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Abstract—Motivated by the increasing availability of vehicle
trajectory data, we propose learn-to-route, a comprehensive
trajectory-based routing solution. Specifically, we first construct
a graph-like structure from trajectories as the routing infras-
tructure. Second, we enable trajectory-based routing given an
arbitrary (source, destination) pair.

In the first step, given a road network and a collection of
trajectories, we propose a trajectory-based clustering method
that identifies regions in a road network. If a pair of regions are
connected by trajectories, we maintain the paths used by these
trajectories and learn a routing preference for travel between
the regions. As trajectories are skewed and sparse, many region
pairs are not connected by trajectories. We thus transfer routing
preferences from region pairs with sufficient trajectories to such
region pairs and then use the transferred preferences to identify
paths between the regions. In the second step, we exploit the
above graph-like structure to achieve a comprehensive trajectory-
based routing solution. Empirical studies with two substantial
trajectory data sets offer insight into the proposed solution,
indicating that it is practical. A comparison with a leading
routing service offers evidence that the paper’s proposal is able
to enhance routing quality.

I. INTRODUCTION

Vehicular transportation is an important aspect of the daily
lives of many people and is essential to many businesses as
well as society as a whole [1]. As a part of the continued digi-
tization of societal processes, more and more data is becoming
available in the form of trajectories that capture the movements
of vehicles [2], [3]. This data offers a foundation for improving
vehicular transportation, including vehicle routing.

Traditional routing is cost-centric and aims at returning
paths with minimal costs, e.g., distance, travel time, or fuel
consumption. The cost of a path is computed from edge costs
in edge-based cost modeling [4]–[8] or sub-path costs in path-
based cost modeling [9]–[12]. In such routing, trajectory data
is often used for annotating the edges or sub-paths with travel
costs such as travel times; and routing services employ short-
est path algorithms, e.g., Dijkstra’s algorithm or contraction
hierarchies [13], to return fastest, or simply shortest, paths.
However, an existing study [14] suggests that local drivers who
drive passenger vehicles follow paths that differ substantially
from the paths computed using cost-centric routing and are
often neither fastest nor shortest. Our paper also focuses on
trajectory data that was generated from passenger vehicles.

We study a very different routing approach that relies on the
availability of trajectories from local drivers. Assuming that
local drivers implicitly take into account a multitude of factors,
such as traffic conditions, turns, travel time, fuel consumption,
road types, and traffic lights, when making routing decisions

and thus know best which paths are preferable, we propose a
methodology that utilizes paths found in historical trajectories
to construct new paths between arbitrary (source, destination)
pairs. We call this trajectory-based routing.

If historical trajectories show that many drivers traveling
from a source s to a destination d follow a particular path, it
is straightforward to recommend that path to drivers asking for
directions from s to d. The big challenge now is how to benefit
from historical trajectories when no historical trajectories
capture paths from s to d. This is important because any set of
historical trajectories is sparse in the sense that it is unlikely to
provide paths for all s’s and d’s. For example, the road network
of Denmark, a small country, contains some 1.6 million edges.
Thus, if all edges are candidate s’s and d’s, a minimum of 2.6
trillion (s, d) pairs are needed. Given that the distribution of
trajectories in a road network is skewed, an enormous set of
trajectories (e.g., trillions for Denmark and quadrillions for
Germany) would be needed before routing could be done by
simply looking up paths of past trajectories for any (s, d) pair.

Figure 1 exemplifies the problem setting. The solid edges
and filled vertices are covered by a set of five trajectories,
while the dashed edges and unfilled vertices are not covered
by any trajectories. For example, trajectory T1 visited A and
then J , X , Y , and B3 before reaching B. If routing from A
to B is requested, the path A → J → X → Y → B3 → B,
as captured by trajectory T1, can be recommended directly.
The challenge is to enable routing for (s, d) pairs that are not
connected by trajectories, e.g., (A1, B2) and (H , F ).
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Fig. 1: Motivating Example
To enable trajectory-based routing with massive, but still

sparse, sets of historical trajectories, we propose means that
are able to generalize the cases where historical trajectories



can be utilized for routing. This includes three steps. In the
first step, we cluster vertices into regions and thus map a road
network graph into a region graph. Trajectories that originally
connect vertices in the road network graph now connect
regions in the region graph. This arrangement generalizes the
cases where trajectories can be used for routing from being
between specific vertex pairs to being between region pairs. As
regions include multiple vertices, this arrangement contributes
to solving the data sparseness problem.

For example, in Figure 1, A and J are clustered into region
R1, and B3 and B are clustered into region R2. Now, although
no trajectories connect A1 and B2, T1 connects regions R1 and
R2 that are close to A1 and B2. Thus, the path of T1 can be
used for recommending a path from A1 to B2. For instance,
a user may go from A1 to A, then follow the path used by T1

to reach B, and then go to B2. This enables trajectory-based
routing between regions connected by trajectories. However,
in the region graph, some region pairs are still not connected
by any trajectories, e.g., regions R3 and R4 in Figure 1.

In the second step, we learn routing preferences from
available historical trajectories that connect some region pairs
and then transfer these preferences to similar region pairs that
are not connected by trajectories. Based on the transferred
preferences, we identify paths for the non-covered region pairs.
Note that the routing preferences are learned for different
region pairs, not for different individual drivers. Assume that
(R1, R2) is similar to (R3, R4), e.g., because both are from
a residential area to a business district. Next, we extract a
routing preference from the trajectories connecting R1 and R2

that explains the choice of paths from R1 to R2. We transfer
this routing preference to driving from R3 to R4 and then
identify paths connecting R3 and R4, upon which trajectory-
based routing from H to F is possible.

In the third step, we provide a unified routing solution,
called learn-to-route (L2R), which performs path finding on
the region graph, thus enabling routing between arbitrary (s, d)
pairs in the original road network graph.

To the best of our knowledge, this is the first solution
that learns routing preferences from historical trajectories and
transfers the learned preferences to the part of a road network
that is not covered by trajectories, thus supporting comprehen-
sive trajectory-based routing for arbitrary (s, d) pairs.

The paper makes four contributions. First, it presents a
trajectory-based road network clustering algorithm that pro-
duces the data foundation—the region graph. Second, it
presents a general routing preference model, including an
algorithm that extracts preferences from historical trajectories
and an algorithm that transfers preference to similar region
pairs. Third, it presents a unified routing algorithm for the
region graph. Fourth, it reports on an empirical evaluation
that offers insight into the proposed solution, indicating that it
is capable of efficiently computing paths that match those of
local drivers better than do traditional routing services.

Paper Outline: Section 2 covers related work. Section 3
covers preliminaries. Section 4 presents Step 1, region graph
generation. Section 5 presents Step 2, preference learning and

transfer. Section 6 presents Step 3, unified routing. Section 7
reports on empirical evaluations. Section 8 concludes.

II. RELATED WORK

We first review studies on employing historical trajectories
for path recommendation, considering three cases.

