
1

Languages and Compilers
(SProg og Oversættere)

Bent Thomsen
Department of Computer Science

Aalborg University

With acknowledgement to Norm Hutchinson whose slides this lecture is based on.

2

The JVM

In this lecture we look at the JVM as an example of a real-world
runtime system for a modern object-oriented programming language.

The material in this lecture is interesting because:

1) it will help understand some things about the JVM

2) JVM is probably the most common and widely used VM in the
world.

3) You’ll get a better idea what a real VM looks like.

3

Abstract Machines

Abstract machine implements an intermediate language “in between”
the high-level language (e.g. Java) and the low-level hardware (e.g.
Pentium)

Java

Pentium

Java

Pentium

JVM (.class files)

Java compiler

Java JVM interpreter
or JVM JIT compiler

High level

Low level

Implemented in Java:
Machine independent

4

P
JVMJava

P

Interpretive Compilers

Remember: our “Java Development Kit” to run a Java program P

Java->JVM
M JVM

MM

JVM
P

M
javac java

5

Hybrid compiler / interpreter

6

Abstract Machines

An abstract machine is intended specifically as a runtime system for
a particular (kind of) programming language.

• JVM is a virtual machine for Java programs:

• It directly supports object oriented concepts such as classes,
objects, methods, method invocation etc.

• easy to compile Java to JVM
=> 1) easy to implement compiler

2) fast compilation

• another advantage: portability

7

Class Files and Class File Format

The JVM is an abstract machine in the true sense of the word.

The JVM spec. does not specify implementation details (can be
dependent on target OS/platform, performance requirements etc.)

The JVM spec defines a machine independent “class file format”
that all JVM implementations must support.

.class files
JVM

load

internal representation
implementation dependent

objects

classes

methods

integers
arrays

primitive types

External representation
platform independent

8

Class File

• Table of constants.
• Tables describing the class

– name, superclass, interfaces
– attributes, constructor

• Tables describing fields and methods
– name, type/signature
– attributes (private, public, etc)

• The code for methods.

9

ClassFile {

u4 magic;
u2 minor_version;
u2 major_version;
u2 constant_pool_count;
cp_info constant_pool[constant_pool_count-1];
u2 access_flags;
u2 this_class;
u2 super_class;
u2 interfaces_count;
u2 interfaces[interfaces_count];
u2 fields_count;
field_info fields[fields_count];
u2 methods_count;
method_info methods[methods_count];
u2 attributes_count;
attribute_info attributes[attributes_count];

}

10

Data Types

JVM (and Java) distinguishes between two kinds of types:

Primitive types:
• boolean: boolean
• numeric integral: byte, short, int, long, char
• numeric floating point: float, double
• internal, for exception handling: returnAddress

Reference types:
• class types
• array types
• interface types

Note: Primitive types are represented directly, reference types are
represented indirectly (as pointers to array or class instances)

11

Data Types: Some additional remarks

• Return Address Type
– Used by the JVM instructions

• jsr (jump to subroutine)
• jsr_w (wide jump to subroutine)
• ret (return from subroutine)

• The boolean Type
– Very limited support for boolean type in JVM

• Java´s boolean type is compiled to int type
• Coding: true = 1, false = 0
• Explicit support for boolean arrays implemented as byte-arrays

• Floating Point Types
– No Exceptions (signaling conditions acc. to IEEE 754)
– Positive and negative zero, positive and negative infinity special value

NaN (not a number, comparision always yields false)

12

Internal Architecture of JVM

Execution
engine

Class
loader

subsystem

method
area heap Java

stacks
pc

registers

native
method
stacks

Runtime data area

class files

Native
Method

Interface

Native
Method
Libraries

13

JVM: Runtime Data Areas

Besides OO concepts, JVM also supports multi-threading. Threads are
directly supported by the JVM.

=> Two kinds of runtime data areas:
1) shared between all threads
2) private to a single thread

Shared Thread 1 Thread 2

pc

Java
Stack

Native
Method
Stack

pc

Java
Stack

Native
Method
Stack

Garbage Collected
Heap

Method area

14

Java Stacks

JVM is a stack based machine, much like TAM.
JVM instructions

• implicitly take arguments from the stack top
• put their result on the top of the stack

The stack is used to
• pass arguments to methods
• return result from a method
• store intermediate results in evaluating expressions
• store local variables

15

JVM Interpreter

The core of a JVM interpreter is basically this:
do {

byte opcode = fetch an opcode;
switch (opcode) {
case opCode1 :

fetch operands for opCode1;
execute action for opCode1;
break;

case opCode2 :
fetch operands for opCode2;
execute action for opCode2;
break;

case ...
} while (more to do)

16

Instruction-set: typed instructions!

