
1

Languages and Compilers
(SProg og Oversættere)

Bent Thomsen
Department of Computer Science

Aalborg University

With acknowledgement to Microsoft, especially Nick Benton,whose slides this lecture is based on.

2

The common intermediate format nirvana

• If we have n number of languages and need to have
them running on m number of machines we need m*n
compilers!

• If we have one common intermediate format we only
need n front-ends and m back-ends, i.e. m+n

• Why haven’t you taught us about the common
intermediate language?

3

Strong et al. “The Problem of Programming Communication with Changing
Machines: A Proposed Solution” C.ACM. 1958

4

Quote

This concept is not particularly new or original. It has
been discussed by many independent persons as long
ago as 1954. It might not be difficult to prove that “this
was well-known to Babbage,” so no effort has been
made to give credit to the originator, if indeed there was
a unique originator.

5

“Everybody knows that UNCOL was a failure”

• Subsequent attempts:
– Janus (1978)

• Pascal, Algol68
– Amsterdam Compiler Kit (1983)

• Modula-2, C, Fortran, Pascal, Basic, Occam
– Pcode -> Ucode -> HPcode (1977-?)

• FORTRAN, Ada, Pascal, COBOL, C++
– Ten15 -> TenDRA -> ANDF (1987-1996)

• Ada, C, C++, Fortran
–

6

Sharing parts of compiler pipelines is common

• Compiling to textual assembly language
• Retargetable code-generation libraries

– VPO, MLRISC
• Compiling via C

– Cedar, Fortran, Modula 2, Ada, Scheme, Standard ML, Haskell, Prolog,
Mercury,...

• x86 is a pretty convincing UNCOL
– pure software translation (VirtualPC)
– mixed hardware/software (Transmeta “code morphing”)
– pure hardware (x86 -> Pentium RISC “micro-ops”)

7

Compiling high-level languages via C as a “portable
assembler”

• Everybody does it, but it’s painful
– Interfacing to garbage collection
– Tail-calls
– Exceptions
– Concurrency
– Control operators (call/cc & friends)

• Hard to achieve genuine portability (gcc only plus lots of ifdefs is common)
• Performance often unimpressive

– C is difficult to optimise well, and it’s hard or impossible for the front-end to
communicate invariants (e.g. alias information) to the backend

• Often can’t use what little it seems to give you (e.g. GHC doesn’t use the C
stack at all)

8

Interlanguage Working
• Smooth interoperability between components written in different programming

languages is another dream with a long history
• Distinct from, more ambitious and more interesting than, UNCOL

– The benefits accrue to users not to compiler-writers!
• Interoperability is more important than performance, especially for niche

languages
– For years we thought nobody used functional languages because they were too slow
– But a bigger problem was that you couldn’t really write programs that did useful

things (graphics, guis, databases, sound, networking, crypto,...)
– We didn’t notice, because we never tried to write programs which did useful

things...

9

Interlanguage Working

• Bilateral or Multilateral?
• Unidirectional or bidirectional?
• How much can be mapped?
• Explicit or implicit or no marshalling?
• What happens to the languages?

– All within the existing framework?
– Extended?
– Pragmas or comments or conventions?

• External tools required?
• Work required on both sides of an interface?

10

Calling C bilaterally

• All compilers for high-level languages have some way of calling C
– Often just hard-wired primitives for implementing libraries

• Extensibility by recompiling the runtime system
– Sometimes a more structured FFI
– Typically implementation-specific

• Issues:
– Data representation (31/32 bit ints, strings, record layout,...)
– Calling conventions (registers, stack,..)
– Storage management (especially copying collectors)

• It’s a dirty job, but somebody’s got to do it

11

Is there a better way?

• Well we saw the JVM before the break …
• But there are problems with languages which are not

”Java”-like
• What then? …

12

Microsoft’s .NET

Support major standards initiatives such as XML, SOAP, UDDI, WDSL
and … to make it ready for developers who want to take advantage of
the Services on Demand vision

13

What is Microsoft .NET?

