route, its searching space (Figure
2(a)) is a whole circle whose radius is the cost of the optimal
sequenced route from source s to destination t, and each route
in the circle will be examined.

In PruningKOSR, for each category Ci, at most |Ci| routes
are extended due to dominance relations, which results in at
most |Ci|·|Ci+1| candidate routes can be examined at category
|Ci+1|, which is the area of each dark ring in Figure 2(b). As a
result, the searching space (area) of PruningKOSR is reduced
compared to KPNE, and the pruned space consists of the routes
that are dominated and the candidate routes derived from them.

For StarKOSR, since we consider the whole cost of the
route from source to destination by using target-directed strat-
egy, the partially explored candidate routes that are far away
from the destination are further pruned, as a result, the area
of each ring in Figure 2(c) gets smaller compared to Figure
2(b). Since the estimated whole costs of the partially explored
routes are not greater than the real costs of their corresponding
optimal sequenced routes, and as we extend routes along
the category sequence, the estimated whole costs become
larger and closer to the real optimal cost. As a result, at the
beginning, loose estimated cost (may not contain the required
categories) enables more candidate routes to be examined and
the searching space (area) increases. Subsequently, when the
estimated costs get tighter and are closer and closer to the real
optimal cost and finally equal to the real optimal cost, more
and more routes whose estimated costs are greater than the
optimal cost are filtered and the searching space (area) shrinks
until the optimal sequenced route is found.

Extensions. Our methods can be easily extended to solve
variants of KOSR, handle dynamic updates on label index and
process disk-based query answering. We include the extensions
in the full version [1] due to space limitation.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

Datasets: We use five real-world graphs with varying sizes. In
particular, CAL, NYC , COL, and FLA are graphs represent-
ing the road networks of California, New York City, Colorado,
and Florida, respectively. G+ is the social network from
Google+. Table VI gives the sizes in terms of the cardinalities
of both vertex and edge sets.

Table VI. REAL-WORLD GRAPHS

Dataset |V | |E|
CAL1 68,345 68,990
NYC 2 980,632 1,280,981
COL3 435,666 1,057,066
FLA3 1,070,376 2,687,902
G+4 107,614 13,673,453

In particular, CAL is a weighted, undirected graph where
edge weights represent the distances of the corresponding
roads. In addition, 47,298 vertices in CAL are associated with

1http://www.cs.utah.edu/∼lifeifei/SpatialDataset.htm
2http://www.openstreetmap.org
3http://www.dis.uniroma1.it/challenge9/download.shtml
4http://snap.stanford.edu/data/index.html

63 different categories. NYC is a weighted, undirected road
network downloaded from OpenStreetMap2. In addition, we
also get the POI dataset of New York from OpenStreetMap2.
Specifically, the POI dataset contains 30,382 points of interest
in New York that belong to 135 different categories. For each
POI, we find its nearest vertex in the road network and regard
the category of the vertex as the category of the POI.

Graphs COL and FLA are weighted directed graphs, where
edge weights represent the travel time of roads. Graph G+
is an unweighted, directed graph where all edge weights
are set to 1. Since no categorical information is associated
with the vertices in these graphs, we generate categories for
the vertices using both uniform and zipfian distributions. In
particular, we follow [25] to generate uniform distributions.
We fix the number of vertices in each category with parameter
|Ci|, and then uniformly assign a category to vertices. We
generate uniform categories for COL, FLA, and G+, which
is used as the default setting in the following experiments.
Next, following [28], we generate 100 categories for FLA with
Zipfian distribution, and we use a parameter factor f(≥ 1) to
control the skewness of the distributions, the greater the f
is. The less skew the distributions are. For example, when
f = 1.2, the smallest category size is 23, and the largest
category size is 139,717.

Queries: For each KOSR query (s, t, C, k), we randomly
select a source-destination pair, a category sequence with size
|C|, and an integer k. Then, we issue the query on all graphs.
In each experiment, 50 random query instances are constructed
and the average query time is reported. If a query cannot stop
within 3,600 seconds, or fails due to out of memory exception,
we denote its corresponding query time as INF. We vary
important parameters according to Table VII, where default
parameter settings are shown in bold.

