
1

Languages and Compilers
(SProg og Oversættere)

Abstract Data Types
and

Object Oriented Features

Bent Thomsen
Department of Computer Science

Aalborg University

With acknowledgement to John Mitchell, Elsa Gunter, David Watt and Amiram Yehudai
whose slides this lecture is based on.

2

The Concept of Abstraction

• The concept of abstraction is fundamental in
programming (and computer science)

• Nearly all programming languages support process
abstraction with subprograms

• Nearly all programming languages designed since 1980
have supported data abstraction:
– Abstract data type
– Objects
– Module

3

What have we seen so far?

• Structured data
– Arrays
– Records or structs
– Lists

• Visibility of variables and subprograms
– Scope rules

• Why is this not enough?

4

Information Hiding

• Consider the C code:

typedef struct RationalType {
int numerator;
int denominator;

} Rational

Rational mk_rat (int n,int d) { …}
Rational add_rat (Rational x, Rational y) {
… }

• Can use mk_rat, add_rat without knowing the
details of RationalType

5

Need for Abstract Types

• Problem: abstraction not enforced
– User can create Rationals without using mk_rat
– User can access and alter numerator and denominator

directly without using provided functions
• With abstraction we also need information hiding

6

Abstract Types - Example

• Suppose we need sets of integers
• Decision: implement as lists of int
• Problem: lists have order and repetition, sets

don’t
• Solution: use only lists of int ordered from

smallest to largest with no repetition (data
invariant)

7

Abstract Type – SML code Example
type intset = int list
val empty_set = []:intset
fun insert {elt, set = [] } = [elt]

| insert {elt, set = x :: xs} =
if elt < x then elt :: x :: xs
else if elt = x then x :: xs
else x :: (insert {elt = elt, set = xs})

fun union ([],ys) = ys
| union (x::xs,ys) =

union(xs,insert{elt=x,set = ys})

fun intersect ([],ys) = []
| intersect (xs,[]) = []
| intersect (x::xs,y::ys) =

if x <y then intersect(xs, y::ys)
else if y < x then intersect(x::xs,ys)
else x :: (intersect(xs,ys))

fun elt_of {elt, set = []} = false
| elt_of {elt, set = x::xs} =

(elt = x) orelse
(elt > x andalso
elt_of{elt = elt, set = xs})

8

Abstract Type – Example

• Notice that all these definitions maintain the data
invariant for the representation of sets, and
depend on it

• Are we happy now?
• NO!
• As is, user can create any pair of lists of int and

apply union to them; the result is meaningless

9

Solution: abstract datatypes
abstype intset = Set of int list with
val empty_set = Set []
local
fun ins {elt, set = [] } = [elt]

| ins {elt, set = x :: xs} =
if elt < x then elt :: x :: xs
else if elt = x then x :: xs
else x :: (ins {elt = elt, set =
xs})

fun un ([],ys) = ys
| un (x::xs,ys) =

un (xs,ins{elt=x,set = ys})
in

fun insert {elt, set = Set s}=
Set(ins{elt = elt, set = s})

fun union (Set xs, Set ys) =
Set(un (xs, ys))

end

local
fun inter ([],ys) = []

| inter (xs,[]) = []
| inter (x::xs,y::ys) =

if x <y then inter(xs, y::ys)
else if y < x then inter(x::xs,ys)
else x :: (inter(xs,ys))

in
fun intersect(Set xs, Set ys) =

Set(inter(xs,ys))
end
fun elt_of {elt, set = Set []} = false

| elt_of {elt, set = Set (x::xs)} =
(elt = x) orelse
(elt > x andalso
elt_of{elt = elt, set = Set xs})

fun set_to_list (Set xs) = xs
end (* abstype *)