JVM instructions are explicitly typed: different opCodes for
instructions for integers, floats, arrays and reference types.

This is reflected by a naming convention in the first letter of the
opCode mnemonics:

Example: different types of “load” instructions

iload
lload
fload
dload
aload

integer load
long load
float load
double load
reference-type load

17

Instruction set: kinds of operands

JVM instructions have three kinds of operands:
- from the top of the operand stack
- from the bytes following the opCode
- part of the opCode

One instructions may have different “forms” supporting different kinds
of operands.

Example: different forms of “iload”.

iload_0
iload_1
iload_2
iload_3

Assembly code Binary instruction code layout
26
27
28
29

21 niload n

wide iload n 196 n21

18

Instruction-set: accessing arguments and locals

locals: indexes #args .. #args+#locals-1

args: indexes 0 .. #args-1

arguments and locals area inside a stack frame

Instruction examples:
iload_1
iload_3
aload 5
aload_0

istore_1
astore_1
fstore_3

0:
1:
2:
3:

• A load instruction: loads something
from the args/locals area to the top
of the operand stack.

• A store instruction takes something
from the top of the operand stack
and stores it in the argument/local
area

19

Instruction-set: non-local memory access

In the JVM, the contents of different “kinds” of memory can be
accessed by different kinds of instructions.

accessing locals and arguments: load and store instructions

accessing fields in objects: getfield, putfield

accessing static fields: getstatic, putstatic

Note: static fields are a lot like global variables. They are allocated
in the “method area” where also code for methods and
representations for classes are stored.

Q: what memory area are getfield and putfield accessing?

20

Instruction-set: operations on numbers

add: iadd, ladd, fadd, dadd
subtract: isub, lsub, fsub, dsub
multiply: imul, lmul, fmul, dmul
etc.

Arithmethic

Conversion

i2l, i2f, i2d
l2f, l2d, f2s

f2i, d2i, …

21

Instruction-set …

Operand stack manipulation
pop, pop2, dup, dup2, dup_x1, swap, …

Control transfer
Unconditional : goto, goto_w, jsr, ret, …
Conditional: ifeq, iflt, ifgt, …

22

Instruction-set …

Method invocation:
invokevirtual: usual instruction for calling a method on an

object.
invokeinterface: same as invokevirtual, but used when the

called method is declared in an interface. (requires different kind
of method lookup)

invokespecial: for calling things such as constructors.
These are not dynamically dispatched (this instruction is also
known as invokenonvirtual)

invokestatic: for calling methods that have the “static”
modifier (these methods “belong” to a class, rather an object)

Returning from methods:
return, ireturn, lreturn, areturn, freturn, …

23

Instruction-set: Heap Memory Allocation

Create new class instance (object):
new

Create new array:
newarray: for creating arrays of primitive types.
anewarray, multianewarray: for arrays of reference

types

24

Example

class Factorial {

int fac(int n) {
int result = 1;
for (int i=2; i<n; i++) {

result = result * i;
}
return result;

}
}

As an example on the JVM, we will take a look at the compiled code
of the following simple Java class declaration.

25

Compiling and Disassembling

% javac Factorial.java
% javap -c -verbose Factorial
Compiled from Factorial.java
public class Factorial extends java.lang.Object {

public Factorial();
/* Stack=1, Locals=1, Args_size=1 */

public int fac(int);
/* Stack=2, Locals=4, Args_size=2 */

}

Method Factorial()
0 aload_0
1 invokespecial #1 <Method java.lang.Object()>
4 return

% javac Factorial.java
% javap -c -verbose Factorial
Compiled from Factorial.java
public class Factorial extends java.lang.Object {

public Factorial();
/* Stack=1, Locals=1, Args_size=1 */

public int fac(int);
/* Stack=2, Locals=4, Args_size=2 */

}

Method Factorial()
0 aload_0
1 invokespecial #1 <Method java.lang.Object()>
4 return

26

Compiling and Disassembling ...