Case 1: Given a source and a destination, complete tra-
jectories exist that connect the source to the destination. For
example, given A and B in Figure 1, trajectory T1 went from
A to B. Then, the path of trajectory T1 is recommended.
When multiple paths exist, the path with the highest popularity
is recommended, where the popularity can be defined using
different strategies [15]–[17]. This is the simplest case, which
is also considered in our proposal.

Case 2: Given a source and a destination, no complete
trajectories exist that connect the source to the destination,
but trajectories exist that can be spliced such that the spliced
trajectories connect the source to the destination. In Figure 1,
given A and F , sub-paths A → X from T1, X → Z from T2,
and Z → F from T3 can be spliced to form a path from A
to F . Alternatively, T1 and T5 can also be spliced to enable a
different path from A to F . To determine which spliced path
is “best”, absorbing Markov chains [15] and hidden Markov
models [18] are employed to the probabilities that different
spliced paths may occur based on historical trajectories. The
spliced path with the highest probability is chosen. In contrast,
we learn routing preference vectors from trajectories and apply
the preference vectors to identify best paths.

Case 3: Neither complete nor spliced trajectories are able
to connect a source to a destination. In the example, consider,
e.g., A1 to B2, H to F , and M to N . Here, existing
methods [15]–[18] no longer work. In this paper, the use of
the proposed region graph, together with the mechanism of
learning and transferring routing preferences captured by past
trajectories, makes it possible to extend the situations where
historical trajectories can be utilized to cover also Case 3.

Next, we review related work on road network clustering.
Gonzalez et al. [19] propose a graph partition method based on
prior knowledge of the road network hierarchy with l levels,
which may vary from country to country. Wei et al. [20]
propose a grid-based method for constructing regions using
trajectories, where two adjacent grid cells are merged if more
than τ trajectories exist that passed through them. These
studies rely heavily on “appropriate” parameters, e.g., l and
τ . Tuning such parameters is non-trivial. Based on recent
advances in modularity based graph clustering, we propose
a generic, parameter-free region generation method, where
parameters such as l and τ are not needed.

Finally, we consider learning of routing preferences [21]–
[24]. Methods [21], [22] compare the paths used by trajectories
to skyline paths [7] to identify different users’ dominating
factors when choosing paths, e.g., travel time, fuel consump-
tion, or distance. TRIP [23] uses the ratios between individual
drivers’ travel time and average travel time to model person-
alized travel times. A recent study from Microsoft presents
an algorithm that learns driver-specific parameters for Bing



Maps’ ranking function for candidate paths based on individual
drivers’s past trajectories [24]. However, all existing methods
work only when trajectories are available. In contrast, our
proposal is also able to transfer routing preferences to places
without trajectories, where existing methods do not apply.

III. PRELIMINARIES

We cover the definitions of important concepts, introduce
the problem, and present a solution overview.

A road network is a weighted graph G = (V,E,W), where
vertex set V consists of vertices representing road intersec-
tions, edge set E ⊆ V × V consists of edges representing
road segments, and W is a set of weight functions, where
each function has signature E → R+. For specificity, we
maintain four functions in W. Functions wDI (·), wTT (·),
wFC (·), and wRT (·) return the distance (DI), travel time (TT),
fuel consumption (FC), and road type (RT) of the argument
edge, respectively.

A path P= ⟨v1, v2, . . . , va⟩ is a sequence of vertices where
two consecutive vertices are connected by an edge.

A trajectory T is a time-ordered sequence of GPS records
capturing the movement of an object, where a GPS record
captures the location of the object at a time point. The time
gap between two consecutive GPS records in trajectories
varies, from a few seconds (a.k.a., high-frequency trajectories)
to tens of seconds or a few minutes (a.k.a., low-frequency
trajectories). In the experiments, we test the proposed method
on both a high-frequency and a low-frequency GPS data sets.
Map matching [25] is able to align a trajectory with the road-
network path that the trajectory traversed. For example, the
path used by trajectory T1 is PT1 = ⟨A, J,X, Y,B3, B⟩.
Problem Setting. We study a new routing methodology—
trajectory-based routing. Specifically, we study how to best
utilize the paths found in trajectories to enable routing for
arbitrary source and destination (s, d) pairs such that the
identified paths are similar to the paths chosen by local drivers.
Spareness. The spareness considered in the paper means that
past trajectories cannot cover paths between all possible (s, d)
pairs, so simply looking up paths of past trajectories for a given
(s, d) pair does not work. Although it may be possible that a
substantial set of trajectories cover the roads in a road network,
e.g., the 1.6 million edges in Denmark, it is almost impossible
to cover all possible (s, d) pairs with paths. Having just one
path for each (s, d) pair in Denmark calls for 2.6 trillion
trajectories. The key challenge is to conquer data sparseness
by making it possible to benefit from historical trajectories for
routing from s to d when no trajectories capture paths from s
to d.
Solution Overview. We propose a three-step procedure to
conquer the data sparseness problem, as outlined in Figure 2.

Given a road network G and a set of trajectories T, the
clustering module employs modularity-based clustering to
cluster vertices into regions, thus obtaining a region graph GR.
We partition the edges in a region graph into T-edges and B-
edges, according to whether they are traversed or not traversed
by trajectories, respectively. For each T-edge, the preference
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Fig. 2: Solution Overview

learning module learns a routing preference. The resulting
preferences are fed into the preference transfer module as
training data, and the preference transfer module transfers
the preferences from T-edges to similar B-edges. Based on
the learned and transferred preferences, the routing module
recommends paths for user-specified (s, d) pairs.
Scope of the paper. (1) To account for time-dependent traffic
conditions, we construct peak and off-peak region graphs
using trajectories that occurred in peak and off-peak periods,
respectively. These are constructed the same way, so we
disregard the distinction in the presentation. Depending on the
departure time, one of the two region graphs is chosen for
routing. Modeling time-dependent traffic conditions at a finer
granularity and building a dynamic region graph are interesting
extensions that are left for future work.
(2) L2R utilizes trajectories from multiple drivers to recom-
mend paths, and thus is not a personalized routing approach. In
Section VII-C, we empirically compare L2R with state-of-the-
art personalized routing approaches. L2R can also be adapted
to support personalized routing by only using the trajectories
from specific drivers, which we also leave as future work.

IV. BUILDING THE REGION GRAPH

We propose a trajectory-based method for clustering the
vertices of a road network into regions (Section IV-A). Then,
we build a region graph that connects pertinent regions
(Section IV-B). The region graph extends the cases where
trajectories can be used for recommending paths between
an arbitrary pair of source and destination, thus providing a
foundation for the final routing module.

A. Clustering Vertices to Regions

A region is a set of homogenous vertices where the ho-
mogeneity is defined based on two properties that are used
in urban planning [26], [27]: (i) the numbers of trajectories
associated with the vertices in a region are similar [26]; (ii)
the edges connecting the vertices have the same road type [27].
The intuition is as follows. A region with vertices connected
by edges of residential-road type may capture a residential
area; and by taking into account the number of trajectories
associated with the vertices, we can distinguish a residential
area in the city from one in a suburb area because the former
has more trajectories.