10

Abstract Type – Example

• Creates a new type (not equal to int list)
• Functional implementation of integer sets –

insert creates new intset
• Exports

– type intset,
– Constant empty_set
– Operations: insert, union, elt_of, and

set_to_list; act as primitive
– Cannot use pattern matching or list functions;

won’t type check

11

Abstract Type – Example

• Implementation: just use int list, except for type
checking

• Data constructor Set only visible inside the asbtype
declaration; type intset visible outside

• Function set_to_list used only at compile time
• Data abstraction allows us to prove data invariant

holds for all objects of type intset

12

Abstract Types
• A type is abstract if the user can only see:

– the type
– constants of that type (by name)
– operations for interacting with objects of that type that have

been explicitly exported
• Primitive types are built in abstract types

e.g. int type in Java
– The representation is hidden
– Operations are all built-in
– User programs can define objects of int type

• User-defined abstract data types must have the same
characteristics as built-in abstract data types

13

User Defined Abstract Types

• Syntactic construct to provide encapsulation of
abstract type implementation

• Inside, implementation visible to constants and
subprograms

• Outside, only type name, constants and
operations, not implementation, visible

• No runtime overhead as all the above can be
checked statically

14

Advantage of Data Abstraction

• Advantage of Inside condition:
– Program organization, modifiability (everything

associated with a data structure is together)
– Separate compilation may be possible

• Advantage of Outside condition:
– Reliability--by hiding the data representations, user

code cannot directly access objects of the type. User
code cannot depend on the representation, allowing the
representation to be changed without affecting user
code.

15

Limitation of Abstract data types
Queue

abstype q
with

mk_Queue : unit -> q
is_empty : q -> bool
insert : q * elem -> q
remove : q -> elem

is …
in

program
end

Priority Queue

abstype pq
with

mk_Queue : unit -> pq
is_empty : pq -> bool
insert : pq * elem -> pq
remove : pq -> elem

is …
in

program
end

But cannot intermix pq’s and q’s

16

Abstract Data Types

• Guarantee invariants of data structure
– only functions of the data type have access to the internal

representation of data

• Limited “reuse”
– Cannot apply queue code to pqueue, except by explicit

parameterization, even though signatures identical
– Cannot form list of points, colored points

• Data abstraction is important – how can we make it
extensible?

17

The answer is: Objects

• An object consists of
– hidden data

instance variables, also called
member data

hidden functions also possible
– public operations

methods or member functions
can also have public variables

in some languages

• Object-oriented program:
– Send messages to objects

hidden data

method1msg1

.

methodnmsgn

18

What’s interesting about this?

• Universal encapsulation construct
– Data structure
– File system
– Database
– Window
– Integer

• Metaphor usefully ambiguous
– sequential or concurrent computation
– distributed, sync. or async. communication

19

Object-oriented programming

• Programming methodology
– organize concepts into objects and classes
– build extensible systems

• Language concepts
– encapsulate data and functions into objects
– subtyping allows extensions of data types
– inheritance allows reuse of implementation
– dynamic lookup

20

Dynamic Lookup – dynamic dispatch

• In object-oriented programming,
object message (arguments)
object.method(arguments)

code depends on object and message
– Add two numbers x add (y)

different add if x is integer or complex

• In conventional programming,
operation (operands)

meaning of operation is always the same
– Conventional programming add (x, y)

function add has fixed meaning

21

Dynamic dispatch

• If methods are overridden, and if the PL allows a
variable of a particular class to refer to an object of a
subclass, then method calls entail dynamic dispatch.

• Consider the Java method call “O.M(E1, …, En)”:
– The compiler infers the type of O, say class C.
– The compiler checks that class C is equipped with a method

named M, of the appropriate type.
– Nevertheless, it might turn out (at run-time) that the target

object is actually of class S, a subclass of C.
– If method M is overridden by any subclass of C, a run-time tag

test is needed to determine the actual class of the target object,
and hence which of the methods named M is to be called.