Table VII. PARAMETER SETTINGS

Parameter Values
|Ci| 5,000, 10,000, 15,000, 20,000
|C| 2, 4, 6, 8, 10
k 10, 20, 30, 40, 50

Label index: We adopt the pruned landmark labeling method
[3], which achieves good performance and is easy to imple-
ment, to precompute the label index for each graph in Table
VI. Based on the label index, we then construct the inverted
label index for each category in the graph. Table VIII shows
the preprocessing results on different graphs under default
parameter settings. For large graphs, e.g., FLA, the index sizes
may be too large to fit into main memory. To contend with
this, we store the indexes on disks (see the full version [1] for
details). Alternatively, labeling compression method [11] can
be applied to further reduce the index sizes.

Methods: We consider the following methods for answering
KOSR queries: (1) GSP: the state-of-the-art algorithm to find
the optimal sequenced route (k = 1). (2) KPNE: the KPNE
algorithm (Section III-B) by using Algorithm FindNN to find
the nearest neighbors. (3) PK: our algorithm PruningKOSR by
using dominance relationship to filter temporarily unnecessary
routes (Section IV-A). (4) SK: our algorithm StarKOSR by
using the target-directed strategy to find the optimal feasible
routes (Section IV-B). (5) SK-DB: StartKOSR with label
indexes resident on disks. (6) KPNE-Dij, PK-Dij, SK-Dij: the
KPNE, PruningKOSR, and StarKOSR algorithms by using

http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
http://www.openstreetmap.org
http://www.dis.uniroma1.it/challenge9/download.shtml
http://snap.stanford.edu/data/index.html


Table VIII. PREPROCESSING RESULTS ON DIFFERENT GRAPHS

For label indexes
Graph Time [H:M] Avg. |Lin(v)| Avg. |Lout(v)| Index Size
CAL 0:1 122.90 122.90 95.24MB
NYC 0:52 704.94 704.94 14.11GB
COL 0:9 1,101.06 1,101.06 5.05GB
FLA 2:42 1,495.84 1,495.84 18.25GB
G+ 0:2 335.53 347.96 230.47MB

For inverted label indexes
Graph Time [H:M] Avg. |IL(Ci)| Avg. |IL(v)| Index Size
CAL 0:1 9543.48 13.75 49.05MB
NYC 0:1 10863.24 12.61 120.50MB
COL 0:3 98,345.80 121.94 2.53GB
FLA 0:14 181,763.43 82.32 9.18GB
G+ 0:1 39,621.12 91.13 113.32MB

Dijkstra’s search to find the nearest neighbors rather than using
Algorithm FindNN.

Evaluation Criteria: We evaluate the performance of different
methods in three different aspects: the query run-time, the
number of examined routes (witnesses), and the number of
(next) nearest neighbor (shorten as NN) queries executed by
calling Algorithm FindNN, where the number of hits in the
NL list (line 5 at Algorithm 3) is not included.

Implementation details: All algorithms are implemented in
Java 1.6 and run on a Windows 10 machine with 3.2GHz CPU,
and 32 GB memory.

B. Experimental Results

We first evaluate the efficiency of different methods (except
for GSP) on different graphs for answering KOSR queries
under the default parameter settings, and then evaluate the
effects of parameters by varying their values. Finally, when
k = 1, we test the performance of our methods against the
state-of-the-art method GSP for answering OSR queries.

Overall performance under default parameter settings.
Figures 3(a)∼3(c) show the performance of different methods
on different graphs. The run-times of the methods on different
graphs are illustrated in Figure 3(a). Since KPNE examines all
possible candidate routes in the searching space, both KPNE
and KPNE-Dij are not well performed and they cannot return
the results on larger graphs with large category size, i.e., COL,
FLA, and G+ within 3,600 seconds. Compared to KPNE,
by reducing the searching space, both PK and SK are able
to return the results on all graphs. Since SK further filters
partially explored routes that are far away from the destination
by using a target-directed cost estimation strategy, it performs
nearly two orders of magnitude faster than PK on COL and
FLA, 4 (or 3) times faster than PK on CAL (or NYC ), and
7 times faster than PK on G+. In addition, by comparing the
costs of the routes in the result set of different methods on
CAL and CAL, our methods, i.e., PK and SK, have the same
results as KPNE, which also verifies the correctness of our
methods. On the other hand, since the time complexities of our
methods are independent of the graph size, but are dependent
on the size of category sequence |C| and the category size |Ci|,
both PK and SK have steady query run-times on larger graphs
such as COL and FLA. Moreover, PK and SK perform orders
of magnitude faster than PK-Dij and SK-Dij, respectively,
because Algorithm FindNN performs efficient NN queries by
using inverted label indexes. Since SK-DB needs additional
time to load label indexes into memory and initialize them

for each query, it takes more time than SK. However, it still
outperforms PK where all indexes are always resident in main
memory.