Consider Figure 3, where the label x:y on an edge indicates
that x trajectories occurred on the edge and that the road type
of the edge is y. For example, 100 trajectories occurred on
edge (D,X), a type 1 road. According to the above two
properties, vertices D, K, X , and Y can be regarded as
a region because they have more trajectories than the other
vertices and are connected by road type 1 edges. Similarly,
vertices F , F1, and F2 can be regarded as a region.
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Fig. 3: An Example of Regions

Based on the two properties, we propose a modularity-based
method that clusters vertices connected by the same road types
into regions. The setting is a trajectory graph that consists of
vertices and edges that are traversed by trajectories. Figure 3
shows the trajectory graph of the road network in Figure 1. A
trajectory graph may not be a connected graph.

Next, we define popularity values for the edges and vertices
in a trajectory graph. The popularity sij of edge e = (vi, vj)
is the number of trajectories that occurred on edge e. The
popularity Si of vertex vi is the sum of the trajectories that
occurred on the edges that are incident to vi, i.e., Si =

∑
j sij .

Next, we define S =
∑

(vi,vj)∈E sij as the sum of the
popularity values of all edges in the trajectory graph.

Modularity, which is used widely in the network analysis
literature [28], [29], quantifies the quality of the clusters in a
graph from a global perspective. In our context, the modularity
is high if the popularity of edges inside clusters is high and the
popularity of edges between clusters is low, which is desired
by property (i) of regions.

We define modularity gain [28]–[30] ∆Qvivj to quantify
the benefit of merging vertices vi and vj into a cluster:

∆Qvivj =

{
sij
S
− Si·Sj

S2 if vi, vj are connected by an edge;
0 otherwise.

It has been shown that if merging two vertices vi and vj gives
a non-positive modularity gain, the two vertices should not be
merged [30]. If the modularity gain is positive, vertices vi and
vj are merged into an aggregate vertex with a popularity that
equals the sum of the popularity of the vi and vj , i.e., Si+Sj .

To take into account property (ii) of regions, i.e., the road
type constraint, we also associate a road type attribute with an
aggregate vertex that records the road type of edge (vi, vj).

We proceed to propose a hierarchical clustering method that
follows a bottom-up, agglomerative clustering strategy. In the

beginning, each vertex is treated as a cluster. The method keeps
merging clusters into larger clusters until no more clusters can
be merged. In particular, the method merges a vertex vk with
the highest popularity, regardless of whether it is an aggregate
or an ordinary vertex, with its adjacent vertices if the merging
gives a positive modularity gain and only involves edges with
the same road type. If vk has no such adjacent vertices, vk
forms a region. Document [31] offers algorithmic details.

During the clustering, we need not control manually the size
of clusters, as a cluster “ends” automatically when merging
it with the neighbors gives non-positive modularity gains or
they have different road types. This prevents naturally clusters
of extremely large sizes. In addition, we maintain paths used
by trajectories inside regions (see “inner-region paths” in
Section IV-B). This design is useful when the source and
destination in a routing request is inside a region, which is
common for large regions.

Based on the above, we are able to form regions in a
trajectory graph where both properties (i) and (ii) are satisfied.
For example, the dashed circles in Figure 3 indicate regions.
The popularity of edges in region R6 is high, while the
popularity of the edge between regions R2 and R6 is low;
region R6 has road type 1 edges, while the edge between
regions R6 and R1 have road type 2.

B. Region Graph
We build a region graph GR = (VR,ER) based on the

obtained regions, which serves as a foundation for routing.
The region graph can be regarded as a backbone of the road
network graph. To distinguish it from the road network graph,
we call a vertex in the region graph region vertex and an edge
in the region graph region edge. In particular, a region vertex
Ri ∈ VR represents a region. We proceed to show how to
construct region edges by connecting region vertices, using
the combination of two different strategies.

Constructing region edges from trajectories: Having i-
dentified regions, trajectories that originally connected vertices
in the road network are now utilized to connect regions. If a
trajectory exists that went through a vertex in region Ri and a
vertex in region Rj , we construct a region edge (Ri, Rj). Note
that a trajectory may produce more than one region edge. In
particular, if a trajectory went through vertices in m regions,
up to m·(m−1)

2 region edges can be constructed. For example,
in Figure 3, trajectory T1 went through vertices in R1, R6,
and R2, and we are able to construct region edges (R1, R6),
(R1, R2), and (R6, R2), as shown in Figure 4(a).
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Fig. 4: Region Graph
Each region edge (Ri, Rj) is associated with a set Pij of

paths, where each path P = ⟨va, · · · , vb⟩ in Pij was traversed



by at least a trajectory that left Ri at vertex va and entered
Rj at vertex vb. A vertex at which a trajectory Tk enters or
leaves a region is called a transfer center, e.g., va and vb.

For example, region edge (R1, R6) is associated with path
⟨J,X⟩ because trajectory T1 left R1 at vertex J and entered
R6 at vertex X , and thus J and X are transfer centers. Similar-
ly, region edge (R1, R2) is associated with path ⟨J,X, Y,B3⟩,
where J ∈ R1 and B3 ∈ R2 are transfer centers; and region
edge (R6, R2) is associated with path ⟨Y,B3⟩, where Y ∈ R6

and B3 ∈ R2 are transfer centers.
For each region, we also maintain inner-region paths based

on trajectories. Specifically, given a region Ri and a trajectory
Tk, if Tk entered Ri at vc and left Ri at vd, the path P ′ =
⟨vc, · · · , vd⟩ that was traversed by Tk in Ri is recorded as an
inner-region path of Ri. For example, regions R1 and R3 have
inner-region paths ⟨A, J⟩ and ⟨G,H⟩, respectively.

However, when only using trajectories for constructing re-
gion edges, the resulting region graph may not be a connected
graph. For example, in Figure 3, region R3 is not connected
with any other regions since no trajectory went through R3 and
other regions. Thus, we get the region graph in Figure 4(a). To
enable the region graph to serve as a foundation for routing,
we need to ensure that the region graph is connected. To this
end, we apply a breadth first search (BFS) based procedure to
make the region graph connected.

To ease the following discussion, we call the region edges
that are constructed from trajectories T-edges and the region
edges that are constructed from the BFS procedure B-edges.

BFS construction of region edges: We consider the o-
riginal road network graph G. We conduct a BFS for each
vertex ui in a region Ri. When the search reaches a vertex
uj in a different region Rj , we stop further exploring uj’s
neighbors so that the search does not enter another region Rk

via Rj . If no T-edge or B-edge exists between regions Ri and
Rj , we build a B-edge as their region edge. We repeat the
same procedure until all vertices in region Ri are traversed.
The method of obtaining specific paths for B-edges will be
discussed in detail in Section V.

For instance, consider vertex G in region R3 in Figure 3 and
the original road network graph in Figure 1. A BFS starting
from G visits vertices A and E. Since vertex A is in region R1,
a region edge (R3, R1) is constructed as a B-edge. Similarly,
since vertex E is in region R5, a region edge (R3, R5) is
constructed as a B-edge. The same procedure is applied to
the other vertex in region R3, i.e., vertex H , but it does not
produce any new B-edges. After applying the same procedure
to each region, we obtain the final region graph shown in
Figure 4(b).