© 2004, D.A. Watt, University of Glasgow

22

Dynamic Dispatch Example
class point {

int c;
int getColor() { return(c); }
int distance() { return(0); }

}
class cartesianPoint extends point{

int x, y;
int distance() { return(x*x + y*y); }

}
class polarPoint extends point {

int r, t;
int distance() { return(r*r); }
int angle() { return(t); }

}

23

Dynamic Dispatch Example

if (x == 0) {
p = new point();

} else if (x < 0) {
p = new cartesianPoint();

} else if (x > 0) {
p = new polarPoint();

}
y = p.distance();

Which distance method is invoked?
• Invoked Method Depends on Type

of Receiver!
– if p is a point

• return(0)
– if p is a cartesianPoint

• return(x*x + y*y)
– if p is a polarPoint

• return(r*r)

24

Overloading vs. Dynamic Dispatch

• Dynamic Dispatch
– Add two numbers x add (y)

different add if x is integer, complex, ie. depends on the type
of x

• Overloading
– add (x, y) function add has fixed meaning
– int-add if x and y are ints
– real-add if x and y are reals

Important distinction:
Overloading is resolved at compile time,
Dynamic lookup at run time.

25

Encapsulation

• Builder of a concept has detailed view
• User of a concept has “abstract” view
• Encapsulation is the mechanism for separating these two

views

message

Object

26

Comparison

• Traditional approach to encapsulation is through
abstract data types

• Advantage
– Separate interface from implementation

• Disadvantage
– Not extensible in the way that OOP is

27

Subtyping and Inheritance

• Interface
– The external view of an object

• Subtyping
– Relation between interfaces

• Implementation
– The internal representation of an object

• Inheritance
– Relation between implementations

28

Object Interfaces

• Interface
– The messages understood by an object

• Example: point
– x-coord : returns x-coordinate of a point
– y-coord : returns y-coordinate of a point
– move : method for changing location

• The interface of an object is its type.

29

Subtyping

• If interface A contains all of interface B, then A
objects can also be used B objects.

• Colored_point interface contains Point
• Colored_point is a subtype of Point

Point
x-coord
y-coord
move

Colored_point
x-coord
y-coord
color
move
change_color

30

Inheritance

• Implementation mechanism
• New objects may be defined by reusing

implementations of other objects

31

Example

class Point
private

float x, y
public

point move (float dx, float dy);

class Colored_point
private

float x, y; color c
public

point move(float dx, float dy);
point change_color(color newc);

Subtyping
• Colored points can be

used in place of points

• Property used by client
program

Inheritance
• Colored points can be

implemented by resuing
point implementation

• Propetry used by
implementor of classes

32

Subtyping differs from inheritance

Collection

Set

Sorted Set

Indexed

Array Dictionary

String
Subtyping
Inheritance

33

Access Control

• In many OOPLs it is possible to declare attributes (and
methods) private or public or protected etc.

• This has no effect on the running program, but simply means
that the compiler will reject programs which violate the
access-rules specified

• The control is done as part of static semantic analysis

34

same
class

public

protected

package

private

in other
package

heirs in
other

package

same
package

heirs in
same

package

Access Privileges in Java

35

Varieties of OO languages

• class-based languages
– behavior of object determined by its class

• object-based
– objects defined directly

• multi-methods
– operation depends on all operands

36

History

• Simula 1960’s
– Object concept used in simulation

• Smalltalk 1970’s
– Object-oriented design, systems

• C++ 1980’s
– Adapted Simula ideas to C

• Java 1990’s
– Distributed programming, internet

• C# 2000’s
– Combine the efficiency of C/C++ with the safety of Java

37

Runtime Organization for OO Languages

What is this about?
How to represent/implement object oriented constructs such as
object, classes, methods, instance variables and method invocation

Some definitions for these concepts:
• An object is a group of instance variables to which a group of

instance methods are attached.
• An instance variable is a named component of a particular object.
• An instance method is a named operation is attached to a particular

object and is able to access that objects instance variables
• An object class (or just class) is a family of objects with similar

instance variables and identical methods.