• .NET is Microsoft’s vision of a world connected using
open standards

• .NET is the name given to the latest Microsoft
technology, products and development framework

• .NET is the basis for Microsoft’s current and future
roadmap

• ‘.NET is Microsoft’s platform for a new computing
model built around XML Web Services’
Microsoft Corporation Annual Report, 2001

• .Net is Microsoft’s core business Strategy

14

Programming for .Net

• Common Language Runtime + class libraries
• ADO.NET
• ASP.NET
• Web services – XML, SOAP, UDDI, WSDL …
• Programming languages

– C++, VB, C#, (J#)
– APL, COBOL, Eiffel, Forth, Fortran, Haskel, SML, Mercury, Mondrian,

Oberon, Pascal, Perl, Python, RPG, Scheme, SmallScript, …
• Visual Studio .Net

– Professional
– Server Edition
– Mobile Internet Toolkit
– Academic

15

Common Programming Model - .NET

Common Language Runtime
Base Framework Classes

Data and XML Classes

XML Web
Services

Web
Forms Windows

FormsASP.NET

Common Language Runtime
Base Framework Classes

Data and XML Classes

XML Web
Services

Web
Forms Windows

FormsASP.NET

16

VS.NET

Common Language RuntimeCommon Language Runtime

System System

System.Data (ADO.NET) System.Xml

Design
ADO

Adapters
SQL

Globalization
Diagnostics
Configuration
Collections

Resources
Reflection
Net
IO

Threading
Text
ServiceProcess
Security Runtime

InteropServices
Remoting
Serialization

XPath
XSLT Serialization

System.Drawing

JITGC
MSIL

App Domain Loader
Common Type System Class Loader

System.Web (ASP.NET)

Configuration

SessionState
Caching
Security

Simple Web Services

Description
Protocols

UI
HtmlControls
WebControls

Discovery

C#

VC/MC++
Imaging
Drawing2D

Text
Printing

JScript

VB

Platform AbstractionPlatform AbstractionBoot Loader
SyncThreads

Networking

Timers Filesystem

System.WinForms
Design ComponentModel

Debugger
Designers

SDK ToolsSDK Tools
CorDBG
ILAsm

ILDbDump
SN

ILDAsm
MetaInfo
PEVerify

C
LI

WHERE THE CLR FITS IN THE .NET WORLD

17

Overview of the CLI

• A common type system…
…and a specification for language integration (CLS)
– Execution engine with garbage collector and exception

handling
– Integral security system with verification

• A factored class library
– A “modern” equivalent to the C runtime

• An intermediate language
– CIL: Common Intermediate Language

• A file format
– PE/COFF format, with extensions
– An extensible metadata system

• Access to the underlying platform!

18

Terms to swallow

• CLI (Common Language Infrastructure)
• CLS (Common Language Specification)
• CTS (Common Type System)
• MSIL (Microsoft Intermediate Language)
• CLR (Common Language Runtime)
• GAC (Global Assembly Cache)

19

Execution model

COBOL VB.NE
T

MC++ C#

MSIL code
(plus

metadata)

Loader/verifier

Managed code

Uncompiled
method call

Execution

Language compilers

.NET languages

JIT compiler

20

Managed Code Execution

PEVerifyPEVerify

NGENNGEN

DEPLOYMENTDEPLOYMENT

GAC, GAC,
app. directory, app. directory,

download cachedownload cache

public static void Main(String[] args)
{ String usr; FileStream f; StreamWriter w;
try {

usr=Environment.GetEnvironmentVariable("USERNAME");
f=new FileStream(“C:\\test.txt",FileMode.Create);
w=new StreamWriter(f);
w.WriteLine(usr);
w.Close();

} catch (Exception e){
Console.WriteLine("Exception:"+e.ToString());

