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The missing link

The connection
Between
Syntax and Semantics
And
Languages and Compilers



The Language While

n will range over numerals, Num,

z will range ower vanables, Var,

a will range owver arithmetic expressions, Aexp,

i will range ower boolean expressions, Bexp, and

S will range over statements, Stm.

a = nl|z|a +a |8 xag |8, — ag

h n= +true|falae| s, =ag|a <ag| b |h A b

8 u= gz:=a|akip| &1 ; 82 | if 5 then 5, elae S
| while 5do 5

The Language While can be considered mini version of Mini-Triangle
While is almost the same as the BIMS language



Single step operational semantics for While
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{z := a, 5} = s[z—.d[a]s]

{akip, st — &

{51, 8 =&, {85, > 5"
{81;82, s} = &

{5, 8t = ¢
{if b then 5, elae S5, 5} = &'

if Bli]s = tt

{8q, s} = &

{if & then 5, elae Sqg, st — &

if B[b]s =

{8, 54 = &, {vhile b do 5, &) = &
{while hdo §, s} — s*

if B[5]s = tt

{while hdo 5, s} - sif Bfi]s = &




A stack based virtual machine - AM

The instructions of AM are given by the abstract syntax
inat = PUSH-n | ADD | MULT | SUB
TRUE | FALSE | EQ | LE | AND | NEG

FETCH-z | STORE-%

NOOP | BRANCH(e, ¢) | LOOP(e, ¢)

e n= g | inste

States:
{c, e, 3} € Code x Stack x State

Transitions:

{ﬂ:' E:‘ 3} [::' {ﬂri' EI:‘ SI}



Operational semantics for AM

{PUSH-n:E, €, 8 > {c, An]:e, &)

{ADD:c, 21:25:8, 8§} b= {e, (z21+22):e, 5y ifz), 2o€d
{MULT:£, 2 :29:€, 8} b= {e, (zi%xzq)ie, 8y ifz), 2062
{8UB:c, 2 :29:8, 8} = {e, (z1—2g)ie, 58 ifz), 2067
{TRUE:C, €, 5} = {c, tt:e, 8

{FALSE:c, €, 5} = {c, e, 85}

{EG:c, 21:20:€, 8} b= {e, (z1==22):e, 8} ifz, 2062
{LE:c, z1:29:8, §) B {c, (z1<2g):e, 8} if 2, 2067
{AND:E, £1:82:8, ) L

{e,tt: e, 5 if §,=tt and t;=1tt
{c, i :e,5y if {,=FF or t,=H, £, £,€T
{ {c,f: e, 5} if £=ti

{NEG:E, fE, 8}
{c,tt: e, 5} if ¢=fF

{FETCH-z:C, €, 5} e {c, (s z)he, 8}
{8TORE-T:C, 2:€, &) e {c, g, sfz—z]} if zeZ
{NOOGP:E, e, 8} = {c, e, 8

{BRANCH({Ec,, £o)kic, e, 8% [>

{c1:c,e, 8 if £=ti
{ce:c, e, 8 if ¢=fF

{Loor(e,, cghie, &, 8} [>

{c1:BRANCH{co:LOOP(£y, g}, NGOP):c, £, 5}




Translation of While to AM

CAfn] = DUSH-n
C A=) = FETCH-%
CAla,+a;] = CAag]:CAfa,]:aDD

CAlJar x a2] = CAfaz]:CA|a]:murT
CAlai—as] = CAfaz]:CAfa]:80B

CB[true] = TRUE

(CB|falae] = FALSE

CBla, = az] = CAdlsz]:CA|a1]:Eq

CBlm<as] = CAlaz]:CAfa]:LE

CB[-5] = CHB#]:NecG

CB[h ARl = CBl#g]:CB[h ]:AND

C8Jz = 4] = CA|a]:3TORE-Z
CS[akip] = NOOP

CE[51;52] = C8[5.]:C8]52]
CS[if b then 5, elae S3] = CB[s]:BRANCH(CS]S.],CS]S:])
C8[shile & de 5] = Loor{CB[4],CS[51)