Different from T-edges that are composed by trajectory
paths, B-edges have no path information because no trajec-
tories went through the regions connected by the B-edges. To
enable routing on top of the region graph, we need to know the
paths when traveling between two regions that are connected
by B-edges. To this end, in Section V, we study how to learn
and transfer appropriate paths for B-edges.

An alternative way to make the region graph connected is

to connect every region pair, i.e., making the region graph
fully connected. However, the BFS based procedure has two
benefits. First, it guarantees that there are no disconnected
regions. Second, it tries to connect a disconnected region to
its nearby regions, which makes the region graph simple.

V. IDENTIFYING PATHS FOR B-EDGES

To enable routing using the region graph, we associate
appropriate paths with all B-edges using a three-step method.
First, for each T-edge, we learn a routing preference from
the set of paths that are associated with the T-edge, which
explains why drivers choose specific paths. Second, we quan-
tify the similarity between T-edges and B-edges, and then we
transfer routing preferences from T-edges to B-edges based on
similarity. Third, we apply the transferred routing preferences
to identify appropriate paths for B-edges.

A. Step 1: Learning routing preferences for T-Edges

Each T-edge (Ri, Rj) is with a set of paths Pij (see
Section IV-B) that connects region Ri to region Rj . We learn
a representative routing preference vector Vij for each T-edge
(Ri, Rj) that explains why drivers chose the paths in Pij .

We consider two categories of features that may affect a
driver’s travel decisions—travel costs and road conditions.
Travel cost features describe the travel costs that drivers
want to minimize. Road condition features describe drivers’
preferences or restrictions relating to road conditions. For
example, we may consider three different travel cost features,
travel time (TT), distance (DI), and fuel consumption (FC);
and three road condition features, e.g., highways, residential
roads, and highways and residential roads.

Based on the above, we use a 2-dimensional vector to
represent a routing preference, where the so-called master
dimension corresponds to travel cost features and the so-called
slave dimension corresponds to road condition features. For
example, vector V = ⟨TT, Highway⟩ indicates a preference
for minimizing travel time and using highways.

Based on the routing preference model, we aim at identify-
ing an appropriate preference vector for the T-edge (Ri, Rj)
based on its path set Pij . Given the source and destination of
a path Pk ∈ Pij and a preference vector V , we are able to
construct a path PV

k based on V that connects the source and
destination of Pk. If V captures the driver’s preferences well,
path PV

k should largely match the actual, or ground truth, path
Pk. Thus, we aim to identify a routing preference vector V ∗

such that the constructed paths match the paths in Pij as much
as possible. Equivalently, we aim at solving the optimization
problem V ∗ = argmaxV ∈V

∑
Pk∈Pij

pSim(Pk, P
V
k ), where

V is a set of possible vectors and pSim(·, ·) is a path similarity
function that evaluate the similarity between two paths.

We use a popular path similarity function [22], [32]:

pSim(Pk, P
V
k ) =

∑
e∈Pk∩PV

k
len(e)∑

e∈Pk
len(e) . The intuition is two-fold:

first, the more edges the constructed path PV
k shares with

the ground-truth path Pk, the more similar the two paths are;
second, the longer the shared edges are, the more similar the
two paths are.



A naive way of solving the optimization problem is to search
the whole space, i.e., all combinations of features in the master
and slave dimensions. However, the search space can be very
large, thus rendering the learning algorithm inefficient. We
instead propose an efficient learning algorithm that is inspired
by coordinate descent. In short, we first identify the best travel
cost feature in the master dimension, and next, based on the
chosen travel cost feature, we identify the best road condition
features in the slave dimension.

Specifically, given the source and destination of each ground
truth path Pk, we obtain a lowest-cost path using each cost
type. This yields three lowest-cost paths P̂DI

k , P̂TT
k , and

P̂FC
k , for distance, travel time, and fuel consumption [33],

respectively. We then measure the similarity between path Pk

and each of the three lowest-cost paths and choose the optimal
cost type whose corresponding lowest-cost path has the highest
similarity. Next, we identify the optimal road condition feature.
For each road condition feature, we compute a new lowest-
cost path based on the optimal cost type while making sure
that the road condition feature is also satisfied. We check if
the similarity between the new path and the ground truth path
Pk can be further improved. The road condition feature that
gives the largest improvement is chosen as the optimal road
condition feature.

For example, if the optimal cost type is distance, we test if
the shortest path with preferences for highways or residential
roads can yield a higher similarity compared to shortest path
without any road type preferences. If so, we choose the road
type that gives the largest similarity improvements. Otherwise,
all the road condition features are ignored.

Next, we provide statistical evidence to justify our design
choice of choosing only a single representative preference for
each T-edge. Given a T-edge (Ri, Rj), we learn a routing
preference for each path in Pij , and we count the number of
unique preferences. The curve in Figure 5(a) shows that for
more than 70% of all T-edges, we obtain a single preference,
although multiple paths often exist in Pij . Thus, we chose
to learn a single routing preference for each T-edges. On the
other hand, Figure 5(a) also suggests that it is possible that a
T-edge has more than one preference—we leave the modeling
multiple preferences per T-edge as future research.

DI
TT

FC

(a) Distribution of Preferences
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Fig. 5: Statistical Evidences for Design Choices
We also show the distribution of the learned routing pref-

erences as bars in Figure 5(a). We aggregate more than 200
unique routing preferences based on their travel cost features,
i.e., DI, TT, and FC. The bars show that the routing preferences
are distributed almost uniformly, indicating that T-edges do

have different routing preferences.

B. Step 2: Transferring routing preferences

So far, we have identified preference vectors for T-edges.
The next step is to associate preference vectors with B-edges,
which can then be used to identify appropriate paths for B-
edges. To this end, we transfer the routing preferences of T-
edges to similar B-edges, which follows the intuition that when
two region edges are similar, they also have similar routing
preferences. For example, if most local drivers choose the
fastest paths with a preference for main roads to travel between
a region in the city center and a northern suburb residential
area, it is also likely that local drivers have this preference
when traveling between another region in the city center and
a southern suburb residential area.

Based on the above intuition, we first introduce the similar-
ity function that quantifies the similarity between two region
edges and then provide an algorithm that transfers routing
preferences between similar region edges.

Similarity between two region edges: Any region edge,
a T-edge or a B-edge, connects two regions. A region edge is
described by the features of its two regions. In particular, we
use two elements dis and F to describe a region edge re.

Element re.dis is a real value, indicating the Euclidean
distance between the centroids of the two regions connected
by the region edge. The distance information is an influential
factor when drivers choose their paths. For example, drivers
may prefer the fastest paths if they travel long distances, but
they may prefer the shortest paths when traveling at shorter
distances.