}
} CompilerCompiler

DEVELOPMENTDEVELOPMENT
public static void Main(String[] args)
{ String usr; FileStream f; StreamWriter w;
try {

usr=Environment.GetEnvironmentVariable("USERNAME");
f=new FileStream(“C:\\test.txt",FileMode.Create);
w=new StreamWriter(f);
w.WriteLine(usr);
w.Close();

} catch (Exception e){
Console.WriteLine("Exception:"+e.ToString());

}
}

Source codeSource code AssemblyAssembly
PE header + MSIL + PE header + MSIL +
Metadata + EH TableMetadata + EH Table

EXECUTIONEXECUTION
Assembly infoAssembly info

Module Module
+ Class list+ Class list

Policy Policy
ManagerManager

HostHost

Policy
<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<mscorlib>
<security>

<policy>
<PolicyLevel version="1">

<CodeGroup class="UnionCodeGroup"
version="1"
PermissionSetName="Nothing"
Name="All_Code"
Description="Code group

grants no permissio
ns and forms the root of the code group tree.">

<IMembershipCondition clas
s="AllMembershipCondition"

version="1"/>
<CodeGroup class="UnionCodeGroup"

version="1"
PermissionSetName="FullTrust"

ClassClass
LoaderLoader

Granted Granted
permissionspermissions

VtableVtable ++
Class infoClass info

JIT +JIT +
verificationverification

Native codeNative code
+ GC table+ GC table

CLR ServicesCLR Services
GCGC
ExceptionException
Class initClass init
SecuritySecurity

(assem
bly

(assem
bly))

((classclass))

((methodmethod))

AssemblyAssembly
LoaderLoader

EvidenceEvidence

Permission requestPermission request

21

What is the Common Language Runtime (CLR)?

• The CLR is the execution engine for .NET
• Responsible for key services:

– Just-in-time compilation
– heap management
– garbage collection
– exception handling

• Rich support for component software
• Language-neutral

22

The CLR Virtual Machine
• Stack-based, no registers

– All operations produce/consume
stack elements

– Locals, incoming parameters live
on stack

– Stack is of arbitrary size; stack
elements are “slots”

– May or may not use real stack once
JITted

• Core components
– Instruction pointer (IP)
– Evaluation stack
– Array of local variables
– Array of arguments
– Method handle information
– Local memory pool
– Return state handle
– Security descriptor

• Execution example

Offset Instruction Parameters

IL_0000 ldarg 0

IL_0001 ldarg 1

IL_0002 add

IL_0003 stloc 0

IL_0004 ldloc 0

IL_0005 ret

int add(int a, int b)
{

int c = a + b;
return c;

}

23

CIL Basics

• Data types
– void

– bool

– char, string
– float32, float64
– [unsigned] int8, int16, int32, int64
– native [unsigned] int: native-sized integer value
– object: System.Object reference
– Managed pointers, unmanaged pointers, method pointers(!)

• Names
– All names must be assembly-qualified fully-resolved names

•[assembly]namespace.class::Method
•[mscorlib]System.Object::WriteLine

24

CIL Instructions

• Stack manipulation
– dup: Duplicate top element of stack (pop, push, push)
– pop: Remove top element of stack
– ldloc, ldloc.n, ldloc.s n: Push local variable
– ldarg, ldarg.n, ldarg.s n: Push method arg

• “this” pointer arg 0 for instance methods
– ldfld type class::fieldname: Push instance field

• requires “this” pointer on top stack slot
– ldsfld type class::fieldname: Push static field
– ldstr string: Push constant string
– ldc.<type> n, ldc.<type>.n: Push constant numeric

• <type> is i4, i8, r4, r8

25

CIL Instructions

• Branching, control flow
– beq, bge, bgt, ble, blt, bne, br, brtrue, brfalse

• Branch target is label within code
– jmp <method>: Immediate jump to method (goto, sort of)
– switch (t1, t2, … tn): Table switch on value
– call retval Class::method(Type, …): Call method

