
Preprint of paper for PLATEAU 2016

Discount Method for Programming Language Evaluation

Svetomir Kurtev
Department of Computer Science,

Aalborg University
svetomirkurtev@gmail.com

Tommy Aagaard Christensen
Department of Computer Science,

Aalborg University
tommyaa@gmail.com

Bent Thomsen
Department of Computer Science,

Aalborg University
bt@cs.aau.dk

Abstract
This paper presents work in progress on developing a Dis-
count Method for Programming Language Evaluation in-
spired by the Discount Usability Evaluation method (Benyon
2010) and the Instant Data Analysis method (Kjeldskov et
al. 2004).

The method is intended to bridge the gap between small
scale internal language design evaluation methods and large
scale surveys and quantitative evaluation methods. The
method is designed to be applicable even before a compiler
or IDE is developed for a new language.

To test the method, a usability evaluation experiment was
carried out on the Quorum programming language (Stefik et
al. 2016) using programmers with experience in C and C#.
When comparing our results with previous studies of Quo-
rum, most of the data was comparable though not strictly
in agreement. However, the discrepancies were mainly re-
lated to the programmers pre-existing expectations of a lan-
guage. The results show that our evaluation method could
serve language designers as a low-cost way for evaluating
programming languages, especially in the early stages of the
language design process.

Future work includes adjusting and improving the method
in such a way that it becomes usable to novice programming
language designers.

Categories and Subject Descriptors D.3 [Programming
Languages]; H.5.2 [Information Interfaces and Presenta-
tion (e.g., HCI)]: User Interfaces—User-centered design

General Terms Programming Language Design Evalua-
tion, User Evaluation

Keywords Quorum, Usability Evaluation, Language De-
sign

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
An iterative approach to language design and implementa-
tion was advocated by Wirth as early as 1974 (Wirth 1974).
Ingalls reports on a similar design process used for Smalltalk
in 1981 (Ingalls 1981) and Guy Steel forcefully advocated an
iterative approach in his seminal key note speech “growing
a language” at the 1998 OOPSLA conference (Steel 1999).
Text books on programming language design and compiler
construction, such as (Watt and Brown 2000), now describe
such an iterative approach. Thus designing a new program-
ming language or extending an existing programming lan-
guage usually follows an iterative approach:

1 Create ideas for the programming language or extensions

2 Describe/define the programming language or extensions

3 Implement the programming language or extensions

4 Evaluate the programming language or extensions

5 If not satisfied, goto 1

Step 1 of the process is hard to subject to scientific anal-
ysis. The decision to create a new programming language or
to design an extension of an existing language is often ‘’a re-
action to some language that the designer knows (and likes
or dislikes)” (Sestoft 2012). Language designers use what-
ever means that are available to them during this step. In Step
2 the programming language is described, often through ex-
ample code, and defined, often using a mix of informal de-
scriptions and formal notations such as BNF for syntax and
formal semantic notations (Watt and Brown 2000). Step 3
is by now a well understood topic, although ever so often
new language constructs or features lead to an expansion of
compiler implementation techniques. In the early phases of
a language design this step may be skipped. Step 4 is more
difficult. In the early stages of a programming language de-
sign, the developer may be guided by various informal prin-
ciples such as readability, simplicity and reliability (Pratt et.
al 1984; Sebesta 2016) or somewhat more formal principles
such as Tennent’s language design principles (Tennent 1981)
which still guide many language designers (Sestoft 2012).

Formal evaluation methods for assessing programming
languages are few and limited in their use. In fact, until re-
cently most evidence gathered to support claims of the use-

Preprint of paper for PLATEAU 2016 1 2016/9/23

fulness of a new language are anecdotal in nature (Mark-
strum 2010).

In recent years the scientific community has worked to
rectify this. In particular, the focus of the PLATEAU work-
shops is the scientific evaluation of languages. The basic
observation is that language use and preference is highly
opinionated, which leads to user-based evaluation being the
norm for programming languages. Commonly, the scientific
community has made use of methods from social sciences,
which usually requires studying a large number of sub-
jects (Meyerovich and Rabkin 2012)(Garlick and Cankaya
2010)(Weintrop and Wilensky 2015)(Armoni et al. 2015).
Many such studies involve 50 to 100 participants (Hanen-
berg 2010)(Stefik and Gellenbeck 2011) with some studies
analysing over 100.000 participants (Brown and Altadmri
2014). Some researchers have even experimented with tech-
niques akin to those used in medical sciences, where a
placebo language was constructed to be used in the com-
parison between Perl and Quorum (Stefik et al 2011).