Next, element re.F describes the functionalities of the two
regions. Element re.F is also essential because, for example,
when traveling between two business districts and between a
residential area and a city center, drivers may have different
preferences. In particular, we use a set of road types to describe
the functionality of a region [27]. For each region, we consider
all edges that are incident to the vertices in the region and
select top-k road types of the edges as the region’s road type
set. For example, regions Ri and Rj have top-2 road type
sets {TP1, TP2} and {TP3, TP4}, respectively. Then, region
edge (Ri, Rj) has element re.F that is the Cartesian product
of the road type sets from both regions: re.F = {⟨TP1, TP3⟩,
⟨TP1, TP4⟩, ⟨TP2, TP3⟩, ⟨TP2, TP4⟩}.

Based on the above, the similarity between two region
edges rei and rej , quantified by the similarity of their feature
vectors, is defined as follows.

reSim(rei, rej) =
min(rei.dis, rej .dis)

max(rei.dis, rej .dis)
+ J (rei.F, rej .F).

The similarity function is the sum of distance similarity and
region function similarity. For distance similarity, the more
similar the two distances are, the larger the similarity is.
This captures the intuition that travels between equally far
apart regions may tend to have similar routing preferences.
For region function similarity, we use Jaccard similarity to
evaluate the similarity between the region functions. If the
two region edges share more function features, meaning that



they connect similar region pairs, travels on the two region
edges are expected to have similar routing preferences.

To justify design choices, that (i) similar region edges
have similar routing preferences and that (ii) the proposed
region edge similarity function reSim(·, ·) is effective, we
show the results of an experiment using preferences learned
from T-edges in Figure 5(b). First, the “Similarity” bars show
that similar T-edges have similar routing preferences, while
dissimilar T-edges have dissimilar routing preferences. Second,
the “Percentage” bars show the percentages of T-edge pairs
that fall in a different T-edge similarity ranges. There are many
similar (e.g., similarity above 0.5) T-edges, although there are
few highly similar (e.g., similarity above 0.9) T-edges. This
makes it possible to transfer routing preferences among region
edges, and these observations indicate that the design choices
are purposeful.
Transferring preferences among similar region edges: We
adopt the idea of graph-based transduction learning [34], [35]
to transfer routing preferences from T-edges to similar B-
edges. First, we build a undirected, weighted graph, where
a vertex represents a region edge, which can be a T-edge or a
B-edge. Given a total of n region edges, we use an adjacency
matrix M ∈ Rn×n to record the edge weights of the graph.
Specifically, M[i, j] equals to the similarity reSim(rei, rej)
between region edges rei and rej , where 1 6 i, j 6 n.

Next, we introduce an adjacency matrix reduction threshold
amr . In the adjacency matrix, we only keep the values that
exceed amr ; otherwise, we set the values to 0. This way, the
adjacency matrix only captures “sufficiently” similar region
edge pairs, which enables to control the accuracy of the
transferred preferences. The less dense resulting matrix also
improves efficiency (see Figure 8(b) in experiments).

Figure 6 shows a graph with four vertices (i.e., n = 4)
representing two T-edges and two B-edges. The corresponding
matrix M is also shown. For example, M[1, 3] = 0.9 indicates
that the similarity between re1 and re3 is 0.9, and M[2, 3] = 0
indicates that the similarity between re2 and re3 is smaller
than threshold amr .

In the next step, we use a matrix Y ∈ Rn×p to denote
the initial routing preferences of different region edges. Here,
n is the total number of region edges, including T-edges
and B-edges, and p is the total number of travel cost and
road condition features that are used for modeling routing
preferences in Section V-A.

To illustrate, we consider two travel cost features DI and
TT and three road condition features indicating preferences
on road type TP1, TP2, and both, i.e., TP1+2. In this setup,
matrix Y has p = 5 columns that represent features DI, TT,
TP1, TP2, and TP1+2.

Each row in Y corresponds to a region edge’s routing
preference. For a T-edge, the features corresponding to its
learned routing preference V ∗ are set to 1. For example,
assuming that T-edge re1 has preference vector V ∗

re1 = ⟨DI,
TP1⟩, the first row of Y is set to (1, 0, 1, 0, 0). Similarly, if T-
edge re2 has preference vector V ∗

re2 = ⟨TT, TP2⟩, the second
row is set to (0, 1, 0, 1, 0), as shown in Figure 6. Next, since

the routing preferences of the B-edges are unknown, the rows
that represent B-edges are set to (0, 0, 0, 0, 0).
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Fig. 6: Transferring routing preferences
The transduction learning yields matrix Ŷ ∈ Rn×p that

records the transferred routing preferences for the B-edges.
Specifically, Ŷ[i, j] indicates the probability of region edge
rei having the j-th routing preference feature. For B-edge
rei, the travel cost feature with the largest probability, i.e.,
argmaxx∈{1,2} Ŷ[i, x], is used as the final travel cost feature.
In the example Ŷ in Figure 6, this is DI for re3 and TT for
re4. The road type feature with the largest probability, i.e.,
argmaxx∈{3,4,5} Ŷ[i, x], is used as the final road type feature.
In the example Ŷ in Figure 6, this is TP1 for re3 and TP2
for re4. Finally, B-edges re3 and re4 obtain the transferred
routing preferences Vre3 = ⟨DI, TP1⟩ and Vre4 = ⟨TT, TP2⟩,
respectively.

Now the remaining question is how to obtain Ŷ, which is
the core of the transduction learning.
Obtain matrix Ŷ: We obtain Ŷ by minimizing the following
objective function

O(Ŷ) =

p∑
x=1

[
(Y·x − Ŷ·x)

TS(Y·x − Ŷ·x)︸ ︷︷ ︸
Keeping T-edges’ preferences

+ µ1Ŷ
T
·xLŶ·x︸ ︷︷ ︸

Transferring preferences to B-edges

+ µ2||Ŷ·x||22︸ ︷︷ ︸
Regularization

]
,

(1)
where Y·x and Ŷ·x indicate the x-th column of matrices
Y and Ŷ, respectively. Hyper-parameters µ1 and µ2 control
the relative influences of the second and third terms in the
objective function, respectively.

The intuition of each term of the objective function is as
follows. First, the T-edges should keep the routing preferences
that are learned in step 1. The T-edges’ learned routing
preferences serve as training data in the transduction learning
process.

Matrix S ∈ Rn×n is an auxiliary matrix that indicates
which region edges are T-edges. In particular, we organize
the region edges such that the first x edges are T-edges and
the remaining n−x edges are B-edges. Then, S is a diagonal
matrix, where the first x diagonal entries are set to 1 and the
remaining diagonal entries are set to 0. Specifically, we have

S =

(
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

)
in our example because re1 and re2 are

T-edges.
Based on S, the first term actually computes the sum of

the squared differences between Y·x and Ŷ·x of the rows that



represents T-edges. By minimizing the first term, we try to
identify a Ŷ that minimizes the difference. This means that
the T-edges should try to keep their learned preferences from
step 1. On the other hand, the first term does not pose any
constraints between Y·x and Ŷ·x of the rows that represents
B-edges.