• Assumes arguments on stack match method expectations
• Instance methods require “this” on top
• Arguments pushed in right-to-left order

– calli callsite-description: Call method through pointer
– ret: Return from method call

• Return value top element on stack

26

CIL Instructions

• Object model instructions
– newobj ctor: Create instance using ctor method
– initobj type: Create value type instance
– newarr type: Create vector (zero-based, 1-dim array)
– ldelem, stelem: Access vector elements
– isinst class: Test cast (C# “is”)
– castclass class: Cast to type
– callvirt signature: Call virtual method

• Assumes “this” in slot 0--cannot be null
• vtable lookup on object on signature

– box, unbox: Convert value type to/from object instance

27

CIL Instructions

• Exception handling
– .try: Defines guarded block
– Dealing with exception

• catch: Catch exception of specified type
• fault: Handle exceptions but not normal exit
• filter: Handle exception if filter succeeds
• finally: Handle exception and normal exit

– throw, rethrow: Put exception object into exception flow
– leave: Exit guarded block

CIL assembler

• ILAsm (IL Assembly) closest to raw CIL
– Assembly language

• CIL opcodes and operands
• Assembler directives
• Intimately aware of the CLI (objects, interfaces, etc)

– ilasm.exe (like JASMIN for Java/JVM)
– Ships with FrameworkSDK, Rotor, along with a few samples
– Creates a PE (portable executable) file (.exe or .dll)

29

PE File

• Windows Portable Executable (PE) Standard
• File extension: EXE, DLL

30

Parts of a Managed Module

• PE Header
– Indicates type of file (DLL, GUI, etc.)
– Info on Native CPU

• CLR Header
– Version of Common Language Runtime (CLR)
– Location of Metadata, Resouces, etc.

• Metadata
– Description of Type and Members
– Description of References

• Intermediate Language (IL) Code
– Code to be compiled to Native CPU Instructions

31

ILAsm

• Some ILAsm directives
– .assembly extern: referencing another assembly
– .assembly: declaring local assembly, version, hash, etc
– .module: optional declaration of module (file) name
– .namespace: declare a lexical namespace for types
– .entrypoint: marks method as entrypoint (“Main()”)
– .maxstack: optimization; how many stack slots required?
– .locals: declares local variables

• May auto-initialize if init is present

32

ILAsm

• .class
– interface: class is actually an interface
– Access control: public, private
– explicit, auto, sequential: Field layout (value types)
– implements, extends: inherits interface or base class
– abstract, sealed: as with C#
– Nested classes must use nested modifier
– String handling: ansi, autochar, unicode
– beforefieldinit: don’t type-init on static method calls

.class private auto ansi beforefieldinit App

extends [mscorlib]System.Object

{

// . . .

} // end of class App

33

ILAsm

• .field
– Access control: public, assembly, family,
famandassem, famorassem, private

– initonly: constant field (“readonly” in C#)
– literal: constant value; inline replacement when used
– static: one instance for all type instances

.class private auto ansi beforefieldinit App

extends [mscorlib]System.Object

{

.field private string message

.field private static object[] cachedValues

} // end of class App

34

ILAsm

• .method
– Access control: as for .field
– Method name:

•.ctor, .cctor: Special names for constructors
– instance, static, abstract, final: as with C#
– virtual: late-bound, but doesn’t indicate slot consumption
– newslot: method takes new slot in vtable

• C# “virtual” == CIL “virtual newslot”
• C# “overrides” == CIL “virtual”

– pinvokeimpl: P/Invoke binding to native method
– specialname, rtspecialname: Name is important

•.ctor, .cctor, property get_/set_ methods, etc.