However, these methods are rather expensive, since con-
ducting a quantitative test requires a large group of people.
Typically, this means programming language designers can-
not do these tests before the language has reached a certain
level of maturity and, for some methods, the language needs
to have already gained widespread use.

Some designers have used more qualitative and lightweight
approaches for language evaluation. A commonly used
lightweight approach in HCI is the Discount Usability Eval-
uation method (Benyon 2010) which recommends the use
of as few as five participants. Some examples of using the
method in programming language evaluation are: The lan-
guage HANDS developed by Pane et al. (Pane et al. 2002)
designed specifically for children; Koitz and Slany (Koitz
and Slany 2014) used it on Scratch and their phone lan-
guage Pocket Code to compare the two; Pedersen and Fald-
borg used the method to test their spoken programming lan-
guage LARM (Pedersen and Faldborg 2014); Faldborg and
Nielsen used it while conducting an empirical experiment
on Dart and the web-enabled IDE called DartPad (Faldborg
and Nielsen 2015).

The primary problem with the Discount Usability Evalu-
ation method in such context, as identified by Pedersen and
Faldborg as well as Faldborg and Nielsen, is the difficulty
of separating the feedback about the language design from
feedback on the IDE. These observations, along with our
own experiences, lead us to conclude that the Discount Us-
ability Evaluation method is good when evaluating the full
package of a language with its IDE and compiler, but is less
suited for evaluations in the early phases of a language de-
sign.

Therefore, we wanted to create a new evaluation method
which will fill the gap between internal language analysis
and the programming evaluation methods based on social
science techniques. This new method is inspired by the Dis-

count Usability Evaluation and the Instant Data Analysis
(IDA) methods. The method is designed to be applicable
even before a compiler or IDE is developed for a new lan-
guage.

To test this method, we conducted an experiment using
the evidence-based programming language Quorum. This
entailed conducting a qualitative experiment with six ex-
perienced programmers as participants. These experiments
produced data, comparable though not strictly in agreement,
with previously published studies. The discrepancies be-
tween our study and previous work mainly relate to the pro-
grammers pre-existing expectations of a language. These re-
sults encourage us to believe that our method would be a
valuable, low-cost tool for user evaluation of programming
languages, especially in the early phases of programming
language design.

The rest of the paper is organised as follows: Section 2
describes our method. Section 3 describes the experimental
setup. Section 4 reports on the results and presents a compar-
ison with results for Quorum. Section 5 contains a discussion
of the results and Section 6 discusses threats to validity. Fi-
nally Section 7 presents the conclusion and future work.

2. Method
The Discount Usability Evaluation method was created by
Andrew Monk et al. in 1993 as presented in Designing In-
teractive Systems (Benyon 2010). To get acquainted with
the Discount Usability Evaluation methods applicability on
programming languages, we first conducted experiments on
C# and F# in Visual Studio. The participants were experi-
enced programmers familiar with C and C#, but not famil-
iar with F#. To analyse the data from the test, we used the
IDA method (Kjeldskov et al. 2004), as it is a lightweight
method for prioritising encountered problems. Further de-
tails of these studies can be found in (Kurtev and Christensen
2016).

Based on our findings, we used both methods as a ba-
sis for creating a new evaluation method suitable for evalu-
ating languages without the need of a compiler or an IDE.
The method mainly relies on solving a set of programming
tasks with the help of a sample sheet, which demonstrates
the use of relevant constructs from the language being tested.
Additionally, an interview, either in written or spoken form,
serves the purpose of further elaborating on the most inter-
esting problems the observer has noted during the process.
The procedure of the method is as follows:

1. Create tasks These tasks are specific to the language,
and should explore key features of the language. A useful
approach to designing tasks can be to create some scenar-
ios you would expect a user to use your language in and
what that user would need to do solve their task.

2. Create a sample sheet Based on the tasks, you now
have a better idea of what a participant would need to

Preprint of paper for PLATEAU 2016 2 2016/9/23

know to solve those tasks. Keeping the sample sheet
short or having a clear indexing of the samples can help
participants browse the sample sheet. Having working
code samples can help give a better understanding of the
overall structure of code in the language.1

3. Estimate the task duration Measuring how fast you
can solve the tasks will give an idea of how long the
experiment will take per participant. Do note that the
participants will likely take longer to solve the tasks
since they have to get acquainted with the language. It
is recommended to have more tasks than you expect
a participant to be able to solve. But the extra tasks
would need to explore less important features, and the
participant needs to be made aware of not being expected
to solve all of them.

