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The Concept of Abstraction

* The concept of abstraction is fundamental in
programming (and computer science)

» Nearly all programming languages support process
abstraction with subprograms

« Nearly all programming languages designed since 1980
have supported data abstraction:
— Abstract data type
— Objects
— Module



What have we seen so far?

o Structured data
— Arrays
— Records or structs
— Lists

 Visibility of variables and subprograms
— Scope rules

* Why Is this not enough?



Information Hiding
e Consider the C code:

typedef struct RationalType {
int numerator;
int denominator;

} Rational

Rational mk _rat (int n,int d) { ..}
Rational add _rat (Rational x, Rational y) {

- ¥

e Canuse mk rat, add rat without knowing the
details of RationalType



Need for Abstract Types

* Problem: abstraction not enforced
— User can create Rationals without using mk_rat

— User can access and alter numerator and denominator
directly without using provided functions

o With abstraction we also need information hiding



Abstract Types - Example

Suppose we need sets of integers

Decision: implement as lists of int

Problem: lists have order and repetition, sets
don’t

Solution: use only lists of int ordered from
smallest to largest with no repetition (data
Invariant)



Abstract Type — SML code Example

type intset = int list
val empty set = []:intset
fun insert {elt, set =[] } = [elf]
| insert {elt, set = x :: xs} =
If elt <xthenelt: x:xs
else if elt = x then x :: xs
else x :: (insert {elt = elt, set = xs})

fun union ([],ys) = ys
| union (X::xs,ys) =
union(xs,insert{elt=x,set = ys})

fun intersect ([],ys) =[]
| intersect (xs,[]) =[]
| iIntersect (x::xs,y::ys) =
If X <y then intersect(xs, y:.ys)
else if y < x then intersect(x::Xs,ys)
else x :: (intersect(xs,ys))

fun elt_of {elt, set =[]} = false
| elt_of {elt, set = x::xs} =
(elt = x) orelse
(elt > x andalso
elt_of{elt = elt, set = xs})



Abstract Type — Example

Notice that all these definitions maintain the data
Invariant for the representation of sets, and
depend on it

Are we happy now?
NO!

As IS, user can create any pair of lists of int and
apply union to them; the result is meaningless



Solution: abstract datatypes

abstype intset = Set of int list with

val empty_set = Set []
locall
fun ins {elt, set =[] } = [elt]
| ins {elt, set = x:: xs} =
if elt <xthenelt::x: xs
else if elt = x then x :: xs
else x :: (ins {elt = elt, set =

XS})
fun un ([],ys) = ys
| un (X::xs,ys) =

un (xs,ins{elt=x,set = ys})
in
fun insert {elt, set = Set s}=
Set(ins{elt = elt, set =s})
fun union (Set xs, Set ys) =
Set(un (xs, ys))
end

local
fun inter ([],ys) =]
| inter (xs,[]) =[]
| iInter (X::xs,y::ys) =
If X <y then inter(xs, y:.ys)
else if y < x then inter(X::xs,ys)
else x :: (inter(xs,ys))

in
fun intersect(Set xs, Set ys) =
Set(inter(xs,ys))
end
fun elt_of {elt, set = Set []} = false
| elt_of {elt, set = Set (x::xs)} =
(elt = x) orelse
(elt > x andalso
elt_of{elt = elt, set = Set xs})
fun set_to_list (Set xs) = xs
end (* abstype *)



Abstract Type — Example

« Creates a new type (not equal to int list)

* Functional implementation of integer sets —
Insert creates new Intset

e EXports
— type intset,
— Constant empty_set
— Operations: insert, union, elt_of, and
set_to_list; act as primitive
— Cannot use pattern matching or list functions;
won’t type check
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Abstract Type — Example

Implementation: just use int list, except for type
checking

Data constructor Set only visible inside the asbtype
declaration; type intset visible outside