35

ILAsm

• .method (continued)
– Method hiding

•hidebyname: hides base class method(s) of name
•hidebysig: hides base class method(s) of exact signature

– Implementation attributes
•cil, native, runtime: CIL, native, or runtime-

provided?
•managed, unmanaged: somewhat redundant
•synchronized: Acquire lock before executing

36

ILAsm

• .property
– two directives: .get and .set
– correspond directly to methods to invoke
– unlike C#, methods can be named anything
– no concept of indexer

• C# language construct
• property named “Item” taking an int32 parameter

• .event
– Like .property, binds methods to event targets

• .addon
• .removeon
• .fire

– Like .property, methods can be named anything

37

Example 1

• Hello, CIL!

.assembly extern mscorlib { }

.assembly Hello { }

.class private auto ansi beforefieldinit App

extends [mscorlib]System.Object

{

.method private hidebysig static void Main() cil managed

{

.entrypoint

.maxstack 1

ldstr "Hello, CIL!"

call void [mscorlib]System.Console::WriteLine(string)

ret

} // end of method App::Main

} // end of class App

38

Example 1

• Compiling, Running
C:\Prg\Demos>ilasm Hello.il

Microsoft (R) .NET Framework IL Assembler. Version 1.0.3705.0

Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.

Assembling 'Hello.il' , no listing file, to EXE --> 'Hello.EXE'

Source file is ANSI

Assembled method App::Main

Creating PE file

Emitting members:

Global

Class 1 Methods: 1;

Writing PE file

Operation completed successfully

C:\Prg\Demos>hello

Hello, CIL!

39

Reflection Emit

– Assemblybuilder
– ConstructorBuilder
– CustomAttributeBuilder
– EnumBuilder
– EventBuilder
– FieldBuilder
– ILGenerator
– Label

– LocalBuilder
– MethodBuilder
– ModuleBuilder
– ParameterBuilder
– PropertyBuilder
– TypeBuilder

Abstractions correspond closely to the CTS that underlies Abstractions correspond closely to the CTS that underlies
the CLR:the CLR:

40

Generating IL code
ILGenerator generator = simpleMethod.GetILGenerator();
// Emit the IL
// Push zero onto the stack. For each 'i‘ less than 'theValue',
// push 'i' onto the stack as a constant
// add the two values at the top of the stack.
// The sum is left on the stack.
generator.Emit(OpCodes.Ldc_I4, 0);
for (int i = 1; i <= theValue; i++) {

generator.Emit(OpCodes.Ldc_I4, i);
generator.Emit(OpCodes.Add);

}
// return the value
generator.Emit(OpCodes.Ret);

computeSumInfo = typeof(IComputer).GetMethod("ComputeSum");
myType.DefineMethodOverride(simpleMethod, computeSumInfo);

// Create the type.
myType.CreateType();
return newAssembly;
}

41

Generated IL Code

Ldc_I4 0
Ldc_I4 1
Add
Ldc_I4 2
Add
Ldc_I4 3
Add
Ldc_I4 4
Add
Ldc_I4 5
Add
Ret

42

CLR vs JVM

C# Managed
C/C++

Lots of other
Languages

VB
.Net

CLR
CTS GC Security
Runtime Services

MSIL

Windows OS

Java

JRE (JVM)
GC Security

Runtime Services

Byte Codes

Mac Unix LinuxWin

Both are ‘middle layers’ between an intermediate
language & the underlying OS

43

JVM vs. CLR at a glance

JVM CLR
Managed execution
environment

X X

Garbage Collection X X

Metadata and
Bytecode

X X

Platform-
abstraction class
library

X X

Runtime-level
security

X X

Runs across
hardware platforms

X ?

44

Java Byte Code and MSIL

• Java byte code (or JVML) is the low-level language of the JVM.
• MSIL (or CIL or IL) is the low-level language of the .NET Common

Language Runtime (CLR).
• Superficially, the two languages look very similar.

• One difference is that MSIL is designed only for JIT compilation.
• The generic add instruction would require an interpreter to track the data

type of the top of stack element, which would be prohibitively expensive.