4. Prepare setup The specifics of the setup can vary from a
full blown usability lab to pen and paper. The advantage
of a flexible setup, like pen and paper or a laptop with a
text-editor, is the convenience it allows for potential par-
ticipants. It is recommended to record the experiment to
better review the process of solving the tasks, in which
case the necessary utilities for recording need to be pre-
pared.

- (optional) Conduct a pilot test A pilot test can let you
discover and fix problems in your tasks, sample sheet,
task estimate and setup before conducting the experiment
on the full number of participants. It does, however, re-
quire an additional participant and time.

5. Gather participants The golden rule for the number of
participants is five. More than that and most of the en-
countered problems are ones you already have observed,
though the repetition can reinforce observations. Less
than that and you tend to have several problems left
undiscovered, though some data is generally still better
than none.

6. Start the experiment Make sure to tell the participants
that it is the language being tested and not them, to
alleviate some unnecessary nervousness.

7. Keep the participants talking Try to make the partici-
pants talk about what they are thinking about solving the
task at hand. During this time the facilitator may answer
any questions the participants have about the language
and may discuss the solution with the participant. This is
because, we are not testing the participants’ ability to for-
mulate a solution, but rather how well the language lets
them translate that into code. The facilitator will confirm
when a task is done. This is necessary because the system
will not give that kind of feedback.

1 Note that samples created at this stage may later serve the purpose of
test cases when a compiler, interpreter or IDE is implemented for a new
language.

8. Interview the participant After the test, conduct a brief
interview with the participant where you can discuss the
language, tasks etc. It can be useful to have some ques-
tions prepared or create a questionnaire if there are many
participants.

9. Analyse data After all the tests have been conducted, use
the data to identify a list of problems encountered during
the test. You can then categorise the problems using the
following guidelines:

Cosmetic problems are typos and small keyword and
character differences that can easily be fixed by re-
placing the wrong part.

Serious problems are structural errors that usually im-
pact how the code is structured, but are small enough
that they can be fixed with a few changes.

Critical problems are fundamental misunderstandings
of how the language structures code and large struc-
tural errors that would require a revision of the code.

Following this categorisation you will have a prioritized
list of things to improve on the language.

Our method has two major differences from the Discount
Usability Evaluation method using the IDA method for eval-
uation. The first big difference is the addition of a sample
sheet step. The reason for this is that without an IDE or a
compiler the language would be presented as blank paper,
which does nothing to teach the user about how programs in
the language are written. Providing the user with examples
and explanations of how the language works is necessary
to let them meaningfully program in the language. We also
considered providing a formal syntax, and perhaps a (for-
mal) semantics description. However, in the early phases of
a programming language design these artifacts may not have
been fully worked out yet. Furthermore, although such arti-
facts are paramount to correctly implementing a language,
they are not always appreciated or even understood by pro-
grammers.

The other big difference is how the problems are pri-
oritised. The IDA method uses time spent on overcoming
a problem to categorise its severity. Our setup makes the
user either work in a generic text editor or on a piece of
paper, neither of which give any feedback about the correct-
ness of the code written. This means the participants would
not necessarily discover any problems in their solutions and
would therefore not spend time on solving those problems.
This makes time a poor measure for problem severity, which
caused us to instead estimate the severity based on how much
code would need to be changed to fix the problems. This is a
rather informal notion and could in the future be refined by
more formal evaluation criteria based on e.g. the cognitive
dimensions framework (Blackwell et. al. 2001).

Preprint of paper for PLATEAU 2016 3 2016/9/23

3. Experiment setup
The new method was tested in an experiment setup by using
it on an unfamiliar programming language to avoid bias from
pre-existing knowledge about the language. We used the
evidence-based programming language Quorum, which our
participants were unlikely to be familiar with. Most of our
participants were experienced programmers, studying for a
degree in Computer Science, and having knowledge about C
and C# and several other programming languages (e.g. Java,
Python, Pascal). We had a total of six participants taking part
in the main experiment, with one person acting as as a pilot
test participant.

The experiment was conducted using a text-editor on
a laptop. The main reason for this over pen and paper,
was to make recording easier. The text-editor we used was
Notepad++ (Ho 2016). Notepad++ has some features to as-
sist programming, most notably an auto-completer which
uses words already written in the text as suggestions. How-
ever, since these features are language-agnostic and the auto-
completer would only prevent false positives from minor
typos and not language misunderstandings, this was con-
sidered acceptable. To record the screen Microsoft Game
DVR was used. Due to the poor quality of the inbuilt laptop
microphones, a smartphone was used to record the audio.