Second, the T-edges’ routing preferences are transferred to
B-edges. The transfer process ensures that the more similar
the two region edges are, the more similar their routing
preferences are. This is realized by the use of the unnormalized
graph Laplacian matrix L in the second term of Equation 1. In
particular, L = D−M, where M is the adjacency matrix and
D is a diagonal matrix where D[i, i] =

∑
k∈{1...n} M[i, k]

and D[i, j] = 0 if i ̸= j. In our example, we have

D =

(
1.6 0 0 0
0 0.8 0 0
0 0 1.6 0
0 0 0 2.2

)
L =

(
1.6 0 −0.9 −0.7
0 0.8 0 −0.8

−0.9 0 1.6 −0.7
−0.7 −0.8 −0.7 2.2

)
With the help of L, the second term actually computes the

sum of the products of the similarities of two region edges and
the differences of the two region edges’ corresponding routing
preferences. When the similarity of the two region edges is
high, a small difference between their routing preferences
make the product significant. Minimizing the second term in
the objective function has the effect of smoothly spreading the
routing preferences from T-edges to B-edges such that (1) two
region edges with high similarities have highly similar routing
preferences; (2) two region edges with low similarities may
have dissimilar routing preferences.

Third, we conduct L2 regularization [34], [35] to avoid over-
fitting.

Next, we need to minimize the objective function. By
differentiating Equation 1 by Ŷ·x and then setting it to 0,
we get

(S+ µ1L+ µ2I)Ŷ·x = SY·x (2)

Using basic linear algebra practice, Equation 2 can be solved
by iterative approximation algorithms [36], e.g., the Jacobi
method [34] or the conjugate gradient method [37]. We need
to solve Equation 2 p times; and each time, we obtain a Ŷ·x
where x ∈ {1, 2, . . . , p}. Finally, we obtain Ŷ.

C. Step 3: Applying Transferred Preferences

After step 2, each B-edge has a transferred preference vec-
tor. For each B-edge, we now identify a few appropriate paths
according to its transferred preference vector. Consider B-
edge (Ri, Rj). Recall that a region has transfer centers where
trajectories enter and leave the region (see Section IV-B).
For each pair of a transfer center from Ri and a transfer
center from Rj , we identify a path according to the preference
vector. Finally, the identified paths are associated with B-edge
(Ri, Rj).

We proceed to modify Dijkstra’s algorithm to accommodate
the preference, as shown in Algorithm 1. To ease the discus-
sion, we assume that a B-edge is associated with a transferred
routing preference vector ⟨DI, TP1⟩, meaning that minimizing
travel distance and using road type TP1 are preferred. Recall
that the first dimension is master dimension and the second
dimension is the slave dimension.

The overall procedure is similar to the classical Dijkstra’s
algorithm. In the algorithm, each vertex is associated with two
attributes—a cost attribute that records the cost of travel from
the source to the vertex and a parent attribute that records the
parent vertex of the vertex. And we use a priority queue Q to
control the order of visiting different vertices (lines 1–4).

Here, the cost value maintained in a vertex corresponds
to the specific cost type feature for the master dimension
of a given preference vector. For example, when considering
preference vector ⟨DI, TP1⟩, each vertex is associated with
a cost that equals to the distance (according to DI) from the
source vertex to the vertex.

The algorithm always chooses the vertex with the lowest
cost, say vertex u, to continue exploring (line 6). When
exploring from u, we differentiate two cases (lines 7–14): (i) at
least one edge (u, x) satisfies the slave preference, and (ii) no
edge (u, x) exists that satisfies the slave preference. For case
(i), only edges that satisfy slave preference are explored. For
case (ii), all u’s adjacent vertices are explored. This way, we
make sure that the preferences on both the master and slave
dimensions are accommodated by the algorithm.

Algorithm 1: ApplyingPreferencesModifiedDijkstra
Input: Preference Vector: V = ⟨master , slave⟩; Source and

destination vertices: vs, vd; Road Network: G;
Output: Path P that connects vs and vd

1 for each vertex v ∈ G.V do
2 v.cost ← +∞; v.parent ← null ;

3 vs.cost ← 0;
4 Initialize a priority queue Q and add all vertices to Q;
5 while vd is still in Q do
6 vertex u← Q.extractMin();
7 Boolean noneSat ← false;
8 if there does not exist a vertex x such that x is u’s adjacent

vertex and edge (u, x)’s road type satisfies V.slave then
9 noneSat ← true;

10 for each vertex x that is adjacent u do
11 if edge (u, x)’s road type satisfies V.slave ∨noneSat

then
12 if u.cost + wV .master (u, x) < x.cost then
13 x.cost ← u.cost + wV .master (u, x);
14 x.parent ← u;

15 Construct P from vd using the parent attributes and return P ;

The three steps yield a region graph where each region edge
has a set of paths, meaning that the region graph can serve as
a foundation for routing.

VI. ROUTING ON REGION GRAPHS

Given an arbitrary pair of a source vs and a destination vd
in the original road network graph G, we present a routing
algorithm that is able to recommend a path connecting them,
using the region graph. We distinguish two cases.

Case 1: Vertex vs is in a region, say Rs, and vertex vd
is also in a region, say Rd. If both vertices are in the same
region, i.e., Rs = Rd, since we maintain inner-region paths
inside regions, we check if trajectories exist that traverse from



vs to vd. If yes, we return a path with the largest number of
trajectory traversals; if no, we return the fastest path.

If the vertices are not in the same region, i.e., Rs ̸= Rd, we
first identify a region path based on the region graph and then
map the region path to a path in the original road network.

Routing on the region graph: The intuition is to find
a region path that follows fewer region edges to reach the
destination region Rd. This is because if a region path consists
of many region edges, it involves the stitching of many paths
from different trajectories, which may not represent coherent
routing preferences. Thus, in the routing procedure, we always
prefer to follow a region edge that enables us to go to a region
that is geometrically close to the destination region. When a
region edge exists that directly connects Rs and Rd, we always
use that region edge. Otherwise, we give higher priorities to
the region edges that lead to regions that are closer to the
destination region Rd.

To illustrate, consider the region graph shown in Figure 4(b)
and assume the physical locations of the regions are also
represented in Figure 4(b). Assume that regions R1 and R4 are
given as the source and destination regions. When exploring
from R1, region R5 is preferred over regions R2, R3 and R6

because R5 is much closer to destination region R4. Finally,
the region path ⟨(R1, R5), (R5, R4)⟩ is returned.

Recall that each region edge corresponds to some paths in
the original road network graph. Based on this, a region path
can be mapped back to a path in the road network graph,
which is then returned as the result.

Case 2: At least one of vs and vd is not in a region. In
this case, we find appropriate region vertices for vs or/and vd.
Then, we apply the procedure from case 1.