~unction set_to_list used only at compile time
Data abstraction allows us to prove data invariant
nolds for all objects of type intset
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Abstract Types

o A type is abstract if the user can only see:
— the type
— constants of that type (by name)
— operations for interacting with objects of that type that have
been explicitly exported
 Primitive types are built in abstract types

e.g. Int type in Java
— The representation is hidden
— Operations are all built-in
— User programs can define objects of int type

» User-defined abstract data types must have the same
characteristics as built-in abstract data types
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User Defined Abstract Types

Syntactic construct to provide encapsulation of
abstract type implementation

Inside, implementation visible to constants and
subprograms

Outside, only type name, constants and
operations, not implementation, visible

No runtime overhead as all the above can be
checked statically
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Advantage of Data Abstraction

« Advantage of Inside condition:

— Program organization, modifiability (everything
associated with a data structure is together)

— Separate compilation may be possible

« Advantage of Outside condition:

— Reliability--by hiding the data representations, user
code cannot directly access objects of the type. User
code cannot depend on the representation, allowing the
representation to be changed without affecting user
code.
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Limitation of Abstract data types

Queue

abstype ¢
with

mk_Queue :
IS _empty :

insert
remove
1S
in
program
end

unit -> ¢

q

-> bool

2 q * elem -> q
-

-> elem

Priority Queue

abstype pqQ
with

mk_Queue :
IS _empty :
> pq * elem -> pq
> pg -> elem

insert
remove
IS ..
in
program
end

But cannot intermix pg’s and q’s

unit -> pq
pg -> bool
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Abstract Data Types

e Guarantee Invariants of data structure

— only functions of the data type have access to the internal
representation of data

e Limited “reuse”

— Cannot apply queue code to pgueue, except by explicit
parameterization, even though signatures identical

— Cannot form list of points, colored points

« Data abstraction is important — how can we make it
extensible?

16



The answer is: Objects

e An object consists of
— hidden data

Instance variables, also called
member data

hidden functions also possible
— public operations
methods or member functions

can also have public variables
In some languages

* Object-oriented program:
— Send messages to objects

17



What’s interesting about this?

 Universal encapsulation construct
— Data structure
— File system
— Database
— Window
— Integer

o Metaphor usefully ambiguous
— sequential or concurrent computation
— distributed, sync. or async. communication
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Object-oriented programming

e Programming methodology
— organize concepts into objects and classes
— build extensible systems

e Language concepts
— encapsulate data and functions into objects
— subtyping allows extensions of data types
— Inheritance allows reuse of implementation
— dynamic lookup
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Dynamic Lookup — dynamic dispatch

* In object-oriented programming,
object - message (arguments)
object.method(arguments)

code depends on object and message
— Add two numbers X = add (y)
different add If x Is integer or complex

 |n conventional programming,
operation (operands)
meaning of operation is always the same

— Conventional programming add (x, y)
function add has fixed meaning
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Dynamic dispatch

 |f methods are overridden, and if the PL allows a
variable of a particular class to refer to an object of a
subclass, then method calls entail dynamic dispatch.

» Consider the Java method call “O-M(E,, ..., E))™:

— The compiler infers the type of O, say class C.

— The compiler checks that class C is equipped with a method
named M, of the appropriate type.

— Nevertheless, it might turn out (at run-time) that the target
object is actually of class S, a subclass of C.

— If method M is overridden by any subclass of C, a run-time tag
test is needed to determine the actual class of the target object,
and hence which of the methods named M is to be called.
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Dynamic Dispatch Example

class point {
Int C;
int getColor() { return(c); }
int distance() { return(0); }
¥
class cartesianPoint extends point{
Int x, y;
int distance() { return(x*x + y*y); }
¥
class polarPoint extends point {
Intr, t;
int distance() { return(r*r); }
int angle() { return(t); }

}
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Dynamic Dispatch Example

if (x==0){ Which distance method is invoked?
p = new point(); * Invoked Method Depends on Type
Jelseif (x<0){ of Receiver!
p = new cartesianPoint(); — if pis a point
Jelseif (x>0){ e return(0)
p = new polarPoint(); — if pis a cartesianPoint
h o return(x*x + y*y)
y = p.distance(); — if pis a polarPoint

o return(r*r)
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Overloading vs. Dynamic Dispatch

e Dynamic Dispatch

— Add two numbers X = add (y)
different add if x Is integer, complex, ie. depends on the type
of X

e QOverloading
— add (x, y) function add has fixed meaning
— Int-add If x and y are Ints
— real-add If x and y are reals