3.1 Task Sheet
For our task sheet, we devised several smaller tasks, each
addressing different features and constructs of Quorum. We
drew heavy inspiration for some of the tasks from Codekata
(Thomas 2016) since some of the katas were simple to un-
derstand yet conveyed the essence of a particular feature
present in the tested language. Although each task had an
intended purpose with a clear goal, their design allows more
than one possible solution which gave the participants the
freedom to experiment with the language.

• The first task had the intended purpose of testing arith-
metic expressions and the use of data types.

• The second task had the purpose of testing containers
in the language (such as arrays) and control structures.
It also tested responsible code modification since there
was a certain degree of intended repetition in the subtasks
which warranted careful reuse of code segments.

• The third task was for testing the concept of classes and
inheritance.

• The final task was testing operations on strings, includ-
ing the exercise of in-built actions specifically useful for
splitting text segments.

The tasks were scheduled to be solved in about an hour,
though the final task was expected to extend beyond that
timeframe. An example task sheet for Quorum can be found
in (Kurtev and Christensen 2016).

3.2 Sample Sheet
Alongside the task sheet, a sample sheet was created in order
to provide examples of code that the participants could use
to learn what was necessary from the language in order to
solve the tasks. An example sample sheet for Quorum can
be found in (Kurtev and Christensen 2016).

3.3 Interview sheet
For the interview, we created an interview sheet with five
questions addressing the overall experience of the experi-
ment. These questions were not meant to replace the open
discussion but rather serve as a baseline for the direction
of the discussion and to ensure some specific areas were
covered. Questions #1, #2 and #3 were about the language
and primarily served to get the participants’ thoughts about
it. While there was some potential overlap in these ques-
tions, they could help some participants to talk more, and
they helped categorise the feedback. Question #4 focused on
getting feedback about our task and sample sheet. Question
#5 asked about the experience of coding without a compiler
since it is the biggest change for our method. During the
interview, the participants would usually be made aware of
most of the otherwise unmentioned errors, to be able to pro-
vide a more informed discussion. Transcripts of interviews
can be found in (Kurtev and Christensen 2016).

4. Results
In this section, we describe and divide the identified prob-
lems, according to the categorization described earlier. Ta-
ble 1 lists all the problems in their respective category, but
for the sake of brevity, we will focus only on the most inter-
esting ones.

1. Not using the end keyword at all - this would affect
the overall validity of the program because the scoping
rules in Quorum are defined in conjunction with the end

keyword. This shows a fundamental misunderstanding of
how scoping works in the language

2. The lack of constructors with parameters in Quorum
- Quorum does not support constructors with parameters
which might be problematic for the participants having
experience with other languages, where this feature is
common. It both causes the participants to invoke syntax
in the class that is not supported, and to have difficulties
instantiating classes. Since this is a significant difference
in how the code should be structured, it is considered
critical.

3. Misunderstanding the effect of Sort() on arrays of
objects - The inbuilt sorting function for arrays does not
have access to the properties of the objects and therefore
does not sort them by any of those. This would have
the consequence of code, written with the assumption
that it works, being wrong, which means recovery would

Preprint of paper for PLATEAU 2016 4 2016/9/23

require a full rewrite of the code. This makes the problem
critical.

4.1 Comparison with Quorum’s Evidence
In their empirical experiments, Stefik and Gellenbeck (Stefik
and Gellenbeck 2011) gathered many statistically significant
results regarding keyword choices. For one of their experi-
ments, they divided the participants in two groups, novices
and experienced programmers, to find out if there is a sig-
nificant discrepancy in the results between the two groups.
Every keyword choice was ranked in two tables by mean
value and standard deviation. Since we conducted our ex-
periment with participants having programming experience,
we are primarily interested in the results of the second group.
For the purpose of our evaluation method, we will not men-
tion every single word choice they rated but rather the ones
which coincide with the problems we identified using our
method. Additionally, we would relate two of the empirical
studies from Stefik and Siebert (Stefik and Siebert 2013) and
their findings about keyword choices. This would help us to
make a comparison between the previous findings and the
results from our evaluation.