JVML:
iload 1
iload 2
iadd
istore 3

MSIL:
ldloc.1
ldloc.2
add
stloc.3

45

JVM vs. CLR

• JVM’s storage locations are all 32-bit therefore a e.g. a
64-bit int takes up two storage locations

• The CLR VM allows storage locations of different sizes

• In the JVM all pointers are put into one reference type
• CLR has several reference types e.g. valuetype reference

and reference type

46

JVM vs. CLR

• CLR provides ”typeless” arithmetic instructions
• JVM has separate arithmetic instruction for each type

(iadd, fadd, imul, fmul...)

• JVM requires manual overflow detection
• CLR allows user to be notified when overflows occur

• Java has a maximum of 64K branches (if...else)
• No limit of branches in CLR

47

JVM vs. CLR

•• JVM JVM distinguishdistinguish betweenbetween invokinginvoking methodsmethods and and
interface (interface (invokevirtualinvokevirtual and and invokeinterfaceinvokeinterface))

•• CLR CLR makesmakes nono distinctiondistinction

•• CLR support CLR support tailtail callscalls ((iterationiteration in in SchemeScheme))
•• Must Must resortresort to tricks in to tricks in orderorder to to makemake JVM JVM discarddiscard stackstack

framesframes

48

JVM vs. CLR

– JVM designed for platform independence
• Single language: Java (?)
• A separate JVM for each OS & device

– CLR designed for language independence
• Multiple languages for development

– C++, VB, C#, (J#)
– APL, COBOL, Eiffel, Forth, Fortran, Haskel, SML, Mercury, Mondrian,

Oberon, Pascal, Perl, Python, RPG, Scheme, SmallScript, …
– Impressive usage of formal methods and programming language research during

development
– Impressive extensions for generics and support for functional languages

underway
• Underlying OS:

– Windows 2000/XP, special version for WindowsCE
– FreeBSD Unix, Mac OS X
– Linux

49

Why is .Net so interesting
from a programming language research point of view?
• CIL is more powerful than JVML and allows the compiler writer

more freedom in data representation and control structures
• The runtime provides services (execution engine, garbage

collection, security…) which make producing a good
implementation of new languages easier

• The freedom to choose language
– All features of .NET platform available to any .NET programming

language
– Application components can be written in multiple languages
– Multi-language component-based programming makes it much more

practical for other people to use your language in their own projects
– The frameworks & libraries mean you can actually do useful things with

your new language (graphics, networking, database access, web
services,…)

• Over 26 languages supported in the CLR
– APL, COBOL, Pascal, Eiffel, Haskell, ML, Oberon, Perl, Python, Scheme,

Smalltalk or you could write your own!

	Languages and Compilers�(SProg og Oversættere)
	The common intermediate format nirvana
	Quote
	“Everybody knows that UNCOL was a failure”
	Sharing parts of compiler pipelines is common
	Compiling high-level languages via C as a “portable assembler”
	Interlanguage Working
	Interlanguage Working
	Calling C bilaterally
	Is there a better way?
	Microsoft’s .NET
	What is Microsoft .NET?
	Programming for .Net
	Common Programming Model - .NET
	Overview of the CLI
	Terms to swallow
	Execution model
	Managed Code Execution
	What is the Common Language Runtime (CLR)?
	The CLR Virtual Machine
	CIL Basics
	CIL Instructions
	CIL Instructions
	CIL Instructions
	CIL Instructions
	CIL assembler
	PE File
	Parts of a Managed Module
	ILAsm
	ILAsm
	ILAsm
	ILAsm
	ILAsm
	ILAsm
	Example 1
	Example 1
	Reflection Emit
	Generating IL code
	Generated IL Code
	CLR vs JVM
	JVM vs. CLR at a glance
	Java Byte Code and MSIL
	JVM vs. CLR
	JVM vs. CLR
	JVM vs. CLR
	JVM vs. CLR
	Why is .Net so interesting �from a programming language research point of view?