To this end, we issue a fastest path finding algorithm from
vs to vd based on road network graph G. If a region is visited
by the algorithm, we consider it as a candidate region Rs.
Similarly, we can identify a candidate region Rd. Then we
apply the procedure from case 1 with source region Rs and
destination region Rd to identify a path P . Finally, we return
a path that consists of three sub-paths—the fastest path from
vs to Rs, denoted as Ps, the path P that connects Rs and Rd,
and the fastest path from Rd to vd, denoted as Pd, as shown
in Figure 7. In case there is only one or no candidate region,
we simply return the fastest path, e.g., in the case of vs and
v′d in Figure 7.

vs

vd

Path associated with 

region edge (Rs, Rd)

Fastest path

Rs

Rd

R1

R2

Rd

vd’

P PdPs

Fig. 7: Routing, Case 2

VII. EMPIRICAL STUDY

We conduct a comprehensive empirical study on two sub-
stantial GPS trajectory data sets.

A. Experimental Setup

Road Network and GPS Trajectories: We use two road
networks, N1 and N2, both obtained from OpenStreetMap
(openstreetmap.org). N1 represents the road network of Den-
mark and includes 667,950 vertices and 1,636,040 edges,
which are contained in a 320 km × 370 km rectangular
region. N2 represents the road network of Chengdu, China
and includes 27,671 vertices and 77,444 edges, which are
contained in a 33 km × 25 km rectangular region.

We use two GPS data sets D1 and D2 from N1 and N2,
respectively. D1 consists of more than 180 million high-
frequency GPS records that were collected by 183 vehicles
at 1 Hz (i.e., one GPS record per second) in 2007 and 2008.
D2 consists of 100 million low-frequency GPS records that
were collected by 10,864 taxis from August 3rd to 30th 2014.
The sampling rate varies from 0.03 Hz to 0.1 Hz. We only
use parts of trajectories where taxi have passengers on. We
map match [25] the GPS records in D1 and D2 onto N1 and
N2, respectively, obtaining 466,305 trajectories and 185,284
trajectories, where the trajectories in D2 represent trips with
passengers. The travel distance distributions of the trajectories
are shown in Table I.

Distance (km) (0,10] (10,50] (50,100] (100, 500]
# Trajectories of D1 427,430 35,271 2,263 1,341

Percentage (%) 91.6 7.6 0.5 0.3
Distance (km) (0,2] (2,5] (5,10] (10, 35]

# Trajectories of D2 29,256 105,503 43,473 7,052
Percentage (%) 15.8 56.9 23.5 3.8

TABLE I: Statistics of Trajectories

Training and Testing Data: We partition the trajectories in
D1 and D2 into training data and testing data. Specifically,
trajectories that occurred during the first 18 months in D1

and the first 21 days in D2 are used as training data; and
trajectories that occurred in the last 6 months in D1 and the
last 7 days in D2 are used as testing data.
Evaluation Criteria: For each trajectory in the testing data
Test, we record its source and destination, departure time,
and the actual path used by the trajectory. Since the aim
of the paper is to reuse local drivers’ routing intelligence
to recommend paths, the paths used by the local drivers are
considered as the ground truth (GT) paths.

In the experiments, we run learn-to-route (L2R) on each pair
of source and destination in Test, and we compare the returned
path with the GT path, using the path similarity function in
Section V-A. In addition, we also identify the shortest path,
the fastest path, the paths returned by two personalized routing
algorithms and by Google Maps, and compare them with the
GT path. The departure time is used when identifying the
L2R paths, the fastest paths and the Google Maps paths. We
also report results w.r.t. the accuracy using a different but also
popular path similarity function (see document [31]).

Results are categorized according to the lengths of the GT
paths and according to whether the source or destination of a
GT path belongs to a region in the obtained region graph. If
both the source and destination of a GT path are in regions,
the path is in category InRegion. If either the source or the



destination is in a region, the path is in category InOutRegion.
If neither source nor destination belongs to a region, the path
is in category OutRegion.
Implementation Details: All algorithms are implemented in
Java using JDK 1.8. We conduct experiments on a server
with a 64-core AMD Opteron(tm) 2.24 GHZ CPU, 528
GB main memory under Ubuntu Linux. We use distance,
travel time, and fuel consumption as the travel cost features,
where the fuel consumption is computed based on speed
limits using vehicular environmental impact models [33]. We
use six commonly used road types from OpenStreetMap as
road condition features: motorway, trunk, primary, secondary,
tertiary, and residential. The transduction learning algorithm
for transferring preferences (cf. Section V-B) is implemented
using the Junto library (github.com/parthatalukdar/junto).

B. Evaluation of Design Choices

We evaluate the design choices chosen for L2R. In partic-
ular, we show the effect of important parameters by varying
them according to Table II where default values are shown as
bold. When we vary one parameter, we keep the remaining
parameters at their default values. We show results for both
D1 and D2 in most empirical studies, but omit some results
for D2 when they show little difference to those of D1.

Parameters Values
# T-edges 1X, 2X, 3X, 4X, 5X

Threshold amr 0.5, 0.6, 0.7, 0.8, 0.9

TABLE II: Parameters of L2R

Region Sizes: We report the sizes of the obtained regions by
computing their convex hulls and then reporting their areas
(in km2) and maximum diameters (in km). Table III reports

Size (km2) (0,2] (2,10] (10,100] >100
D1 3,357 (78.6%) 539 (12.6%) 304 (7.12%) 70 (1.63%)

/ 9.5 / 15.8 / 29.9 / 304.1

Size (km2) (0,2] (2,5] (5,10] >10
D2 388 (72.1%) 127 (23.6%) 19 (3.53%) 4 (0.74%)

/ 4.24 / 8.17 / 8.59 / 6.22

TABLE III: Region Sizes

the numbers of regions whose area falls in given ranges and
the maximum diameter of the regions in each range. There
are a few large regions, but most regions have sizes less
than 2 km2. This indicates that the proposed modularity-based
clustering is able to control the region size and avoids very
large regions. D1 has a few large regions, which represent
backbone highways. Since we maintain inner-region paths for
regions, large regions do not affect the final routing quality.
Transferring Preferences: We study the accuracy of trans-
ferring preferences from T-edges to B-edges in Step 2. As
we have no ground-truth preferences for B-edges, we cannot
evaluate the accuracy of the transferred preferences in a s-
traightforward manner. To evaluate the accuracy, we randomly
partition the preferences of T-edges into 5 partitions. We
reserve one partition as a ground truth. Next, we use partition
1; partitions 1 and 2; partitions 1, 2, and 3; and partitions 1, 2,
3, and 4, to conduct the preference transfer. For each T-edge
in the reserved partition, we obtain a transferred preference,
which we compare it with the ground truth preference. We

report the accuracy of the transferred preference against the
ground truth preference using Jaccard similarity.

Figure 8(a) shows the accuracy when using 1, 2, 3, and 4
partitions, labeled as X, 2X, 3X, and 4X. The results indicate
that the more preferences of T-edges are used, the better the
accuracy we get. Therefore, we use all the preferences of T-
edges (i.e., 5X) in the remaining experiments.