• Stefik and Gellenbeck (Stefik and Gellenbeck 2011)
found that for the AND concept, using && and and per-
formed quite well. Their results showed that these words
are actually popular and thus intuitive to use. As for the
logical OR concept, the or keyword was placed first, be-
ing significantly better than the second highest one - the
|| operator, which is present in many popular program-
ming languages. For the XOR logical operator, the or

was rated highest which can be attributed to the fact that
the participants did not know how to call an operation
which ”took a behavior when one condition was true but
not both”.

• Our findings are comparable to Stefik and Siebert (Stefik
and Siebert 2013) where both the wrong and the correct
syntax were found intuitive by the experienced program-
mers group. This also applies to Dot (.) versus colon (:)
and using an aggregate operator (x += 1) versus an arith-
metic operator (x = x + 1). It is possible that a lot of
these cases were the result of a participant just glancing
over the sample sheet, instead of having a more thorough
introduction to the syntax on the sample sheet. Since the
constructs looked intuitive, participants did not notice or
remember that it was different and thus just used the syn-
tax they were used to from other programming languages.

• Stefik and Gellenbeck (Stefik and Gellenbeck 2011) set-
tled on using a single equals (=) sign for assignment state-
ments and for testing equality since that is what they
thought would make most sense. Although this might
be true for the novice group (single equals (=) sign was
ranked highest), the experienced programmers group did
not even rate the single equals in the top 3, rating the

double equals (==) as highest instead. This was not veri-
fied until one of the later empirical studies by Stefik and
Siebert (Stefik and Siebert 2013).

• Our findings match the results from Stefik and Siebert
(Stefik and Siebert 2013) where the experienced pro-
grammers group found == to be intuitive as the boolean
equals operator.

• Stefik and Gellenbeck considered several word choices
for the concept of ”Taking a behaviour” such as function,
action and method. The novices ranked the action word
the highest, while the experienced programmers ranked
- operation, followed by action, method and function.
However, Stefik and Gellenbeck contemplate that this
particular result should be further investigated, since the
participants might have understood the description of the
concept as something other than completely capturing
the idea of a function.

• None of our participants commented on this point. How-
ever, a point that may relate to this was that our expe-
rienced programmers had expectations about data types
wording (float versus number, string versus text and
bool versus boolean)

• Quorum makes use of the keyword repeat over for,
while or cycle (see (Sanchez and Aguayo 2005)) follow-
ing a study which shows that repeat represents the con-
cept of iteration significantly better than the aforemen-
tioned words (Stefik and Gellenbeck 2011).

• Our results about the looping constructs contradict the
results from (Stefik and Siebert 2013). Our participants
often lamented the lack of a for or foreach loop and had a
lot of errors in using the iterator for the while loop. How-
ever, the results are not directly contradictory as Stefik
and Siebert’s questions about intuitiveness were focused
on the syntax, while our participants problems were more
about lacking the functionality of a looping construct
with inbuilt iterator handling. A more direct contradiction
is that our participants often found the repeat keyword
unnecessary, despite Stefik and Siebert listing it as one of
the most intuitive keywords for looping. This could be a
side effect of us only demonstrating the repeat while loop
in our sample sheet, since that loop looks exactly like the
while loop they are used to but with an extra keyword in
front.

As can be seen, a lot of our results were unsurprising.
Quorum is a language that uses evidence about programming
to design a language that is intuitive for novices. Since our
participants were experienced programmers, it would be ex-
pected that a lot of the errors encountered would be related to
this mismatch. Especially the critical error with lacking con-
structors with parameters showed a large mismatch in what
an experienced programmer expected from a class compared
to what was shown to be more user-friendly (Stylos and

Preprint of paper for PLATEAU 2016 5 2016/9/23

Critical Serious Cosmetic

Not using the end keyword at all Not using the end keyword to end
the scope of if-statements

Using keywords and symbols from
C# instead of Quoruma

The lack of constructors with pa-
rameters in Quorum

Forgetting to increment the iterator
in a repeat while loop

The lack of aggregate operators in
Quorum (e.g.+=)

Misunderstanding the effect of
Sort() on arrays of classes

The lack of common looping con-
structs (for-loops or foreach loops)

Writing output instead of return

as the keyword for a return state-
ment

Forgetting to import a library for
containers (array)

Typos in library importing

Not using elseif to avoid having to
close an additional scope

Mistyping integer as integar

Not resetting inner loop iterator be-
tween loops

Accidentally used 0 instead of O in
variable name

Mistyped the is keyword as ia

Forgot to add the repeat keyword

Table 1. The table of identified problems categorised by severity

a dot (.) instead of colon (:), && instead of and, || instead of or, float instead of number, string instead of text, == in conditional statements instead
of =, int instead of integer and bool instead of boolean