Important distinction:
Overloading is resolved at compile time,

Dynamic lookup at run time.
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Encapsulation

 Builder of a concept has detailed view
o User of a concept has “abstract” view

« Encapsulation is the mechanism for separating these two
VIEWS

message
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Comparison

 Traditional approach to encapsulation is through
abstract data types

e Advantage

— Separate Interface from implementation
» Disadvantage

— Not extensible in the way that OOP is
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Subtyping and Inheritance

Interface

— The external view of an object
Subtyping

— Relation between interfaces

Implementation
— The internal representation of an object

Inheritance
— Relation between implementations
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Object Interfaces

 Interface
— The messages understood by an object
e Example: point
— X-coord : returns x-coordinate of a point

— y-coord : returns y-coordinate of a point
— move . method for changing location

* The interface of an object Is Its type.
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Subtyping

e |f interface A contains all of interface B, then A
objects can also be used B objects.

Point Colored_point
X-coord X-coord
y-coord y-coord
move color

move

change_color

e Colored point interface contains Point
e Colored point is a subtype of Point

29



Inheritance

e Implementation mechanism

* New objects may be defined by reusing
Implementations of other objects
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Example

class Point
private :
float x, y ¢ Subtyping
public e Colored points can be
point move (float dx, float dy); used in place of points
class Colored_point e Property used by client
. - program
private
float x, y; color ¢ @ Inheritance
public  Colored points can be
point move(float dx, float dy); implemented by resuing
point change_color(color newc); point implementation

e Propetry used by
Implementor of classes
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Subtyping differs from inheritance

Subtyping
_____ Inheritance
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Access Control

* In many OOPLs it is possible to declare attributes (and
methods) private or public or protected etc.

« This has no effect on the running program, but simply means
that the compiler will reject programs which violate the
access-rules specified

e The control is done as part of static semantic analysis
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Access Privileges In Java

private _
package [
protected [ [N
puntic. [ E—
same | heirs in | same heirs in | in other
class same package other package

package package



Varieties of OO languages

 class-based languages
— behavior of object determined by its class

* Object-based
— objects defined directly

e multi-methods
— operation depends on all operands
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History

Simula 1960’s
— Object concept used in simulation
Smalltalk 1970’s
— Object-oriented design, systems

C++ 1980°s
— Adapted Simula ideas to C

Java 1990’s
— Distributed programming, internet

C# 2000’s

— Combine the efficiency of C/C++ with the safety of Java
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Runtime Organization for OO Languages

What is this about?

How to represent/implement object oriented constructs such as
object, classes, methods, instance variables and method invocation

Some definitions for these concepts:

An object Is a group of instance variables to which a group of
Instance methods are attached.

An instance variable is a named component of a particular object.

An Iinstance method is a named operation is attached to a particular
object and is able to access that objects instance variables

An object class (or just class) is a family of objects with similar
Instance variables and identical methods.
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Runtime Organization for OO Languages

Objects are a lot like records and instance variables are a lot like fields.

=> The representation of objects is similar to that of a record.

Methods are a lot like procedures.
=> Implementation of methods is similar to routines.

But... there are differences:

Objects have methods as well as instance variables, records only
have fields.

