
IT’S NO SECRET THAT THE WORLD
of art development for games
is getting more complicated,
with dynamic rig LODs, real-time
tessellation, sub-d surfaces,
mega-textures, and the like.
The complexity of assets is
increasing, while at the same
time, there’s a drive to simplify
the process to create them. If
the initial technical hurdle is
lowered, artists will be free to be
more creative and spend more
time iterating art, and less time
wrangling their tools to try and
just get the assets into the game
(or so the thinking goes).

One really good initial step
toward helping your artists do
what they do best is to alleviate
their dependency on one specific
software package. Long gone
are the days when a studio
could get by just with a copy of
[insert your favorite package
here]. Studios should be aiming
to sever the umbilical cord and
let their art teams work with
what they know or what’s best
for any given task. Beyond the
implicit benefits, there’s also a
world of good to be had in using
this approach when working with
outsourced employees.

The trick to making the
switch is to change the studio’s
mentality by breaking down the

export barrier and implementing
an import-based pipeline.

EXPORT VS. IMPORT
What’s the real difference
between export- and import-
based pipelines?

An export-based pipeline
is typically structured so that
assets are exported directly
to a custom first-party priority
native format. Once exported,
the asset is loaded directly into
the engine to be binarized. The
format is often spec’ed in such
a way that the content is written
in a very specific structure
dictated mainly by the engine’s
internal data structures. An
example would be to de-index
vertex data, triangulate, then
section out materials, normals,
and tangents.

Creating your own custom
exporter initially seems like the
path of least resistance. Why
should we try to interpret or work
with someone else’s exporter? We
can just quickly write our own and
make it do exactly what we need!

While this is true and can
help jumpstart production, it will
ultimately confine and limit your
production team.

One of the problems with
an export-based pipeline is it
becomes challenging to support

artists who are working in
multiple art packages. A unique
exporter has to be built and
maintained for each software
application. Some studios avoid
this maintenance nightmare by
establishing one core package
as the gatekeeper of data
(see Figure 1), a practice that
utilizes a range of third-party
established formats to transfer
between external packages while
ultimately forcing all content to
be passed through one primary
package’s exporter before it can
be loaded in the engine.

But what if, during production,
a superstar programmer develops
tech for the engine that will
allow you to render all meshes
via subdivision surfaces? The
programmer tells you that
triangulated meshes aren’t
optimal for this new tech and the
system would really prefer quads.
You’ll now have to update the
engine’s native mesh structures
to support quads, modify the
external exporter(s), and—you
guessed it—re-export all the
mesh assets!

Another more common
example is that your project is
targeted for multiple hardware
platforms. You’re going to have
to maintain multiple exporters
for different targets and at the

 THE
ALL-IMPORTANT
IMPORT

PIPELINE

» R O D G R E E N

///////// HOW AND WHY TO
RID YOUR ARTISTS OF AN

EXPORT-BASED APPROACH

W W W . G D M A G . C O M 21

0904gd_art_pipeline_vIjf.indd 210904gd_art_pipeline_vIjf.indd 21 3/19/09 8:30:33 PM3/19/09 8:30:33 PM

http://WWW.GDMAG.COM

22 A P R I L 2 0 0 9 | G A M E D E V E L O P E R 22

very least re-export the assets in a way that suits
that target platform, most commonly down sampling
the assets in the process. Needless to say, in an
export-based pipeline, managing two distinct sets
of exported assets and art pipelines can get quite
complicated (see Figure 2).

On the other hand, an import-based pipeline
shifts the task of native conversion from the
export step to the import through a transparent
background process. Rather than defining a
custom export format, the pipeline makes use of a
standardized format (for example, FBX or Collada for
models and PSD or TIFF for textures). The asset is
saved to this common format and then sourced in
the engine. The act of sourcing the “loading” of the
asset in the engine triggers a background process
that converts and imports the data from the source
asset as needed. It might, for example, convert
units, de-index vert data, Y-up to Z-up, combine,
flatten, resize, recolor, and so forth.

PRESERVATION
The real magic of using an import-based pipeline is
that the sourced asset is not modified during the
process and therefore can be reprocessed multiple
times with different settings and through different
processes without its quality degrading.

As an example, if you support the PSD texture
format in your engine (import pipeline) and convert
it to native DDS in the background, but later down
the development timeline decide to switch all
textures to a JPG-based SVT solution, you would
be able to reprocess and compile the source PSDs
easily without any loss of quality of the final
texture. However, if you’ve spent the whole project
forcing the production team to convert to DDS, and
reference these DDS in engine (export pipeline),
then this format change would force you to either:

a) recover all source PSDs and convert to
the new format (remember these aren’t
referenced anywhere but in the version
control software) or

b) convert the DDSs to the new format and
face the problems of recompressing the
compressed data.