// address: 0 1 2 3
Method int fac(int) // stack: this n result i

0 iconst_1 // stack: this n result i 1
1 istore_2 // stack: this n result i
2 iconst_2 // stack: this n result i 2
3 istore_3 // stack: this n result i
4 goto 14
7 iload_2 // stack: this n result i result
8 iload_3 // stack: this n result i result i
9 imul // stack: this n result i result i
10 istore_2
11 iinc 3 1
14 iload_3 // stack: this n result i i
15 iload_1 // stack: this n result i i n
16 if_icmple 7 // stack: this n result i
19 iload_2 // stack: this n result i result
20 ireturn

27

JASMIN

• JASMIN is an assembler for the JVM
– Takes an ASCII description of a Java classes
– Input written in a simple assembler like syntax

• Using the JVM instruction set
– Outputs binary class file
– Suitable for loading by the JVM

• Running JASMIN
– jasmin myfile.j

• Produces a .class file with the name specified by the
.class directive in myfile.j

28

Writing Factorial in “jasmin”
.class package Factorial
.super java/lang/Object

.method package <init>()V

.limit stack 50

.limit locals 1
aload_0
invokenonvirtual java/lang/Object/<init>()V
return
.end method

.class package Factorial

.super java/lang/Object

.method package <init>()V

.limit stack 50

.limit locals 1
aload_0
invokenonvirtual java/lang/Object/<init>()V
return
.end method

29

Writing Factorial in “jasmin”
.method package fac(I)I
.limit stack 50
.limit locals 4
iconst_1
istore 2
iconst_2
istore 3
Label_1:
iload 3
iload 1
if_icmplt Label_4
iconst_0
goto Label_5
Label_4:
iconst_1
Label_5:
ifeq Label_2

iload 2
iload 3
imul
dup
istore 2
pop
Label_3:
iload 3
dup
iconst_1
iadd
istore 3
pop
goto Label_1
Label_2:
iload 2
ireturn
iconst_0
ireturn
.end method

30

Another example: out.j

.class public out

.super java/lang/Object

.method public <init>()V
aload_0
invokespecial java/lang/Object/<init>()V
return

.end method

.method public static main([Ljava/lang/String;)V
.limit stack 2

getstatic java/lang/System/out Ljava/io/PrintStream;
ldc “Hello World”
invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V

return
.end method

31

The result: out.class

32

Jasmin file format

• Directives
– .catch . Class .end .field .implements .interface .limit .line
– .method .source .super .throws .var

• Instructions
– JVM instructions: ldc, iinc bipush

• Labels
– Any name followed by : - e.g. Foo:
– Cannot start with = : . *
– Labels can only be used within method definitions

33

The JVM as a target for different languages

When we talk about Java what do we mean?
• “Java” isn’t just a language, it is a platform
• The list of languages targeting the JVM is very long!

– Languages for the Java VM

JVM

java.* javax.* org.*

Java Groovy AspectJ Languages

APIs / Libraries

http://www.robert-tolksdorf.de/vmlanguages.html

34

• Java has a lot of great APIs and libraries
– Core libraries (java[x].*)
– Open source libraries
– Third party commercial libraries

• What is it that we are reusing when we use these tools?
– We are reusing the bytecode
– We are reusing the fact that the JVM has a nice spec

• This means that we can innovate on top of this binary
class file nonsense ☺

Reusability

35

Not just one JVM, but a whole family

• JVM (J2EE & J2SE)
– SUN Classis, SUN HotSpots, IBM, BEA, …

• CVM, KVM (J2ME)
– Small devices.
– Reduces some VM features to fit resource-constrained

devices.
• JCVM (Java Card)

– Smart cards.
– It has least VM features.

• And there are also lots of other JVMs

36

Java Platform & VM & Devices

37

Hardware implementations of the JVM

http://www.jopdesign.com/cyclone/top.jpg

	Languages and Compilers�(SProg og Oversættere)
	The JVM
	Abstract Machines
	Interpretive Compilers
	Hybrid compiler / interpreter
	Abstract Machines
	Class Files and Class File Format
	Class File
	Data Types
	Data Types: Some additional remarks
	Internal Architecture of JVM
	JVM: Runtime Data Areas
	Java Stacks
	JVM Interpreter
	Instruction-set: typed instructions!
	Instruction set: kinds of operands
	Instruction-set: accessing arguments and locals
	Instruction-set: non-local memory access
	Instruction-set: operations on numbers
	Instruction-set …
	Instruction-set …
	Instruction-set: Heap Memory Allocation
	Example
	Compiling and Disassembling
	Compiling and Disassembling ...
	JASMIN
	Writing Factorial in “jasmin”
	Writing Factorial in “jasmin”
	Another example: out.j
	The result: out.class
	Jasmin file format
	The JVM as a target for different languages
	Not just one JVM, but a whole family
	Java Platform & VM & Devices
	Hardware implementations of the JVM