The methods have to somehow know what object they are associated
with (so that methods can access the object’s instance variables)
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Example: Representation of a simple Java object

Example: a simple Java object (no inheritance)

class PoiInt {
int x,y;
(1)public Point(int x, int y) {
this.x=x; this.y=y;
}

(2)public void move(int dx, Int dy) {
X=X+dXx; y=y+dy;

}
(3)public float area() { ...}
(4)public float dist(Point other) { ... }

¥
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Example: Representation of a simple Java object

Example: a simple Java object (no inheritance)

Point p = new Point(2,3);
Point q = new Point(0,0);
.//,,/”' class .
p X 2
y
q \ >
AN
class .
X 0 Point class | |

y 0 Point .

move o

area .

dist .

new allocates an object In
the heap

. constructor(1)
. method(2)
. method(3)
. method(4)
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Inheritance

Example 2: Points and other “shapes”

N

abstract class Shape {
int x,y; // “origin” of the shape

51) public Shape(int x, Int y) {

this.x=x; this.y=y;
}

52) public vord move(int dx, Int dy) {

X=X+dX; y=y+dy;
}

public abstract float area();
S3)public float dist(Shape other) { ... }

¥
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Inheritance

Example 2: Points and other “shapes”

class Point extends Shape {

pp)public Point(int x, int y) {
| super(X,Y);

_g—

¥

(pz)public float area() { return 0.0; }
}
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Inheritance

Example 2: Points and other “shapes”

class Circle extends Shape {

int r;
(c1)public Circle(int x,int y,int r) {
super(x,y),; this.r = r;

}

(C2)public Int radius() { return r; }

(c3)public float area() {
return 3.14 * r * r;

}
}
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Inheritance

Shape[] s = new Shape[2];
s[O] = new PoiInt(2,3);

s[1]

new Circle(4,5,6);

'/,‘r//”' s[oj_—

class

. > point class

Note the similar layout between point and circle objects!

class
X

y
.

s[O0]-x
s[1].y

float areas =

s[0].-area()
+s[1].area();

>circle class

|01~ | ¢




Shape class

Shape

Inheritance

move

area

dist

Point class

Point
move
area
dist

~constru(S1)
>method(S2)

>method(S3)

>method(S2)
*method(P2)

( >method(S3)

Circle class
Circle o 1
move . » method(S2
/
area . // 3)
dist / » method(S3
radius| / ° >method(C2)

Inherited from shape

Note the similar layout of
each class object.
Q: why is that important?

Q: why don’t we need a pointer to the super class in a class object?
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Alternative Run-time representation of point

to superclass Object

Point class

Template

oo

Point object

y
Method dictionary code
Detail: class method shown in
dictionary, but lookup procedure
distinguishes class and instance ' code

methods
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Alternative Run-time representation

Point class Template

Point object
Method dictionary

ColorPoint object ColorPoint|class - Template

Method dictionary

This is a schematic diagram meant to illustrate the main idea. Actual implementations may differ 5




Multiple Inheritance

In the case of simple inheritance, each class may have one direct
predecessor; multiple inheritance allows a class to have several direct
predecessors.

In this case the simple ways of accessing attributes and binding
method-calls (shown previously) don’t work.

The problem: if class C inherits class A and class B the objects of class
C cannot begin with attributes inherited from A and at the same time
begin with attributes inherited from B.

In addition to these implementation problems multiple inheritance also
Introduces problems at the language (conceptual) level.
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Object Layout

e The memory layout of the object’s fields

 How to access a field if the dynamic type Is unknown?

— Layout of a type must be “compatible” with that of its supertypes
— Easy for Single Inheritance hierarchies

* The new fields are added

Shape Polygon Rectangle
at the end of the layout

Shape Shape Shape

Polygon Polygon

Hard for MI hierarchies Rectangle
A B C D A B C D B C D A B C D
Allal A A Al A AA i c (B B B
B ¢ [Ble B B A C A A A A
5 C |C D C |C
D A D




Dynamic (late) Binding

Consider the method call:

x.f(a,b) where is f defined?
in the class (type)of x? Or in a predecessor?

In single inheritance languages

1.
2.

3.
4.

Determine the target object from x.

Follow the pointer from the target object’s tag field to the corresponding class
object.

Select the method named f in the class object.

Call that method, passing the target object’s address along with the ordinary
arguments.