38

Runtime Organization for OO Languages

Objects are a lot like records and instance variables are a lot like fields.
=> The representation of objects is similar to that of a record.

Methods are a lot like procedures.
=> Implementation of methods is similar to routines.

But… there are differences:

Objects have methods as well as instance variables, records only
have fields.

The methods have to somehow know what object they are associated
with (so that methods can access the object’s instance variables)

39

Example: Representation of a simple Java object

Example: a simple Java object (no inheritance)

class Point {
int x,y;
public Point(int x, int y) {

this.x=x; this.y=y;
}

public void move(int dx, int dy) {
x=x+dx; y=y+dy;

}

public float area() { ...}
public float dist(Point other) { ... }

}

class Point {
int x,y;
public Point(int x, int y) {

this.x=x; this.y=y;
}

public void move(int dx, int dy) {
x=x+dx; y=y+dy;

}

public float area() { ...}
public float dist(Point other) { ... }

}

(1)

(2)

(3)
(4)

40

Example: Representation of a simple Java object

Example: a simple Java object (no inheritance)

Point class
Point
move
area
dist

constructor(1)
method(2)
method(3)
method(4)

Point p = new Point(2,3);
Point q = new Point(0,0);

p

q

class
x
y

2
3

class
x
y

0
0

new allocates an object in
the heap

41

Inheritance

Example 2: Points and other “shapes”

abstract class Shape {
int x,y; // “origin” of the shape
public Shape(int x, int y) {

this.x=x; this.y=y;
}

public void move(int dx, int dy) {
x=x+dx; y=y+dy;

}

public abstract float area();
public float dist(Shape other) { ... }

}

abstract class Shape {
int x,y; // “origin” of the shape
public Shape(int x, int y) {

this.x=x; this.y=y;
}

public void move(int dx, int dy) {
x=x+dx; y=y+dy;

}

public abstract float area();
public float dist(Shape other) { ... }

}

(S1)

(S2)

(S3)

42

class Point extends Shape {

public Point(int x, int y) {
super(x,y);

}

public float area() { return 0.0; }
}

class Point extends Shape {

public Point(int x, int y) {
super(x,y);

}

public float area() { return 0.0; }
}

(P1)

(P2)

Inheritance

Example 2: Points and other “shapes”

43

Inheritance

Example 2: Points and other “shapes”

class Circle extends Shape {
int r;
public Circle(int x,int y,int r) {

super(x,y); this.r = r;
}

public int radius() { return r; }

public float area() {
return 3.14 * r * r;

}
}

class Circle extends Shape {
int r;
public Circle(int x,int y,int r) {

super(x,y); this.r = r;
}

public int radius() { return r; }

public float area() {
return 3.14 * r * r;

}
}

(C1)

(C3)

(C2)

44

Inheritance

Shape[] s = new Shape[2];
s[0] = new Point(2,3);
s[1] = new Circle(4,5,6);

s

class
x
y
r

4
5
6

class
x
y

2
3

point class circle class

Note the similar layout between point and circle objects!

s[0]
s[1]

s[0].x = ...;
s[1].y = ...;
float areas =

s[0].area()
+s[1].area();

45

Inheritance

Shape class
Shape
move
area
dist

constru(S1)
method(S2)

method(S3)

Circle
move
area
dist

Circle class
constru(C1)
method(S2)
method(C3)
method(S3)

radius method(C2)

Inherited from shapePoint class
Point
move
area
dist

constru(P1)
method(S2)

method(S3)
method(P2) Note the similar layout of

each class object.
Q: why is that important?

Q: why don’t we need a pointer to the super class in a class object?

46

Alternative Run-time representation of point

class
x 3
y 2

x
y

newX:Y:
...

move

Point object

Point class

Method dictionary

Template

to superclass Object

code

...

code

Detail: class method shown in
dictionary, but lookup procedure
distinguishes class and instance
methods

47

Alternative Run-time representation

2
3

x
y newX:Y:

draw
move

Point object Point class Template
Method dictionary

...