Clarke 2007). Likewise the lack of a for- or foreach loop
and the resulting iterator handling problems experienced by
our participants, showed that they had a habit of handling
the iterator in the looping construct. This functionality, how-
ever, could make the construct less practical for novices, as
they might get a better understanding of the same function-
ality by writing the statements separately. More surprisingly
we had a participant who never used the end keyword. In the
discussion he explained this was because he thought indenta-
tion was used to control scope. He felt that since indentation
is a good practice that all programmers should use anyway,
it would make sense to make the language use and enforce
this. This would be especially true for a beginners language,
as the beginners are those who need to learn to use indenta-
tion. This again showed that experienced programmers were
likely to draw from their previous experiences rather than
thoroughly examine the sample sheet.

5. Discussion
The results from the previous section addressed some po-
tential problems encountered when working with a language
such as Quorum. This section will elaborate on how the re-
sults can be extended to other programming languages and
how our method could be used in a customized manner.

Comparing our results with Quorum’s evidence has
shown that our method gets comparable results to other
methods, but with a significantly lower amount of partic-

ipants. Each participant identified between 2 and 8 issues
with the Quorum language and 1 and 7 issues with our
method. On average each participant contributed two unique
issues.

Most of Quorum’s evidence about experienced program-
mers has, however, been focused on just the syntax. This
means that most of the comparable data is characterised as
cosmetic errors, which are usually the least interesting prob-
lems from a usability standpoint. The more serious problems
tend to either contradict or not be addressed by Quorum’s
evidence, though in most cases this is a result of the mis-
match in target group between novice and experienced pro-
grammers. One noticeable problem we encountered in the
execution of our test was participants ‘’freezing” at the very
beginning. They were unsure how to start as they could not
figure out what format of the solution they should use. For
most of the participants this was not a big hurdle, as they
would either just pick one way of doing it or consult the fa-
cilitator. However, for some participants, having a discussion
while programming was unnatural. One way to prevent this
could be to have some pre-written code that the participant
should instead complete. It does, however, sacrifice some of
the potential data about the language that a more free-form
task can give.

After conducting both of our experiments, a very inter-
esting observation was made that an Integrated Develop-
ment Environment (IDE), when used in conjunction with

Preprint of paper for PLATEAU 2016 6 2016/9/23

a programming language, contributes primarily to resolving
cosmetic problems and mistakes associated strictly with the
syntax of the given language. However, an IDE does not con-
tribute that much to the facilitation process if the user gets
”stuck”, a state attributed to the critical problems from the
IDA evaluation. Additionally, we noticed that even if partic-
ipants are experienced with a specific paradigm, (participant
#2 from the usability evaluation of C#), they can still get into
a position where they cannot continue with the experiment,
given that they have to solve a task in a paradigm, differ-
ent from what they are familiar with (participant #2’s expe-
rience with F# tasks). Further observations from the evalu-
ation method showed that when participants familiar with a
specific paradigm (imperative, object-oriented) have to make
use of an unfamiliar language supporting such a paradigm
(Quorum is both imperative and object-oriented), they tend
to disregard the syntax of the new language in place of that of
a language they are familiar with. In the case with Quorum,
most of the participants made use of syntax native to lan-
guages such as Java and C#, supporting the same paradigms
as Quorum.

6. Threats to validity
Conducting the experiment had some informal and qualita-
tive conditions, which makes the validity face some threats.
This section will describe the most prevalent threats.

• Participant sample - Although we collected some qualita-
tive results, the experiment did not have a good represen-
tation of the general populace. The participant sample in-
volved a small group, with very similar educational back-
grounds, occupation, age and geographic location. The
involvement of a bigger and more diverse group might
skew the results.

• Facilitating the participants - Since we neither used a
compiler nor an IDE for the experiment, the facilitator
had to help on several occasions and the participants
referred to him rather than the sample sheet.

7. Conclusion
We identified a gap in programming language evaluation
techniques between internal language analysis and evalua-
tion methods based on social science techniques requiring
a large number of subjects to be investigated. In that re-
gard, we wanted to explore whether HCI techniques could
be applicable for the evaluation of programming languages.
We have examined the usefulness of the Discount Usability
Evaluation method with the IDA method for data analysis on
C# and F# along with examining literature for similar exper-
iments. We concluded that the Discount Usability Evalua-
tion method can be used to evaluate programming languages,
but has some shortcomings. The programming language IDE
has a large effect on the results, often providing significant
assistance which effectively eliminates many of the errors

which might otherwise get caught in the language. Based on
the results, we concluded that the Discount Usability Evalu-
ation method is good for testing a compiler and an IDE, but
is less suited for examining language design.