For G+, since its edge weights are all 1 and its diameter
is only 6, the partially explored routes and nearest neighbors
tend to have similar costs, which leads to a larger searching
space for both PK and SK, as a result, both PK and SK
take much more time to find the top-k optimal sequenced
routes. Moreover, since Dijkstra’s search on unweighted graph
explores much more vertices and edges, all KPNE-Dij, PK-Dij
and SK-Dij cannot return the results on G+.

Figure 3(b) and Figure 3(c) show the number of examined
routes and NN queries, respectively, in different methods on
different graphs. Clearly, the number of examined routes and
NN queries in SK is much fewer than PK on all graphs, which
means the searching space of SK is much smaller than that of
PK. As a result, SK significantly outperforms PK. Note that
the average NN queries per vertex in each examined route
of SK is much greater than that of PK, for example, about
4 vs. 1 on CAL, 50 vs. 1 on FLA, and 217 vs. 1 on G+,
because SK needs to compute more nearest neighbors to find
the next nearest estimated neighbor. However, the total times of
NN queries of SK is significantly less than that of PK, which
also explains its excellent query run-time.Note that different
index loading methods (in memory vs. disk) and NN query
algorithms (FindNN vs. Dijkstra’s search) do not change the
process of the KOSR algorithm, hence SK and SK-DB, KPNE
(or PK or SK) and KPNE-Dij ( or PK-Dij or SK-Dij) have the
same number of examined routes and NN queries.

Table IX. DISTRIBUTIONS OF THE QUERY TIME (MS) ON FLA

PK SK
Overall query time 177,622.60 838.96

NN query time 177,175.84 732.87
Priority queue maintenance time 303.68 0.11

Estimation time 0 101.99
Others time 143.08 3.99

Table IX shows the distributions of the run-times of our
methods on graph FLA. Clearly, the NN queries dominate the
query run-time of both methods. Since lots of candidate routes
are examined in PK, the maintenance of the priority queue in
PK costs more time than does SK. On the other hand, SK
needs to compute the least cost to the destination to estimate
the total cost for a partially explored route, which takes some
time. While PK does not spend any time since it does not
estimate the total cost. However, the time on cost estimation
is only a small portion of the overall query time.

Figure 4 shows the searching space of SK at different
categories on different graphs. Initially, only one route (source
s) is examined at category 0. Then the number of examined
routes increases along the category sequence, because the es-
timated costs are loose and more candidate routes are enabled
to be examined. As the estimated costs are closer and closer
to the real least costs, the number of examined routes quickly
decreases and the searching space shrinks. Finally, only 30
routes are examined at the last category (i.e., for destination
t). The searching space begins to decrease at the 3rd or 4th
category or even earlier, which is very efficient. Figure 4 is
also consistent with the intuition shown in Figure 2(c).

Next, we show performance while varying important pa-
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Figure 3. Performance of different methods with different parameter settings for KOSR queries

rameters. Due to the space limitation, we only report experi-
mental results on small graph CAL with real categories and
large graph FLA with synthetic categories.

Effect of k. Figures 3(d) and 3(e) show the effect of parameter
k. On large graph FLA, KPNE, KPNE-Dij, and PK-Dij cannot
return the results within 3,600 seconds, even when k = 10, due
to larger searching space or too many NN queries by Dijkstra’s
search. On small graph CAL, all methods are able to compute
the results and KPNE, PK, SK are much more efficient than
KPNE-Dij, PK-Dij, SK-Dij, respectively. Both Figures 3(d)
and 3(e) show that SK and SK-DB greatly outperform other
methods in different k due to much fewer examined routes
and NN queries. Note that all methods perform steadily with
different k, meaning that they are scalable w.r.t. k and are
able to process KOSR with large ks. This is because the top-
k optimal sequenced routes tend to have similar costs, and
once we find the 1st optimal sequenced route, other optimal
sequenced routes are also considerably covered in its searching
space. As a result, fewer NN queries are needed to find the
other optimal sequenced routes when k rises, therefore, the
query time only increases slightly, which is also consistent
with the time complexity analysis in Lemma 3. When k is
small, i.e., 2, 3, 4, 5, we include the results in the full version
[1] due to space limitation.