Simply put, an import-based pipeline allows
you to retarget assets without wasting many work
months or degrading the quality of the final asset
(see Figures 3A and 3B).

Saving conversion settings is also a helpful
extension to the pipeline. If you store the
parameters used to convert the asset as an
associated set of metadata, you can dynamically
reprocess source content as needed. This metadata
is best saved in a shared database to cut down on
the cluttered files and file formats. The metadata

» I M P O R T P I P E L I N E S

FI
GU

RE
 1

FI
GU

RE
 2

FI
GU

RE
 3

A
FI

GU
RE

 3
B

0904gd_art_pipeline_vIjf.indd 220904gd_art_pipeline_vIjf.indd 22 3/19/09 8:30:38 PM3/19/09 8:30:38 PM

can also be used to tweak incoming assets, for example adjusting the levels
of a texture, sharpening texture mips, replacing texture mips, recalculating
the tangents of a mesh, specifying automatic mesh LOD reduction
percentages, and so forth (see Figure 3C).

As a byproduct of not defining your own custom format, the pipeline’s
ability to support multiple packages becomes trivial as long as you picked
a format that’s open and supported across these packages, the prime
examples being FBX and Collada. It’s also helpful that these formats
and plug-ins are externally maintained so all version updates are the
responsibility of other and much larger teams.

The format you chose is pretty important. I know of a studio that based
its pipeline on binary Max files, which seemed like it would achieve the
ultimate goal of “import and convert.” However, there was one key problem.
Max files require the 3ds Max client to load. You cannot open these files
without spawning a ghost version of 3ds Max in memory and using 3ds
Max-compiled plug-ins to query the data. In other words, they’re back to
exporting! This is the very definition of a closed format (see Figure 4).

BRINGING THE PROCESS IN HOUSE
It’s important that you take the time to research
and evaluate all the different formats that are
available. I recommend looking for formats that:

» have the features you need
» are public (if not open source)
» have a well-documented SDK
» are commonly used and frequently updated
» are ASCII supported, which can help but is not

required

One question people may have is, “If we
implement an import-based pipeline, doesn’t that
mean the team will have to convert assets every
time it’s loaded?”

Yes. However, the amount of conversion can
be reduced significantly to only converting new
and modified assets—not all assets—using a
simple caching system. When an asset is loaded
and ready to be processed, the binary results are
stored in a local cache directory. If the asset has
already been processed and nothing has changed,
then the engine will directly load from the cache
rather than reprocessing the asset again (see
Figure 5). This helps alleviate consistently slow
load times. Furthermore, the more componentized
your assets are, the less of an impact an updated
asset will cost to reprocess.

Consider an animator’s workflow. A minor
tweak is made to the main character’s idle
animation. The assets are in a non-componentized
format (all animations stored in one asset
source), and so any change to any animation
will force a complete reprocessing of all the
animations for that character and not just the new
idle clip.

Two other major features are required to truly
take advantage of the cache system. The first is distribution, a pretty simple
feature, but an important one. A clean way to use it is to distribute cache
via your build-release process (using a build installer, synced from version
control or synced from a share). With the cache now shared among the team
members, they are able to take full advantage of speed loading the native
binary data.

The second major feature that’s required is “invalidation,” which allows
the system to force a flush of existing cached assets. Incorporating a cache
version to the cached assets can prevent the engine from sourcing any
data that doesn’t meet the minimum version requirements. With this simple
cache versioning, you can quickly update the build to invalidate any data
that might cause instability for the team.

Once a solid caching system is set up, you’ll get the advantage of
loading native binary assets—speed and robustness—without the
limitations of being tied directly to the binary format!

In general, the goal is to shift the technical burden from the artists
and designers over to the more capable hands of the tools and pipeline

FI
GU

RE
 3

C
FI

GU
RE

 4
FI

GU
RE

 5

W W W . G D M A G . C O M 23

0904gd_art_pipeline_vIjf.indd 230904gd_art_pipeline_vIjf.indd 23 3/19/09 8:30:41 PM3/19/09 8:30:41 PM

http://WWW.GDMAG.COM

A P R I L 2 0 0 9 | G A M E D E V E L O P E R 24

engineers. I’ve noticed in my career that some
programmers tend to see assets as very explicit
sets of source data that should be categorized,
formatted, stored, and so on before they want to
have anything to do with them. What basically
ends up happening is the artists are tasked with
organizing and maintaining two very distinct sets
of assets. The assets they want to work with (PSD,
for example) and the assets the engine wants to
work with (DDS, for example).