Next, we consider the effect of the adjacency matrix reduc-
tion parameter threshold amr on the transfer process. Since
Figure 5(b) already suggests that when the similarity between
two region edges is low, their preference vectors are dissimilar,
we vary amr from 0.5 to 0.9 and ignore small values. We use 4
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Fig. 8: Parameters of Preference Transfer

partitions of T-edge preferences to build the adjacency matrix
and use the last partition as the ground truth preferences. We
report the accuracy of the transferred preferences against the
ground truth measured using Jaccard similarity, the null rate
(N-rate), i.e., the percentage of transferred preferences that get
null values, and the run-time in Figure 8(b).

The accuracy of the transfer process increases slightly as
amr increases and is not sensitive to the change of amr
values when amr exceeds 0.5. This is intuitive because a
large amr enables transfer of routing preferences from T-
edges only to highly similar B-edges. However, as the amr
value increases, the graph used in the graph-based transduc-
tion learning may become disconnected. Thus, some B-edges
cannot be associated with transferred preferences and thus get
a null preference vector. A smaller amr has the effect that the
graph used in the graph-based transduction obtains many edges
and thus takes longer run-time. The setting amr = 0.7 gives
the best trade-off, i.e., relatively high accuracy and efficiency
and low null rate. We thus use this value in the remaining
experiments. We simply associate fastest paths with B-edges
with null preference vectors.

C. Comparisons with Other Routing Algorithms

We proceed to compare L2R with the shortest and fastest
routing algorithms and with two personalized routing algo-
rithms. We apply Dijkstra’s algorithm to identify the shortest
(Shortest) and fastest paths (Fastest). We do not apply ad-
vanced speeding up techniques for routing, since they have
no improvement over the accuracy but only over the query
efficiency. When applying such speed-up techniques, the ef-
ficiency of computing all paths, including the L2R paths,
can be improved consistently. We leave such performance
improvements as an interesting future research direction.
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Fig. 9: Accuracy

We also consider two personalized routing algorithms,
Dom [22] and TRIP [23], that are able to find personalized
“shortest” paths between arbitrary source and destination for
individual drivers. The algorithms first learn a global routing
preference (rather than a routing preference for each region
pair in this paper) for each driver from the driver’s historical
trajectories, then use the learned preference to obtain new,
personalized weights for all edges, and finally apply shortest-
path finding using the new edge weights. Specifically, Dom u-
tilizes a routing preference that considers distance, travel time,
and fuel consumption, whereas TRIP uses a routing preference
that considers only travel time. In the experiment, we apply
each algorithm to learn a routing preference according to a
driver’s trajectories in the training data. For each trajectory in
the testing data, we obtain the source, the destination, and
the driver id. Then we apply Dom and TRIP to compute
the personalized, shortest path connecting the source and the
destination according to the driver id. Other routing algorithms
that use historical trajectories, e.g., [15], [16], [18], do not
support routing between arbitrary source and destination, and
thus are not comparable to L2R.
Accuracy: The accuracies of L2R, Shortest, Fastest, Dom,
and TRIP are calculated using the path similarity function in
Section V-A and are reported in Figure 9.

Shortest’s accuracy drops as the travel distance increases.
This is because Shortest tends to find a path that approximates
the straight line segment from a source to a destination. Such
paths are often not preferred by drivers. In D1, when traveling
longer distances, highways are usually preferred. However,
given the fact that using highways often yield longer travel
distances, Shortest does not return such paths. Therefore, the
accuracy of Shortest is poor for longer distances.

The accuracy of Fastest is comparable to that of Shortest for
small travel distances. However, Fastest achieves much higher
accuracy when travel distance is longer. When travelling
longer distances, highways usually offer the lowest travel times
and are therefore returned by Fastest. Thus, Fastest achieves
much better accuracy than does Shortest.

Dom achieves higher accuracy than the other routing meth-
ods, except L2R, because it learns routing preferences that
consider the trade-off among distance, travel time, and fuel
consumption for individual drivers. However, as it conducts an
expensive multi-objective skyline routing process, it requires
significantly more running time than other methods (see Fig-
ure 10). TRIP is slightly more accurate than Fastest due to
the personal ratio learned for each driver, and it needs similar

running time to Shortest and Fastest.
L2R achieves the highest accuracy in all settings. The

accuracy increases as the travel distance becomes longer—
this is achieved by capturing the preference for different travel
costs and road types in the region graph.

The accuracy of L2R decreases when sources and (or)
destinations are not in regions. This is intuitive because when
no historical trajectories are available for path finding, an
L2R path simply coincides with the fastest path. However,
when historical trajectories can be utilized, L2R improves the
accuracy of the fastest path (see InOutRegion and OutRegion
in Figure 9(b)).
Online Running Time: Run-times are reported in Figure 10.
(See document [31] for results of D2). In all settings, L2R
is most efficient. This is because the path finding process
is conducted on the region graph, which is much smaller
than the original road network graph. When sources and (or)
destinations are not in regions, the run-time of L2R increases
because it needs extra time to identify the fastest paths from
the source (destination) to a region.
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Fig. 10: Efficiency

The personalized routing Dom requires significantly more
running time as it conducts an expensive multi-objective
skyline routing process. Next, Trip has a running time similar
to those of Shortest and Fastest as all three perform single-
objective routing. Trip just uses personalized weights.
Offline Processing Time for L2R: When using all training
data and default parameters, the offline processing time for
constructing the region graph (Section IV) and for executing
steps 1–3 to learn and transfer routing preferences (Section V)
for D1 are 21, 245, 106, and 7 minutes, respectively, and for
D2 are 9, 10, 29, and 0.06 minutes, respectively. Note that such
offline processing is parallelizable, e.g., by MapReduce [38].

D. Comparison with Google Maps

We also compare L2R with Google Maps. We query the
Google Directions API using a source, a destination, and the



departure time from the testing set as arguments to obtain
a Google path, which consists of a sequence of waypoints,
represented by longitude-latitude coordinates. We follow an
existing methodology [16] to compute the similarity between
a Google path and a GT path (details shown in document [31]).

We report the accuracy of Google vs. L2R paths in Figure 11
(see document [31] for results on D2). The accuracy of
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Fig. 11: Comparison with Google Maps

Google paths lies between 60% and 85%, and the accuracy
increases with the travel distance. However, Google paths
show no pattern when we categorize according to whether the
source and destination belong to regions. In all settings, L2R
achieves higher accuracy, indicating that L2R has the potential
to improve the quality of state-of-the-art routing services.

VIII. CONCLUSION AND OUTLOOK

We propose a learn-to-route solution that enables compre-
hensive trajectory-based routing. The solution encompasses an
algorithm that clusters road intersections into regions, yielding
a derived region graph. It learns routing preferences for region
pairs with sufficient trajectories and transfers these preferences
to region pairs with insufficiently many trajectories. It then
utilizes the learned and transferred preferences to enable
routing. Empirical studies offer evidence that the solution is
practical and is able to compute high-quality routes. In future
work, it is of interest to consider finer granularity modeling of
time-dependency, e.g., using a time-varying region graph, real-
time region graph updates when receiving new trajectories, and
the modeling of more than one preference for each T-edge.
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