Languages and Compilers
(SProg og Overseettere)

Bent Thomsen
Department of Computer Science
Aalborg University

With acknowledgement to Hanne Riis Nielson and Flemming Nielson whose book this lecture is based on.
1

The missing link

The connection
Between
Syntax and Semantics
And
Languages and Compilers

The Language While

n will range over numerals, Num,

z will range ower vanables, Var,

a will range owver arithmetic expressions, Aexp,

i will range ower boolean expressions, Bexp, and

S will range over statements, Stm.

a = nl|z|a +a |8 xag |8, — ag

h n= +true|falae| s, =ag|a <ag| b |h A b

8 u= gz:=a|akip| &1 ; 82 | if 5 then 5, elae S
| while 5do 5

The Language While can be considered mini version of Mini-Triangle
While is almost the same as the BIMS language

Single step operational semantics for While

288

|skipns]

[com pas |

[ife]

hal

[if]

pal|

[whilett]

[whil&i]

{z := a, 5} = s[z—.d[a]s]

{akip, st — &

{51, 8 =&, {85, > 5"
{81;82, s} = &

{5, 8t = ¢
{if b then 5, elae S5, 5} = &'

if Bli]s = tt

{8q, s} = &

{if & then 5, elae Sqg, st — &

if B[b]s =

{8, 54 = &, {vhile b do 5, &) = &
{while hdo §, s} — s*

if B[5]s = tt

{while hdo 5, s} - sif Bfi]s = &

A stack based virtual machine - AM

The instructions of AM are given by the abstract syntax
inat = PUSH-n | ADD | MULT | SUB
TRUE | FALSE | EQ | LE | AND | NEG

FETCH-z | STORE-%

NOOP | BRANCH(e, ¢) | LOOP(e, ¢)

e n= g | inste

States:
{c, e, 3} € Code x Stack x State

Transitions:

{ﬂ:' E:‘ 3} [::' {ﬂri' EI:‘ SI}

Operational semantics for AM

{PUSH-n:E, €, 8 > {c, An]:e, &)

{ADD:c, 21:25:8, 8§} b= {e, (z21+22):e, 5y ifz), 2o€d
{MULT:£, 2 :29:€, 8} b= {e, (zi%xzq)ie, 8y ifz), 2062
{8UB:c, 2 :29:8, 8} = {e, (z1—2g)ie, 58 ifz), 2067
{TRUE:C, €, 5} = {c, tt:e, 8

{FALSE:c, €, 5} = {c, e, 85}

{EG:c, 21:20:€, 8} b= {e, (z1==22):e, 8} ifz, 2062
{LE:c, z1:29:8, §) B {c, (z1<2g):e, 8} if 2, 2067
{AND:E, £1:82:8,) L

{e,tt: e, 5 if §,=tt and t;=1tt
{c, i :e,5y if {,=FF or t,=H, £, £,€T
{ {c,f: e, 5} if £=ti

{NEG:E, fE, 8}
{c,tt: e, 5} if ¢=fF

{FETCH-z:C, €, 5} e {c, (s z)he, 8}
{8TORE-T:C, 2:€, &) e {c, g, sfz—z]} if zeZ
{NOOGP:E, e, 8} = {c, e, 8

{BRANCH({Ec,, £o)kic, e, 8% [>

{c1:c,e, 8 if £=ti
{ce:c, e, 8 if ¢=fF

{Loor(e,, cghie, &, 8} [>

{c1:BRANCH{co:LOOP(£y, g}, NGOP):c, £, 5}

Translation of While to AM

CAfn] = DUSH-n
C A=) = FETCH-%
CAla,+a;] = CAag]:CAfa,]:aDD

CAlJar x a2] = CAfaz]:CA|a]:murT
CAlai—as] = CAfaz]:CAfa]:80B

CB[true] = TRUE

(CB|falae] = FALSE

CBla, = az] = CAdlsz]:CA|a1]:Eq

CBlm<as] = CAlaz]:CAfa]:LE

CB[-5] = CHB#]:NecG

CB[h ARl = CBl#g]:CB[h]:AND

C8Jz = 4] = CA|a]:3TORE-Z
CS[akip] = NOOP

CE[51;52] = C8[5.]:C8]52]
CS[if b then 5, elae S3] = CB[s]:BRANCH(CS]S.],CS]S:])
C8[shile & de 5] = Loor{CB[4],CS[51)