4
5

x
y newX:Y:C:

color
draw

ColorPoint object ColorPoint class Template
Method dictionary

red

color

This is a schematic diagram meant to illustrate the main idea. Actual implementations may differ.

48

Multiple Inheritance

• In the case of simple inheritance, each class may have one direct
predecessor; multiple inheritance allows a class to have several direct
predecessors.

• In this case the simple ways of accessing attributes and binding
method-calls (shown previously) don’t work.

• The problem: if class C inherits class A and class B the objects of class
C cannot begin with attributes inherited from A and at the same time
begin with attributes inherited from B.

• In addition to these implementation problems multiple inheritance also
introduces problems at the language (conceptual) level.

49

Object Layout

• The memory layout of the object’s fields
• How to access a field if the dynamic type is unknown?

– Layout of a type must be “compatible” with that of its supertypes
– Easy for Single Inheritance hierarchies

• The new fields are added
at the end of the layout

Hard for MI hierarchies

B C

A
CB

A
B

A
A

A

C

D
A
B
C

C
A

C

B
A
B

A
A

D

Leave holes

Rectangle

Shape Polygon Rectangle

PolygonPolygon
ShapeShapeShape

Layout in SI

D

A
B

C
D

C

A

C

B

A
B

A

A

BiDirectional layout

D

A

B
C
D

C

A

C
B

A
BA

A

C++ layout
D

D

?

A
B C

D

The difficulty in MI

50

Dynamic (late) Binding
• Consider the method call:

– x.f(a,b) where is f defined?
in the class (type)of x? Or in a predecessor?

• In single inheritance languages
1. Determine the target object from x.
2. Follow the pointer from the target object’s tag field to the corresponding class

object.
3. Select the method named f in the class object.
4. Call that method, passing the target object’s address along with the ordinary

arguments.

• If multiple inheritance is supported then the entire predecessor graph must be
searched:
– This costs a large overhead in dynamic typed languages like Smalltalk (normally

these languages don’t support multiple inheritance)
– In static typed languages like Java, Eiffel, C++ the compiler is able to analyse the

class-hierarchy (or more precise: the graph) for x and create a display-array
containing addresses for all methods of an object (including inherited methods)

– According to Meyer the overhead of this compared to static binding is at most
30%, and overhead decreases with complexity of the method

• If multi-methods are supported a forest like data structure has to be searched

51

Implementation of Object Oriented Languages

• Implementation of Object Oriented Languages differs
only slightly from implementations of block structured
imperative languages

• Some additional work to do for the contextual analysis
– Access control, e.g. private, public, procted directives
– Subtyping can be tricky to implement correctly

• The main difference is that methods usually have to be
looked up dynamically, thus adding a bit of run-time
overhead
– For efficiency reasons some language introduce modifiers like:

• final (Java) or virtual/override (C#)
– multiple inheritance poses a bigger problem
– Multi methods poses an even bigger problem

52

Encapsulation Constructs

• Original motivation:
– Large programs have two special needs:
1. Some means of organization, other than simply division into

subprograms
2. Some means of partial compilation (compilation units that are

smaller than the whole program)

• Obvious solution: a grouping of subprograms that are
logically related into a unit that can be separately
compiled (compilation units)
– These are called encapsulations

53

Modules

• Language construct for grouping related types,
data structures, and operations

• Typically allows at least some encapsulation
– Can be used to provide abstract types

• Provides scope for variable and subprogram
names

• Typically includes interface stating which
modules it depends upon and what types and
operations it exports

• Compilation unit for separate compilation

54

Encapsulation Constructs

• Nested subprograms in Ada and Fortran 95
• Encapsulation in C

– Files containing one or more subprograms can be
independently compiled

– The interface is placed in a header file
– Problem: the linker does not check types between a header

and associated implementation
• Encapsulation in C++

– Similar to C
– Addition of friend functions that have access to private

members of the friend class

55

Encapsulation Constructs

• Ada Package
– Can include any number of data and subprogram delcarations
– Two parts: specification and body
– Can be compiled separately