Note similarity with code generation templates for Mini-Triangle




Example

CS8[y:=1; vhile —~{z=1) do (y:=7 * T; :=x—1}]
= C8[y:=1]:CSshile —(x=1) do {y:=y » x; x:=x—1}]
= CA[1]:sTorE-y:Loor(CB-+(x=1)],CSy:=7 * x; x:=x—1])
= pPUSH-1:8TORE-7:LOOP{CB|x=1]: Nt ,CS]y: =7 » z]:C8[x:=x—1])

= PUSH-1:3TORE-F:LOOP{FPUSH-1:FETCH-T:E(:NEG,
FETCH-X:FETCH-y:MULT:STCRE-Y:

PUSH-1:FETCH-X:8UB:8TORE-X)



Correctness Proof

Theorem 3.20 For every statement 5 of While we have 8.:[5] = S.m[5]-

This theorem relates the behaviour of a statement under the natural semantics
with the behaviour of the code on the abstract machine under its operational
semantics. In analogy with Thearem 2.26 it expresses two properties:

¢ I the execntion of 5 from some state terminates in one of the semantics then
it also terminates in the other and the resulting states will be equal.

¢ Furthermore, if the exeention of § from some state loops in one of the se-
mantics then it will also loop in the other.

The thearem is praved in two stages as expressed by Lemmas 3.21 and 3.22 below.
We shall first prove:



Soundness and completeness

Lemma 3.21 For every statement § of While and states 2 and &', we have that
if {§, s} — 3" then (CS[S], ¢, ) " (g, &, &)

So if the execution of § from s terminates in the natural semantics then the
execution of the code for § from storage ¢ will terminate and the resulting states
and storages will be equal.

Lemma 3.22 For every statement 5 of While and states 2 and &', we have that
if (CS[8], ¢, a) ¥ (g, e, a") then (§, 3} > s and e =¢

So if the execntion of the code for § from a storage s terminates then the natural
semantics of § from s will terminate in a state being equal to the storage of the
terminal configuration.
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Getting closer to TAM

Exercise 3.7 AM refers to variables by their neme rather than by their address.
The abstract machine AM; differs from AM in that

e the configurations have the form {c, e, m) where ¢ and ¢ are as in AM and
tn, the memory, is a (finite) list of values, that is m € Z*, and

¢ the mstructions FETCH-z and STORE-z are replaced by mstructions GET-n
and PUT-n where n is a natural number [an address).

Specify the operational semantics of the machine. Yon may write m[n| to select
the nth value in the list m {when n is positive but less than or equal to the length
of m). What happens if we reference an address that is outside the memory? O
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And closer

LOOP(---,---). The idea is to introduce instructions for defining lebels and for
jumping to lebels. The abstract machine AM, differs from AM; (of Exercise 3.7)
in that

e the confignrations have the form {pe, ¢, e, m) where ¢, ¢ and m are as before
and pe is the program counter (a natural number) pointing to an instruction
in ¢, and

¢ the instructions BRANCH(- --,---) and LOOP(------] are replaced by the in-
structions LABEL-I, JUMP-{ and JUMPFALSE-{ where { is a label {a natural
number).

The idea is that we will execute the instruction in ¢ that pe points to and in most
cases this will cause the program counter to be incremented by 1. The instruc-
fion LABEL-{ has no effect except updating the program counter. The instruction
JUMP-{ will move the program counter to the unique instruction LABEL-{ (if it
exists). The instruetion JUMPFALSE-{ will only move the program counter to the
instruetion LABEL-{ if the value on top of the stack is ff; if it is tt the program
counter will be incremented by 1.

Specily an operational semantics for AM,. Yon may write clpe] for the in-
strunction in ¢ pointed to by pe (i pe is positive and less than or equal to the
length of ¢). What happens if the same label is defined more than once? O
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Conclusion

« With a bit of hard work it is possible to connect
— The high level operational semantics for a language
— With the low level implementation
— And prove correctness of the translation

e This s called:

Provably correct implementations

* For more information read
— Semantics with applications,
— Hanne Riis Nielson and Flemming Nielson
— Wiley 1992, ISBN 0 471 92980 8
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