If multiple inheritance is supported then the entire predecessor graph must be
searched:

This costs a large overhead in dynamic typed languages like Smalltalk (normally
these languages don’t support multiple inheritance)

In static typed languages like Java, Eiffel, C++ the compiler is able to analyse the
class-hierarchy (or more precise: the graph) for x and create a display-array
containing addresses for all methods of an object (including inherited methods)

According to Meyer the overhead of this compared to static binding is at most
30%, and overhead decreases with complexity of the method

If multi-methods are supported a forest like data structure has to be searched
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Implementation of Object Oriented Languages

* Implementation of Object Oriented Languages differs
only slightly from implementations of block structured

Imperative languages
e Some additional work to do for the contextual analysis
— Access control, e.g. private, public, procted directives
— Subtyping can be tricky to implement correctly
* The main difference Is that methods usually have to be
looked up dynamically, thus adding a bit of run-time
overhead
— For efficiency reasons some language introduce modifiers like:
o final (Java) or virtual/override (C#)
— multiple inheritance poses a bigger problem
— Multi methods poses an even bigger problem
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Encapsulation Constructs

 Original motivation:
— Large programs have two special needs:

1. Some means of organization, other than simply division into
subprograms

2. Some means of partial compilation (compilation units that are
smaller than the whole program)

* Obvious solution: a grouping of subprograms that are
logically related into a unit that can be separately
compiled (compilation units)

— These are called encapsulations
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Modules

LLanguage construct for grouping related types,
data structures, and operations

Typically allows at least some encapsulation
— Can be used to provide abstract types

Provides scope for variable and subprogram
names

Typically includes interface stating which
modules It depends upon and what types and
operations It exports

Compilation unit for separate compilation
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Encapsulation Constructs

* Nested subprograms in Ada and Fortran 95

 Encapsulation in C

— Files containing one or more subprograms can be
Independently compiled

— The interface is placed in a header file
— Problem: the linker does not check types between a header
and associated implementation
 Encapsulation in C++
— Similarto C

— Addition of friend functions that have access to private
members of the friend class
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Encapsulation Constructs

e Ada Package
— Can include any number of data and subprogram delcarations
— Two parts: specification and body
— Can be compiled separately

e C# Assembly

— Collection of files that appears to be a single dynamic link
library or executable

— Larger construct than class; used by all .NET programming
languages
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Naming Encapsulations

 Large programs define many global names; need a way
to divide into logical groupings

e A naming encapsulation is used to create a new scope
for names

e C++ Namespaces

— Can place each library In its own namespace and qualify
names used outside with the namespace

— C# also includes namespaces
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Naming Encapsulations

« Java Packages

— Packages can contain more than one class definition; classes in a package
are partial friends

— Clients of a package can use fully qualified name or use the import
declaration

« Ada Packages

— Packages are defined in hierarchies which correspond to file hierarchies
— Visibility from a program unit is gained with the with clause

SML Modules

— called structure; interface called signature

— Interface specifies what is exported

— Interface and structure may have different names
— If structure has no signature, everything exported
— Modules may be parameterized (functors)

— Module system quite expressive
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Issues

* The target language usually has one spaces
— Generate unigue names for modules
— Some assemblers support local names per file

— Use special characters which are invalid in the programming
language to guarantee unigueness

o (enerate code for initialization
— Modules may use items from other modules
— Init before used
— Init only once
— Circular dependencies
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Avoiding Multiple Initializations

e |f module A uses module B and C and B uses C
— How to initialize C once

« Similar problem occurs when using C include files
e Two solutions

— Compute a total order and init before use
— Use special compile-time flag
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Detecting Circular Dependencies

Check the graph of used specifications is acyclic
But what about implementation

A’s specification can use B’s implementation
B’s specification can use A’s implementation
Detect at runtime (link time)
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Summary

o Abstract Data Types
— Encapsulation
— Invariants may be preserved

e Objects
— Reuse
— Subtyping
— Inheritance
— Dynamic dispatch
 Modules
— Grouping (related) entities
— Namespace management
— Separate compilation
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“I Invented the term Object-Oriented
and | can tell you | did not have C++
In mind.”

Alan Kay
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