Over and over again, confusion occurs about
what exactly the engine wants. Because of a very
distinct disconnect between the source (PSD)
and the working format (DDS), the source often
gets lost; conversion options are lost, or flattened
accidently—or heaven forbid someone makes a
change to the working format (DDS) directly.

TECHNICAL ARTISTS
Slowly over the years, a new group of artists has
evolved to take this burden away: the ever-elusive
technical artist; someone who knows how the artists want to work and how
the programmers want the assets.

Hopefully, with an import-based pipeline, the need for asset wranglers is
slowly waning, leaving them more time to focus on other tasks, like writing
helpful tools and extensions to assist in other areas of art development.
What I suggest via an import-based pipeline is a kind of philosophy whereby
the artists and designers are allowed to work how they want, and all the
technical stuff in-between is managed for them.

Alas, there is one area where the principle of an import-based pipeline
isn’t as magical: animation. As you go from textures to models to rigs
and animation, the complexity of the problems and the data increases
dramatically. At the core every package animates uniquely. The animation
systems between art packages are a diverse group and something as
simple as IK will evaluate differently across all.

The task of seamlessly transferring animation without baking between
packages has been tackled over and over. To date, I don’t know of one
system that has truly succeeded. The best way I can explain the problem
is with a texture analogy. Consider a texture that has been created in
Photoshop and is using all the cool features (layers, text, paths, adjustment
layers, multiple alpha channels). Now, take that texture and load it into
Microsoft Paint. How can Paint possibly expect to be able to edit this texture
without actually becoming Photoshop? So how can you work with it? The
only way you can is to first flatten the image (rasterize it).

Interestingly enough, Photoshop does this automatically for you
when you save. Photoshop will save a PSD file with both flattened and
unflattened versions of the same image, a feature that can be turned off, but
nevertheless exists.

So like the above example, animation pipelines have to bake animation
data (sample data every frame) upon export, which then requires you to
maintain multiple versions of the animation, one baked, one unbaked.

I have yet to find a clean solution. Maybe a system like Photoshop’s
could be added to the 3D world, wherein the animation package, on saving,
collapses the animation data into linear, per-frame FK keys. I think for this
to enter into the world of the true import pipeline, a standardized animation
engine would need to be developed to define the animation systems, as

well as how they are evaluated each frame (i.e. evaluate constraints, then
expressions, then forward kinematics, then etc ...).

This isn’t on too many people’s radars, and I would bet it will be a while
before this problem is solved. For now, animation is the one exception to an
otherwise very simple pipeline.

OUR ART HOUSE
Figure 6 shows our current import-based pipeline that we’re using for
PROJECT OFFSET. We’ve done our best to make it as simple as possible for the
artists, while simultaneously allowing us to upgrade and utilize a full suite
of packages for production. For instance, we were able to upgrade to Maya
2009 with little to no impact to the team. Technically, we’re able to work
in any version of any package that can export Collada content. The maxim
we’ve adopted for the pipeline is, “It just works.”

As you can see, we’re pretty Maya-centric in our pipeline, but I assure
you this is purely based on choice. If required we’d easily be able to switch
over to be more focused on Softimage XSI or 3ds Max without much hassle
at all.

LONG-TERM SIGHTS
There are definite benefits to switching to an import-based pipeline, with
options and simplicity for the artists being the key advantages.

In general, I urge developers to investigate systems and changes to the
pipeline that can shift the technical and asset management burden from
the art and design teams over to the programming and technical art teams.
While the programmers and technical artists will have to work a bit more to
keep things running smoothly, the artists will be freed to spend more time
iterating and making the art look as good as they can.

Implementing an import-based pipeline requires a bit of heavy lifting at the
start, but I guarantee it’ll save you many times over down the road. *

» I M P O R T P I P E L I N E S

R O D G R E E N is currently the technical art director at Intel where he manages the art and
design pipelines for the game engine team group. Previously he was one of the managing
directors and COO of Offset Software, the developer behind PROJECT OFFSET. Email him at
rgreen@gdmag.com.

FIGURE 6

0904gd_art_pipeline_vIjf.indd 240904gd_art_pipeline_vIjf.indd 24 3/19/09 8:30:44 PM3/19/09 8:30:44 PM

mailto:rgreen@gdmag.com

	Contents
	POSTMORTEM
	VOLITION INC.'S SAINTS ROW 2

	FEATURES
	THE 8TH ANNUAL GAME DEVELOPER SALARY SURVEY
	THE ALL-IMPORTANT IMPORT PIPELINE

	DEPARTMENTS
	GAME PLAN
	HEADS UP DISPLAY
	TOOL BOX
	GAMESCAPE

	COLUMNS
	THE INNER PRODUCT
	PIXEL PUSHER
	DESIGN OF THE TIMES
	AURAL FIXATION
	ARRESTED DEVELOPMENT