We took the initial steps to create a new method better
suited for evaluating language design in the early phase and
we conducted an adapted usability experiment where we
specifically avoided the use of an IDE or a compiler. An
added advantage of our method is that it does not require the
creation of any tools for the language before the language
design can be tested, making it a low-cost and efficient
solution. We changed the way the problems are prioritised
due to the discovery, that since the system does not have a
way of giving meaningful feedback to the participant, the
participants would not encounter problems nor spend time
fixing them.

To test the method, we conducted an experiment using the
evidence-based language Quorum, as it was unlikely for our
participant group to be familiar with it, yet it belongs to a
programming paradigm they were familiar with. Comparing
the resulting data from the method with Quorums evidence
showed us that most of the data was comparable though not
strictly in agreement. However, Quorums data mostly cen-
tered around syntax choice and therefore was mostly only
related to the cosmetic problems, which are the least in-
teresting problems to consider. The data suggests that our
method will be better suited for identifying some of the
deeper problems with a programming language when com-
pared to the syntax questionnaires used as evidence for Quo-
rum. It would be interesting to expand our experiment on
Quorum with novice programmers. Using experienced pro-
grammers makes it easier to convey how to program in a lan-
guage, as they already know how to program, and it makes
sense when programmers are the target group for the lan-
guage. It does, however, mean that the data tends to be bi-
ased towards the languages the programmers already know.
Using novices avoids this bias and is obviously useful for
languages designed for them.

Future work includes adjusting and improving the method
by applying it to more programming languages, encouraging
language designers to use it and report back their findings.
We are especially interested in making our method usable
for novice programming language designers. As part of the
Computer Science and Software Engineering Curricula at
Aalborg University, students at the 4th semester design, de-
fine and implement their own programming language (Dolog
et. al 2016). It is our hope that the Discount Method for Pro-
gramming Language Evaluation becomes standard practice
used by these students and hopefully elsewhere.

Acknowledgments
We would like to thank the students who shared their time
with us as participants in our experiments.

Preprint of paper for PLATEAU 2016 7 2016/9/23

References
M. Armoni, O. Meerbaum-Salant and M. Ben-Ari. From Scratch

to Real Programming. In ACM Transactions on Computing
Education (TOCE), Volume 14 Issue 4, February 2015.

D. Benyon. Designing Interactive Systems - A comprehensive
guide to HCI and interaction design. Published by Pearson
Education Limited, 2010.

A. F. Blackwell et. al. Cognitive dimensions of notations: Design
tools for cognitive technology. In Cognitive Technology:
Instruments of Mind, pp. 325-341, Springer Berlin Heidelberg,
2001.

N. C. C. Brown, M. Koelling, D. McCall and I. Utting Blackbox:
A Large Scale Repository of Novice Programmers Activity. In
The 45th SIGCSE technical symposium on computer science
education (SIGCSE 2014), 2014.

N. C. Brown and A. Altadmri. Investigating novice programming
mistakes: educator beliefs vs. student data. In Proceedings of the
tenth annual conference on International computing education
research, (pp. 43-50). ACM, July 2014.

P. Dolog, L. Leth Thomsen, and B. Thomsen. Assessing Problem-
Based Learning in a Software Engineering Curriculum Using
Blooms Taxonomy and the IEEE Software Engineering Body
of Knowledge. ACM Transactions on Computing Education
(TOCE), Volume 16, Issue 3, Article 9 (May 2016).

M. Faldborg and T.L. Nielsen. Type Systems And Pro-
grammers A Look at Optional Typing in Dart. Mas-
ter Thesis. In Det Digitale Projektbibliotek, 2015. URL
http://projekter.aau.dk/projekter/da/studentthesis/type-systems-
and-programmers-a-look-at-optional-typing-in-dart(375d2f4d-
8a5e-4fdd-b72d-e5c9faf479b1).html

R. Garlick and E. C. Cankaya. Using alice in CS1: a quantitative
experiment. In ITiCSE ’10 Proceedings of the fifteenth annual
conference on Innovation and technology in computer science
education, 2010.