Effect of |C|. The performance of different methods on FLA
and CAL by varying the size of category sequence |C| is
shown in Figures 3(f) and 3(g). When |C| = 2, KPNE is able
to return the results on FLA as the searching space is small.
However, KPNE-Dij and PK-Dij still cannot compute the re-
sults on FLA within 3,600 seconds due to too many Dijkstra’s
searches on large graphs for KPNE and PK. As |C| increases,
the searching space of KPNE increases exponentially, KPNE
fails to return the results on FLA when |C| ≥ 4. On small
graph CAL, KPNE-Dij cannot return results when |C| ≥ 8.
Although the searching spaces and run-times of PK and SK
(SK-DB) increase as |C| gets larger due to greater M and
N in Lemma 3, SK (SK-DB) greatly outperforms PK in all
settings. In addition, the run-time of SK (SK-DB) increases
more slowly than PK. A larger |C| means more label indexes
need to be loaded into memory and initialized by SK-DB. As
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a result, SK-DB needs more disk accesses and thus a higher
overhead compared to SK.

Effect of |Ci|. Figure 3(h) shows the performance of different
methods on FLA by varying the size of vertices in each
category, i.e., |Ci|. We only report experiments on the largest
graph FLA as we do not generate categories for CAL. Due
to the huge searching space, KPNE, KPNE-Dij, and PK-Dij
cannot return the results even when |Ci| = 5, 000. Obviously,
the performance of both PK and SK deteriorates as |Ci|
increases, because the time complexity of the two methods
increases as |Ci| increases according to Lemma 3. Intuitively, a
larger |Ci| means more vertices in each category and thus more
routes to be examined. Clearly, SK is more efficient than PK
due to much fewer NN queries. As |Ci| increases, the runtime
increasing trend of SK(-DB) is slower than that of PK, which
means SK(-DB) is more scalable w.r.t. |Ci|.

Zipfian category distribution. Figure 5 illustrates the results
of different f with |C| = 6, k = 30 on FLA. Clearly, our
methods greatly outperforms baseline KPNE in all settings. It
shows that the query time of PK increases as f gets larger,
and KPNE cannot return the results when f ≥ 1.4. This is
because a larger f means less skew distribution. As a result, the
number of partially explored routes to be examined between
consecutive categories, i.e., |Ci| · |Ci+1| in the worst case (see
Lemma 3), gets larger for less skew distribution since |Ci| and
|Ci + 1| tend to be similar in this case. Hence, more time is
needed to find the top-k optimal sequenced routes. Moreover,
since SK filters much more routes, it greatly outperforms PK.



CAL NYC COL FLA G+
100
101
102
103
104
105
106
107
INF

Q
ue

ry
 T

im
e 

(m
s)

 KPNE-Dij  PK-Dij  SK-Dij 
 KPNE  PK  SK  SK-DB  GSP

Figure 6. Performance of different
methods for OSR queries

Performance for the OSR
queries. By setting k =
1, the KOSR problem be-
comes the OSR problem.
We evaluate the performance
of the state-of-the-art OSR
method, GSP, and our pro-
posed methods. Figure 6
shows the run-time of dif-
ferent methods on different
graphs. Clearly, the state-of-
the-art method GSP outper-
forms KPNE(-Dij), PK-Dij and SK-Dij on all graphs, and
GSP also outperforms PK on graphs with large category
size, i.e., COL, and FLA, because GSP only requires O(|C|)
graph searches to find the optimal sequenced route, while
PK needs much more examined routes and NN queries on
these graphs. However, on graph with small category size, i.e.,
CAL and NYC , PK is more efficient than GSP due to fewer
examined routes and NN queries. In all settings, SK and SK-
DB are more efficient than GSP, since SK and SK-DB have
much smaller searching space by using the target-directed cost
estimation strategy, and achieve very efficient NN query by
using inverted label indexes. For G+, we cannot build the
contraction hierarchy structure for GSP on G+ in 3 days, thus
GSP cannot return the results on G+. In addition, the run-
time of GSP is dependent on the graph sizes. As the graph
size increases, GSP takes longer time. In contrast, the runtime
of SK(-DB) is independent of the graph sizes, meaning that it
has better scalability w.r.t. the graph sizes.

VI. CONCLUSION AND OUTLOOK

In this paper, we study the top-k optimal sequenced routes
problem. We propose efficient algorithms based on a novel
route dominance relationship and a target-directed cost esti-
mation strategy using hop labeling techniques. Extensive ex-
periments on real world graphs demonstrate that the proposed
algorithms are efficient.

As a future work, we plan to fill the gaps as shown in
Table I to solve the KOSR querying when partial or arbitrary
category orders and personal preferences for categories are
allowed. It is also of interest to explore how to solve KOSR
in parallel, e.g., using MapReduce [33].
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