• C# Assembly
– Collection of files that appears to be a single dynamic link

library or executable
– Larger construct than class; used by all .NET programming

languages

56

Naming Encapsulations

• Large programs define many global names; need a way
to divide into logical groupings

• A naming encapsulation is used to create a new scope
for names

• C++ Namespaces
– Can place each library in its own namespace and qualify

names used outside with the namespace
– C# also includes namespaces

57

Naming Encapsulations
• Java Packages

– Packages can contain more than one class definition; classes in a package
are partial friends

– Clients of a package can use fully qualified name or use the import
declaration

• Ada Packages
– Packages are defined in hierarchies which correspond to file hierarchies
– Visibility from a program unit is gained with the with clause

• SML Modules
– called structure; interface called signature
– Interface specifies what is exported
– Interface and structure may have different names
– If structure has no signature, everything exported
– Modules may be parameterized (functors)
– Module system quite expressive

58

Issues

• The target language usually has one spaces
– Generate unique names for modules
– Some assemblers support local names per file
– Use special characters which are invalid in the programming

language to guarantee uniqueness

• Generate code for initialization
– Modules may use items from other modules
– Init before used
– Init only once
– Circular dependencies

59

Avoiding Multiple Initializations
• If module A uses module B and C and B uses C

– How to initialize C once
• Similar problem occurs when using C include files
• Two solutions

– Compute a total order and init before use
– Use special compile-time flag

60

Detecting Circular Dependencies

• Check the graph of used specifications is acyclic
• But what about implementation
• A’s specification can use B’s implementation
• B’s specification can use A’s implementation
• Detect at runtime (link time)

61

Summary

• Abstract Data Types
– Encapsulation
– Invariants may be preserved

• Objects
– Reuse
– Subtyping
– Inheritance
– Dynamic dispatch

• Modules
– Grouping (related) entities
– Namespace management
– Separate compilation

62

“I invented the term Object-Oriented
and I can tell you I did not have C++
in mind.”

Alan Kay

	Languages and Compilers�(SProg og Oversættere)��Abstract Data Types �and �Object Oriented Features
	The Concept of Abstraction
	What have we seen so far?
	Information Hiding
	Need for Abstract Types
	Abstract Types - Example
	Abstract Type – SML code Example
	Abstract Type – Example
	Solution: abstract datatypes
	Abstract Type – Example
	Abstract Type – Example
	Abstract Types
	User Defined Abstract Types
	Advantage of Data Abstraction
	Limitation of Abstract data types
	Abstract Data Types
	The answer is: Objects
	What’s interesting about this?
	Object-oriented programming
	Dynamic Lookup – dynamic dispatch
	Dynamic dispatch
	Dynamic Dispatch Example
	Dynamic Dispatch Example
	Overloading vs. Dynamic Dispatch
	Encapsulation
	Comparison
	Subtyping and Inheritance
	Object Interfaces
	Subtyping
	Inheritance
	Example
	Subtyping differs from inheritance
	Access Control
	Access Privileges in Java
	Varieties of OO languages
	History
	Runtime Organization for OO Languages
	Runtime Organization for OO Languages
	Example: Representation of a simple Java object
	Example: Representation of a simple Java object
	Inheritance
	Inheritance
	Inheritance
	Inheritance
	Inheritance
	Alternative Run-time representation of point
	Alternative Run-time representation
	Multiple Inheritance
	Object Layout
	Dynamic (late) Binding
	Implementation of Object Oriented Languages
	Encapsulation Constructs
	Modules
	Encapsulation Constructs
	Encapsulation Constructs
	Naming Encapsulations
	Naming Encapsulations
	Issues
	Avoiding Multiple Initializations
	Detecting Circular Dependencies
	Summary