S. Hanenberg. An experiment about static and dynamic type
systems: Doubts about the positive impact of static type systems
on development time. In ACM Sigplan Notices (Vol. 45, No. 10,
pp. 22-35) ACM, October 2010.

D. Ho Notepad++ home page. URL http://notepad-plus-plus.org,
2016. Used: 11/05/16.

D. H. Ingalls, Design principles behind Smalltalk. in BYTE
magazine, 6(8), pp. 286-298, 1981.

J. Kjeldskov, M. B. Skov and J. Stage. Instant data analysis:
conducting usability evaluations in a day. In Proceedings of the
third Nordic conference on Human-computer interaction, 2004.

R. Koitz and W. Slany. Empirical Comparison of Visual to
Hybrid Formula Manipulation in Educational Programming
Languages for Teenagers. In PLATEAU ’14 Proceedings of
the 5th Workshop on Evaluation and Usability of Programming
Languages and Tools, 2014.

S. Kurtev and T. A. Christensen, Discount Method
for Programming Language Evaluation Master The-
sis. In Det Digitale Projektbibliotek, 2016. URL
http://projekter.aau.dk/projekter/files/239518386/report.pdf

S. Markstrum. Staking Claims: a history of programming language
design claims and evidence: a positional work in progress.
In PLATEU ’10 Evaluation and Usability of Programming
Languages and Tools, 2010.

L. A. Meyerovich and A. S. Rabkin. Socio-PLT: principles for
programming language adoption. In Onward! 2012 Proceedings
of the ACM international symposium on New ideas, new
paradigms, and reflections on programming and software, 2012.

J. F. Pane, B. A. Myers and L. B. Miller. Using HCI Techniques
to Design a More Usable Programming System. In Proceedings
of the IEEE 2002 Symposia on Human Centric Computing
Languages and Environments (HCC02), 2002.

L. C. Pedersen and M. Faldborg. Designing LARM: Programing
with Nothing but your Voice. Student report. In Det Digitale
Projektbibliotek, 2014.

T. W. Pratt, M. V. Zelkowitz and T. V. Gopal, Programming
languages: design and implementation Prentice-Hall, 1984.

J. T. Richards, J. Brezin, C. B. Swart and C. A. Halverson,
Productivity in parallel programming: A decade of progress.
Queue, 12(9), 30, ACM, 2014.

H. W. Sebesta, Concepts of Programming Languages. Pearson
College Division, 2016.

P. Sestoft, Programming language concepts Springer Science &
Business Media (Vol. 50), 2012.

A. Stefik and E. Gellenbeck Empirical studies on programming
language stimuli. In Software Quality Journal, 2011.

A. Stefik, S. Siebert, M. Stefik, and K. Slattery, An empirical
comparison of the accuracy rates of novices using the quorum,
perl, and randomo programming languages. In Proceedings of
the 3rd ACM SIGPLAN workshop on Evaluation and usability
of programming languages and tools, pp. 3-8, ACM, October
2011.

A. Stefik and S. Siebert An Empirical Investigation into Program-
ming Language Syntax. In ACM Transactions on Computing
Education (TOCE), 2013.

A. Stefik, E. Pierzina and K. Ritter Quorum’s home page. URL
http://www.quorumlanguage.com. Used: 11/05/16.

J. Sanchez and F. Aguayo Blind learners programming through
audio. In CHI EA ’05 Extended Abstracts on Human Factors in
Computing Systems, 2005.

G. L. Steele, Growing a language. In Higher-Order and Symbolic
Computation, 12(3), 221-236, 1999.

J. Stylos and S. Clarke Usability Implications of Requiring
Parameters in Objects’ Constructors. In ICSE International
Conference on Software Engineering, 2007.

R. D. Tennent, Principles of programming languages, Prentice
Hall PTR, 1981.

D. Thomas Codekata. URL http://codekata.com/. Used: 12/05/16.

D. A. Watt and D. F. Brown, Programming language processors in
Java: compilers and interpreters, Pearson Education, 2000.

D. Weintrop and U. Wilensky. To block or not to block, that is the
question: students’ perceptions of blocks-based programming.
In IDC ’15 Proceedings of the 14th International Conference on
Interaction Design and Children, 2015.

Preprint of paper for PLATEAU 2016 8 2016/9/23

N. Wirth, On the Design of Programming Languages. In IFIP
Congress (Vol. 74, pp. 386-393), August 1974.

Preprint of paper for PLATEAU 2016 9 2016/9/23