Note similarity with code generation templates for Mini-Triangle

Example

CS8[y:=1; vhile —~{z=1) do (y:=7 * T; :=x—1}]
= C8[y:=1]:CSshile —(x=1) do {y:=y » x; x:=x—1}]
= CA[1]:sTorE-y:Loor(CB-+(x=1)],CSy:=7 * x; x:=x—1])
= pPUSH-1:8TORE-7:LOOP{CB|x=1]: Nt ,CS]y: =7 » z]:C8[x:=x—1])

= PUSH-1:3TORE-F:LOOP{FPUSH-1:FETCH-T:E(:NEG,
FETCH-X:FETCH-y:MULT:STCRE-Y:

PUSH-1:FETCH-X:8UB:8TORE-X)

Correctness Proof

Theorem 3.20 For every statement 5 of While we have 8.:[5] = S.m[5]-

This theorem relates the behaviour of a statement under the natural semantics
with the behaviour of the code on the abstract machine under its operational
semantics. In analogy with Thearem 2.26 it expresses two properties:

¢ I the execntion of 5 from some state terminates in one of the semantics then
it also terminates in the other and the resulting states will be equal.

¢ Furthermore, if the exeention of § from some state loops in one of the se-
mantics then it will also loop in the other.

The thearem is praved in two stages as expressed by Lemmas 3.21 and 3.22 below.
We shall first prove:

Soundness and completeness

Lemma 3.21 For every statement § of While and states 2 and &', we have that
if {§, s} — 3" then (CS[S], ¢,) " (g, &, &)

So if the execution of § from s terminates in the natural semantics then the
execution of the code for § from storage ¢ will terminate and the resulting states
and storages will be equal.

Lemma 3.22 For every statement 5 of While and states 2 and &', we have that
if (CS[8], ¢, a) ¥ (g, e, a") then (§, 3} > s and e =¢

So if the execntion of the code for § from a storage s terminates then the natural
semantics of § from s will terminate in a state being equal to the storage of the
terminal configuration.

10

Getting closer to TAM

Exercise 3.7 AM refers to variables by their neme rather than by their address.
The abstract machine AM; differs from AM in that

e the configurations have the form {c, e, m) where ¢ and ¢ are as in AM and
tn, the memory, is a (finite) list of values, that is m € Z*, and

¢ the mstructions FETCH-z and STORE-z are replaced by mstructions GET-n
and PUT-n where n is a natural number [an address).

Specify the operational semantics of the machine. Yon may write m[n| to select
the nth value in the list m {when n is positive but less than or equal to the length
of m). What happens if we reference an address that is outside the memory? O

11

And closer

LOOP(---,---). The idea is to introduce instructions for defining lebels and for
jumping to lebels. The abstract machine AM, differs from AM; (of Exercise 3.7)
in that

e the confignrations have the form {pe, ¢, e, m) where ¢, ¢ and m are as before
and pe is the program counter (a natural number) pointing to an instruction
in ¢, and

¢ the instructions BRANCH(- --,---) and LOOP(------] are replaced by the in-
structions LABEL-I, JUMP-{ and JUMPFALSE-{ where { is a label {a natural
number).

The idea is that we will execute the instruction in ¢ that pe points to and in most
cases this will cause the program counter to be incremented by 1. The instruc-
fion LABEL-{ has no effect except updating the program counter. The instruction
JUMP-{ will move the program counter to the unique instruction LABEL-{ (if it
exists). The instruetion JUMPFALSE-{ will only move the program counter to the
instruetion LABEL-{ if the value on top of the stack is ff; if it is tt the program
counter will be incremented by 1.

Specily an operational semantics for AM,. Yon may write clpe] for the in-
strunction in ¢ pointed to by pe (i pe is positive and less than or equal to the
length of ¢). What happens if the same label is defined more than once? O

12

Conclusion

« With a bit of hard work it is possible to connect
— The high level operational semantics for a language
— With the low level implementation
— And prove correctness of the translation

e This s called:

Provably correct implementations

* For more information read
— Semantics with applications,
— Hanne Riis Nielson and Flemming Nielson
— Wiley 1992, ISBN 0 471 92980 8

13

	Languages and Compilers�(SProg og Oversættere)
	The Language While
	Single step operational semantics for While
	A stack based virtual machine - AM
	Operational semantics for AM
	Translation of While to AM
	Example
	Correctness Proof
	Soundness and completeness
	Getting closer to TAM
	And closer
	Conclusion

